
Advanced Substitution Model Selection

Methods in RAxML-NG

Master's Thesis of

Christoph Stelz

At the KIT Department of Informatics

Institute of Theoretical Informatics

First examiner: Prof. Dr. Alexandros Stamatakis

Second examiner: Prof. Dr. Michael Beigl

First advisor: M.Sc. Anastasis Togkousidis

Second advisor: Dr. Oleksiy Kozlov

09. May 2025 – 10. November 2025

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

This work is licensed under Creative Commons Attribution 4.0 International. To view a

copy of this license, visit https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

Advanced Substitution Model Selection Methods in RAxML-NG (Master's Thesis)

I declare that I have developed and written the enclosed thesis completely by myself. I have not

used any other than the aids that I have mentioned. I have marked all parts of the thesis that

I have included from referenced literature, either in their original wording or paraphrasing

their contents. I have followed the by-laws to implement scientific integrity at KIT.

Karlsruhe, 10. November 2025

(Christoph Stelz)

Abstract

With next generation sequencing, the cost to sequence a genome has decreased exponentially,

even outpacing Moore’s law. We therefore expect the use of phylogenetic inference tools to

rise even further, with the tools facing a perpetual scalability challenge. The largest extent of

studies (as well as users) now commends for increasingly automated methods as we observe

a shift from manual workflows to reusable, highly automated pipelines. An important step in

such phylogenetic analysis pipelines is model selection, which ranks the plethora of available

DNA and protein substitution models according to their relative fit to the data. In this thesis,

we present a novel implementation of a model selection procedure, integrated into RAxML-

NG, a widely used tool for phylogenetic inference via Maximum Likelihood. It implements

a number of heuristics to speed up execution and employs a robust parallelization scheme

that also supports partitioned datasets and distributed memory systems. For 86.7% of amino

acid, and 72.9% of single-gene DNA datasets, our implementation selects models with a BIC

score difference of less than 10 compared to IQTree’s ModelFinder and ModelTest-NG. With

48 cores, we reach a mean speedup per dataset of 3.54 (AA) and 5.82 (DNA) over IQTree. Over

all datasets, the accumulated speedup with 48 cores over IQTree is 1.72 (AA) and 4.05 (DNA).

By providing a fast, easily-accessible implementation without external dependencies, we hope

to lower the barrier to prepend a model selection to phylogenetic analyses. This ensures a

good model-data fit and potentially saves runtime during the tree search by limiting the use

of computationally expensive mixture models. Furthermore, its integration into the inference

tool allows future work to incorporate model selection results during the tree search, paving

the way for more adaptive approaches and runtime optimizations.

i

Zusammenfassung

Durch neuartige Sequenzierungsmethoden sind die Kosten zur Sequenzierung eines Genoms

exponentiell gesunken. Deshalb ist zu erwarten, dass die Verwendung von phylogenetischer

Inferenzsoftware weiter ansteigen wird und sich die Software an stetig vergrößerende

Datenmengen anpassen muss. Ein Großteil der Studien und Nutzer macht zunehmend auto

matisierte Methoden erforderlich. Es erfolgt ein Wechsel von manuellem Aufruf der Tools hin

zu automatisierten und wiederverwendbaren Daten-Pipelines. Ein wichtiger Schritt in einer

solchen phylogenetischen Pipeline ist die Modellauswahl, bei der die zahlreichen vorhande

nen molekularen DNA- und Protein-Modelle anhand ihrer Fähigkeit, die vorliegenden Daten

zu beschreiben, bewertet werden. In dieser Masterarbeit stellen wir eine neuartige Implemen

tierung einer solchen Modellauswahl vor. Die Implementierung ist in das weit-verbreitete

Inferenz-Tool RAxML-NG integriert. Sie verwendet mehrere Heuristiken, um die Ausführung

zu beschleunigen und verwendet ein robustes Parallelisierungsschema, das auch partitionierte

Datensätze und Cluster-Rechnersysteme gut unterstützt. Für 86,7% der Protein- und 72,9%

der DNS-Datensätze beträgt die BIC-Differenz der ausgewählten Modelle weniger als 10 im

Vergleich zu den Modellen von IQTree’s ModelFinder und ModelTest-NG, Mit 48 CPU-Kernen

erreicht unser Tool pro Datensatz einen durchschnittlichen Speedup von 3,54 (Protein) und

5,82 (DNS) im Vergleich zu IQTree. Über alle Datensätze gemessen beträgt der akkumulierte

Speedup mit 48 CPU-Kernen 1,72 (Protein) und 4,05 (DNS). Mit diesem schnellen, leicht

zugänglichen - da integriertem - Tool hoffen wir die Barriere für Modellauswahl zu senken

und die Anwendung zu verbreiten. Dadurch ist gewährleistet, dass das ausgewählte Modell

auch gut zum Datensatz passt. Ferner kann Laufzeit eingespart werden, da nicht komplexere

Modelle als nötig verwendet werden. Außerdem erlaubt die Integration in das Inferenztool,

in der Zukunft die Modellsuche in die Baumsuche miteinzubeziehen, um diese adaptiver und

schneller zu gestalten.

iii

Contents

Abstract . ⁠i

Zusammenfassung . ⁠iii

1. Introduction . ⁠1

2. Background . ⁠3

2.1. Phylogenetic Inference . ⁠3

2.1.1. Multiple Sequence Alignment and Phylogenetic Trees . ⁠3

2.1.2. Tree Evaluation Criteria . ⁠4

2.1.3. DNA Substitution Models . ⁠6

2.1.4. Amino Acid Substitution Models . ⁠6

2.1.5. Base Frequencies . ⁠7

2.1.6. Rate Heterogeneity Models . ⁠7

2.1.7. Parameter Optimization Methods . ⁠10

2.2. Information Criteria (IC) . ⁠10

2.2.1. AIC . ⁠11

2.2.2. AICc . ⁠11

2.2.3. BIC . ⁠11

2.3. Related Work . ⁠11

2.3.1. ModelFinder . ⁠11

2.3.2. ModelTest-NG . ⁠12

2.3.3. Machine Learning . ⁠13

2.3.4. RAxML-NG . ⁠13

3. Methods . ⁠15

3.1. Model Optimization . ⁠15

3.2. Applied Optimizations . ⁠16

3.2.1. Heuristics . ⁠16

3.2.2. Expectation-Maximization . ⁠17

3.2.3. Parallelization Across Models and Opportunistic Multi-threading ⁠18

3.2.4. MPI Parallelization . ⁠21

3.3. Checkpointing . ⁠23

3.4. Evaluation of Model Selection Accuracy . ⁠23

3.4.1. EvoNAPS . ⁠23

3.4.2. Pipeline . ⁠24

3.5. Runtime Benchmarks . ⁠25

4. Results . ⁠27

5. Discussion . ⁠39

6. Conclusion . ⁠40

v

6.1. Future Work . ⁠40

Bibliography . ⁠41

A Appendix . ⁠47

A.1 Data Availability . ⁠48

A.1.1 Software Versions . ⁠48

A.2 Evaluation Subsample . ⁠49

A.3 List of DNA substitution models . ⁠50

A.4 List of Amino Acid Substitution Matrices . ⁠51

vi

1. Introduction

1. Introduction

Phylogenetics studies the relatedness of species in the light of evolution. Before the discovery

of DNA and the availability of sequence data, phylogenetic reconstruction relied on close

observation of specimen and the detection of so-called homologies: similarities between dif

ferent species that have developed through a shared evolutionary history. With the advent of

DNA sequencing, phylogenetic methods are no longer constrained to the phenotype (observ

able traits), but primarily evaluate information from the genotype (the DNA sequence). This

sudden breadth of information poses challenges best conquered with statistics. Computational

phylogenetics therefore uses statistical models of DNA substitutions to explore evolutionary

processes.

In certain cases, researchers have a good intuition on the type of model required for the

analysis at hand and do not need to investigate further. Nevertheless, in the majority of cases,

the plethora of available models and lack of a priori knowledge can render model selection

a challenging and time-consuming task. Different methods exist to automatically select from

a set of candidate models. Two popular tools with this functionality are ModelTest-NG [1]

and IQTree’s ModelFinder [2], [3], which use information criteria (such as the Bayesian

Information Criterion, abbreviated BIC) to determine the “goodness of fit” of models.

In this thesis, we present a novel implementation of a model selection procedure, integrated

into RAxML-NG, a widely used phylogenetic inference tool. Our implementation outperforms

both IQTree and ModelTest-NG in multi-threaded shared-memory benchmarks on single-gene

datasets. Its availability inside RAxML-NG lowers the barrier to perform a model selection,

and may even be transparent to the user. Through its adaptive parallelization approach, it

is well-suited to utilize all available computing resources, in cases where the user allocates

a large amount of processing power in anticipation of the tree search following the model

selection.

With the integration of model selection into RAxML-NG we were able to achieve:

1. a competitor for state of the art model selection tools that combines a large model candidate

set (including freerate models) with runtime-saving heuristics and a versatile paralleliza

tion scheme

2. a simplification of the model selection process for users and in the context of pipelines

3. increased code maintainability, as there exists a large overlap of functionality between the

tree inference tool RAxML-NG and the model selection procedure

4. a foundation for future work that can employ model testing during the tree search phase

(i.e., by switching between hard-to-compute but accurate, and cheap but approximative

models)

1

1. Introduction

5. the option for future research to explore the link between phylogenetic models and their

influence and bias on tree search results.

In the following sections, we will introduce phylogenetic inference, model selection, and

available tools in detail (Section 2). In Section 3 we will describe our implementation, the

optimizations and heuristics we employed, as well as the methods used to evaluate and

benchmark our tool. In Section 4 and Section 5, we will present and discuss our findings,

before concluding this thesis in Section 6.

2

2. Background

2. Background

2.1. Phylogenetic Inference

2.1.1. Multiple Sequence Alignment and Phylogenetic Trees

The prerequirement for many phylogenetic methods is a Multiple Sequence Alignment (MSA):

A matrix 𝑆𝑡×𝑛 represents the character sequence drawn from the state space 𝑆 with length

𝑛 of 𝑡 taxa, with gap characters inserted such that “related” characters end up in the same

column.

🐨 Phascolarctos cinereus CGCACAGATGCCTTGGAGCAAGGAGGATT

🐻 Ursus americanus AGAACACAGGCCTTGGAACAAGGT-----

🐪 Camelus dromedarius AGAACAGAGGCTTTGGAACAAGGAGGATT

🐋 Balaenoptera musculus AGAACAGAGGCCTTGGAACAAGGAGGATT

👤 Homo sapiens AGAACAGAGGCCTTAGAACAAGGAGGATT

(a) MSA excerpt

Homo sapiens
Phascolarctos cinereus

Ursus americanus
Balaenoptera musculus

Camelus dromedarius

(b) A possible maximum-likelihood tree

Figure 1: MSA and a phylogenetic tree of five mammals based on the protein Cyclin-dependent

kinase 7 (CDK7), extracted from OrthoMAM [4].

For example, the MSA in Figure 1a is a matrix 𝑆5×30, and the state space comprises the four

DNA nucleotides Adenine, Guanine, Cytosine, and Thymine alongside the gap character: 𝑆 =
{𝐴, 𝐺, 𝐶, 𝑇 , −}. The gap character represents deletions or insertions. For instance, the last

nucleotides in the sequence of the American black bear (Ursus americanus) seem to be deleted.

Another form of genetic mutation is the substitution: the Koala (Phascolarctos cinereus) has a

Cytosine (C) in the first column, whereas all other taxa under consideration have an Adenine

(A).

3

2. Background

Given an MSA, the declared goal is to construct a phylogenetic tree, such as the one in

Figure 1b . The leaf nodes () represent our taxa, whereas the inner nodes () can be thought

of as extinct common ancestors. In an unrooted bifurcating tree as we have here, each

inner node has exactly three neighbors. The number of trees grows super-exponentially with

respect to the number of taxa: For 𝑡 taxa, there are ∏𝑡
𝑖=4(2𝑖 − 5) possible trees [5, p. 76].

This means for our small example from Figure 1 with 5 taxa there are 15 possible trees, for

10 taxa there are already 2 million possibilities, and for 50 taxa the unfathomable amount of

~2.84 ⋅ 1074 possible trees. From these considerations it is clear that evaluating all possible

trees is a hopeless endeavour and that we must consider heuristics, statistical criteria, and

approximations.

2.1.2. Tree Evaluation Criteria

An early and still relevant attempt at phylogenetic tree reconstruction is Maximum Parsi­

mony. It embodies Occam’s Razor: The explanation with the least amount of assumptions

is to be preferred [6]. Typically, we do not know the states of the inner nodes, and we

are therefore free to speculate. Maximum Parsimony minimizes the number of substitutions

across the edges of a given tree and prefers trees that require less mutation to explain the

observed sequence state at the tip nodes [5, p. 94]. Compared to other methods, it is cheap to

evaluate and yields reasonable tree topologies.

A particular shortcoming of the Maximum Parsimony method is the fact that its criterion does

not incorporate branch lengths. If we expect branches to be long, it seems likely that multiple

mutations might occur along the way, possibly even ending up in the original state.

To capture such hidden mutations (hidden in the sense that they are transparent to us from

the observed character states), we employ a Markov model. In particular, we model the

substitution process of nucleotides or AAs using a Markov chain. The state space comprises

the different bases (for DNA data) or amino acids (for AA data) and the transition between

states represents a point mutation. The defining property of a Markov chain is the absence

of memory: Let 𝑋𝑛 be a random variable that denotes the state of the Markov chain at time

point 𝑛, and let 𝑠𝑛 be the observed state at time point 𝑛, then the value of 𝑋𝑛+1 depends only

on 𝑋𝑛:

𝑃(𝑋𝑛+1 = 𝑠𝑛+1 | 𝑋𝑛 = 𝑠𝑛, 𝑋𝑛−1 = 𝑠𝑛−1, …) = 𝑃(𝑋𝑛+1 = 𝑠𝑛+1 | 𝑋𝑛 = 𝑠𝑛) (1)

Equation 1 is called the Markov property [7, p. 1].

When we use Markov chains to model the substitution process, we assume that it has reached

an equilibrium distribution [5, p. 8]. This means that as time progresses, the distribution 𝜋 =
{𝜋1, …, 𝜋|𝑆|}, with 𝜋𝑖 denoting the proportion of time spent in state 𝑖, is constant. The vector

𝜋 is also called the base frequency vector.

A substitution rate matrix (“𝑄 matrix”) characterizes a continuous time Markov chain and

denotes the transition probability between states during an infinitesimal time duration.

Choosing “good” parameters for the 𝑄 matrix forms an optimization problem. We discuss the

structure and parameter optimization of the 𝑄 matrix in Section 2.1.3. Since the 𝑄 matrix

gives transition probabilities for infinitesimal durations, we can not use it to determine the

transition probabilities for longer time periods, since multiple transitions with intermediate

4

2. Background

states are possible. For this, we have to use the transition probability matrix (“𝑃 matrix”),

which gives the transition probabilities for arbitrary non-infinitesimal continuous time 𝑡:

𝑃(𝑡) = 𝑒𝑄𝑡 (2)

The Chapman-Kolmogorov theorem [5, p. 8] guarantees that the transition probabilities in

the 𝑃 matrix account for all hidden intermediate mutations:

𝑝𝑠1→𝑠2
(𝑡1 + 𝑡2) = ∑

𝑘∈𝑆
𝑝𝑠1𝑘(𝑡1) ⋅ 𝑝𝑘𝑠2

(𝑡2) (3)

That is, the probability of a transition from state 𝑠1 to state 𝑠2 in time 𝑡1 + 𝑡2 is the same as the

sum of all transition probabilities via an arbitrary intermediate state 𝑘. With the formulation

of transition probabilities, we can now apply the principle of maximum likelihood estimation

to our problem [8].

Likelihood is a function of the observation (our MSA 𝐴 ∈ 𝑆𝑡×𝑛), all model parameters 𝜃 and a

candidate tree 𝑇 . Its value is the probability to observe the given data under those parameters:

𝐿(𝐴|𝜃, 𝑇). Under the assumption that all sites of a sequence develop independently, the

likelihood of a tree given an MSA is the product of all site-likelihoods, which in turn is

the product of all transition probabilities across all tree branches, summed over all possible

intermediate states [8].

Because we consider unrooted trees, we place a virtual root on an arbitrary branch in our tree

to simplify the computation process. The likelihood evaluation algorithm performs a post-

order traversal starting from the virtual root, and computes partial likelihoods. Given a parent

node 𝑛𝑝 with two child nodes 𝑛𝑖 and 𝑛𝑗, it computes the partial per-site likelihood (stored in

a so called conditional likelihood vector, CLV) of the parent node being in state 𝑠 as follows:

𝐿(𝑠)
𝑝 = (∑

𝑠2∈𝑆
𝑝𝑠→𝑠2

(𝑏𝑖) ⋅ 𝐿(𝑠2)
𝑖) ⋅ (∑

𝑠2∈𝑆
𝑝𝑠→𝑠2

(𝑏𝑗) ⋅ 𝐿(𝑠2)
𝑗) (4)

A T G C

ni

A T G C

nj

np

bi bj

Figure 2: Triplet

At the tip nodes, the MSA defines the tip states:

𝐿(𝑠)
𝑖 = {1 if MSA has character 𝑠 at site 𝑖

0 otherwise (5)

Once the evaluation algorithm has computed the CLVs of all inner nodes, it obtains the final

likelihood by considering the two nodes adjacent to the virtual root, which we will call 𝑛𝑙 and

5

2. Background

𝑛𝑟. Let 𝑏 denote the length of the branch that separates them, and 𝜋𝑠 the base frequency of

state 𝑠. Then the final likelihood value for the given site is

L = ∑
𝑠1∈𝑆

𝜋𝑠1
𝐿(𝑠1)

𝑙 (∑
𝑠2∈𝑆

𝑝𝑠1→𝑠2
(𝑏)𝐿(𝑠2)

𝑟) (6)

To obtain the likelihood across all sites, we need to multiply the per-site likelihoods. Since

these are numerically small, we instead take the sum of the logarithm of the site likelihoods,

which is equivalent. This log-likelihood (lnL) is the guiding criterion in ML methods. In the

following sections, we will discuss the details of the model.

2.1.3. DNA Substitution Models

Substitution models for DNA sequences differ in their substitution rate symmetries and the

equilibrium distribution. A decisive assumption for efficient likelihood computation is time

reversibility, as this allows arbitrary virtual root placement in order to traverse the unrooted

tree. Time reversibility requires that for all 𝑖, 𝑗 ∈ {1, …, |𝑆|}, 𝑖 ≠ 𝑗 the equality 𝜋𝑖𝑞𝑖𝑗 = 𝜋𝑗𝑞𝑗𝑖

must hold.

Jukes and Cantor [9] proposed a simple model (commonly abbreviated JC69), which assumes

an equal substitution rate 𝜆 between any two distinct characters. Because the rows of a

substitution rate matrix must sum to zero, this leaves us with the following definition:

𝑄JC69 =

(

−3𝜆
𝜆
𝜆
𝜆

𝜆
−3𝜆
𝜆
𝜆

𝜆
𝜆

−3𝜆
𝜆

𝜆
𝜆
𝜆

−3𝜆)

Increasingly complex substitution models relax these constraints by introducing additional

free parameters. Under this assumption, the most general substitution matrix named the

General Time Reversible (GTR) model [10] is represented as follows:

𝑄GTR =

(

⋅
𝛼
𝛽
𝛾

𝛼
⋅
𝛿
𝜀

𝛽
𝛿
⋅
𝜁

𝛾
𝜀
𝜁
⋅)

(

𝜋1
𝜋2

𝜋3
𝜋4)

The requirement that rows must sum to zero allows the determination of the omitted values

(“⋅”) on the main diagonal.

A concise way of expressing model matrices is to specify them in terms of symmetries between

GTR parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, and 𝜁. Equal numbers mean that the parameter is repeated. For

example, “000 00 0” designates JC69, as there is just a single parameter, and “012 34 5” denotes

the GTR model. In total, there are 203 possible combinations [11]. However, there is a subset

of 11 named and commonly used matrices, which we list in the appendix (Table A.4).

2.1.4. Amino Acid Substitution Models

For amino acid (AA) substitution models, the substitution rate matrices have dimension 20 ×
20, a substantial increase compared to DNA data. After applying the above restrictions that

6

2. Background

each row must sum to 0, symmetry must hold, and fixing one arbitrary scaling parameter,

there are still 189 free parameters for the substitution matrix alone. This so called protein

GTR model poses a challenge for regular optimization algorithms, as it is particularly slow

to compute. To circumvent this problem, most analyses of AA datasets use precomputed rate

matrices. Empirical studies have optimized these rate matrices on large datasets, sometimes

with a focus on certain fields or applications such as mammalian or plant genomes. Table A.5

in the appendix lists the AA matrices supported by RAxML-NG and links them to their original

publication.

2.1.5. Base Frequencies

There are multiple ways to estimate the value of the stationary distribution 𝜋:

1. In the simplest case, we assume equal frequencies for all states 𝑖 ∈ 𝑆: 𝜋𝑖 = 1
|𝑆| .

2. We can also count the number of times each state occurs in our observed data, that is the

MSA, and divide by the total number of characters in the MSA. These are called empirical

frequencies.

3. In the case of AA substitution models, the precomputed rate matrices are accompanied by

a frequency vector estimated from the same dataset. We term these model frequencies.

4. It is also possible to optimize frequencies numerically with respect to the likelihood, using

e.g. L-BFGS-B (Section 2.1.7).

2.1.6. Rate Heterogeneity Models

When we apply a given substitution model to our dataset, we assume that the substitution rate

is uniform across all sites in the MSA. Since each site of a given sequence might face different

evolutionary pressures, this assumption does not hold on empirical datasets. For instance, in

protein-coding sequences the last nucleotide of a codon is often redundant, and therefore may

undergo more frequent mutations, since this mutation does not change the encoded protein.

The phenomenon that the substitution rate differs among sites is called rate heterogeneity

among sites (RHAS).

A common approach is to employ a finite mixture model: we consider 𝑐 substitution rate

categories 𝑟1, …, 𝑟𝑐 with weights 𝑤1, …, 𝑤𝑐 under the constraints that the weights sum to 1,

and that the average substitution rate is equal to 1:

𝑤1 + … + 𝑤𝑐 = 1

∑
𝑐

𝑖=1
𝑤𝑖𝑟𝑖 = 1 (7)

Since we do not know a priori which site fits best into which category, we compute the

likelihood over the whole sequence for all categories separately, and later apply the weighted

sum to obtain the final likelihood:

𝐿 = ∑
𝑘

𝑤𝑘 ⋅ (∑
𝑖

𝐿𝑘,𝑖) (8)

7

2. Background

In the following, we use the notation 𝐿𝑘,𝑖 to refer to the likelihood value of the site with index

𝑖 under rate category 𝑘. Multiple strategies to configure the substitution rate and weights exist

and thus model the RHAS. We will briefly describe them in the following sections.

Invariant (+I)

One observation from real-world data is that some sites are highly conserved and virtually

never mutate. It is possible to model this effect using a two-category mixture model, where one

of the substitution rates is equal to zero: 𝑟1 = 0. Let 𝑝 denote the proportion of invariant sites,

then the weights of the mixture model are 𝑤1 = 𝑝, 𝑤2 = 1 − 𝑝. Because of the restriction that

the average substitution rate must equal one, we can deduce the value of the remaining rate

[5, p. 111]:

1 = ∑
𝑖

𝑤𝑖 ⋅ 𝑟𝑖

= 𝑤1𝑟1 + 𝑤2𝑟2 = 0 ⋅ 𝑝 + 𝑤2𝑟2

= (1 − 𝑝)𝑟2 ⇔ 𝑟2 = 1
1 − 𝑝

(9)

An inference tool can then optimize this single free parameter 𝑝 with respect to the likelihood.

For details on the optimization method, see Section 2.1.7.

8

2. Background

α = 0.8

α = 1

α = 1.5

α = 3

α = 5

α = 50

0 1 2 3

Substitution rate r

G
am

m
a

de
n

si
ty

 g
(r

; ɑ
, ɑ

)

Figure 3: Probability density function of the gamma distribution for six distinct values of 𝛼.

The gray vertical lines correspond to the quantiles 0.25, 0.5, and 0.75, respectively, and sep

arate the distribution into four categories with equal probability mass. The small ticks at the

bottom denote the mean substitution rate value for each category determined by Equation 11.

Gamma (+G)

A more flexible finite mixture model is the gamma model. Its underlying assumption is that

the substitution rate of all sites follows a gamma distribution. The density function 𝑔(𝑟; 𝛼, 𝛽)
of the gamma distribution [5, 4.11], [12] is

𝑔(𝑟; 𝛼, 𝛽) = 𝛽𝛼𝑟𝛼−1𝑒−𝛽𝑟

Γ(𝛼)

Γ(𝛼) = ∫
∞

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡

(10)

The mean value of the gamma distribution is 𝛼𝛽 [13], therefore in order to satisfy the constraint

that the mean substitution rate must be equal to 1, we set 𝛽 = 𝛼. Since the likelihood compu

tation under the assumption of a continuous gamma distribution is prohibitively compute-

intensive, Z. Yang [14] proposed a discretization into a fixed number of categories 𝑐. The

discretization divides the gamma distribution into 𝑐 intervals of equal probability, with the

weights being 𝑤1, …, 𝑤𝑐 = 1
𝑐 . Let 𝑎 and 𝑏 be the quantiles as given by the cumulative gamma

density function 𝐹(𝑥, 𝛼) that restrict a particular substitution rate category 𝑖. Then, the mean

substitution rate [14] of that category is

9

2. Background

𝑟𝑖 =
∫𝑏

𝑎
𝑟 ⋅ 𝑔(𝑟; 𝛼, 𝛼)𝑑𝑟

∫𝑏
𝑎

𝑔(𝑟; 𝛼, 𝛼)𝑑𝑟
= 𝑐 ⋅ ∫

𝑏

𝑎
𝑟 ⋅ 𝑔(𝑟; 𝛼, 𝛼)𝑑𝑟 (11)

Figure 3 shows the gamma density function for six distinct values of 𝛼. For small values of

𝛼, the substitution rate values are spread out. For large values of 𝛼, the probability mass is

much more centered around the mean value of 1. The same holds for the mean substitution

rate of categories: When 𝛼 = 50, the means are approximately 0.83, 0.95, 1.04, and 1.19,

thus covering only a small range of substitution rate values, whereas for 𝛼 = 0.8, the means

range from 0.1 up to 2.54. We expect large values of 𝛼 to fit datasets with a highly uniform

substitution rate of sites well, whereas for highly rate-heterogenous datasets the optimal value

of 𝛼 w.r.t. likelihood may be small.

In some cases, the median substitution rate may provide the category rate instead. RAxML-

NG denotes this by +GA, whereas a mixture model with N categories and mean category rates

is denoted by +GNm

Freerate (+R)

If computational resources permit it, we can also forgo any further restrictions on the category

weights and rates of the finite mixture model, and optimize the values according to likelihood

with the data at hand. Given a fixed number of 𝑐 categories, this approach introduces 2𝑐 − 2

free parameters. For a discussion of optimization algorithms, refer to Section 2.1.7.

2.1.7. Parameter Optimization Methods

In order to optimize the continuous parameters during the ML tree search, RAxML-NG

employs numerical optimization methods.

When optimizing the branch lengths, we can compute the likelihood’s first and second deriv

atives, allowing us to apply the Newton-Raphson method. By solving the first derivative for

zero, we can find a local minimum. For the optimization of scalar values where the derivative

is unknown, e.g. the parameter 𝛼 of the Γ-distribution (Section 2.1.6.2), or the proportion of

invariant sites 𝑝 in the invariant mixture model (Section 2.1.6.1), RAxML-NG uses Brent’s

method [15, Chapter 4] . Finally, to minimize multi-dimensional functions without explicit

computation of the derivatives, e.g. the substitution rates of the 𝑄 matrix, the base frequencies

of DNA substitution models, or the weights and category substitution rates of freerate mixture

models (Section 2.1.6.3), it applies the quasi-Newton optimization algorithm L-BFGS-B [16],

[17]. L stands for low-memory, B for bounded, and BFGS are the initials of the authors.

2.2. Information Criteria (IC)

In an effort to prevent over- and underfitting, information criteria seek to measure the

“goodness of fit” by relating the optimized likelihood achieved under a given model to the

number of free parameters.

10

2. Background

2.2.1. AIC

H. Akaike [18] applied the information-theoretic Kullback-Leibler divergence to quantify

the information loss of distinct candidate models when trying to approximate an unknown

function. For ML estimation, Akaike provides the following asymptotic estimate:

AIC = −2 log 𝐿 + 2𝑘 (12)

𝐿 is the model’s maximum likelihood and 𝑘 is the number of free parameters. A lower AIC

score indicates a better fitting model.

2.2.2. AICc

C. M. Hurvich and C.-L. Tsai [19] further provide a correction of the AIC for smaller sample

sizes 𝑛:

AICc = AIC + 2𝑘(𝑘 + 1)
𝑛 − 𝑘 − 1

(13)

2.2.3. BIC

G. Schwarz [20] proposed a different information criterion that uses a Bayesian argument.

Based on the likelihood 𝐿, number of free parameter 𝑘 and number of samples 𝑛, it is calculated

as follows:

BIC = −2 log 𝐿 + 𝑘 log 𝑛 (14)

Especially for large sample sizes, it penalizes higher parameter counts much more severely

than the AIC.

2.3. Related Work

Note that in the remainder of this thesis, a candidate model refers to the choice of a substitution

matrix, base frequency type, and RHAS model for a particular partition of the dataset.

2.3.1. ModelFinder

ModelFinder [3] is a model selection tool integrated into the phylogenetic toolbox IQTree [2].

It supports all RHAS models described in Section 2.1.6 (invariant, gamma, freerate, as well

as the combination of invariant with either gamma or freerate). ModelFinder can parallelize

using multiple threads by distributing the alignment sites across threads. To optimize freerate

models, ModelFinder employs the Expectation-Maximization algorithm, which they claim is

more accurate than BFGS [3, Online Methods]. To speed up the model testing, ModelFinder

also employs heuristics, which we refer to as the freerate heuristic and the RHAS heuristic.

The freerate heuristic aims to limit the additional computational load that comes with consid

ering freerate models. If, as is the default setting, we consider freerate category counts from

the interval 𝑐 ∈ [2, 10], this choice implies nine evaluations per substitution matrix. Given the

fact that the BIC score for a fixed dataset rises linearly with the number of free parameters

(Equation 14), and that each additional category adds two new free parameters, it seems likely

11

2. Background

that the BIC score ceases to improve beyond a certain point. ModelFinder exploits this fact and

evaluates freerate models in ascending order of category count, stopping evaluations once the

BIC score no longer improves.

The RHAS heuristic assumes that the well-suitedness of RHAS models for a dataset is inde

pendent of the substitution matrix. This implies that we do not need to test all combinations

of RHAS models and substitution matrices. Instead, ModelFinder evaluates all RHAS models

(under the application of the previous freerate heuristic) for a single “reference” substitution

matrix, such as the JC substitution matrix. For the remaining substitution matrices, it only

considers RHAS models whose BIC score difference to the best observed RHAS model for the

reference matrix is less than 10. According to guidelines, a BIC score difference exceeding 10

means that it is very likely that the model with the lower score fits the dataset significantly

better [21].

There are references in the source code to a command-line argument --thread-model, which

activates a parallelization mode where each thread evaluates a single model. This flag does

not show up in the help message or documentation. There seem to be some incongruency

surrounding this parallelization mode and the heuristics that ModelFinder applies, leading us

to believe that the developers abandoned this mode.

2.3.2. ModelTest-NG

D. Darriba et al. [1] introduced ModelTest-NG in 2020 as the successor to the previously estab

lished model testing tools jModelTest 2 [22] and ProtTest 3 [23]. It builds on the Phylogenetic

Likelihood Library (PLL) [24], which contains highly-optimized, vectorized procedures for

likelihood computations. ModelTest-NG represents a significant step up in performance over

its two predecessors, reaching average speedups of 510 on empirical DNA data, and 36.9 on

empirical protein data. The authors further report a speedup over ModelFinder of 1.24 on

empirical DNA data, and 1.19 on empirical protein data.

On a high-level, its model selection algorithm consists of the following steps:

1. It builds a set of candidate models, partly based on user input: It computes the cartesian

product between a) substitution matrices under consideration b) frequency type (equal or

ML-optimized frequencies for DNA data, and equal or empirically counted for AA datasets),

and c) RHAS models (uniform, invariant, gamma, invariant and gamma, freerate)

2. Iterates over all candidate models

3. Assigns one thread to the given combination of partition and candidate model

4. Optimizes the model parameters and branch lengths according to the likelihood

5. Optionally, it performs a limited number of topological moves to improve the tree under

the given model.

6. After obtaining an ML estimate, it computes the score under the three information criteria

AIC, AICc, and BIC.

7. After the evaluation of all candidate models for a given partition has ended, it selects the

model with the minimum IC score.

8. If the MSA is multi-partitioned, it returns to step 2. and repeats the process for the next

partition, until it has processed all partitions.

12

2. Background

Importantly, ModelTest-NG does not apply heuristics to reduce the set of candidate models.

Furthermore, the number of categories for freerate models must be explicitly specified when

invoking ModelTest-NG.

2.3.3. Machine Learning

There also have been multiple attempts to apply machine learning methods to directly predict

the best-fit model based on features of the input dataset, thereby circumventing the time-

consuming step of optimizing the likelihood of candidate models [25], [26]. Due to time

constraints, we did not evaluate these methods in the context of this thesis.

2.3.4. RAxML-NG

RAxML-NG is a tree inference tool using the maximum-likelihood method, developed by our

lab. Older versions linked the libpll [24] to carry out the core likelihood computations,

whereas newer (development) versions of RAxML-NG use coraxlib [27], a libpll successor.

RAxML-NG supports arbitrary DNA substitution matrices, all base frequency types and RHAS

models mentioned in Section 2.1.5 and Section 2.1.6, as well as a superset of the constant rate

matrices supported by ModelTest-NG and IQTree. Previously, RAxML-NG did not support

model selection and required the user to explicitly specify a model at the program invocation.

13

2. Background

14

3. Methods

3. Methods

We integrate model selection capabilities into RAxML-NG. Previously, RAxML-NG operated

under the assumption that the model is a fixed part of the input data and specified on a per-

partition basis. The new implementation triggers a model selection process in two cases:

1. The user specifically requests model selection with a command-line flag

2. The user passed --model auto while primarily conducting a separate analysis, e.g. ML

tree search

The model selection process runs after the starting tree generation and uses a fixed tree

topology to evaluate the likelihood of the input data under different models. It scores the

model candidates based on information criteria which favor models with a higher optimized

log-likelihood score, yet also penalize the number of model parameters in an effort to prevent

overfitting. In case of a partitioned dataset, RAxML-NG treats the model selection process for

each partition independently.

3.1. Model Optimization

Our model selection implementation utilizes a preexisting RAxML-NG method to optimize a

given candidate model. It comprises the following steps:

1. Computation of the log-likelihood score of the current model parameters

2. Iterative optimization of the branch lengths

3. In the case of a rate-heterogeneity model that accounts for invariant sites, optimization of

the proportion 𝑝inv using Brent’s method

4. In the case of a model that allows base frequencies as free parameters, optimization of the

base frequencies via the L-BFGS-B method

5. In the case of the gamma rate-heterogeneity model, optimization of the parameter 𝛼 of the

Γ-distribution using Brent’s method

6. Optimization of substitution rates with L-BFGS-B

7. In the case of a freerate rate-heterogeneity model, optimization of the category weights

and rates, either with L-BFGS-B or Expectation-Maximization, depending on the mode of

operation

8. Recomputation of the log-likelihood score of the optimized model parameters

9. As long as likelihood improvement is greater than 𝜀lh, repetition of the process starting

from step 1

15

3. Methods

3.2. Applied Optimizations

Model optimization is a time-intensive process, which is aggravated by the large number of

candidate models under consideration during model selection. Therefore, we need to apply

optimizations and shortcuts to keep the runtime tolerable.

3.2.1. Heuristics

The fact that each candidate model comprises three independent parts – substitution rate

matrix, base frequencies, and rate heterogeneity model with a varying number of categories

– yields a large number of possible combinations. For example, for DNA data there are 203

possible substitution matrices [11], two base frequency types (equal and ML-optimized), five

types of rate heterogeneity models (uniform, invariant, gamma, invariant and gamma, freerate

with two to eight categories), leading to a total of 4 466 candidate models, Even if we restrict

ourselves to the eleven most common substitution matrices, we still need to examine 242

candidates. In order to conserve computational resources, we attempt to reduce the set of

candidate models with heuristics.

Freerate Heuristic

Similarly to ModelFinder [3], we implement a procedure to automatically discover the number

of freerate categories. First, the user specifies an interval of category counts that ModelFinder

should examine (by default [2, 10]). The model selection procedure then evaluates the freerate

models in order of ascending category counts, keeping track of the score given by the infor

mation criterion. As soon as the IC score no longer improves by additional rate categories, we

abort the evaluation of all models that comprise more categories. The reasoning behind this

is that once the score starts to drop, adding further categories is unlikely to yield any further

improvement, since the information criterion penalizes the number of free parameters1.

Unlike IQTree, we parallelize over candidate models instead of alignment sites by default. This

complicates the application of our heuristic, since the evaluation of models depends on the

results of previous evaluations. A sufficiently large parallel processor could run the evaluation

of all freerate models on a small dataset concurrently. In such a case, the heuristic would be

unable to reduce the number of model evaluations.

To avoid having to revert to sequential model evaluation, we adopt a greedy scheduling

scheme: If the heuristic has no information on whether the given freerate candidate model

can be skipped, we speculatively initiate its evaluation. This means that some evaluations

may turn out to be unnecessary in retrospect. However, speculative scheduling increases CPU

utilization and prevents idling. We further benefit from the observation that for most datasets,

four categories provide a good fit. To this end, we evaluate freerate models with up to four

categories first, followed by the other RHAS models which do not suffer from this dependency

problem, and only then move on to freerate models with higher category counts. Intuitively,

1Each additional freerate category adds two parameters (weight and rate).

16

3. Methods

this increases the probability that once the program is ready to evaluate the freerate models

with higher category counts, the data needed to assess whether it should indeed evaluate them,

or whether it can skip them, is already available. Crucially, we do this across all partitions,

meaning that on datasets with a large number of partitions it is less likely that unresolved

dependencies cause superfluous candidate evaluations.

RHAS Heuristic

One reason for the high number of candidate models is that any substitution model (𝑄 matrix)

can be combined with any of the rate-heterogeneity models. Similar to ModelFinder [3], we

implement a heuristic to detect which RHAS models work well for the dataset at hand, and

restricts further testing to those models. RAxML-NG evaluates all RHAS models on a reference

matrix – GTR for DNA data, LG for AA data. For all remaining substitution models, it only

considers RHAS models where the IC score difference to the best observed model is higher

than a fixed threshold. Equivalent to IQTree, we use the BIC score by default and set the

threshold to Δ ≔ 10.

3.2.2. Expectation-Maximization

Profiling the model optimization procedure of RAxML-NG revealed that the optimization of

freerate models takes a considerable amount of time (data not shown). Especially with a high

number of categories, the L-BFGS-B optimization procedure takes a long time to converge.

An alternative approach to the category weight optimization is Expectation-Maximization, as

described by S. Kalyaanamoorthy et al. [3]. Let 𝐿𝑘,𝑠 denote the likelihood of alignment site

𝑠 under category 𝑘 which has weight 𝑤(𝑖)
𝑘 in iteration 𝑖. In total there are 𝑐 rate categories.

Then the posterior probability of site 𝑠 to belong to category 𝑘 is

𝑝𝑘,𝑠 =
𝑤(𝑖)

𝑘 𝐿𝑘,𝑠

∑𝑐
𝑗=1 𝑤(𝑖)

𝑗 𝐿𝑗,𝑠

(15)

The updated weight of a category is the mean of the posterior probabilities across all sites:

𝑤(𝑖+1)
𝑘 = ∑

𝑛

𝑠=1
𝑝𝑘,𝑠 (16)

We extended coraxlib to support the EM algorithm when optimizing freerate weights. A par

ticular implementation challenge arises under the use of threading or MPI. The parallelization

of coraxlib builds on the use of a single reduction operator, which reduces 𝑛 numbers across

the 𝑝 processing elements (PE) participating in the computation:

reduce : {+, max, min} × 𝔽𝑛×𝑝 → 𝔽𝑛 (17)

However, RAxML-NG’s load balancer [28], [29] can split up a partition and distribute its sites

across many threads. Since the reduction operation poses our only synchronization primitive,

the threads communicate only globally and not on a per-partition basis. We work around this

problem by introducing a method that optimizes the freerate weights of all given partitions

at once. It stores the required parameters in a tightly packed array (see Figure 4), which it can

17

3. Methods

pass to reduce without further processing. If one partition converges sooner than the others,

its threads must still participate in the operation to ensure global convergence.

GTR+R3 SYM+R5

3 5 2 0

0 3 8 10

#freerate categories
prefix sum

weights
weight ratio

Partitions JC+R2 TIM+G4

Figure 4: For multi-partitioned datasets, we store per-category data in a tightly-packed one-

dimensional array to allow easy reduction of values via coraxlib primitives.

3.2.3. Parallelization Across Models and Opportunistic Multi-threading

The most fine-grained parallelization level available for ML computations is parallelization

across sites: different CPU cores compute the per-site log-likelihood of a different subset of

sites, and a sum over the intermediate results delivers the final log-likelihood. This sum-

operation demands synchronization between threads. Since likelihood evaluation is the most

frequent operation in RAxML-NG, with multiple thousands of calls per second, depending

on the dataset, the overhead is substantial. For model selection in particular, we have an addi

tional opportunity for parallelism: As long as the program has sufficient memory available,

it can test multiple candidate models at the same time. This decreases the synchronization

overhead, since fewer threads – and ideally only a single thread – participate in the likelihood

computation.

The heuristics described above introduce soft data dependencies between the model evalua

tions, which complicate the parallelization across models. In general, there are two types of

dependencies, corresponding to the two heuristics applied:

1. All candidate models depend on the evaluations of the reference matrix, since they decide

which RHAS models are relevant to the given dataset (RHAS heuristic, Section 3.2.1.2).

2. Candidate models with a freerate or Invariant freerate RHAS model depend on the evalu

ation of all candidate models with the same substitution matrix and RHAS model, but lower

category counts (freerate heuristic, Section 3.2.1.1).

For example, a freerate model with five or more categories does not need to be evaluated if

the IC score increased after advancing from three to four categories. Similarly, if the Invariant

RHAS model did not yield a good fit during evaluation on the reference matrix, we entirely

omit it during the evaluation of other substitution matrices.

IQTree’s ModelFinder solves the dependency problem by focusing on parallelization over

alignment sites. The evaluation of models in sequence guarantees the availability of results

from previous evaluations, ensuring optimal application of the heuristics. However, with the

synchronization overhead discussed at the beginning of this section, the limited length of

single-gene alignments, and the large number of cores available in modern machines, scaling

across alignment sites has its limits. ModelTest-NG on the other hand utilizes exactly one

thread per candidate model, but does not implement heuristics with dependent evaluations.

18

3. Methods

Our implementation provides fine-grained, dynamic parallelization: It evaluates multiple

models concurrently, with multiple threads cooperating on a single model by distributing the

alignment sites. By approaching the evaluation of candidate models in the order described

below, we attempt to resolve the dependencies ahead of time. Should the results a heuristic

depends on still be pending when an evaluation is about to start, we eagerly evaluate it

regardless.

The model selection process of our tool starts with assembling a list of all possible candidate

models of all partitions. If there are 𝑞 partitions in the dataset and 𝑚 different choices for a

model, we expect to have 𝑞 ⋅ 𝑚 candidate models. In an effort to increase the distance between

the evaluation dependency and dependent, we assign each candidate a priority based on the

substitution matrix 𝑚 and the category count 𝑐 and sort the list of candidates with descending

priority2:

priority(𝑚, 𝑐) =

{

0 if 𝑚 is reference and 𝑐 ≤ 4

1 if 𝑚 is reference and 𝑐 > 4
2 if 𝑐 ≤ 4
3 if 𝑐 > 4

(18)

The initialization routine then estimates the thread count 𝑝 based on the recommendations

RAxML-NG uses for tree search, which takes the number of alignment patterns 𝑛, the number

of states, and the number of RHAS categories 𝑐 into account [30]:

|CLV| = 𝑐 ⋅ 𝑛 ⋅ {4 for DNA
20 for AA

𝑥 ≔ |CLV|

{4 000 if priority <2
80 000 otherwise

𝑝 ≔ |CLV|

{4− log2(𝑥) if 𝑥<8
log2(𝑥)−2 otherwise

(19)

RAxML-NG spawns a fixed number of threads for the model selection phase, which typically

coincides with the number of CPU cores. If possible, it pins threads to specific CPU cores to

avoid issues with non-uniform memory layouts. Our dynamic parallelization scheme relies

on the worker threads to spontaneously assemble a “team” of threads to work on a given

model evaluation. Figure 5 visualizes this process: A worker thread with no assigned candidate

models tries to enter a critical section to get a new work assignment. The critical section

assigns candidate models with status Waiting in the order described above, i.e. under consid

eration of the priority. Once enough threads have joined the team of a candidate model, the

evaluation can begin (Running) and the critical section will assign the next model in the list.

After the evaluation has concluded, the first thread to join the team writes back the result and

the evaluation is now Finished. The written results can influence future evaluations: Should

they allow the application of a shortcut, the respective candidate model will be Skipped and

any assigned threads will acquire a new work item.

2That is, increasing priority number.

19

3. Methods

Waiting Thread joins

Running

 Sufficient threads joined

Skipped

 Heuristic applies

 Optimize model

Finished

 Optimization concluded

Figure 5: State diagram of a candidate model’s evaluation status.

Two crucial methods underpin this implementation: a reduction callback for the max and ∑

operations, and the barrier function. While RAxML-NG has preexisting implementations of

these procedures, they are not suitable for the dynamic parallelism of our model selection

process, since in our case we require synchronization between a constantly changing set of

threads.

The barrier procedure serves as a synchronization primitive of threads. A barrier call returns

only once all other threads have also made the same call. Because threads share the same

memory space, we use an atomic counter. Each thread increments the counter exactly once

upon entering the barrier. A coordinating thread (by default the first thread to have joined the

given evaluation) waits until the counter is equal to the expected number of threads, resets

it to zero and releases all threads from the barrier by setting a proceed flag. While RAxML-

NG already implements a thread barrier, both as a global operation and in the context of a

thread group, the pre-existing implementations were not fit for the dynamic parallelism of

our model selection routine. We therefore reimplemented the barrier method in a class called

ModelEvaluator. This class has a one-to-one mapping to a given candidate model, and holds

a private counter and flag value.

Building on the barrier method, the likelihood library coraxlib used by RAxML-NG requires

only a single method to support arbitrary parallelization contexts: the reduction method as

introduced in Section 3.2.2. This method takes 𝑛 double-precision floating-point values as

input, as well as a flag specifying the reduction operator (∑, max, min). The reduction method

as implemented in RAxML-NG works in two phases. In the first phase, the 𝑝 calling threads

all write their input values into a shared reduction buffer 𝑅 ∈ 𝔽𝑛×𝑝. After the call to the

barrier method, the second phase begins. Each thread performs a column-wise reduction of

the buffer into local memory. To adapt this reduction operator for our parallelization scheme,

we allocate one reduction buffer per evaluation. Furthermore, we use the team-local barrier

20

3. Methods

method mentioned above, instead of the global barrier method. Because the coraxlib API

simply expects a function pointer to the reduction method, we straightforwardly pass a pointer

to the newly implemented reduction operation, without needing to modify any parts of the

library itself. In this way we implement a highly tunable parallelization scheme in shared

memory.

3.2.4. MPI Parallelization

For datasets beyond a certain size, a single compute node does not suffice. Moreover, the user

may also perform a model selection as part of the tree search, with a large amount of compute

resources already allocated to RAxML-NG. In these cases, it is important to support the

computation on distributed memory machines via the Message Passing Interface (MPI). The

ModelTest-NG MPI implementation expects a fine-grained allocation of MPI ranks: one MPI

rank corresponds to one thread. Since RAxML-NG already supports a hybrid mode for tree

search, we extend this framework to the model selection procedure. In a hybrid parallelization

approach, each MPI rank has multiple running threads. A typical setup, which we optimize for

in our implementation, would be a single MPI rank per node, with each running one thread

per CPU core. We restrict the cooperation on a single candidate model to a single machine,

meaning that each candidate model belongs to a single MPI rank at any given point, and

alignment sites are not distributed across the process boundary. This restriction allows us

to rely on shared memory for the barrier and reduction methods described in the previous

section, such that the model optimization itself can happen without any reliance on the MPI

interface.

The extension to support MPI parallelization focuses on two things: ensuring exclusivity of

the candidate model scheduling, such that no two ranks evaluate the same candidate model

twice, and communicating the evaluation results, such that the heuristics can still work even

when they depend on an evaluation result which was not computed on the same rank.

For the former part, we adopt a strategy that is also implemented in ModelTest-NG. Typically,

MPI requires sender and receiver to execute the same code. To avoid having a single rank

preoccupied with the coordination of candidate model scheduling, and thus prevented from

contributing to the model evaluation, we use MPI Remote Memory Access (RMA) [31, Chapter

12] . Thereby, MPI ranks can allocate a certain “window” into their memory, which is also

available to other ranks without requiring explicit cooperation of the target rank. In our case,

we allocate a global 64-bit index on rank 0 that points to the candidate model next in line.

If an MPI rank then wants to evaluate and “claim” a certain candidate model in order to

assign local threads to it, it calls the MPI RMA procedure MPI_Fetch_and_op, which atomically

increments the model index on rank 0 and returns the value prior to the incrementation. The

atomicity of that operation ensures that the scheduler assigns a candidate model only once. If

the hardware supports it, an explicit participation of rank 0 in the operation is not required.

Figure 6 illustrates this: all MPI ranks modify the index resident on rank 0 via RMA operations.

The index points into the list of candidate models discussed in the previous section, which

each MPI rank holds locally.

21

3. Methods

Part #0
GTR

Part #1
GTR

Part #0
GTR+R2

Part #1
GTR+R2

Part #0
GTR+R3

Part #1
GTR+R4

index

Rank 0 Rank 1 Rank p

⋯

MPI RMA

Figure 6: The scheduling of candidate models happens through one-sided MPI communication.

To share results, we allocate two MPI RMA windows on rank 0. The first is a byte array large

enough to accommodate the results of all candidate models. Each evaluation result consists

of the achieved log-likelihood (lnL), the optimized model parameters, the partition index and

the index of the candidate models (to allow other ranks to correctly update the result in their

memory). The second window is a displacement counter which indexes the results window.

This solves the following two use cases: 1) An MPI rank seeks to announce the result of an

evaluation, or 2) it wants to ingest the results of other MPI ranks in order to make informed

decisions using heuristics. For the first use case (announce/write), we need a distinct memory

range in the array to write to, otherwise the program could accidentally overwrite results.

displacement
Rank 0

Part #0
GTR+G

lnL
rates

freqs

α
Part #1
JC

lnL

Rank 1 Rank p
⋯

MPI RMA

Figure 7: MPI ranks announce results by writing them consecutively into a window of the

root rank.

For the second use case (ingest/read), an MPI rank ideally only reads a minimal subset of

the array to incrementally update its results. Furthermore, the length of the serialized model

parameters differs, depending on the model type: A candidate model with the Uniform RHAS

model needs less space than a freerate model with eight categories. Especially if a dataset

has numerous partitions, reading the entire array is costly, with the model parameters taking

up approximately 256 bytes for DNA data. To solve this problem, we store the evaluation

results consecutively into the results array, and keep track of the current writehead using the

displacement counter. If an MPI rank announces a result, it enters a critical section which

guarantees mutual exclusion. It reads the current writehead displacement and writes its result

into the array starting at that address. Afterwards, it increments the displacement counter

according to the number of bytes it has written and exits the critical section. When reading the

22

3. Methods

new results, an MPI rank can simply check whether the displacement counter has increased

beyond the last seen value, and read that range specifically from the results array.

3.3. Checkpointing

With model selection taking up a considerable amount of runtime, it is important that RAxML-

NG saves intermediate results. This prevents losing progress in case the program prematurely

exits, for example if it encounters an error. Also, the user or a surrounding HPC scheduler

(such as SLURM) could choose to terminate RAxML-NG with the model selection routine still

running. Because of the large number of candidate models, the workload has high granularity

by nature: we can save the model optimization results of each candidate model. For datasets

with numerous small partitions, this could lead to an excessive amount of checkpoint writing,

since model evaluations can finish in short succession. To avoid unnecessary pressure on the

disk I/O, we have set a minimum time period of one second between checkpoint writes.

MPI parallelization poses a further hindrance to checkpointing, as only a single rank should

write the checkpoint file. Since our implementation already communicates the evaluation

results to keep the heuristics updated, we utilize this mechanism to also incorporate the results

from foreign MPI ranks into the checkpoint.

3.4. Evaluation of Model Selection Accuracy

3.4.1. EvoNAPS

To evaluate our model selection algorithm, we draw a sample from EvoNAPS [32]. This is

a well-structured relational database and contains MSAs from various sources, such as Tree

BASE [33], OrthoMAM [4], and PANDIT [34], alongside the results of a model selection, model

parameter optimization and maximum likelihood tree estimation. Since the pre-existing model

selection is the result of an older IQTree version, we did not reuse it for our purposes. EvoNAPS

stores partitions of datasets separately, though most entries are single-gene alignments.

In total, EvoNAPS contains 48 707 DNA alignments and 21 800 AA alignments. Because of

insufficient time and resources for an exhaustive analysis of all alignments in the database,

we took a random sample of 500 DNA and 500 AA alignments. Samples were not stratified,

in an attempt to reflect the average use case.

We received EvoNAPS as a SQL dump from a MariaDB database. In order to reduce the

dependency on a running database server, we converted it into a SQLite database [35] using

an automated script [36]. In this way, the downstream analysis only requires access to a single

database file. A small Python script exports the sequences contained in the database into a

FASTA file.

23

3. Methods

3.4.2. Pipeline

We implemented the evaluation procedure as a reproducible and re-usable Snakemake

pipeline [37]. Snakemake’s file-based dependency graph is a good fit, since all tools under

consideration (RAxML-NG, IQTree, ModelTest-NG) have a command-line interface and use

compatible file-based input/output formats (FASTA for MSAs and Newick for trees).

To isolate the software environment, we use conda-forge [38] and Bioconda [39], with our

implementation bundled in a custom package3.

1. Extract MSA
from EvoNAPS

3a. ModelTest-NG 3b. IQTree ModelFinder 3c. RAxML-NG

2. Generate parsimony
starting tree

4a. Reevaluation
w/IQTree

4b. Reevaluation
w/IQTree

4c. Reevaluation
w/IQTree

5. Compare
BIC scores

Figure 8: Overview of the evaluation pipeline steps

Figure 8 gives an overview over the pipeline steps. For any given EvoNAPS dataset, we extract

the MSA and generate a parsimony tree with RAxML-NG. With this parsimony tree as starting

tree, we infer the model with ModelTest-NG, IQTree’s ModelFinder and our implementation

in RAxML-NG. IQTree performs a small number of topological moves on the given starting

tree to optimize its likelihood. In order to have comparable BIC scores, we reevaluate the

inferred models of all tools under consideration with IQTree on its optimized topology. After

extracting the BIC score from IQTree log files, we compute the BIC weights using R [40], [41].

Let 𝐵 ∈ ℝ𝑛×1 be a vector of BIC scores with 𝑚 ≔ arg min𝑖(𝐵𝑖) defined as the index of the

minimal entry. Then the BIC weight is defined as

𝑤BIC
𝑖 (𝐵) = 𝑒−1

2(𝐵𝑖−𝐵𝑚)

∑𝑛
𝑘=1 𝑒−1

2(𝐵𝑘−𝐵𝑚)
(20)

3https://anaconda.org/stelzch/raxml-ng-modeltest

24

https://anaconda.org/stelzch/raxml-ng-modeltest

3. Methods

One interpretation of the BIC weight is that it represents the probability that the given model

is the best model according to the BIC [42].

For ModelTest-NG, we enable the evaluation of freerate models and use the default set of

substitution models and base frequency modes (DNA: equal or ML-optimized, AA: model-

defined or empirical counts). Because it does not support evaluation of multiple freerate

category counts in a single run, we leave the category count at the default setting of 4.

For RAxML-NG, we enable the auto-discovery of freerate category counts in the range 𝑐 ∈
[2, 10]. We manually enable the consideration of the following RHAS models: equal (+E),

invariant (+I), gamma (+G), invariant and gamma (+I+G), freerate (+R), and invariant and

freerate (+I+R). Our implementation considers candidate models with equal or ML-optimized

base frequencies in the case of DNA data, and model-defined or counted (empirical) base

frequencies in the case of AA data.

IQTree’s ModelFinder considers the same set of RHAS models. We instruct it to keep identical

sequences (--keep-ident) to avoid incompatibility with the starting tree. For DNA data,

IQTree either uses equal or counted (empirical) base frequencies. While IQTree supports

models with ML-optimized base frequencies, it does not consider them during model selection.

The interoperation of the three tools poses some challenges. Especially for DNA model

matrices, the naming is not consistent between the tools. Table A.4 lists the different names

and aliases known to IQTree and the library underlying both RAxML-NG and ModelTest-

NG. We also need to address the differences in the base frequency type of a substitution

model: As described in Section 2.1.5, the base frequencies can either be equal (denoted +FE

in RAxML-NG and ModelTest-NG, and +FQ in IQTree), empirically counted from the MSA

(+FC in RAxML-NG and ModelTest-NG, +F in IQTree), or optimized with respect to likelihood

(+FO in all tools). ModelTest-NG uses ML-optimized base frequencies, but does not append +FO

to the model name in its output, thus requiring a manual workaround. Additionally, IQTree

has a software bug where the model names outputted by ModelFinder do not match the

conventions used by IQTree when parsing the model specified on the command line. To our

understanding, ModelFinder appends a +F to the model name whenever it uses empirically

counted frequencies, with the absence of a +F denoting equal frequencies. However, it does

not update the matrix name to the corresponding variant with equal frequencies. For example,

it outputs GTR instead of GTR+FQ, or the even more canonical SYM+FQ. Our pipeline circumvents

this problem by appending a +FQ whenever +F is missing from the model name, before passing

it as argument to the IQTree reevaluation call.

3.5. Runtime Benchmarks

To benchmark the runtime of the tools, we uniformly sampled 100 datasets from the evaluation

sample, excluding two datasets for their excessive runtime requirements. We then re-ran all

three tools in sequence with 1, 2, 4, 8, 16, 32, and 48 threads assigned and measured the runtime

through Snakemake’s benchmarking functionality. The benchmarks ran on a shared-memory

25

3. Methods

machine with two Intel Xeon Platinum 8260 clocked at 2.4 GHz, with a total of 48 cores and

96 threads, paired with 754 GB of main memory, and running Alma Linux 8.10 with kernel

version 4.18.0-553.62.1. Section A.1.1 lists the version of the tools under test.

26

4. Results

4. Results

We evaluated a uniformly chosen sample of 500 DNA datasets and 500 AA datasets with

IQTree, ModelTest-NG, and RAxML-NG on a shared-memory machine. Figure 9 shows the

number of taxa and alignment sites of all datasets in the EvoNAPS database, and the datasets

included in our evaluation sample. We ran the analyses with a single thread assigned to each

job, with Snakemake utilizing all cores of the machine. For 2 DNA datasets, at least one of

the tools did not successfully terminate. Additionally, for 11 AA datasets, either ModelTest-

NG or RAxML-NG chose a substitution-matrix unsupported by IQTree (stmtREV or DEN, see

Table A.5). In both cases, we discarded the datasets from our analysis, leaving us with 987

datasets in total. Table A.3 in the appendix shows further information about the sample.

A
ll E

voN
A

P
S align

m
en

ts
E

valu
ation

 Su
bsam

ple

1e+01 1e+02 1e+03 1e+04 1e+05

10

100

1000

10

100

1000

Alignment sites

T
ax

a

Origin Database

PANDIT

OrthoMaM_v10c

Lanfear

TreeBASE

OrthoMaM_v12a

misc

Datatype

amino-acid

nucleotide

Figure 9: Scatter plot of taxa over sites for EvoNAPS alignments, colored by the origin

database. Logarithmic x- and y-axis.

27

4. Results

86.7%

96.6%

22.0%

72.9%

62.9%

71.5%

amino-acid nucleotide

IQTree RAxML-NG ModelTest-NG RAxML-NG ModelTest-NG IQTree

0%

25%

50%

75%

100%

P
er

ce
n

t
of

 d
at

as
et

s

Figure 10: Proportion of datasets where each tool chose a candidate model that had a difference

of less than ten in the BIC score to the best known model on the given dataset.

amino-acid nucleotide

R
A

xM
L

-N
G

IQ
T

ree
M

odelT
est-N

G

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

50

100

150

200

0

50

100

150

200

0

100

200

300

400

BIC weight

co
u

n
t

Figure 11: Histograms of the BIC weights for the chosen model of each tool, separated by

datatype.

We consider a BIC score difference of greater than 10 as strong evidence that the model

with the lower score fits best [21]. In Figure 10, we count on how often datasets each tool

provided a model that had BIC score difference (ΔBIC) of less than 10 to the best observed

BIC score among the three tools. For AA datasets, IQTree meets this condition on 96.6% of

all datasets, followed by RAxML-NG on 86.7%, and ModelTest-NG on 22.0% of all datasets.

28

4. Results

For nucleotide datasets, the ranks appear shifted: RAxML-NG finds a good model on 73% of

datasets, ModelTest-NG on 71.5%, and IQTree on 62.9% of datasets.

By observing the distribution of the BIC weight for each tool (Figure 11), a similar image

presents itself. For AA datasets, in a predominant amount of instances IQTree and RAxML-

NG infer a comparably well-fitting model (BIC weight of 0.5), with IQTree sometimes finding

a considerably better model than the others (BIC weight near 1), followed by datasets where

all three tools perform equally well (BIC weight near 0.33). On DNA datasets, ModelTest-NG

performs better, with IQTree delivering worse models (BIC weight near 0).

To further understand how the model choices of the tools differ, in Figure 12 we count how

often a tool selects each RHAS model, freerate category count, and base frequency type,

separated by datatype (AA or nucleotide datasets). All tools rarely choose the Uniform (+E) and

Invariant (+I) RHAS models. RAxML-NG has a tendency to pick the invariant gamma (+I+G)

RHAS model. This seems to yield better results for AA datasets than for nucleotide datasets,

as indicated by the faint bar that depicts datasets where the model was chosen, but the best

observed model discovered by another tool reached a better BIC score with a difference of

larger than 10. On AA datasets, IQTree uniformly picks from Gamma and freerate, as well as

their Invariant counterparts, with a slight perference towards models with fewer parameters

(Gamma and Invariant Gamma). On nucleotide datasets, the opposite is true: IQTree chooses

parameter-rich models like Invariant freerate more often. ModelTest-NG has a preference for

freerate models on AA datasets, which is even more pronounced on nucleotide datasets.

The number of freerate categories is distributed around a mean of 3 for AA datasets and 4 for

nucleotide datasets. On the latter, RAxML-NG more frequently picks higher category counts

than IQTree. ModelTest-NG does not test multiple freerate categories.

For AAs, all three tools prefer constant base frequencies as specified by the substitution

model. However, ModelTest-NG picks empirical frequencies twice as often as the other tools.

On nucleotide datasets, it is apparant that IQTree uses empirical base frequencies, whereas

ModelTest-NG and RAxML-NG use ML-optimized base frequencies. The latter also pick equal

frequencies less often than IQTree.

Figure 13 shows which rate matrices the tools chose most often. The tools pick the substitution

matrices by B. Q. Minh et al. [43] (which have the prefix “Q.”) in 80.4% of all AA datasets. For

nucleotide datasets, the distribution is more balanced.

29

4. Results

2.0% 2.0%

29.2% 35.3%

6.0% 12.1%

2.2% 2.6%

27.4% 23.8% 23.2% 17.3%

1.8% 1.8%
13.7%

3.8% 0.8%

3.3% 2.6%
13.8%

32.6%

5.3%
15.3%

3.3% 2.4%
11.6% 11.6% 9.4%

24.6%

3.3% 2.2%
15.7% 21.2%

29.1%

amino-acid nucleotide
R

A
xM

L
-N

G
IQ

T
ree

M
odelT

est-N
G

+E +I +G +I+G +R +I+R +E +I +G +I+G +R +I+R

0%

20%

40%

60%

0%

20%

40%

60%

0%

20%

40%

60%

Rate Heterogeneity Model

P
ro

p
or

ti
on

 o
f

da
ta

se
ts

4.4% 7.7% 2.6% 1.8% 0.8% 0.4% 0.2% 0.2%

7.3%
17.1% 12.3%

2.4% 0.6% 0.6% 0.2%

0.8%

0.8% 4.3% 5.1% 4.1% 2.9% 1.8% 0.4% 0.6% 0.6%

4.7% 7.3%
17.3%

4.5% 0.2%

29.1%

amino-acid nucleotide

R
A

xM
L

-N
G

IQ
T

ree
M

odelT
est-N

G

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

0%

20%

40%

60%

0%

20%

40%

60%

0%

20%

40%

60%

Number of freerate categories

P
ro

p
or

ti
on

 o
f

da
ta

se
ts

74.8%

11.9%

84.1%

12.5%

19.8%
2.2%

16.7%

56.2%

27.9% 35.0%

16.5%

55.0%

amino-acid nucleotide

R
A

xM
L

-N
G

IQ
T

ree
M

odelT
est-N

G

model empirical equal empirical ML

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

Base frequency type

P
ro

p
or

ti
on

 o
f

da
ta

se
ts

Figure 12: RHAS model type, number of categories and frequency type of the model selected

by each tool. Percentage labels on the opaque bars refer to models with ΔBIC < 10 to the

best known model among all tools for the given dataset, the faint bars extend to all reported

models regardless of tool comparison.

30

4. Results

0.6%

0.4%

0.2%

0.4%
0.4%

0.2%

0.4%

0.4%

1.6%

0.8%

6.2%

0.2%

0.2%

0.4%

1.0%

46.4%

1.4%

3.2%

5.2%
6.0%

1.2%

3.4%

2.2%

0.8%

2.2%

1.0%

0.6%

0.4%

0.2%

0.4%
0.4%

0.2%

0.6%

0.4%

2.0%

1.2%

8.7%

0.2%
0.2%

0.4%

1.0%

56.2%

1.6%

5.6%
6.0%

3.6%

2.2%

0.8%

2.2%

1.2%

0.4%

0.4%

0.2%

0.4%

0.2%

1.4%

2.8%

1.8%

10.1%

0.2%

0.6%
0.6%

2.0%

0.8%

RAxML-NG IQTree ModelTest-NG

0% 20% 40% 60% 0% 20% 40% 60% 0% 20% 40% 60%

DAYHOFF

FLU

MTART

MTINV

MTMET

CPREV

DCMUT

FLAVI

HIVW

MTZOA

MTMAM

BLOSUM62

HIVB

RTREV

PMB

WAG

JTTDCMUT

Q.PFAM_GB

Q.INSECT

JTT

Q.PLANT

VT

Q.YEAST

Q.LG

Q.PFAM

Q.MAMMAL

LG

Q.BIRD

A
m

in
o-

A
ci

d
Su

bs
ti

tu
ti

on
 M

at
ri

x

1.0%

6.7%

7.5%

0.6%

3.3%

0.8%

5.5%

0.4%

3.9%

6.3%

4.3%

2.2%

2.2%
1.2%

5.3%

3.9%

8.6%

7.7%

1.4%
1.6%

7.9%

5.5%

0.2%

0.8%

0.2%

3.1%

0.8%

3.5%

4.9%

0.4%

6.9%

0.2%

0.4%

4.5%

0.8%
0.4%

3.1%

1.6%

7.7%

7.5%

0.8%
0.8%

5.1%

9.0%

0.4%

3.3%

0.6%

4.9%

0.8%

3.5%

3.7%

1.0%

3.7%

1.8%

0.4%

2.9%

2.2%
1.2%

6.7%

3.5%

8.4%

6.5%

1.2%

RAxML-NG IQTree ModelTest-NG

0% 5% 10% 15% 20% 0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

JC

K3P

TIM2e

TIMe

K2P

SYM

TIM3e

TVMe

F81

TPM2

TNe

TPM3

TN

TIM

K3Pu

TPM2u

TIM2

HKY

TIM3

TPM3u

GTR

TVM

Proportion of datasets

N
u

cl
eo

ti
de

 S
u

bs
ti

tu
ti

on
 M

at
ri

x

Figure 13: Frequency of rate matrices selected by each tool. Percentage labels on the opaque

bars refer to models with ΔBIC < 10 to the best known model among all tools for the given

dataset, the faint bars extend to all reported models regardless of tool comparison.

31

4. Results

To benchmark runtime, we ran 100 datasets on a shared-memory machine. Because we sample

uniformly and not stratified from EvoNAPS, the datasets are limited in size. The median

number of patterns is 456.5 (SD 924.3) and the median number of taxa is 106 (SD 57.9). Two

datasets did not finish in time and were excluded for their excessive runtime requirements.

Table 1 lists key data of ModelTest-NG’s and RAxML-NG’s speedup over IQTree, calculated

on a per-dataset basis. With a single-thread assigned, ModelTest-NG achieves a mean speedup

of 0.41 and RAxML-NG 1.1 on DNA data. We presume that in the single-threaded case the use

of heuristics is especially important, as it allows the tool to optimize less candidates. Addi

tionally, since IQTree does not evaluate ML-optimized base frequencies, it has an advantage

over ModelTest-NG and RAxML-NG. While RAxML-NG implements the heuristics present in

IQTree, it does not optimize the likelihood of the starting tree before beginning the evaluation

of candidate models. Similarly, it is missing a thorough round of optimization of the chosen

model at the very end.

For AA datasets, ModelTest-NG achieves a mean speedup of 0.61 and RAxML-NG 1.48. Note

however, that while RAxML-NG in this instance seems faster than IQTree, it did not yield

better results on AA datasets, as detailed in the previous section.

32

4. Results

Datatype Threads Tool Mean Median Min Max Q10 Q90

RAxML-NG 1.48 1.35 0.21 7.82 0.48 5.491

ModelTest-NG 0.61 0.58 0.11 3.03 0.27 1.78

RAxML-NG 1.39 1.27 0.21 6.57 0.62 4.432

ModelTest-NG 0.73 0.64 0.12 3.24 0.33 1.93

RAxML-NG 1.55 1.38 0.11 6.59 0.76 4.554

ModelTest-NG 0.88 0.85 0.14 3.72 0.4 2.19

RAxML-NG 1.94 1.88 0.11 8.1 1.02 4.368

ModelTest-NG 1.09 1.03 0.21 4.46 0.45 2.37

RAxML-NG 2.35 2.41 0.38 6.3 1.24 4.6516

ModelTest-NG 1.31 1.21 0.26 5.04 0.55 2.77

RAxML-NG 3.14 3.41 0.14 8.48 1.69 5.9832

ModelTest-NG 1.67 1.8 0.45 4.9 0.74 3.52

RAxML-NG 3.54 3.52 0.17 13 2.12 6.39

amino-acid

48

ModelTest-NG 1.86 1.96 0.5 6.02 0.81 4.37

RAxML-NG 1.1 1.14 0.21 4.69 0.46 2.821

ModelTest-NG 0.41 0.46 0.09 1.96 0.19 0.78

RAxML-NG 1.46 1.64 0.32 4.15 0.63 3.152

ModelTest-NG 0.64 0.69 0.15 2.34 0.31 1.22

RAxML-NG 1.94 2.22 0.33 5.48 0.81 3.814

ModelTest-NG 1.05 1.15 0.28 3.97 0.5 2.07

RAxML-NG 2.59 3.07 0.32 9.78 0.8 5.088

ModelTest-NG 1.89 1.92 0.43 7.28 0.94 4.22

RAxML-NG 3.84 4.4 0.46 12.4 1.46 7.516

ModelTest-NG 2.88 3.17 0.43 11.6 1.14 5.98

RAxML-NG 5.09 5.93 0.61 21 1.97 11.432

ModelTest-NG 4.11 4.43 0.49 14.4 1.53 9.09

RAxML-NG 5.82 6.97 0.57 23.1 2.1 12.9

nucleotide

48

ModelTest-NG 5.05 5.28 0.57 17.1 2.15 11.5

Table 1: Speedups over IQTree on a per-dataset basis, given for each datatype and thread

count. Mean is geometric mean.

33

4. Results

am
in

o-acid
n

u
cleotide

0 5 10 15 20

p = 48

p = 32

p = 16

p = 8

p = 4

p = 2

p = 1

p = 48

p = 32

p = 16

p = 8

p = 4

p = 2

p = 1

Speedup over IQTree

N
u

m
be

r
of

 t
h

re
ad

s

Tool

RAxML-NG

IQTree

ModelTest-NG

Figure 14: Speedup over IQTree on nucleotide and AA datasets with varying thread count

Figure 14 shows the speedups of ModelTest-NG and RAxML-NG over IQTree, calculated for

each dataset and thread count. The speedups of both ModelTest-NG and RAxML-NG over

IQTree show an increasing trend with higher thread counts, which we attribute to the different

parallelization scheme and limited dataset size. For higher thread counts, IQTree prints a

warning, as the datasets only have a small number of sites.

In addition to the speedups per dataset shown above, we also computed the accumulated

speedups, that is, the ratio of sums over all runtimes for a given datatype, thread count,

and tool. Datasets with longer runtimes have a larger influence on this metric than datasets

that are fast to compute. For a single thread, ModelTest-NG reaches an accumulated speedup

over IQTree of 1.33 on AA data, and 0.686 on DNA data. RAxML-NG in comparison reaches

speedups over IQTree of 1.06 on AA and 1.69 on DNA. For the highest tested thread count

of 48 threads, ModelTest-NG’s speedups over IQTree are 2.12 on AA data and 3.97 on DNA

data, and RAxML-NG’s speedups over IQTree are 4.05 on DNA data and 1.72 on AA data. See

Table 2 for the complete list of speedup values.

In terms of scaling behavior, we analysed the parallel efficiency, also known as the speedup per

processor. If a sequential execution requires time 𝑡1, and a parallel execution with 𝑝 threads

requires time 𝑡𝑝, then the parallel efficiency 𝜀 is defined as

𝜀 = 𝑡1
𝑡𝑝 ∗ 𝑝

(21)

Figure 15 shows the parallel efficiency of our benchmarking runs for all three tools. For

IQTree, the parallel efficiency diminishes logarithmically. ModelTest-NG exhibits a near-linear

decrease in parallel efficiency for up to 32 cores. Additionally, for some datasets, it seems

to exhibit a super-linear speedup (𝜀 > 1) when going from a single thread to two threads,

34

4. Results

possibly caused by caching effects. The parallel efficiency of RAxML-NG is, simply put, all

over the place. Multiple factors could be at play here. Since we only run a single repetition per

tool, dataset, and thread count, the effect could be a result of measurement noise. Additionally,

since we implement a dynamic threading scheme with a best-effort scheme for load balancing

and ad-hoc application of heuristics, both the idle time of threads could vary immensely, as

could the true number of candidate model evaluations, that is, the primary workload.

Finally, Figure 16 shows which tool gave the fastest answer with ΔBIC < 10 to the best

known model for the dataset when we assign up to 𝑝 threads to the problem. IQTree is

competitive in the single-threaded case, but if a large amount of threads can be assigned to

the problem, RAxML-NG finishes faster due to better scaling behavior on small datasets.

35

4. Results

RAxML-NG IQTree ModelTest-NG

1 4 8 16 32 48 1 4 8 16 32 48 1 4 8 16 32 48

0.0

0.5

1.0

1.5

Number of threads

P
ar

al
le

l e
ffi

ci
en

cy

Figure 15: Parallel efficiency of all tools. Each line represents a dataset.

39.8%
55.9%

4.3%

16.1%

71.0%

12.9%

12.9%

76.3%

10.8%

34.4%

59.1%

6.5%

12.9%

77.4%

9.7%

22.6%

68.8%

8.6%

12.9%

76.3%

10.8%

Max 48 threads

Max 8 threads Max 16 threads Max 32 threads

Max 1 threads Max 2 threads Max 4 threads

RAxML-NG IQTree ModelTest-NG

RAxML-NG IQTree ModelTest-NG RAxML-NG IQTree ModelTest-NG

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

P
er

ce
n

t
of

 d
at

as
et

s
w

h
er

e
to

ol
 w

as
 t

h
e

fa
st

es
t

Figure 16: For each dataset and upper bound on the thread count, we consider which tool gave

the fastest answer with ΔBIC < 10.

36

4. Results

Datatype Threads Tool Accumulated

Speedup

Accumulated Run­

time (s)

RAxML-NG 1.69 24,0281

ModelTest-NG 1.33 30,532

RAxML-NG 1.11 20,5592

ModelTest-NG 1.44 15,821

RAxML-NG 1.02 13,5824

ModelTest-NG 1.65 8,432

RAxML-NG 0.906 8,9898

ModelTest-NG 1.75 4,639

RAxML-NG 1.62 3,12316

ModelTest-NG 1.81 2,792

RAxML-NG 1.3 3,06732

ModelTest-NG 1.94 2,055

RAxML-NG 1.72 2,291

amino-acid

48

ModelTest-NG 2.12 1,857

RAxML-NG 1.06 4,8601

ModelTest-NG 0.686 7,536

RAxML-NG 1.2 2,9192

ModelTest-NG 0.904 3,892

RAxML-NG 1.53 1,7684

ModelTest-NG 1.32 2,048

RAxML-NG 1.57 1,3708

ModelTest-NG 1.89 1,139

RAxML-NG 2.39 76816

ModelTest-NG 2.56 717

RAxML-NG 3.38 60032

ModelTest-NG 3.32 610

RAxML-NG 4.05 587

nucleotide

48

ModelTest-NG 3.97 598

Table 2: Accumulated speedups (sum over all runtimes) per thread count and datatype

37

4. Results

38

5. Discussion

5. Discussion

The extent of our benchmarks and evaluations covers only a narrow range of single-parti

tioned datasets with a low number of patterns (median 456.5 for the benchmark dataset).

Furthermore, the reliance on the model reevaluation with IQTree on a different tree topology

than the one used by RAxML-NG and ModelTest-NG for model optimization, the choice of

using the BIC score as a sole comparison measure, as well as examining only a single “best

model” per tool and dataset puts a limit on the explanatory power of our accuracy evaluation.

Nonetheless, we believe to have shown that, on nucleotide datasets with comparable size to

our evaluation sample, RAxML-NG’s model selection procedure can deliver results on-par

with ModelTest-NG and IQTree’s ModelFinder. We attribute the slight improvement over

IQTree on nucleotide datasets to the fact that IQTree does not consider ML-optimized base

frequencies and only uses empirically counted frequencies. Given that the former have the

same number of free parameters, but yield a better likelihood, we believe optimized frequen

cies to be superior with respect to the information criterion BIC. For AA datasets, our tool

performs slight sub-par to IQTree, but in the context of our evaluation setup, outperforms

ModelTest-NG accuracy-wise. The poor performance on ModelTest-NG on AA datasets has

two potential reasons. For one, it does not include the constant rate matrices derived by B.

Q. Minh et al. [43], which RAxML-NG and IQTree select as best-fitting for 80.4% of all AA

datasets. Secondly, given the fact that all AA rate matrices under consideration are constant

and thus do not add to the number of free parameters, the choice of the RHAS models becomes

evermore important. With the default arguments, ModelTest-NG only considers freerate

models with four categories and does not support checking multiple category counts in a

single run.

While we do not have enough data to make statements for larger datasets, we show that

parallelizing over candidate models is faster for small datasets when enough CPU cores are

available. Additionally, when considering freerate models with different category counts,

heuristics are important to keep the workload below a tolerable level.

39

6. Conclusion

6. Conclusion

In this thesis, we present a novel implementation of a model selection algorithm that builds

on the ideas of existing tools. Through a dynamic parallelization scheme and broad support

for models, it has competitive accuracy and runtime. On single-gene datasets, it is able to

outperform the existing tools. Its integration into the widely-used tree search tool RAxML-

NG makes it instantly accessible to a large group of users. Further work is necessary to tune

the performance of our tool and validate its accuracy on a larger sample of datasets.

6.1. Future Work

For a more complete comparison of the three tools investigated in this thesis, further work

is necessary. We need to quantify the performance and accuracy on larger datasets, possibly

with stratified sampling with respect to dataset sources, size, and difficulty [44]. In order to

evaluate how well the tools recover the models of simulated MSAs, simulation studies are of

further interest. Additionally, one could observe how the selected models perform during tree

search, and if and how the plausible tree set changes under the model.

Empirical data may help refining our heuristics for load balancing (Equation 18 and Equa

tion 19), adapting them to the characteristics of model optimization. Furthermore, the parallel

efficiency exhibits chaotic behavior (see Figure 15) we need to be address. For instance, in

order to avoid excessive wait times, our scheduler could permit the evaluation to start with

less threads. Additionally, as the heuristics sometimes deliver their information “too late” for

our eager evaluation scheduling, preemptive scheduling could help prevent wasting time on

evaluating candidate models that have not proven worthwhile.

40

Bibliography

Bibliography

[1] D. Darriba et al., ‘ModelTest-NG: A New and Scalable Tool for the Selection of DNA and

Protein Evolutionary Models’, Molecular Biology and Evolution, vol. 37, no. 1, pp. 291–

294, Jan. 2020, doi: 10.1093/molbev/msz189.

[2] T. Wong et al., ‘IQ-TREE 3: Phylogenomic Inference Software Using Complex Evolu

tionary Models’. Accessed: Apr. 14, 2025. [Online]. Available: https://ecoevorxiv.org/

repository/view/8916/

[3] S. Kalyaanamoorthy et al., ‘ModelFinder: Fast Model Selection for Accurate Phyloge

netic Estimates’, Nature Methods, vol. 14, no. 6, pp. 587–589, June 2017, doi: 10.1038/

nmeth.4285.

[4] V. Ranwez et al., ‘OrthoMaM: A Database of Orthologous Genomic Markers for Placental

Mammal Phylogenetics’, BMC Evolutionary Biology, vol. 7, no. 1, p. 241, 2007, doi:

10.1186/1471-2148-7-241.

[5] Z. Yang, Computational Molecular Evolution, 1st edn. Oxford University Press, 2006. doi:

10.1093/acprof:oso/9780198567028.001.0001.

[6] ‘Occam's Razor’. Oxford University Press, 2005. doi: 10.1093/oi/author

ity.20110803100244343.

[7] R. Durrett, Essentials of Stochastic Processes, 2nd ed. 2012. in Springer Texts in Statistics.

New York, NY: Springer New York, 2012. doi: 10.1007/978-1-4614-3615-7.

[8] J. Felsenstein, ‘Evolutionary Trees from DNA Sequences: A Maximum Likelihood

Approach’, Journal of Molecular Evolution, vol. 17, no. 6, pp. 368–376, Nov. 1981, doi:

10.1007/BF01734359.

[9] T. H. Jukes and C. R. Cantor, ‘Evolution of Protein Molecules’, Mammalian Protein

Metabolism. Academic Press, New York, pp. 21–123, 1969.

[10] S. Tavaré, ‘Some Probabilistic and Statistical Problems in the Analysis of DNA

Sequences’, Lectures on Mathematics in the Life Sciences, vol. 17. pp. 57–86,

1986. Accessed: Dec. 02, 2024. [Online]. Available: https://archive.org/details/

someprobabilisticandstatisticalproblemsintheanalysisofdnasequences

[11] M. Hoff et al., ‘Does the Choice of Nucleotide Substitution Models Matter Topologi

cally?’, BMC Bioinformatics, vol. 17, no. 1, p. 143, Mar. 2016, doi: 10.1186/s12859-016-0985-

x.

41

https://doi.org/10.1093/molbev/msz189
https://ecoevorxiv.org/repository/view/8916/
https://ecoevorxiv.org/repository/view/8916/
https://doi.org/10.1038/nmeth.4285
https://doi.org/10.1038/nmeth.4285
https://doi.org/10.1186/1471-2148-7-241
https://doi.org/10.1093/acprof:oso/9780198567028.001.0001
https://doi.org/10.1093/oi/authority.20110803100244343
https://doi.org/10.1093/oi/authority.20110803100244343
https://doi.org/10.1093/oi/authority.20110803100244343
https://doi.org/10.1007/978-1-4614-3615-7
https://doi.org/10.1007/BF01734359
https://archive.org/details/someprobabilisticandstatisticalproblemsintheanalysisofdnasequences
https://archive.org/details/someprobabilisticandstatisticalproblemsintheanalysisofdnasequences
https://doi.org/10.1186/s12859-016-0985-x
https://doi.org/10.1186/s12859-016-0985-x

Bibliography

[12] E. W. Weisstein, ‘Gamma Function’. Wolfram Research, Inc. Accessed: Oct. 16, 2025.

[Online]. Available: https://mathworld.wolfram.com/GammaFunction.html

[13] E. W. Weisstein, ‘Gamma Distribution’. Wolfram Research, Inc. Accessed: Oct. 16, 2025.

[Online]. Available: https://mathworld.wolfram.com/GammaDistribution.html

[14] Z. Yang, ‘Maximum Likelihood Phylogenetic Estimation from DNA Sequences with

Variable Rates over Sites: Approximate Methods’, Journal of Molecular Evolution, vol. 39,

no. 3, pp. 306–314, Sept. 1994, doi: 10.1007/BF00160154.

[15] R. P. Brent, Algorithms for Minimization without Derivatives. in Prentice-Hall Series in

Automatic Computation. Englewood Cliffs, N.J: Prentice-Hall, 1973.

[16] C. Zhu et al., ‘Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-

Constrained Optimization’, ACM Transactions on Mathematical Software, vol. 23, no. 4,

pp. 550–560, Dec. 1997, doi: 10.1145/279232.279236.

[17] R. H. Byrd et al., ‘A Limited Memory Algorithm for Bound Constrained Optimization’,

SIAM Journal on Scientific Computing, vol. 16, no. 5, pp. 1190–1208, Sept. 1995, doi:

10.1137/0916069.

[18] H. Akaike, ‘A New Look at the Statistical Model Identification’, IEEE Transactions on

Automatic Control, vol. 19, no. 6, pp. 716–723, Dec. 1974, doi: 10.1109/TAC.1974.1100705.

[19] C. M. Hurvich and C.-L. Tsai, ‘Regression and Time Series Model Selection in Small

Samples’, Biometrika, vol. 76, no. 2, pp. 297–307, 1989, doi: 10.1093/biomet/76.2.297.

[20] G. Schwarz, ‘Estimating the Dimension of a Model’, The Annals of Statistics, vol. 6, no. 2,

pp. 461–464, 1978, Accessed: Dec. 02, 2024. [Online]. Available: https://www.jstor.org/

stable/2958889

[21] R. E. Kass and A. E. Raftery, ‘Bayes Factors’, Journal of the American Statistical Associ

ation, vol. 90, no. 430, pp. 773–795, June 1995, doi: 10.1080/01621459.1995.10476572.

[22] D. Darriba et al., ‘jModelTest 2: More Models, New Heuristics and High-Performance

Computing’, Nature methods, vol. 9, no. 8, p. 772, July 2012, doi: 10.1038/nmeth.2109.

[23] D. Darriba et al., ‘ProtTest 3: Fast Selection of Best-Fit Models of Protein Evolution’,

Bioinformatics, vol. 27, no. 8, pp. 1164–1165, Apr. 2011, doi: 10.1093/bioinformatics/

btr088.

[24] T. Flouri et al., ‘The Phylogenetic Likelihood Library’, Systematic Biology, vol. 64, no. 2,

pp. 356–362, Mar. 2015, doi: 10.1093/sysbio/syu084.

[25] S. Abadi et al., ‘ModelTeller: Model Selection for Optimal Phylogenetic Reconstruction

Using Machine Learning’, Molecular Biology and Evolution, vol. 37, no. 11, pp. 3338–3352,

Nov. 2020, doi: 10.1093/molbev/msaa154.

[26] S. Burgstaller-Muehlbacher et al., ‘ModelRevelator: Fast Phylogenetic Model Estimation

via Deep Learning’, Molecular Phylogenetics and Evolution, vol. 188, p. 107905, Nov. 2023,

doi: 10.1016/j.ympev.2023.107905.

[27] ‘Coraxlib’. [Online]. Available: https://codeberg.org/Exelixis-Lab/coraxlib/

42

https://mathworld.wolfram.com/GammaFunction.html
https://mathworld.wolfram.com/GammaDistribution.html
https://doi.org/10.1007/BF00160154
https://doi.org/10.1145/279232.279236
https://doi.org/10.1137/0916069
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1093/biomet/76.2.297
https://www.jstor.org/stable/2958889
https://www.jstor.org/stable/2958889
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1038/nmeth.2109
https://doi.org/10.1093/bioinformatics/btr088
https://doi.org/10.1093/bioinformatics/btr088
https://doi.org/10.1093/sysbio/syu084
https://doi.org/10.1093/molbev/msaa154
https://doi.org/10.1016/j.ympev.2023.107905
https://codeberg.org/Exelixis-Lab/coraxlib/

Bibliography

[28] K. Kobert et al., ‘The Divisible Load Balance Problem and Its Application to Phyloge

netic Inference’, Algorithms in Bioinformatics, vol. 8701. in Lecture Notes in Computer

Science, vol. 8701. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 204–216, 2014.

doi: 10.1007/978-3-662-44753-6_16.

[29] B. Morel et al., ‘A Novel Heuristic for Data Distribution in Massively Parallel Phylo

genetic Inference Using Site Repeats’, in 2017 IEEE 19th International Conference on

High Performance Computing and Communications; IEEE 15th International Conference

on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/

SmartCity/DSS), Bangkok: IEEE, Dec. 2017, pp. 81–88. doi: 10.1109/HPCC-SmartCity-

DSS.2017.11.

[30] A. M. Kozlov et al., ‘RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum

Likelihood Phylogenetic Inference’, Bioinformatics, vol. 35, no. 21, pp. 4453–4455, Nov.

2019, doi: 10.1093/bioinformatics/btz305.

[31] ‘MPI: A Message-Passing Interface Standard’. [Online]. Available: https://www.mpi-

forum.org/docs/mpi-4.1/mpi41-report.pdf

[32] F. Reden, ‘EvoNAPS: A Database for Natural Parameter Settings of Evolutionary Models’,

mathesis, Vienna, Austria, 2023. [Online]. Available: https://doi.org/10.25365/thesis.

76008

[33] W. H. Piel et al., ‘TreeBASE: A Database of Phylogenetic Information.’, in Proceedings of

the 2nd International Workshop of Species, 2000.

[34] S. Whelan, ‘PANDIT: An Evolution-Centric Database of Protein and Associated

Nucleotide Domains with Inferred Trees’, Nucleic Acids Research, vol. 34, no. 90001, pp.

D327–D331, Jan. 2006, doi: 10.1093/nar/gkj087.

[35] D. R. Hipp, ‘SQLite’. [Online]. Available: https://sqlite.org/

[36] J.-L. Lacroix et al., ‘Mysql2sqlite’. Accessed: Oct. 13, 2025. [Online]. Available: https://

github.com/mysql2sqlite/mysql2sqlite

[37] F. Mölder et al., ‘Sustainable Data Analysis with Snakemake’. Accessed: Feb. 07, 2025.

[Online]. Available: https://f1000research.com/articles/10-33

[38] Conda-Forge Community, ‘The Conda-Forge Project: Community-based Software Dis

tribution Built on the Conda Package Format and Ecosystem’. Accessed: Oct. 20, 2025.

[Online]. Available: https://doi.org/10.5281/ZENODO.4774216

[39] B. Grüning et al., ‘Bioconda: Sustainable and Comprehensive Software Distribution for

the Life Sciences’, Nature Methods, vol. 15, no. 7, pp. 475–476, July 2018, doi: 10.1038/

s41592-018-0046-7.

[40] R Core Team, ‘R: A Language and Environment for Statistical Computing’. R Foundation

for Statistical Computing, Vienna, Austria, 2025. [Online]. Available: https://www.r-

project.org/

[41] H. Wickham et al., ‘Welcome to the tidyverse’, Journal of Open Source Software, vol. 4,

no. 43, p. 1686, 2019, doi: 10.21105/joss.01686.

43

https://doi.org/10.1007/978-3-662-44753-6_16
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.11
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.11
https://doi.org/10.1093/bioinformatics/btz305
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/10.25365/thesis.76008
https://doi.org/10.25365/thesis.76008
https://doi.org/10.1093/nar/gkj087
https://sqlite.org/
https://github.com/mysql2sqlite/mysql2sqlite
https://github.com/mysql2sqlite/mysql2sqlite
https://f1000research.com/articles/10-33
https://doi.org/10.5281/ZENODO.4774216
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.21105/joss.01686

Bibliography

[42] E.-J. Wagenmakers and S. Farrell, ‘AIC Model Selection Using Akaike Weights’, Psycho

nomic Bulletin & Review, vol. 11, no. 1, pp. 192–196, Feb. 2004, doi: 10.3758/BF03206482.

[43] B. Q. Minh et al., ‘QMaker: Fast and Accurate Method to Estimate Empirical Models

of Protein Evolution’, Systematic Biology, vol. 70, no. 5, pp. 1046–1060, Sept. 2021, doi:

10.1093/sysbio/syab010.

[44] J. Haag et al., ‘From Easy to Hopeless—Predicting the Difficulty of Phylogenetic Analy

ses’, Molecular Biology and Evolution, vol. 39, no. 12, p. msac254, Dec. 2022, doi: 10.1093/

molbev/msac254.

[45] M. Dayhoff et al., ‘A Model of Evolutionary Change in Proteins’, Atlas of protein sequence

and structure, vol. 5, pp. 345–352, 1978.

[46] C. Kosiol and N. Goldman, ‘Different Versions of the Dayhoff Rate Matrix’, Molecular

Biology and Evolution, vol. 22, no. 2, pp. 193–199, Feb. 2005, doi: 10.1093/molbev/msi005.

[47] S. Henikoff and J. G. Henikoff, ‘Amino Acid Substitution Matrices from Protein Blocks.’,

Proceedings of the National Academy of Sciences, vol. 89, no. 22, pp. 10915–10919, Nov.

1992, doi: 10.1073/pnas.89.22.10915.

[48] D. T. Jones et al., ‘The Rapid Generation of Mutation Data Matrices from Protein

Sequences’, Bioinformatics, vol. 8, no. 3, pp. 275–282, 1992, doi: 10.1093/bioinformat

ics/8.3.275.

[49] J. Adachi and M. Hasegawa, ‘Model of Amino Acid Substitution in Proteins Encoded

by Mitochondrial DNA’, Journal of Molecular Evolution, vol. 42, no. 4, pp. 459–468, Apr.

1996, doi: 10.1007/BF02498640.

[50] Z. Yang et al., ‘Models of Amino Acid Substitution and Applications to Mitochondrial

Protein Evolution’, Molecular Biology and Evolution, vol. 15, no. 12, pp. 1600–1611, Dec.

1998, doi: 10.1093/oxfordjournals.molbev.a025888.

[51] J. Adachi et al., ‘Plastid Genome Phylogeny and a Model of Amino Acid Substitution for

Proteins Encoded by Chloroplast DNA’, Journal of Molecular Evolution, vol. 50, no. 4, pp.

348–358, Apr. 2000, doi: 10.1007/s002399910038.

[52] T. Müller and M. Vingron, ‘Modeling Amino Acid Replacement’, Journal of Computa

tional Biology, vol. 7, no. 6, pp. 761–776, Dec. 2000, doi: 10.1089/10665270050514918.

[53] S. Whelan and N. Goldman, ‘A General Empirical Model of Protein Evolution

Derived from Multiple Protein Families Using a Maximum-Likelihood Approach’,

Molecular Biology and Evolution, vol. 18, no. 5, pp. 691–699, May 2001, doi: 10.1093/

oxfordjournals.molbev.a003851.

[54] M. W. Dimmic et al., ‘rtREV: An Amino Acid Substitution Matrix for Inference of Retro

virus and Reverse Transcriptase Phylogeny’, Journal of molecular evolution, vol. 55, no.

1, p. 65, 2002.

[55] S. Veerassamy et al., ‘A Transition Probability Model for Amino Acid Substitutions from

Blocks’, Journal of Computational Biology, vol. 10, no. 6, pp. 997–1010, Dec. 2003, doi:

10.1089/106652703322756195.

44

https://doi.org/10.3758/BF03206482
https://doi.org/10.1093/sysbio/syab010
https://doi.org/10.1093/molbev/msac254
https://doi.org/10.1093/molbev/msac254
https://doi.org/10.1093/molbev/msi005
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1093/bioinformatics/8.3.275
https://doi.org/10.1093/bioinformatics/8.3.275
https://doi.org/10.1093/bioinformatics/8.3.275
https://doi.org/10.1007/BF02498640
https://doi.org/10.1093/oxfordjournals.molbev.a025888
https://doi.org/10.1007/s002399910038
https://doi.org/10.1089/10665270050514918
https://doi.org/10.1093/oxfordjournals.molbev.a003851
https://doi.org/10.1093/oxfordjournals.molbev.a003851
https://doi.org/10.1089/106652703322756195

Bibliography

[56] F. Abascal et al., ‘MtArt: A New Model of Amino Acid Replacement for Arthropoda’,

Molecular Biology and Evolution, vol. 24, no. 1, pp. 1–5, Oct. 2006, doi: 10.1093/molbev/

msl136.

[57] D. C. Nickle et al., ‘HIV-Specific Probabilistic Models of Protein Evolution’, PLoS ONE,

vol. 2, no. 6, p. e503, June 2007, doi: 10.1371/journal.pone.0000503.

[58] S. Q. Le and O. Gascuel, ‘An Improved General Amino Acid Replacement Matrix’,

Molecular Biology and Evolution, vol. 25, no. 7, pp. 1307–1320, Apr. 2008, doi: 10.1093/

molbev/msn067.

[59] O. Rota-Stabelli et al., ‘MtZoa: A General Mitochondrial Amino Acid Substitutions Model

for Animal Evolutionary Studies’, Molecular Phylogenetics and Evolution, vol. 52, no. 1,

pp. 268–272, July 2009, doi: 10.1016/j.ympev.2009.01.011.

[60] C. C. Dang et al., ‘FLU, an Amino Acid Substitution Model for Influenza Proteins’, BMC

Evolutionary Biology, vol. 10, no. 1, p. 99, Dec. 2010, doi: 10.1186/1471-2148-10-99.

[61] Y. Liu et al., ‘Mitochondrial Phylogenomics of Early Land Plants: Mitigating the Effects

of Saturation, Compositional Heterogeneity, and Codon-Usage Bias’, Systematic Biology,

vol. 63, no. 6, pp. 862–878, Nov. 2014, doi: 10.1093/sysbio/syu049.

[62] V. S. Le et al., ‘Improved Mitochondrial Amino Acid Substitution Models for Metazoan

Evolutionary Studies’, BMC Evolutionary Biology, vol. 17, no. 1, p. 136, Dec. 2017, doi:

10.1186/s12862-017-0987-y.

[63] T. Le Kim et al., ‘Building a Specific Amino Acid Substitution Model for Dengue Viruses’,

in 2018 10th International Conference on Knowledge and Systems Engineering (KSE), 2018,

pp. 242–246. doi: 10.1109/KSE.2018.8573341.

[64] T. K. Le and L. S. Vinh, ‘FLAVI: An Amino Acid Substitution Model for Flaviviruses’,

Journal of Molecular Evolution, vol. 88, no. 5, pp. 445–452, July 2020, doi: 10.1007/

s00239-020-09943-3.

45

https://doi.org/10.1093/molbev/msl136
https://doi.org/10.1093/molbev/msl136
https://doi.org/10.1371/journal.pone.0000503
https://doi.org/10.1093/molbev/msn067
https://doi.org/10.1093/molbev/msn067
https://doi.org/10.1016/j.ympev.2009.01.011
https://doi.org/10.1186/1471-2148-10-99
https://doi.org/10.1093/sysbio/syu049
https://doi.org/10.1186/s12862-017-0987-y
https://doi.org/10.1109/KSE.2018.8573341
https://doi.org/10.1007/s00239-020-09943-3
https://doi.org/10.1007/s00239-020-09943-3

Bibliography

46

A Appendix

A Appendix

47

A Appendix

A.1 Data Availability

The implementation is available on GitHub4 and has been merged into RAxML-NG v2.0-beta3.

A.1.1 Software Versions

Sourced from Bioconda [39]:

• snakemake=9.11.8=hdfd78af_0

• raxml-ng=1.2.2=h6747034_2

• modeltest-ng=0.1.7=hf316886_3

• iqtree=3.0.1=h503566f_0

Custom package5, implementation presented in this thesis:

• raxml-ng-modeltest=2.0.0.dev1=0_gbdffad2_2

4https://github.com/stelzch/raxml-ng/tree/feature/moose
5https://anaconda.org/stelzch/raxml-ng-modeltest

48

https://github.com/stelzch/raxml-ng/tree/feature/moose
https://github.com/amkozlov/raxml-ng/releases
https://anaconda.org/stelzch/raxml-ng-modeltest
https://github.com/stelzch/raxml-ng/tree/feature/moose
https://anaconda.org/stelzch/raxml-ng-modeltest

A Appendix

A.2 Evaluation Subsample

Datatype Database N Median Taxa Median Sites Median Patterns

OrthoMaM_v10c 336 109 451.5 371.5

PANDIT 138 10 233 209

aa

TreeBASE 22 40.5 462 382.5

Lanfear 21 150 213 154

OrthoMaM_v10c 133 107 1,173 835

OrthoMaM_v12a 158 183 1,435.5 886.5

PANDIT 71 12 483 338

dna

TreeBASE 108 45.5 1,150 381

Table A.3: Key data of the evaluation sample

49

A Appendix

A.3 List of DNA substitution models

Rate symmetry Frequencies coraxlib name(s) IQTree name(s)

000 00 0 equal JC JC, JC69

000 00 0 free F81 F81

010 01 0 equal K80 K2P, K80

010 01 0 free HKY HKY, HKY85

010 02 0 equal TN93ef, TrNef TNe, TNef, TrNef, TNe, TrNe

010 02 0 free TN93, TrN TN, TrN, TN93

012 21 0 equal K81, TPM1 K3P, K81, TPM1

012 21 0 free K81uf, TPM1uf K3Pu, K81uf, K81u, K3Puf, TPM1uf,

TPM1u

010 21 2 equal TPM2, TPM2ef TPM2

010 21 2 free TPM2uf TPM2u, TPM2uf

012 01 2 equal TPM3, TPM3ef TPM3

012 01 2 free TPM3uf TPM3u, TPM3uf

012 23 0 equal TIM1, TIM1ef TIMe, TIMef, TIMe, TIM1ef, TIM1e

012 23 0 free TIM1uf TIM, TIM1

010 23 2 equal TIM2, TIM2ef TIM2e, TIM2ef

010 23 2 free TIM2uf TIM2

012 03 2 equal TIM3, TIM3ef TIM3e, TIM3ef

012 03 2 free TIM3uf TIM3

012 31 4 equal TVMef TVMe, TVMef

012 31 4 free TVM TVM

012 34 5 equal SYM SYM

012 34 5 free GTR GTR, REV

Table A.4: List of DNA model names for RAxML-NG (coraxlib) and IQTree. The first name

is the canonical name, all following names are aliases. Note that for the most part, cross-

compatible aliases exist, except for TN93ef and TIM1, TIM2, and TIM3. For the latter, the

programs also differ on the default frequency setting.

50

A Appendix

A.4 List of Amino Acid Substitution Matrices

Matrix name Citation

DAYHOFF M. Dayhoff et al. [45], C. Kosiol and N. Gold

man [46]

BLOSUM62 S. Henikoff and J. G. Henikoff [47]

JTT D. T. Jones et al. [48]

mtREV J. Adachi and M. Hasegawa [49]

mtMAM Z. Yang et al. [50]

cpREV J. Adachi et al. [51]

VT T. Müller and M. Vingron [52]

WAG S. Whelan and N. Goldman [53]

rtREV M. W. Dimmic et al. [54]

PMB S. Veerassamy et al. [55]

mtART F. Abascal et al. [56]

HIVB, HIVW D. C. Nickle et al. [57]

LG S. Q. Le and O. Gascuel [58]

mtZOA O. Rota-Stabelli et al. [59]

FLU C. C. Dang et al. [60]

stmtREV Y. Liu et al. [61]

mtMET, mtVER, mtINV V. S. Le et al. [62]

DEN T. Le Kim et al. [63]

FLAVI T. K. Le and L. S. Vinh [64]

Q.BIRD, Q.INSECT, Q.MAMMAL, Q.PLANT,

Q.YEAST, Q.LG, Q.PFAM, Q.PFAM_GB

B. Q. Minh et al. [43]

Table A.5: List of AA substitution matrices available in RAxML-NG.

51

	Abstract
	Zusammenfassung
	1. Introduction
	2. Background
	2.1. Phylogenetic Inference
	2.1.1. Multiple Sequence Alignment and Phylogenetic Trees
	2.1.2. Tree Evaluation Criteria
	2.1.3. DNA Substitution Models
	2.1.4. Amino Acid Substitution Models
	2.1.5. Base Frequencies
	2.1.6. Rate Heterogeneity Models
	2.1.6.1. Invariant (+I)
	2.1.6.2. Gamma (+G)
	2.1.6.3. Freerate (+R)

	2.1.7. Parameter Optimization Methods

	2.2. Information Criteria (IC)
	2.2.1. AIC
	2.2.2. AICc
	2.2.3. BIC

	2.3. Related Work
	2.3.1. ModelFinder
	2.3.2. ModelTest-NG
	2.3.3. Machine Learning
	2.3.4. RAxML-NG

	3. Methods
	3.1. Model Optimization
	3.2. Applied Optimizations
	3.2.1. Heuristics
	3.2.1.1. Freerate Heuristic
	3.2.1.2. RHAS Heuristic

	3.2.2. Expectation-Maximization
	3.2.3. Parallelization Across Models and Opportunistic Multi-threading
	3.2.4. MPI Parallelization

	3.3. Checkpointing
	3.4. Evaluation of Model Selection Accuracy
	3.4.1. EvoNAPS
	3.4.2. Pipeline

	3.5. Runtime Benchmarks

	4. Results
	5. Discussion
	6. Conclusion
	6.1. Future Work

	Bibliography
	A Appendix
	A.1 Data Availability
	A.1.1 Software Versions

	A.2 Evaluation Subsample
	A.3 List of DNA substitution models
	A.4 List of Amino Acid Substitution Matrices

