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Abstract

With next generation sequencing, the cost to sequence a genome has decreased exponentially, 

even outpacing Moore’s law. We therefore expect the use of phylogenetic inference tools to 

rise even further, with the tools facing a perpetual scalability challenge. The largest extent of 

studies (as well as users) now commends for increasingly automated methods as we observe 

a shift from manual workflows to reusable, highly automated pipelines. An important step in 

such phylogenetic analysis pipelines is model selection, which ranks the plethora of available 

DNA and protein substitution models according to their relative fit to the data. In this thesis, 

we present a novel implementation of a model selection procedure, integrated into RAxML-

NG, a widely used tool for phylogenetic inference via Maximum Likelihood. It implements 

a number of heuristics to speed up execution and employs a robust parallelization scheme 

that also supports partitioned datasets and distributed memory systems. For 86.7% of amino 

acid, and 72.9% of single-gene DNA datasets, our implementation selects models with a BIC 

score difference of less than 10 compared to IQTree’s ModelFinder and ModelTest-NG. With 

48 cores, we reach a mean speedup per dataset of 3.54 (AA) and 5.82 (DNA) over IQTree. Over 

all datasets, the accumulated speedup with 48 cores over IQTree is 1.72 (AA) and 4.05 (DNA). 

By providing a fast, easily-accessible implementation without external dependencies, we hope 

to lower the barrier to prepend a model selection to phylogenetic analyses. This ensures a 

good model-data fit and potentially saves runtime during the tree search by limiting the use 

of computationally expensive mixture models. Furthermore, its integration into the inference 

tool allows future work to incorporate model selection results during the tree search, paving 

the way for more adaptive approaches and runtime optimizations.
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Zusammenfassung

Durch neuartige Sequenzierungsmethoden sind die Kosten zur Sequenzierung eines Genoms 

exponentiell gesunken. Deshalb ist zu erwarten, dass die Verwendung von phylogenetischer 

Inferenzsoftware weiter ansteigen wird und sich die Software an stetig vergrößerende 

Datenmengen anpassen muss. Ein Großteil der Studien und Nutzer macht zunehmend auto

matisierte Methoden erforderlich. Es erfolgt ein Wechsel von manuellem Aufruf der Tools hin 

zu automatisierten und wiederverwendbaren Daten-Pipelines. Ein wichtiger Schritt in einer 

solchen phylogenetischen Pipeline ist die Modellauswahl, bei der die zahlreichen vorhande

nen molekularen DNA- und Protein-Modelle anhand ihrer Fähigkeit, die vorliegenden Daten 

zu beschreiben, bewertet werden. In dieser Masterarbeit stellen wir eine neuartige Implemen

tierung einer solchen Modellauswahl vor. Die Implementierung ist in das weit-verbreitete 

Inferenz-Tool RAxML-NG integriert. Sie verwendet mehrere Heuristiken, um die Ausführung 

zu beschleunigen und verwendet ein robustes Parallelisierungsschema, das auch partitionierte 

Datensätze und Cluster-Rechnersysteme gut unterstützt. Für 86,7% der Protein- und 72,9% 

der DNS-Datensätze beträgt die BIC-Differenz der ausgewählten Modelle weniger als 10 im 

Vergleich zu den Modellen von IQTree’s ModelFinder und ModelTest-NG, Mit 48 CPU-Kernen 

erreicht unser Tool pro Datensatz einen durchschnittlichen Speedup von 3,54 (Protein) und 

5,82 (DNS) im Vergleich zu IQTree. Über alle Datensätze gemessen beträgt der akkumulierte 

Speedup mit 48 CPU-Kernen 1,72 (Protein) und 4,05 (DNS). Mit diesem schnellen, leicht 

zugänglichen - da integriertem - Tool hoffen wir die Barriere für Modellauswahl zu senken 

und die Anwendung zu verbreiten. Dadurch ist gewährleistet, dass das ausgewählte Modell 

auch gut zum Datensatz passt. Ferner kann Laufzeit eingespart werden, da nicht komplexere 

Modelle als nötig verwendet werden. Außerdem erlaubt die Integration in das Inferenztool, 

in der Zukunft die Modellsuche in die Baumsuche miteinzubeziehen, um diese adaptiver und 

schneller zu gestalten.
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1. Introduction

1. Introduction

Phylogenetics studies the relatedness of species in the light of evolution. Before the discovery 

of DNA and the availability of sequence data, phylogenetic reconstruction relied on close 

observation of specimen and the detection of so-called homologies: similarities between dif

ferent species that have developed through a shared evolutionary history. With the advent of 

DNA sequencing, phylogenetic methods are no longer constrained to the phenotype (observ

able traits), but primarily evaluate information from the genotype (the DNA sequence). This 

sudden breadth of information poses challenges best conquered with statistics. Computational 

phylogenetics therefore uses statistical models of DNA substitutions to explore evolutionary 

processes.

In certain cases, researchers have a good intuition on the type of model required for the 

analysis at hand and do not need to investigate further. Nevertheless, in the majority of cases, 

the plethora of available models and lack of a priori knowledge can render model selection 

a challenging and time-consuming task. Different methods exist to automatically select from 

a set of candidate models. Two popular tools with this functionality are ModelTest-NG [1] 

and IQTree’s ModelFinder  [2], [3], which use information criteria (such as the Bayesian 

Information Criterion, abbreviated BIC) to determine the “goodness of fit” of models.

In this thesis, we present a novel implementation of a model selection procedure, integrated 

into RAxML-NG, a widely used phylogenetic inference tool. Our implementation outperforms 

both IQTree and ModelTest-NG in multi-threaded shared-memory benchmarks on single-gene 

datasets. Its availability inside RAxML-NG lowers the barrier to perform a model selection, 

and may even be transparent to the user. Through its adaptive parallelization approach, it 

is well-suited to utilize all available computing resources, in cases where the user allocates 

a large amount of processing power in anticipation of the tree search following the model 

selection.

With the integration of model selection into RAxML-NG we were able to achieve:

1. a competitor for state of the art model selection tools that combines a large model candidate 

set (including freerate models) with runtime-saving heuristics and a versatile paralleliza

tion scheme

2. a simplification of the model selection process for users and in the context of pipelines

3. increased code maintainability, as there exists a large overlap of functionality between the 

tree inference tool RAxML-NG and the model selection procedure

4. a foundation for future work that can employ model testing during the tree search phase 

(i.e., by switching between hard-to-compute but accurate, and cheap but approximative 

models)

1



1. Introduction

5. the option for future research to explore the link between phylogenetic models and their 

influence and bias on tree search results.

In the following sections, we will introduce phylogenetic inference, model selection, and 

available tools in detail (Section 2). In Section 3 we will describe our implementation, the 

optimizations and heuristics we employed, as well as the methods used to evaluate and 

benchmark our tool. In Section 4 and Section 5, we will present and discuss our findings, 

before concluding this thesis in Section 6.
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2. Background

2. Background

2.1. Phylogenetic Inference

2.1.1. Multiple Sequence Alignment and Phylogenetic Trees

The prerequirement for many phylogenetic methods is a Multiple Sequence Alignment (MSA): 

A matrix 𝑆𝑡×𝑛 represents the character sequence drawn from the state space 𝑆 with length 

𝑛 of 𝑡 taxa, with gap characters inserted such that “related” characters end up in the same 

column.

🐨 Phascolarctos cinereus CGCACAGATGCCTTGGAGCAAGGAGGATT

🐻 Ursus americanus       AGAACACAGGCCTTGGAACAAGGT-----

🐪 Camelus dromedarius    AGAACAGAGGCTTTGGAACAAGGAGGATT

🐋 Balaenoptera musculus  AGAACAGAGGCCTTGGAACAAGGAGGATT

👤 Homo sapiens           AGAACAGAGGCCTTAGAACAAGGAGGATT

(a) MSA excerpt

Homo sapiens
Phascolarctos cinereus

Ursus americanus
Balaenoptera musculus

Camelus dromedarius

(b) A possible maximum-likelihood tree

Figure 1: MSA and a phylogenetic tree of five mammals based on the protein Cyclin-dependent 

kinase 7 (CDK7), extracted from OrthoMAM [4].

For example, the MSA in Figure 1a is a matrix 𝑆5×30, and the state space comprises the four 

DNA nucleotides Adenine, Guanine, Cytosine, and Thymine alongside the gap character: 𝑆 =
{𝐴, 𝐺, 𝐶, 𝑇 , −}. The gap character represents deletions or insertions. For instance, the last 

nucleotides in the sequence of the American black bear (Ursus americanus) seem to be deleted. 

Another form of genetic mutation is the substitution: the Koala (Phascolarctos cinereus) has a 

Cytosine (C) in the first column, whereas all other taxa under consideration have an Adenine 

(A).

3



2. Background

Given an MSA, the declared goal is to construct a phylogenetic tree, such as the one in 

Figure 1b . The leaf nodes ( ) represent our taxa, whereas the inner nodes ( ) can be thought 

of as extinct common ancestors. In an unrooted bifurcating tree as we have here, each 

inner node has exactly three neighbors. The number of trees grows super-exponentially with 

respect to the number of taxa: For 𝑡 taxa, there are ∏𝑡
𝑖=4(2𝑖 − 5) possible trees  [5, p. 76]. 

This means for our small example from Figure 1 with 5 taxa there are 15 possible trees, for 

10 taxa there are already 2 million possibilities, and for 50 taxa the unfathomable amount of 

~2.84 ⋅ 1074 possible trees. From these considerations it is clear that evaluating all possible 

trees is a hopeless endeavour and that we must consider heuristics, statistical criteria, and 

approximations.

2.1.2. Tree Evaluation Criteria

An early and still relevant attempt at phylogenetic tree reconstruction is Maximum Parsi­

mony. It embodies Occam’s Razor: The explanation with the least amount of assumptions 

is to be preferred  [6]. Typically, we do not know the states of the inner nodes, and we 

are therefore free to speculate. Maximum Parsimony minimizes the number of substitutions 

across the edges of a given tree and prefers trees that require less mutation to explain the 

observed sequence state at the tip nodes [5, p. 94]. Compared to other methods, it is cheap to 

evaluate and yields reasonable tree topologies.

A particular shortcoming of the Maximum Parsimony method is the fact that its criterion does 

not incorporate branch lengths. If we expect branches to be long, it seems likely that multiple 

mutations might occur along the way, possibly even ending up in the original state.

To capture such hidden mutations (hidden in the sense that they are transparent to us from 

the observed character states), we employ a Markov model. In particular, we model the 

substitution process of nucleotides or AAs using a Markov chain. The state space comprises 

the different bases (for DNA data) or amino acids (for AA data) and the transition between 

states represents a point mutation. The defining property of a Markov chain is the absence 

of memory: Let 𝑋𝑛 be a random variable that denotes the state of the Markov chain at time 

point 𝑛, and let 𝑠𝑛 be the observed state at time point 𝑛, then the value of 𝑋𝑛+1 depends only 

on 𝑋𝑛:

𝑃(𝑋𝑛+1 = 𝑠𝑛+1 | 𝑋𝑛 = 𝑠𝑛, 𝑋𝑛−1 = 𝑠𝑛−1, …) = 𝑃(𝑋𝑛+1 = 𝑠𝑛+1 | 𝑋𝑛 = 𝑠𝑛) (1)

Equation 1 is called the Markov property [7, p. 1].

When we use Markov chains to model the substitution process, we assume that it has reached 

an equilibrium distribution [5, p. 8]. This means that as time progresses, the distribution 𝜋 =
{𝜋1, …, 𝜋|𝑆|}, with 𝜋𝑖 denoting the proportion of time spent in state 𝑖, is constant. The vector 

𝜋 is also called the base frequency vector.

A substitution rate matrix (“𝑄 matrix”) characterizes a continuous time Markov chain and 

denotes the transition probability between states during an infinitesimal time duration. 

Choosing “good” parameters for the 𝑄 matrix forms an optimization problem. We discuss the 

structure and parameter optimization of the 𝑄 matrix in Section 2.1.3. Since the 𝑄 matrix 

gives transition probabilities for infinitesimal durations, we can not use it to determine the 

transition probabilities for longer time periods, since multiple transitions with intermediate 

4



2. Background

states are possible. For this, we have to use the transition probability matrix (“𝑃  matrix”), 

which gives the transition probabilities for arbitrary non-infinitesimal continuous time 𝑡:

𝑃(𝑡) = 𝑒𝑄𝑡 (2)

The Chapman-Kolmogorov theorem [5, p. 8] guarantees that the transition probabilities in 

the 𝑃  matrix account for all hidden intermediate mutations:

𝑝𝑠1→𝑠2
(𝑡1 + 𝑡2) = ∑

𝑘∈𝑆
𝑝𝑠1𝑘(𝑡1) ⋅ 𝑝𝑘𝑠2

(𝑡2) (3)

That is, the probability of a transition from state 𝑠1 to state 𝑠2 in time 𝑡1 + 𝑡2 is the same as the 

sum of all transition probabilities via an arbitrary intermediate state 𝑘. With the formulation 

of transition probabilities, we can now apply the principle of maximum likelihood estimation 

to our problem [8].

Likelihood is a function of the observation (our MSA 𝐴 ∈ 𝑆𝑡×𝑛), all model parameters 𝜃 and a 

candidate tree 𝑇 . Its value is the probability to observe the given data under those parameters: 

𝐿(𝐴|𝜃, 𝑇 ). Under the assumption that all sites of a sequence develop independently, the 

likelihood of a tree given an MSA is the product of all site-likelihoods, which in turn is 

the product of all transition probabilities across all tree branches, summed over all possible 

intermediate states [8].

Because we consider unrooted trees, we place a virtual root on an arbitrary branch in our tree 

to simplify the computation process. The likelihood evaluation algorithm performs a post-

order traversal starting from the virtual root, and computes partial likelihoods. Given a parent 

node 𝑛𝑝 with two child nodes 𝑛𝑖 and 𝑛𝑗, it computes the partial per-site likelihood (stored in 

a so called conditional likelihood vector, CLV) of the parent node being in state 𝑠 as follows:

𝐿(𝑠)
𝑝 = (∑

𝑠2∈𝑆
𝑝𝑠→𝑠2

(𝑏𝑖) ⋅ 𝐿(𝑠2)
𝑖 ) ⋅ (∑

𝑠2∈𝑆
𝑝𝑠→𝑠2

(𝑏𝑗) ⋅ 𝐿(𝑠2)
𝑗 ) (4)

A T G C  

ni

A T G C  

nj

np

bi bj

Figure 2: Triplet

At the tip nodes, the MSA defines the tip states:

𝐿(𝑠)
𝑖 = {1 if MSA has character 𝑠 at site 𝑖

0 otherwise (5)

Once the evaluation algorithm has computed the CLVs of all inner nodes, it obtains the final 

likelihood by considering the two nodes adjacent to the virtual root, which we will call 𝑛𝑙 and 
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𝑛𝑟. Let 𝑏 denote the length of the branch that separates them, and 𝜋𝑠 the base frequency of 

state 𝑠. Then the final likelihood value for the given site is

L = ∑
𝑠1∈𝑆

𝜋𝑠1
𝐿(𝑠1)

𝑙 (∑
𝑠2∈𝑆

𝑝𝑠1→𝑠2
(𝑏)𝐿(𝑠2)

𝑟 ) (6)

To obtain the likelihood across all sites, we need to multiply the per-site likelihoods. Since 

these are numerically small, we instead take the sum of the logarithm of the site likelihoods, 

which is equivalent. This log-likelihood (lnL) is the guiding criterion in ML methods. In the 

following sections, we will discuss the details of the model.

2.1.3. DNA Substitution Models

Substitution models for DNA sequences differ in their substitution rate symmetries and the 

equilibrium distribution. A decisive assumption for efficient likelihood computation is time 

reversibility, as this allows arbitrary virtual root placement in order to traverse the unrooted 

tree. Time reversibility requires that for all 𝑖, 𝑗 ∈ {1, …, |𝑆|}, 𝑖 ≠ 𝑗 the equality 𝜋𝑖𝑞𝑖𝑗 = 𝜋𝑗𝑞𝑗𝑖 

must hold.

Jukes and Cantor [9] proposed a simple model (commonly abbreviated JC69), which assumes 

an equal substitution rate 𝜆 between any two distinct characters. Because the rows of a 

substitution rate matrix must sum to zero, this leaves us with the following definition:

𝑄JC69 =

(




−3𝜆
𝜆
𝜆
𝜆

𝜆
−3𝜆
𝜆
𝜆

𝜆
𝜆

−3𝜆
𝜆

𝜆
𝜆
𝜆

−3𝜆)




Increasingly complex substitution models relax these constraints by introducing additional 

free parameters. Under this assumption, the most general substitution matrix named the 

General Time Reversible (GTR) model [10] is represented as follows:

𝑄GTR =

(




⋅
𝛼
𝛽
𝛾

𝛼
⋅
𝛿
𝜀

𝛽
𝛿
⋅
𝜁

𝛾
𝜀
𝜁
⋅)




(




𝜋1
𝜋2

𝜋3
𝜋4)





The requirement that rows must sum to zero allows the determination of the omitted values 

(“⋅”) on the main diagonal.

A concise way of expressing model matrices is to specify them in terms of symmetries between 

GTR parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, and 𝜁. Equal numbers mean that the parameter is repeated. For 

example, “000 00 0” designates JC69, as there is just a single parameter, and “012 34 5” denotes 

the GTR model. In total, there are 203 possible combinations [11]. However, there is a subset 

of 11 named and commonly used matrices, which we list in the appendix (Table A.4).

2.1.4. Amino Acid Substitution Models

For amino acid (AA) substitution models, the substitution rate matrices have dimension 20 ×
20, a substantial increase compared to DNA data. After applying the above restrictions that 
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each row must sum to 0, symmetry must hold, and fixing one arbitrary scaling parameter, 

there are still 189 free parameters for the substitution matrix alone. This so called protein 

GTR model poses a challenge for regular optimization algorithms, as it is particularly slow 

to compute. To circumvent this problem, most analyses of AA datasets use precomputed rate 

matrices. Empirical studies have optimized these rate matrices on large datasets, sometimes 

with a focus on certain fields or applications such as mammalian or plant genomes. Table A.5 

in the appendix lists the AA matrices supported by RAxML-NG and links them to their original 

publication.

2.1.5. Base Frequencies

There are multiple ways to estimate the value of the stationary distribution 𝜋:

1. In the simplest case, we assume equal frequencies for all states 𝑖 ∈ 𝑆: 𝜋𝑖 = 1
|𝑆| .

2. We can also count the number of times each state occurs in our observed data, that is the 

MSA, and divide by the total number of characters in the MSA. These are called empirical 

frequencies.

3. In the case of AA substitution models, the precomputed rate matrices are accompanied by 

a frequency vector estimated from the same dataset. We term these model frequencies.

4. It is also possible to optimize frequencies numerically with respect to the likelihood, using 

e.g. L-BFGS-B (Section 2.1.7).

2.1.6. Rate Heterogeneity Models

When we apply a given substitution model to our dataset, we assume that the substitution rate 

is uniform across all sites in the MSA. Since each site of a given sequence might face different 

evolutionary pressures, this assumption does not hold on empirical datasets. For instance, in 

protein-coding sequences the last nucleotide of a codon is often redundant, and therefore may 

undergo more frequent mutations, since this mutation does not change the encoded protein. 

The phenomenon that the substitution rate differs among sites is called rate heterogeneity 

among sites (RHAS).

A common approach is to employ a finite mixture model: we consider 𝑐 substitution rate 

categories 𝑟1, …, 𝑟𝑐 with weights 𝑤1, …, 𝑤𝑐 under the constraints that the weights sum to 1, 

and that the average substitution rate is equal to 1:

𝑤1 + … + 𝑤𝑐 = 1

∑
𝑐

𝑖=1
𝑤𝑖𝑟𝑖 = 1 (7)

Since we do not know a priori which site fits best into which category, we compute the 

likelihood over the whole sequence for all categories separately, and later apply the weighted 

sum to obtain the final likelihood:

𝐿 = ∑
𝑘

𝑤𝑘 ⋅ (∑
𝑖

𝐿𝑘,𝑖) (8)
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In the following, we use the notation 𝐿𝑘,𝑖 to refer to the likelihood value of the site with index 

𝑖 under rate category 𝑘. Multiple strategies to configure the substitution rate and weights exist 

and thus model the RHAS. We will briefly describe them in the following sections.

Invariant (+I)

One observation from real-world data is that some sites are highly conserved and virtually 

never mutate. It is possible to model this effect using a two-category mixture model, where one 

of the substitution rates is equal to zero: 𝑟1 = 0. Let 𝑝 denote the proportion of invariant sites, 

then the weights of the mixture model are 𝑤1 = 𝑝, 𝑤2 = 1 − 𝑝. Because of the restriction that 

the average substitution rate must equal one, we can deduce the value of the remaining rate 

[5, p. 111]:

1 = ∑
𝑖

𝑤𝑖 ⋅ 𝑟𝑖

= 𝑤1𝑟1 + 𝑤2𝑟2 = 0 ⋅ 𝑝 + 𝑤2𝑟2

= (1 − 𝑝)𝑟2 ⇔ 𝑟2 = 1
1 − 𝑝

(9)

An inference tool can then optimize this single free parameter 𝑝 with respect to the likelihood. 

For details on the optimization method, see Section 2.1.7.
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Figure 3: Probability density function of the gamma distribution for six distinct values of 𝛼. 

The gray vertical lines correspond to the quantiles 0.25, 0.5, and 0.75, respectively, and sep

arate the distribution into four categories with equal probability mass. The small ticks at the 

bottom denote the mean substitution rate value for each category determined by Equation 11.

Gamma (+G)

A more flexible finite mixture model is the gamma model. Its underlying assumption is that 

the substitution rate of all sites follows a gamma distribution. The density function 𝑔(𝑟; 𝛼, 𝛽) 
of the gamma distribution [5, 4.11], [12] is

𝑔(𝑟; 𝛼, 𝛽) = 𝛽𝛼𝑟𝛼−1𝑒−𝛽𝑟

Γ(𝛼)

Γ(𝛼) = ∫
∞

0
𝑡𝛼−1𝑒−𝑡𝑑𝑡

(10)

The mean value of the gamma distribution is 𝛼𝛽  [13], therefore in order to satisfy the constraint 

that the mean substitution rate must be equal to 1, we set 𝛽 = 𝛼. Since the likelihood compu

tation under the assumption of a continuous gamma distribution is prohibitively compute-

intensive, Z. Yang [14] proposed a discretization into a fixed number of categories 𝑐. The 

discretization divides the gamma distribution into 𝑐 intervals of equal probability, with the 

weights being 𝑤1, …, 𝑤𝑐 = 1
𝑐 . Let 𝑎 and 𝑏 be the quantiles as given by the cumulative gamma 

density function 𝐹(𝑥, 𝛼) that restrict a particular substitution rate category 𝑖. Then, the mean 

substitution rate [14] of that category is

9
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𝑟𝑖 =
∫𝑏

𝑎
𝑟 ⋅ 𝑔(𝑟; 𝛼, 𝛼)𝑑𝑟

∫𝑏
𝑎

𝑔(𝑟; 𝛼, 𝛼)𝑑𝑟
= 𝑐 ⋅ ∫

𝑏

𝑎
𝑟 ⋅ 𝑔(𝑟; 𝛼, 𝛼)𝑑𝑟 (11)

Figure 3 shows the gamma density function for six distinct values of 𝛼. For small values of 

𝛼, the substitution rate values are spread out. For large values of 𝛼, the probability mass is 

much more centered around the mean value of 1. The same holds for the mean substitution 

rate of categories: When 𝛼 = 50, the means are approximately 0.83, 0.95, 1.04, and 1.19, 

thus covering only a small range of substitution rate values, whereas for 𝛼 = 0.8, the means 

range from 0.1 up to 2.54. We expect large values of 𝛼 to fit datasets with a highly uniform 

substitution rate of sites well, whereas for highly rate-heterogenous datasets the optimal value 

of 𝛼 w.r.t. likelihood may be small.

In some cases, the median substitution rate may provide the category rate instead. RAxML-

NG denotes this by +GA, whereas a mixture model with N categories and mean category rates 

is denoted by +GNm

Freerate (+R)

If computational resources permit it, we can also forgo any further restrictions on the category 

weights and rates of the finite mixture model, and optimize the values according to likelihood 

with the data at hand. Given a fixed number of 𝑐 categories, this approach introduces 2𝑐 − 2 

free parameters. For a discussion of optimization algorithms, refer to Section 2.1.7.

2.1.7. Parameter Optimization Methods

In order to optimize the continuous parameters during the ML tree search, RAxML-NG 

employs numerical optimization methods.

When optimizing the branch lengths, we can compute the likelihood’s first and second deriv

atives, allowing us to apply the Newton-Raphson method. By solving the first derivative for 

zero, we can find a local minimum. For the optimization of scalar values where the derivative 

is unknown, e.g. the parameter 𝛼 of the Γ-distribution (Section 2.1.6.2), or the proportion of 

invariant sites 𝑝 in the invariant mixture model (Section 2.1.6.1), RAxML-NG uses Brent’s 

method [15, Chapter 4] . Finally, to minimize multi-dimensional functions without explicit 

computation of the derivatives, e.g. the substitution rates of the 𝑄 matrix, the base frequencies 

of DNA substitution models, or the weights and category substitution rates of freerate mixture 

models (Section 2.1.6.3), it applies the quasi-Newton optimization algorithm L-BFGS-B [16], 

[17]. L stands for low-memory, B for bounded, and BFGS are the initials of the authors.

2.2. Information Criteria (IC)

In an effort to prevent over- and underfitting, information criteria seek to measure the 

“goodness of fit” by relating the optimized likelihood achieved under a given model to the 

number of free parameters.
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2.2.1. AIC

H. Akaike [18] applied the information-theoretic Kullback-Leibler divergence to quantify 

the information loss of distinct candidate models when trying to approximate an unknown 

function. For ML estimation, Akaike provides the following asymptotic estimate:

AIC = −2 log 𝐿 + 2𝑘 (12)

𝐿 is the model’s maximum likelihood and 𝑘 is the number of free parameters. A lower AIC 

score indicates a better fitting model.

2.2.2. AICc

C. M. Hurvich and C.-L. Tsai [19] further provide a correction of the AIC for smaller sample 

sizes 𝑛:

AICc = AIC + 2𝑘(𝑘 + 1)
𝑛 − 𝑘 − 1

(13)

2.2.3. BIC

G. Schwarz [20] proposed a different information criterion that uses a Bayesian argument. 

Based on the likelihood 𝐿, number of free parameter 𝑘 and number of samples 𝑛, it is calculated 

as follows:

BIC = −2 log 𝐿 + 𝑘 log 𝑛 (14)

Especially for large sample sizes, it penalizes higher parameter counts much more severely 

than the AIC.

2.3. Related Work

Note that in the remainder of this thesis, a candidate model refers to the choice of a substitution 

matrix, base frequency type, and RHAS model for a particular partition of the dataset.

2.3.1. ModelFinder

ModelFinder [3] is a model selection tool integrated into the phylogenetic toolbox IQTree [2]. 

It supports all RHAS models described in Section 2.1.6 (invariant, gamma, freerate, as well 

as the combination of invariant with either gamma or freerate). ModelFinder can parallelize 

using multiple threads by distributing the alignment sites across threads. To optimize freerate 

models, ModelFinder employs the Expectation-Maximization algorithm, which they claim is 

more accurate than BFGS [3, Online Methods]. To speed up the model testing, ModelFinder 

also employs heuristics, which we refer to as the freerate heuristic and the RHAS heuristic.

The freerate heuristic aims to limit the additional computational load that comes with consid

ering freerate models. If, as is the default setting, we consider freerate category counts from 

the interval 𝑐 ∈ [2, 10], this choice implies nine evaluations per substitution matrix. Given the 

fact that the BIC score for a fixed dataset rises linearly with the number of free parameters 

(Equation 14), and that each additional category adds two new free parameters, it seems likely 
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that the BIC score ceases to improve beyond a certain point. ModelFinder exploits this fact and 

evaluates freerate models in ascending order of category count, stopping evaluations once the 

BIC score no longer improves.

The RHAS heuristic assumes that the well-suitedness of RHAS models for a dataset is inde

pendent of the substitution matrix. This implies that we do not need to test all combinations 

of RHAS models and substitution matrices. Instead, ModelFinder evaluates all RHAS models 

(under the application of the previous freerate heuristic) for a single “reference” substitution 

matrix, such as the JC substitution matrix. For the remaining substitution matrices, it only 

considers RHAS models whose BIC score difference to the best observed RHAS model for the 

reference matrix is less than 10. According to guidelines, a BIC score difference exceeding 10 

means that it is very likely that the model with the lower score fits the dataset significantly 

better [21].

There are references in the source code to a command-line argument --thread-model, which 

activates a parallelization mode where each thread evaluates a single model. This flag does 

not show up in the help message or documentation. There seem to be some incongruency 

surrounding this parallelization mode and the heuristics that ModelFinder applies, leading us 

to believe that the developers abandoned this mode.

2.3.2. ModelTest-NG

D. Darriba et al. [1] introduced ModelTest-NG in 2020 as the successor to the previously estab

lished model testing tools jModelTest 2 [22] and ProtTest 3 [23]. It builds on the Phylogenetic 

Likelihood Library  (PLL) [24], which contains highly-optimized, vectorized procedures for 

likelihood computations. ModelTest-NG represents a significant step up in performance over 

its two predecessors, reaching average speedups of 510 on empirical DNA data, and 36.9 on 

empirical protein data. The authors further report a speedup over ModelFinder of 1.24 on 

empirical DNA data, and 1.19 on empirical protein data.

On a high-level, its model selection algorithm consists of the following steps:

1. It builds a set of candidate models, partly based on user input: It computes the cartesian 

product between a) substitution matrices under consideration b) frequency type (equal or 

ML-optimized frequencies for DNA data, and equal or empirically counted for AA datasets), 

and c) RHAS models (uniform, invariant, gamma, invariant and gamma, freerate)

2. Iterates over all candidate models

3. Assigns one thread to the given combination of partition and candidate model

4. Optimizes the model parameters and branch lengths according to the likelihood

5. Optionally, it performs a limited number of topological moves to improve the tree under 

the given model.

6. After obtaining an ML estimate, it computes the score under the three information criteria 

AIC, AICc, and BIC.

7. After the evaluation of all candidate models for a given partition has ended, it selects the 

model with the minimum IC score.

8. If the MSA is multi-partitioned, it returns to step 2. and repeats the process for the next 

partition, until it has processed all partitions.
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Importantly, ModelTest-NG does not apply heuristics to reduce the set of candidate models. 

Furthermore, the number of categories for freerate models must be explicitly specified when 

invoking ModelTest-NG.

2.3.3. Machine Learning

There also have been multiple attempts to apply machine learning methods to directly predict 

the best-fit model based on features of the input dataset, thereby circumventing the time-

consuming step of optimizing the likelihood of candidate models [25], [26]. Due to time 

constraints, we did not evaluate these methods in the context of this thesis.

2.3.4. RAxML-NG

RAxML-NG is a tree inference tool using the maximum-likelihood method, developed by our 

lab. Older versions linked the libpll  [24] to carry out the core likelihood computations, 

whereas newer (development) versions of RAxML-NG use coraxlib [27], a libpll successor. 

RAxML-NG supports arbitrary DNA substitution matrices, all base frequency types and RHAS 

models mentioned in Section 2.1.5 and Section 2.1.6, as well as a superset of the constant rate 

matrices supported by ModelTest-NG and IQTree. Previously, RAxML-NG did not support 

model selection and required the user to explicitly specify a model at the program invocation.
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3. Methods

We integrate model selection capabilities into RAxML-NG. Previously, RAxML-NG operated 

under the assumption that the model is a fixed part of the input data and specified on a per-

partition basis. The new implementation triggers a model selection process in two cases:

1. The user specifically requests model selection with a command-line flag

2. The user passed --model auto while primarily conducting a separate analysis, e.g. ML 

tree search

The model selection process runs after the starting tree generation and uses a fixed tree 

topology to evaluate the likelihood of the input data under different models. It scores the 

model candidates based on information criteria which favor models with a higher optimized 

log-likelihood score, yet also penalize the number of model parameters in an effort to prevent 

overfitting. In case of a partitioned dataset, RAxML-NG treats the model selection process for 

each partition independently.

3.1. Model Optimization

Our model selection implementation utilizes a preexisting RAxML-NG method to optimize a 

given candidate model. It comprises the following steps:

1. Computation of the log-likelihood score of the current model parameters

2. Iterative optimization of the branch lengths

3. In the case of a rate-heterogeneity model that accounts for invariant sites, optimization of 

the proportion 𝑝inv using Brent’s method

4. In the case of a model that allows base frequencies as free parameters, optimization of the 

base frequencies via the L-BFGS-B method

5. In the case of the gamma rate-heterogeneity model, optimization of the parameter 𝛼 of the 

Γ-distribution using Brent’s method

6. Optimization of substitution rates with L-BFGS-B

7. In the case of a freerate rate-heterogeneity model, optimization of the category weights 

and rates, either with L-BFGS-B or Expectation-Maximization, depending on the mode of 

operation

8. Recomputation of the log-likelihood score of the optimized model parameters

9. As long as likelihood improvement is greater than 𝜀lh, repetition of the process starting 

from step 1
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3.2. Applied Optimizations

Model optimization is a time-intensive process, which is aggravated by the large number of 

candidate models under consideration during model selection. Therefore, we need to apply 

optimizations and shortcuts to keep the runtime tolerable.

3.2.1. Heuristics

The fact that each candidate model comprises three independent parts – substitution rate 

matrix, base frequencies, and rate heterogeneity model with a varying number of categories 

– yields a large number of possible combinations. For example, for DNA data there are 203 

possible substitution matrices [11], two base frequency types (equal and ML-optimized), five 

types of rate heterogeneity models (uniform, invariant, gamma, invariant and gamma, freerate 

with two to eight categories), leading to a total of 4 466 candidate models, Even if we restrict 

ourselves to the eleven most common substitution matrices, we still need to examine 242 

candidates. In order to conserve computational resources, we attempt to reduce the set of 

candidate models with heuristics.

Freerate Heuristic

Similarly to ModelFinder [3], we implement a procedure to automatically discover the number 

of freerate categories. First, the user specifies an interval of category counts that ModelFinder 

should examine (by default [2, 10]). The model selection procedure then evaluates the freerate 

models in order of ascending category counts, keeping track of the score given by the infor

mation criterion. As soon as the IC score no longer improves by additional rate categories, we 

abort the evaluation of all models that comprise more categories. The reasoning behind this 

is that once the score starts to drop, adding further categories is unlikely to yield any further 

improvement, since the information criterion penalizes the number of free parameters1.

Unlike IQTree, we parallelize over candidate models instead of alignment sites by default. This 

complicates the application of our heuristic, since the evaluation of models depends on the 

results of previous evaluations. A sufficiently large parallel processor could run the evaluation 

of all freerate models on a small dataset concurrently. In such a case, the heuristic would be 

unable to reduce the number of model evaluations.

To avoid having to revert to sequential model evaluation, we adopt a greedy scheduling 

scheme: If the heuristic has no information on whether the given freerate candidate model 

can be skipped, we speculatively initiate its evaluation. This means that some evaluations 

may turn out to be unnecessary in retrospect. However, speculative scheduling increases CPU 

utilization and prevents idling. We further benefit from the observation that for most datasets, 

four categories provide a good fit. To this end, we evaluate freerate models with up to four 

categories first, followed by the other RHAS models which do not suffer from this dependency 

problem, and only then move on to freerate models with higher category counts. Intuitively, 

1Each additional freerate category adds two parameters (weight and rate).
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this increases the probability that once the program is ready to evaluate the freerate models 

with higher category counts, the data needed to assess whether it should indeed evaluate them, 

or whether it can skip them, is already available. Crucially, we do this across all partitions, 

meaning that on datasets with a large number of partitions it is less likely that unresolved 

dependencies cause superfluous candidate evaluations.

RHAS Heuristic

One reason for the high number of candidate models is that any substitution model (𝑄 matrix) 

can be combined with any of the rate-heterogeneity models. Similar to ModelFinder [3], we 

implement a heuristic to detect which RHAS models work well for the dataset at hand, and 

restricts further testing to those models. RAxML-NG evaluates all RHAS models on a reference 

matrix – GTR for DNA data, LG for AA data. For all remaining substitution models, it only 

considers RHAS models where the IC score difference to the best observed model is higher 

than a fixed threshold. Equivalent to IQTree, we use the BIC score by default and set the 

threshold to Δ ≔ 10.

3.2.2. Expectation-Maximization

Profiling the model optimization procedure of RAxML-NG revealed that the optimization of 

freerate models takes a considerable amount of time (data not shown). Especially with a high 

number of categories, the L-BFGS-B optimization procedure takes a long time to converge. 

An alternative approach to the category weight optimization is Expectation-Maximization, as 

described by S. Kalyaanamoorthy et al. [3]. Let 𝐿𝑘,𝑠 denote the likelihood of alignment site 

𝑠 under category 𝑘 which has weight 𝑤(𝑖)
𝑘  in iteration 𝑖. In total there are 𝑐 rate categories. 

Then the posterior probability of site 𝑠 to belong to category 𝑘 is

𝑝𝑘,𝑠 =
𝑤(𝑖)

𝑘 𝐿𝑘,𝑠

∑𝑐
𝑗=1 𝑤(𝑖)

𝑗 𝐿𝑗,𝑠

(15)

The updated weight of a category is the mean of the posterior probabilities across all sites:

𝑤(𝑖+1)
𝑘 = ∑

𝑛

𝑠=1
𝑝𝑘,𝑠 (16)

We extended coraxlib to support the EM algorithm when optimizing freerate weights. A par

ticular implementation challenge arises under the use of threading or MPI. The parallelization 

of coraxlib builds on the use of a single reduction operator, which reduces 𝑛 numbers across 

the 𝑝 processing elements (PE) participating in the computation:

reduce : {+, max, min} × 𝔽𝑛×𝑝 → 𝔽𝑛 (17)

However, RAxML-NG’s load balancer [28], [29] can split up a partition and distribute its sites 

across many threads. Since the reduction operation poses our only synchronization primitive, 

the threads communicate only globally and not on a per-partition basis. We work around this 

problem by introducing a method that optimizes the freerate weights of all given partitions 

at once. It stores the required parameters in a tightly packed array (see Figure 4), which it can 

17



3. Methods

pass to reduce without further processing. If one partition converges sooner than the others, 

its threads must still participate in the operation to ensure global convergence.

GTR+R3 SYM+R5

3 5 2 0

0 3 8 10

#freerate categories
prefix sum

weights
weight ratio

Partitions JC+R2 TIM+G4

Figure 4: For multi-partitioned datasets, we store per-category data in a tightly-packed one-

dimensional array to allow easy reduction of values via coraxlib primitives.

3.2.3. Parallelization Across Models and Opportunistic Multi-threading

The most fine-grained parallelization level available for ML computations is parallelization 

across sites: different CPU cores compute the per-site log-likelihood of a different subset of 

sites, and a sum over the intermediate results delivers the final log-likelihood. This sum-

operation demands synchronization between threads. Since likelihood evaluation is the most 

frequent operation in RAxML-NG, with multiple thousands of calls per second, depending 

on the dataset, the overhead is substantial. For model selection in particular, we have an addi

tional opportunity for parallelism: As long as the program has sufficient memory available, 

it can test multiple candidate models at the same time. This decreases the synchronization 

overhead, since fewer threads – and ideally only a single thread – participate in the likelihood 

computation.

The heuristics described above introduce soft data dependencies between the model evalua

tions, which complicate the parallelization across models. In general, there are two types of 

dependencies, corresponding to the two heuristics applied:

1. All candidate models depend on the evaluations of the reference matrix, since they decide 

which RHAS models are relevant to the given dataset (RHAS heuristic, Section 3.2.1.2).

2. Candidate models with a freerate or Invariant freerate RHAS model depend on the evalu

ation of all candidate models with the same substitution matrix and RHAS model, but lower 

category counts (freerate heuristic, Section 3.2.1.1).

For example, a freerate model with five or more categories does not need to be evaluated if 

the IC score increased after advancing from three to four categories. Similarly, if the Invariant 

RHAS model did not yield a good fit during evaluation on the reference matrix, we entirely 

omit it during the evaluation of other substitution matrices.

IQTree’s ModelFinder solves the dependency problem by focusing on parallelization over 

alignment sites. The evaluation of models in sequence guarantees the availability of results 

from previous evaluations, ensuring optimal application of the heuristics. However, with the 

synchronization overhead discussed at the beginning of this section, the limited length of 

single-gene alignments, and the large number of cores available in modern machines, scaling 

across alignment sites has its limits. ModelTest-NG on the other hand utilizes exactly one 

thread per candidate model, but does not implement heuristics with dependent evaluations.
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Our implementation provides fine-grained, dynamic parallelization: It evaluates multiple 

models concurrently, with multiple threads cooperating on a single model by distributing the 

alignment sites. By approaching the evaluation of candidate models in the order described 

below, we attempt to resolve the dependencies ahead of time. Should the results a heuristic 

depends on still be pending when an evaluation is about to start, we eagerly evaluate it 

regardless.

The model selection process of our tool starts with assembling a list of all possible candidate 

models of all partitions. If there are 𝑞 partitions in the dataset and 𝑚 different choices for a 

model, we expect to have 𝑞 ⋅ 𝑚 candidate models. In an effort to increase the distance between 

the evaluation dependency and dependent, we assign each candidate a priority based on the 

substitution matrix 𝑚 and the category count 𝑐 and sort the list of candidates with descending 

priority2:

priority(𝑚, 𝑐) =

{


0 if 𝑚 is reference and 𝑐 ≤ 4

1 if 𝑚 is reference and 𝑐 > 4
2 if 𝑐 ≤ 4
3 if 𝑐 > 4

(18)

The initialization routine then estimates the thread count 𝑝 based on the recommendations 

RAxML-NG uses for tree search, which takes the number of alignment patterns 𝑛, the number 

of states, and the number of RHAS categories 𝑐 into account [30]:

|CLV| = 𝑐 ⋅ 𝑛 ⋅ {4 for DNA
20 for AA

𝑥 ≔ |CLV|

{4 000 if priority <2
80 000 otherwise

𝑝 ≔ |CLV|

{4− log2(𝑥) if 𝑥<8
log2(𝑥)−2 otherwise

(19)

RAxML-NG spawns a fixed number of threads for the model selection phase, which typically 

coincides with the number of CPU cores. If possible, it pins threads to specific CPU cores to 

avoid issues with non-uniform memory layouts. Our dynamic parallelization scheme relies 

on the worker threads to spontaneously assemble a “team” of threads to work on a given 

model evaluation. Figure 5 visualizes this process: A worker thread with no assigned candidate 

models tries to enter a critical section to get a new work assignment. The critical section 

assigns candidate models with status Waiting in the order described above, i.e. under consid

eration of the priority. Once enough threads have joined the team of a candidate model, the 

evaluation can begin (Running) and the critical section will assign the next model in the list. 

After the evaluation has concluded, the first thread to join the team writes back the result and 

the evaluation is now Finished. The written results can influence future evaluations: Should 

they allow the application of a shortcut, the respective candidate model will be Skipped and 

any assigned threads will acquire a new work item.

2That is, increasing priority number.
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Waiting  Thread joins

Running

 Sufficient threads joined

Skipped

 Heuristic applies

 Optimize model

Finished

 Optimization concluded

Figure 5: State diagram of a candidate model’s evaluation status.

Two crucial methods underpin this implementation: a reduction callback for the max and ∑ 

operations, and the barrier function. While RAxML-NG has preexisting implementations of 

these procedures, they are not suitable for the dynamic parallelism of our model selection 

process, since in our case we require synchronization between a constantly changing set of 

threads.

The barrier procedure serves as a synchronization primitive of threads. A barrier call returns 

only once all other threads have also made the same call. Because threads share the same 

memory space, we use an atomic counter. Each thread increments the counter exactly once 

upon entering the barrier. A coordinating thread (by default the first thread to have joined the 

given evaluation) waits until the counter is equal to the expected number of threads, resets 

it to zero and releases all threads from the barrier by setting a proceed flag. While RAxML-

NG already implements a thread barrier, both as a global operation and in the context of a 

thread group, the pre-existing implementations were not fit for the dynamic parallelism of 

our model selection routine. We therefore reimplemented the barrier method in a class called 

ModelEvaluator. This class has a one-to-one mapping to a given candidate model, and holds 

a private counter and flag value.

Building on the barrier method, the likelihood library coraxlib used by RAxML-NG requires 

only a single method to support arbitrary parallelization contexts: the reduction method as 

introduced in Section 3.2.2. This method takes 𝑛 double-precision floating-point values as 

input, as well as a flag specifying the reduction operator (∑, max, min). The reduction method 

as implemented in RAxML-NG works in two phases. In the first phase, the 𝑝 calling threads 

all write their input values into a shared reduction buffer 𝑅 ∈ 𝔽𝑛×𝑝. After the call to the 

barrier method, the second phase begins. Each thread performs a column-wise reduction of 

the buffer into local memory. To adapt this reduction operator for our parallelization scheme, 

we allocate one reduction buffer per evaluation. Furthermore, we use the team-local barrier 
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method mentioned above, instead of the global barrier method. Because the coraxlib API 

simply expects a function pointer to the reduction method, we straightforwardly pass a pointer 

to the newly implemented reduction operation, without needing to modify any parts of the 

library itself. In this way we implement a highly tunable parallelization scheme in shared 

memory.

3.2.4. MPI Parallelization

For datasets beyond a certain size, a single compute node does not suffice. Moreover, the user 

may also perform a model selection as part of the tree search, with a large amount of compute 

resources already allocated to RAxML-NG. In these cases, it is important to support the 

computation on distributed memory machines via the Message Passing Interface (MPI). The 

ModelTest-NG MPI implementation expects a fine-grained allocation of MPI ranks: one MPI 

rank corresponds to one thread. Since RAxML-NG already supports a hybrid mode for tree 

search, we extend this framework to the model selection procedure. In a hybrid parallelization 

approach, each MPI rank has multiple running threads. A typical setup, which we optimize for 

in our implementation, would be a single MPI rank per node, with each running one thread 

per CPU core. We restrict the cooperation on a single candidate model to a single machine, 

meaning that each candidate model belongs to a single MPI rank at any given point, and 

alignment sites are not distributed across the process boundary. This restriction allows us 

to rely on shared memory for the barrier and reduction methods described in the previous 

section, such that the model optimization itself can happen without any reliance on the MPI 

interface.

The extension to support MPI parallelization focuses on two things: ensuring exclusivity of 

the candidate model scheduling, such that no two ranks evaluate the same candidate model 

twice, and communicating the evaluation results, such that the heuristics can still work even 

when they depend on an evaluation result which was not computed on the same rank.

For the former part, we adopt a strategy that is also implemented in ModelTest-NG. Typically, 

MPI requires sender and receiver to execute the same code. To avoid having a single rank 

preoccupied with the coordination of candidate model scheduling, and thus prevented from 

contributing to the model evaluation, we use MPI Remote Memory Access (RMA) [31, Chapter 

12] . Thereby, MPI ranks can allocate a certain “window” into their memory, which is also 

available to other ranks without requiring explicit cooperation of the target rank. In our case, 

we allocate a global 64-bit index on rank 0 that points to the candidate model next in line. 

If an MPI rank then wants to evaluate and “claim” a certain candidate model in order to 

assign local threads to it, it calls the MPI RMA procedure MPI_Fetch_and_op, which atomically 

increments the model index on rank 0 and returns the value prior to the incrementation. The 

atomicity of that operation ensures that the scheduler assigns a candidate model only once. If 

the hardware supports it, an explicit participation of rank 0 in the operation is not required. 

Figure 6 illustrates this: all MPI ranks modify the index resident on rank 0 via RMA operations. 

The index points into the list of candidate models discussed in the previous section, which 

each MPI rank holds locally.
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Rank 0 Rank 1 Rank p

⋯

MPI RMA

Figure 6: The scheduling of candidate models happens through one-sided MPI communication.

To share results, we allocate two MPI RMA windows on rank 0. The first is a byte array large 

enough to accommodate the results of all candidate models. Each evaluation result consists 

of the achieved log-likelihood (lnL), the optimized model parameters, the partition index and 

the index of the candidate models (to allow other ranks to correctly update the result in their 

memory). The second window is a displacement counter which indexes the results window. 

This solves the following two use cases: 1) An MPI rank seeks to announce the result of an 

evaluation, or 2) it wants to ingest the results of other MPI ranks in order to make informed 

decisions using heuristics. For the first use case (announce/write), we need a distinct memory 

range in the array to write to, otherwise the program could accidentally overwrite results.

displacement
Rank 0

Part #0
GTR+G

lnL
rates

freqs

α
Part #1
JC

lnL

Rank 1 Rank p
⋯

MPI RMA

Figure 7: MPI ranks announce results by writing them consecutively into a window of the 

root rank.

For the second use case (ingest/read), an MPI rank ideally only reads a minimal subset of 

the array to incrementally update its results. Furthermore, the length of the serialized model 

parameters differs, depending on the model type: A candidate model with the Uniform RHAS 

model needs less space than a freerate model with eight categories. Especially if a dataset 

has numerous partitions, reading the entire array is costly, with the model parameters taking 

up approximately 256 bytes for DNA data. To solve this problem, we store the evaluation 

results consecutively into the results array, and keep track of the current writehead using the 

displacement counter. If an MPI rank announces a result, it enters a critical section which 

guarantees mutual exclusion. It reads the current writehead displacement and writes its result 

into the array starting at that address. Afterwards, it increments the displacement counter 

according to the number of bytes it has written and exits the critical section. When reading the 
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new results, an MPI rank can simply check whether the displacement counter has increased 

beyond the last seen value, and read that range specifically from the results array.

3.3. Checkpointing

With model selection taking up a considerable amount of runtime, it is important that RAxML-

NG saves intermediate results. This prevents losing progress in case the program prematurely 

exits, for example if it encounters an error. Also, the user or a surrounding HPC scheduler 

(such as SLURM) could choose to terminate RAxML-NG with the model selection routine still 

running. Because of the large number of candidate models, the workload has high granularity 

by nature: we can save the model optimization results of each candidate model. For datasets 

with numerous small partitions, this could lead to an excessive amount of checkpoint writing, 

since model evaluations can finish in short succession. To avoid unnecessary pressure on the 

disk I/O, we have set a minimum time period of one second between checkpoint writes.

MPI parallelization poses a further hindrance to checkpointing, as only a single rank should 

write the checkpoint file. Since our implementation already communicates the evaluation 

results to keep the heuristics updated, we utilize this mechanism to also incorporate the results 

from foreign MPI ranks into the checkpoint.

3.4. Evaluation of Model Selection Accuracy

3.4.1. EvoNAPS

To evaluate our model selection algorithm, we draw a sample from EvoNAPS [32]. This is 

a well-structured relational database and contains MSAs from various sources, such as Tree

BASE [33], OrthoMAM [4], and PANDIT [34], alongside the results of a model selection, model 

parameter optimization and maximum likelihood tree estimation. Since the pre-existing model 

selection is the result of an older IQTree version, we did not reuse it for our purposes. EvoNAPS 

stores partitions of datasets separately, though most entries are single-gene alignments.

In total, EvoNAPS contains 48 707 DNA alignments and 21 800 AA alignments. Because of 

insufficient time and resources for an exhaustive analysis of all alignments in the database, 

we took a random sample of 500 DNA and 500 AA alignments. Samples were not stratified, 

in an attempt to reflect the average use case.

We received EvoNAPS as a SQL dump from a MariaDB database. In order to reduce the 

dependency on a running database server, we converted it into a SQLite database [35] using 

an automated script [36]. In this way, the downstream analysis only requires access to a single 

database file. A small Python script exports the sequences contained in the database into a 

FASTA file.
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3.4.2. Pipeline

We implemented the evaluation procedure as a reproducible and re-usable Snakemake 

pipeline [37]. Snakemake’s file-based dependency graph is a good fit, since all tools under 

consideration (RAxML-NG, IQTree, ModelTest-NG) have a command-line interface and use 

compatible file-based input/output formats (FASTA for MSAs and Newick for trees).

To isolate the software environment, we use conda-forge [38] and Bioconda [39], with our 

implementation bundled in a custom package3.

1. Extract MSA 
from EvoNAPS

3a. ModelTest-NG 3b. IQTree ModelFinder 3c. RAxML-NG

2. Generate parsimony
starting tree

4a. Reevaluation
w/IQTree

4b. Reevaluation
w/IQTree

4c. Reevaluation
w/IQTree

5. Compare
BIC scores

Figure 8: Overview of the evaluation pipeline steps

Figure 8 gives an overview over the pipeline steps. For any given EvoNAPS dataset, we extract 

the MSA and generate a parsimony tree with RAxML-NG. With this parsimony tree as starting 

tree, we infer the model with ModelTest-NG, IQTree’s ModelFinder and our implementation 

in RAxML-NG. IQTree performs a small number of topological moves on the given starting 

tree to optimize its likelihood. In order to have comparable BIC scores, we reevaluate the 

inferred models of all tools under consideration with IQTree on its optimized topology. After 

extracting the BIC score from IQTree log files, we compute the BIC weights using R [40], [41].

Let 𝐵 ∈ ℝ𝑛×1 be a vector of BIC scores with 𝑚 ≔ arg min𝑖(𝐵𝑖) defined as the index of the 

minimal entry. Then the BIC weight is defined as

𝑤BIC
𝑖 (𝐵) = 𝑒−1

2(𝐵𝑖−𝐵𝑚)

∑𝑛
𝑘=1 𝑒−1

2(𝐵𝑘−𝐵𝑚)
(20)

3https://anaconda.org/stelzch/raxml-ng-modeltest
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One interpretation of the BIC weight is that it represents the probability that the given model 

is the best model according to the BIC [42].

For ModelTest-NG, we enable the evaluation of freerate models and use the default set of 

substitution models and base frequency modes (DNA: equal or ML-optimized, AA: model-

defined or empirical counts). Because it does not support evaluation of multiple freerate 

category counts in a single run, we leave the category count at the default setting of 4.

For RAxML-NG, we enable the auto-discovery of freerate category counts in the range 𝑐 ∈
[2, 10]. We manually enable the consideration of the following RHAS models: equal (+E), 

invariant (+I), gamma (+G), invariant and gamma (+I+G), freerate (+R), and invariant and 

freerate (+I+R). Our implementation considers candidate models with equal or ML-optimized 

base frequencies in the case of DNA data, and model-defined or counted (empirical) base 

frequencies in the case of AA data.

IQTree’s ModelFinder considers the same set of RHAS models. We instruct it to keep identical 

sequences (--keep-ident) to avoid incompatibility with the starting tree. For DNA data, 

IQTree either uses equal or counted (empirical) base frequencies. While IQTree supports 

models with ML-optimized base frequencies, it does not consider them during model selection.

The interoperation of the three tools poses some challenges. Especially for DNA model 

matrices, the naming is not consistent between the tools. Table A.4 lists the different names 

and aliases known to IQTree and the library underlying both RAxML-NG and ModelTest-

NG. We also need to address the differences in the base frequency type of a substitution 

model: As described in Section 2.1.5, the base frequencies can either be equal (denoted +FE 

in RAxML-NG and ModelTest-NG, and +FQ in IQTree), empirically counted from the MSA 

(+FC in RAxML-NG and ModelTest-NG, +F in IQTree), or optimized with respect to likelihood 

(+FO in all tools). ModelTest-NG uses ML-optimized base frequencies, but does not append +FO 

to the model name in its output, thus requiring a manual workaround. Additionally, IQTree 

has a software bug where the model names outputted by ModelFinder do not match the 

conventions used by IQTree when parsing the model specified on the command line. To our 

understanding, ModelFinder appends a +F to the model name whenever it uses empirically 

counted frequencies, with the absence of a +F denoting equal frequencies. However, it does 

not update the matrix name to the corresponding variant with equal frequencies. For example, 

it outputs GTR instead of GTR+FQ, or the even more canonical SYM+FQ. Our pipeline circumvents 

this problem by appending a +FQ whenever +F is missing from the model name, before passing 

it as argument to the IQTree reevaluation call.

3.5. Runtime Benchmarks

To benchmark the runtime of the tools, we uniformly sampled 100 datasets from the evaluation 

sample, excluding two datasets for their excessive runtime requirements. We then re-ran all 

three tools in sequence with 1, 2, 4, 8, 16, 32, and 48 threads assigned and measured the runtime 

through Snakemake’s benchmarking functionality. The benchmarks ran on a shared-memory 
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machine with two Intel Xeon Platinum 8260 clocked at 2.4 GHz, with a total of 48 cores and 

96 threads, paired with 754 GB of main memory, and running Alma Linux 8.10 with kernel 

version 4.18.0-553.62.1. Section A.1.1 lists the version of the tools under test.
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4. Results

We evaluated a uniformly chosen sample of 500 DNA datasets and 500 AA datasets with 

IQTree, ModelTest-NG, and RAxML-NG on a shared-memory machine. Figure 9 shows the 

number of taxa and alignment sites of all datasets in the EvoNAPS database, and the datasets 

included in our evaluation sample. We ran the analyses with a single thread assigned to each 

job, with Snakemake utilizing all cores of the machine. For 2 DNA datasets, at least one of 

the tools did not successfully terminate. Additionally, for 11 AA datasets, either ModelTest-

NG or RAxML-NG chose a substitution-matrix unsupported by IQTree (stmtREV or DEN, see 

Table A.5). In both cases, we discarded the datasets from our analysis, leaving us with 987 

datasets in total. Table A.3 in the appendix shows further information about the sample.
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Figure 9: Scatter plot of taxa over sites for EvoNAPS alignments, colored by the origin 
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Figure 10: Proportion of datasets where each tool chose a candidate model that had a difference 

of less than ten in the BIC score to the best known model on the given dataset.
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Figure 11: Histograms of the BIC weights for the chosen model of each tool, separated by 

datatype.

We consider a BIC score difference of greater than 10 as strong evidence that the model 

with the lower score fits best [21]. In Figure 10, we count on how often datasets each tool 

provided a model that had BIC score difference (ΔBIC) of less than 10 to the best observed 

BIC score among the three tools. For AA datasets, IQTree meets this condition on 96.6% of 

all datasets, followed by RAxML-NG on 86.7%, and ModelTest-NG on 22.0% of all datasets. 
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For nucleotide datasets, the ranks appear shifted: RAxML-NG finds a good model on 73% of 

datasets, ModelTest-NG on 71.5%, and IQTree on 62.9% of datasets.

By observing the distribution of the BIC weight for each tool (Figure 11), a similar image 

presents itself. For AA datasets, in a predominant amount of instances IQTree and RAxML-

NG infer a comparably well-fitting model (BIC weight of 0.5), with IQTree sometimes finding 

a considerably better model than the others (BIC weight near 1), followed by datasets where 

all three tools perform equally well (BIC weight near 0.33). On DNA datasets, ModelTest-NG 

performs better, with IQTree delivering worse models (BIC weight near 0).

To further understand how the model choices of the tools differ, in Figure 12 we count how 

often a tool selects each RHAS model, freerate category count, and base frequency type, 

separated by datatype (AA or nucleotide datasets). All tools rarely choose the Uniform (+E) and 

Invariant (+I) RHAS models. RAxML-NG has a tendency to pick the invariant gamma (+I+G) 

RHAS model. This seems to yield better results for AA datasets than for nucleotide datasets, 

as indicated by the faint bar that depicts datasets where the model was chosen, but the best 

observed model discovered by another tool reached a better BIC score with a difference of 

larger than 10. On AA datasets, IQTree uniformly picks from Gamma and freerate, as well as 

their Invariant counterparts, with a slight perference towards models with fewer parameters 

(Gamma and Invariant Gamma). On nucleotide datasets, the opposite is true: IQTree chooses 

parameter-rich models like Invariant freerate more often. ModelTest-NG has a preference for 

freerate models on AA datasets, which is even more pronounced on nucleotide datasets.

The number of freerate categories is distributed around a mean of 3 for AA datasets and 4 for 

nucleotide datasets. On the latter, RAxML-NG more frequently picks higher category counts 

than IQTree. ModelTest-NG does not test multiple freerate categories.

For AAs, all three tools prefer constant base frequencies as specified by the substitution 

model. However, ModelTest-NG picks empirical frequencies twice as often as the other tools. 

On nucleotide datasets, it is apparant that IQTree uses empirical base frequencies, whereas 

ModelTest-NG and RAxML-NG use ML-optimized base frequencies. The latter also pick equal 

frequencies less often than IQTree.

Figure 13 shows which rate matrices the tools chose most often. The tools pick the substitution 

matrices by B. Q. Minh et al. [43] (which have the prefix “Q.”) in 80.4% of all AA datasets. For 

nucleotide datasets, the distribution is more balanced.
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Figure 12: RHAS model type, number of categories and frequency type of the model selected 

by each tool. Percentage labels on the opaque bars refer to models with ΔBIC < 10 to the 

best known model among all tools for the given dataset, the faint bars extend to all reported 

models regardless of tool comparison.
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Figure 13: Frequency of rate matrices selected by each tool. Percentage labels on the opaque 

bars refer to models with ΔBIC < 10 to the best known model among all tools for the given 

dataset, the faint bars extend to all reported models regardless of tool comparison.
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To benchmark runtime, we ran 100 datasets on a shared-memory machine. Because we sample 

uniformly and not stratified from EvoNAPS, the datasets are limited in size. The median 

number of patterns is 456.5 (SD 924.3) and the median number of taxa is 106 (SD 57.9). Two 

datasets did not finish in time and were excluded for their excessive runtime requirements. 

Table 1 lists key data of ModelTest-NG’s and RAxML-NG’s speedup over IQTree, calculated 

on a per-dataset basis. With a single-thread assigned, ModelTest-NG achieves a mean speedup 

of 0.41 and RAxML-NG 1.1 on DNA data. We presume that in the single-threaded case the use 

of heuristics is especially important, as it allows the tool to optimize less candidates. Addi

tionally, since IQTree does not evaluate ML-optimized base frequencies, it has an advantage 

over ModelTest-NG and RAxML-NG. While RAxML-NG implements the heuristics present in 

IQTree, it does not optimize the likelihood of the starting tree before beginning the evaluation 

of candidate models. Similarly, it is missing a thorough round of optimization of the chosen 

model at the very end.

For AA datasets, ModelTest-NG achieves a mean speedup of 0.61 and RAxML-NG 1.48. Note 

however, that while RAxML-NG in this instance seems faster than IQTree, it did not yield 

better results on AA datasets, as detailed in the previous section.
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Datatype Threads Tool Mean Median Min Max Q10 Q90

RAxML-NG 1.48 1.35 0.21 7.82 0.48 5.491

ModelTest-NG 0.61 0.58 0.11 3.03 0.27 1.78

RAxML-NG 1.39 1.27 0.21 6.57 0.62 4.432

ModelTest-NG 0.73 0.64 0.12 3.24 0.33 1.93

RAxML-NG 1.55 1.38 0.11 6.59 0.76 4.554

ModelTest-NG 0.88 0.85 0.14 3.72 0.4 2.19

RAxML-NG 1.94 1.88 0.11 8.1 1.02 4.368

ModelTest-NG 1.09 1.03 0.21 4.46 0.45 2.37

RAxML-NG 2.35 2.41 0.38 6.3 1.24 4.6516

ModelTest-NG 1.31 1.21 0.26 5.04 0.55 2.77

RAxML-NG 3.14 3.41 0.14 8.48 1.69 5.9832

ModelTest-NG 1.67 1.8 0.45 4.9 0.74 3.52

RAxML-NG 3.54 3.52 0.17 13 2.12 6.39

amino-acid

48

ModelTest-NG 1.86 1.96 0.5 6.02 0.81 4.37

RAxML-NG 1.1 1.14 0.21 4.69 0.46 2.821

ModelTest-NG 0.41 0.46 0.09 1.96 0.19 0.78

RAxML-NG 1.46 1.64 0.32 4.15 0.63 3.152

ModelTest-NG 0.64 0.69 0.15 2.34 0.31 1.22

RAxML-NG 1.94 2.22 0.33 5.48 0.81 3.814

ModelTest-NG 1.05 1.15 0.28 3.97 0.5 2.07

RAxML-NG 2.59 3.07 0.32 9.78 0.8 5.088

ModelTest-NG 1.89 1.92 0.43 7.28 0.94 4.22

RAxML-NG 3.84 4.4 0.46 12.4 1.46 7.516

ModelTest-NG 2.88 3.17 0.43 11.6 1.14 5.98

RAxML-NG 5.09 5.93 0.61 21 1.97 11.432

ModelTest-NG 4.11 4.43 0.49 14.4 1.53 9.09

RAxML-NG 5.82 6.97 0.57 23.1 2.1 12.9

nucleotide

48

ModelTest-NG 5.05 5.28 0.57 17.1 2.15 11.5

Table 1: Speedups over IQTree on a per-dataset basis, given for each datatype and thread 

count. Mean is geometric mean.
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Figure 14: Speedup over IQTree on nucleotide and AA datasets with varying thread count

Figure 14 shows the speedups of ModelTest-NG and RAxML-NG over IQTree, calculated for 

each dataset and thread count. The speedups of both ModelTest-NG and RAxML-NG over 

IQTree show an increasing trend with higher thread counts, which we attribute to the different 

parallelization scheme and limited dataset size. For higher thread counts, IQTree prints a 

warning, as the datasets only have a small number of sites.

In addition to the speedups per dataset shown above, we also computed the accumulated 

speedups, that is, the ratio of sums over all runtimes for a given datatype, thread count, 

and tool. Datasets with longer runtimes have a larger influence on this metric than datasets 

that are fast to compute. For a single thread, ModelTest-NG reaches an accumulated speedup 

over IQTree of 1.33 on AA data, and 0.686 on DNA data. RAxML-NG in comparison reaches 

speedups over IQTree of 1.06 on AA and 1.69 on DNA. For the highest tested thread count 

of 48 threads, ModelTest-NG’s speedups over IQTree are 2.12 on AA data and 3.97 on DNA 

data, and RAxML-NG’s speedups over IQTree are 4.05 on DNA data and 1.72 on AA data. See 

Table 2 for the complete list of speedup values.

In terms of scaling behavior, we analysed the parallel efficiency, also known as the speedup per 

processor. If a sequential execution requires time 𝑡1, and a parallel execution with 𝑝 threads 

requires time 𝑡𝑝, then the parallel efficiency 𝜀 is defined as 

𝜀 = 𝑡1
𝑡𝑝 ∗ 𝑝

(21)

Figure  15 shows the parallel efficiency of our benchmarking runs for all three tools. For 

IQTree, the parallel efficiency diminishes logarithmically. ModelTest-NG exhibits a near-linear 

decrease in parallel efficiency for up to 32 cores. Additionally, for some datasets, it seems 

to exhibit a super-linear speedup (𝜀 > 1) when going from a single thread to two threads, 
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possibly caused by caching effects. The parallel efficiency of RAxML-NG is, simply put, all 

over the place. Multiple factors could be at play here. Since we only run a single repetition per 

tool, dataset, and thread count, the effect could be a result of measurement noise. Additionally, 

since we implement a dynamic threading scheme with a best-effort scheme for load balancing 

and ad-hoc application of heuristics, both the idle time of threads could vary immensely, as 

could the true number of candidate model evaluations, that is, the primary workload.

Finally, Figure  16 shows which tool gave the fastest answer with ΔBIC < 10 to the best 

known model for the dataset when we assign up to 𝑝 threads to the problem. IQTree is 

competitive in the single-threaded case, but if a large amount of threads can be assigned to 

the problem, RAxML-NG finishes faster due to better scaling behavior on small datasets.
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Figure 16: For each dataset and upper bound on the thread count, we consider which tool gave 

the fastest answer with ΔBIC < 10.
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Datatype Threads Tool Accumulated 

Speedup

Accumulated Run­

time (s)

RAxML-NG 1.69 24,0281

ModelTest-NG 1.33 30,532

RAxML-NG 1.11 20,5592

ModelTest-NG 1.44 15,821

RAxML-NG 1.02 13,5824

ModelTest-NG 1.65 8,432

RAxML-NG 0.906 8,9898

ModelTest-NG 1.75 4,639

RAxML-NG 1.62 3,12316

ModelTest-NG 1.81 2,792

RAxML-NG 1.3 3,06732

ModelTest-NG 1.94 2,055

RAxML-NG 1.72 2,291

amino-acid

48

ModelTest-NG 2.12 1,857

RAxML-NG 1.06 4,8601

ModelTest-NG 0.686 7,536

RAxML-NG 1.2 2,9192

ModelTest-NG 0.904 3,892

RAxML-NG 1.53 1,7684

ModelTest-NG 1.32 2,048

RAxML-NG 1.57 1,3708

ModelTest-NG 1.89 1,139

RAxML-NG 2.39 76816

ModelTest-NG 2.56 717

RAxML-NG 3.38 60032

ModelTest-NG 3.32 610

RAxML-NG 4.05 587

nucleotide

48

ModelTest-NG 3.97 598

Table 2: Accumulated speedups (sum over all runtimes) per thread count and datatype
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5. Discussion

The extent of our benchmarks and evaluations covers only a narrow range of single-parti

tioned datasets with a low number of patterns (median 456.5 for the benchmark dataset). 

Furthermore, the reliance on the model reevaluation with IQTree on a different tree topology 

than the one used by RAxML-NG and ModelTest-NG for model optimization, the choice of 

using the BIC score as a sole comparison measure, as well as examining only a single “best 

model” per tool and dataset puts a limit on the explanatory power of our accuracy evaluation.

Nonetheless, we believe to have shown that, on nucleotide datasets with comparable size to 

our evaluation sample, RAxML-NG’s model selection procedure can deliver results on-par 

with ModelTest-NG and IQTree’s ModelFinder. We attribute the slight improvement over 

IQTree on nucleotide datasets to the fact that IQTree does not consider ML-optimized base 

frequencies and only uses empirically counted frequencies. Given that the former have the 

same number of free parameters, but yield a better likelihood, we believe optimized frequen

cies to be superior with respect to the information criterion BIC. For AA datasets, our tool 

performs slight sub-par to IQTree, but in the context of our evaluation setup, outperforms 

ModelTest-NG accuracy-wise. The poor performance on ModelTest-NG on AA datasets has 

two potential reasons. For one, it does not include the constant rate matrices derived by B. 

Q. Minh et al. [43], which RAxML-NG and IQTree select as best-fitting for 80.4% of all AA 

datasets. Secondly, given the fact that all AA rate matrices under consideration are constant 

and thus do not add to the number of free parameters, the choice of the RHAS models becomes 

evermore important. With the default arguments, ModelTest-NG only considers freerate 

models with four categories and does not support checking multiple category counts in a 

single run.

While we do not have enough data to make statements for larger datasets, we show that 

parallelizing over candidate models is faster for small datasets when enough CPU cores are 

available. Additionally, when considering freerate models with different category counts, 

heuristics are important to keep the workload below a tolerable level.
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6. Conclusion

In this thesis, we present a novel implementation of a model selection algorithm that builds 

on the ideas of existing tools. Through a dynamic parallelization scheme and broad support 

for models, it has competitive accuracy and runtime. On single-gene datasets, it is able to 

outperform the existing tools. Its integration into the widely-used tree search tool RAxML-

NG makes it instantly accessible to a large group of users. Further work is necessary to tune 

the performance of our tool and validate its accuracy on a larger sample of datasets.

6.1. Future Work

For a more complete comparison of the three tools investigated in this thesis, further work 

is necessary. We need to quantify the performance and accuracy on larger datasets, possibly 

with stratified sampling with respect to dataset sources, size, and difficulty [44]. In order to 

evaluate how well the tools recover the models of simulated MSAs, simulation studies are of 

further interest. Additionally, one could observe how the selected models perform during tree 

search, and if and how the plausible tree set changes under the model.

Empirical data may help refining our heuristics for load balancing (Equation 18 and Equa

tion 19), adapting them to the characteristics of model optimization. Furthermore, the parallel 

efficiency exhibits chaotic behavior (see Figure 15) we need to be address. For instance, in 

order to avoid excessive wait times, our scheduler could permit the evaluation to start with 

less threads. Additionally, as the heuristics sometimes deliver their information “too late” for 

our eager evaluation scheduling, preemptive scheduling could help prevent wasting time on 

evaluating candidate models that have not proven worthwhile.
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A Appendix

A.1 Data Availability

The implementation is available on GitHub4 and has been merged into RAxML-NG v2.0-beta3.

A.1.1 Software Versions

Sourced from Bioconda [39]:

• snakemake=9.11.8=hdfd78af_0

• raxml-ng=1.2.2=h6747034_2

• modeltest-ng=0.1.7=hf316886_3

• iqtree=3.0.1=h503566f_0

Custom package5, implementation presented in this thesis:

• raxml-ng-modeltest=2.0.0.dev1=0_gbdffad2_2

4https://github.com/stelzch/raxml-ng/tree/feature/moose
5https://anaconda.org/stelzch/raxml-ng-modeltest
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A Appendix

A.2 Evaluation Subsample

Datatype Database N Median Taxa Median Sites Median Patterns

OrthoMaM_v10c 336 109 451.5 371.5

PANDIT 138 10 233 209

aa

TreeBASE 22 40.5 462 382.5

Lanfear 21 150 213 154

OrthoMaM_v10c 133 107 1,173 835

OrthoMaM_v12a 158 183 1,435.5 886.5

PANDIT 71 12 483 338

dna

TreeBASE 108 45.5 1,150 381

Table A.3: Key data of the evaluation sample
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A Appendix

A.3 List of DNA substitution models

Rate symmetry Frequencies coraxlib name(s) IQTree name(s)

000 00 0 equal JC JC, JC69

000 00 0 free F81 F81

010 01 0 equal K80 K2P, K80

010 01 0 free HKY HKY, HKY85

010 02 0 equal TN93ef, TrNef TNe, TNef, TrNef, TNe, TrNe

010 02 0 free TN93, TrN TN, TrN, TN93

012 21 0 equal K81, TPM1 K3P, K81, TPM1

012 21 0 free K81uf, TPM1uf K3Pu, K81uf, K81u, K3Puf, TPM1uf, 

TPM1u

010 21 2 equal TPM2, TPM2ef TPM2

010 21 2 free TPM2uf TPM2u, TPM2uf

012 01 2 equal TPM3, TPM3ef TPM3

012 01 2 free TPM3uf TPM3u, TPM3uf

012 23 0 equal TIM1, TIM1ef TIMe, TIMef, TIMe, TIM1ef, TIM1e

012 23 0 free TIM1uf TIM, TIM1

010 23 2 equal TIM2, TIM2ef TIM2e, TIM2ef

010 23 2 free TIM2uf TIM2

012 03 2 equal TIM3, TIM3ef TIM3e, TIM3ef

012 03 2 free TIM3uf TIM3

012 31 4 equal TVMef TVMe, TVMef

012 31 4 free TVM TVM

012 34 5 equal SYM SYM

012 34 5 free GTR GTR, REV

Table A.4: List of DNA model names for RAxML-NG (coraxlib) and IQTree. The first name 

is the canonical name, all following names are aliases. Note that for the most part, cross-

compatible aliases exist, except for TN93ef and TIM1, TIM2, and TIM3. For the latter, the 

programs also differ on the default frequency setting.
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A Appendix

A.4 List of Amino Acid Substitution Matrices

Matrix name Citation

DAYHOFF M. Dayhoff et al. [45], C. Kosiol and N. Gold

man [46]

BLOSUM62 S. Henikoff and J. G. Henikoff [47]

JTT D. T. Jones et al. [48]

mtREV J. Adachi and M. Hasegawa [49]

mtMAM Z. Yang et al. [50]

cpREV J. Adachi et al. [51]

VT T. Müller and M. Vingron [52]

WAG S. Whelan and N. Goldman [53]

rtREV M. W. Dimmic et al. [54]

PMB S. Veerassamy et al. [55]

mtART F. Abascal et al. [56]

HIVB, HIVW D. C. Nickle et al. [57]

LG S. Q. Le and O. Gascuel [58]

mtZOA O. Rota-Stabelli et al. [59]

FLU C. C. Dang et al. [60]

stmtREV Y. Liu et al. [61]

mtMET, mtVER, mtINV V. S. Le et al. [62]

DEN T. Le Kim et al. [63]

FLAVI T. K. Le and L. S. Vinh [64]

Q.BIRD, Q.INSECT, Q.MAMMAL, Q.PLANT, 

Q.YEAST, Q.LG, Q.PFAM, Q.PFAM_GB

B. Q. Minh et al. [43]

Table A.5: List of AA substitution matrices available in RAxML-NG.
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