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1 Introduction

In this thesis, we study the properties of point processes arising in the field of aperiodic
order. Specifically, we study point processes arising from substitution rules. We obtain
bounds for the decay of their diffraction around the origin, and hence derive a sufficient
criterion for their hyperuniformity.

We rigorously prove a conjecture by Oğuz, Socolar, Steinhardt, and Torquato [47],
and extend the work of Baake and Grimm [6] to a wider class of examples. We are able
to prove hyperuniformity for most substitution rules on the plane with rigid symmetries:
we are able to do this even when the diffraction has a singular continuous component, a
case that had been hard to handle until now.

1.1 Hyperuniformity

In order to discuss hyperuniformity, we introduce some basic probabilistic language.
First, we set down some notation. Let d ∈ N, and let mRd be the Lebesgue measure
on Rd. Given x ∈ Rd and λ ∈ R×, we denote by Tx : Rd → Rd and Dλ : Rd → Rd

the translation by x and dilation by λ, respectively. Translations and dilations act on
subsets, functions and measures in the obvious way (cf. Definition 2.2). Given R > 0,
we denote by BR the closed Euclidean ball of radius R around the origin.

For any set S, let #S be its cardinality if S is finite, and #S = ∞ if S is infinite. We
say that a subset Z ⊂ Rd is locally finite if #(Z ∩ B) < ∞ for all relatively compact
B ⊂ Rd and denote by PLF (Rd) the set of all locally finite subsets of Rd. We equip
PLF (Rd) with the smallest σ-algebra such that the map

pB : PLF (Rd) → N ∪ {∞}, Z 7→ #(Z ∩B)

is measurable for every Borel set B ⊂ Rd.
Given a probability space (Ω,A,P), a random variable Φ : Ω → PLF (Rd) is called

a point process on Rd with distribution measure Φ∗P = P ◦ Φ−1. We think of a point
process as a random locally finite subset of Rd. If Φ,Φ′ are two point processes, we write
Φ

d
= Φ′ if they have the same distribution.
A point process Φ is called locally square integrable if E[#(Φ ∩ B)2] < ∞ for all
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Introduction

relatively compact B ⊂ Rd; it is called stationary if TxΦ
d
= Φ for all x ∈ Rd.

For the rest of this introduction, all point processes will be assumed to be
locally square integrable and stationary.

Two prototypical examples of stationary point processes are the homogeneous Poisson
process and the shifted integer lattice.

Example 1.1. The homogeneous Poisson process [39] on Rd with intensity 1 is the
unique stationary point process with the following two properties.

(i) For every Borel set B ⊂ Rd, the expectation of #(Φ∩B) is given by E[#(Φ∩B)] =

mRd(B)

(ii) For any disjoint Borel sets B,B′ ⊂ Rd, the random variables #(Φ∩B) and #(Φ∩
B′) are independent.

Example 1.2. Let Γ = Zd. Then the randomly shifted integer lattice is the random set
TxΓ, where x ∈ [0, 1)d is a uniformly distributed random vector.

If Φ is a stationary point process, then there exists a unique number ι ≥ 0, called the
intensity of Φ, such that

E[#(Φ ∩B)] = ι ·mRd(B)

for all Borel B ⊂ Rd, i.e. the expected number of points of Φ that fall inside B is
proportional to the volume of B.

The variance Var(#(Φ∩BR)) of the number of points of Φ that fall inside BR is called
the number variance of Φ. For the two examples we have introduced so far, the number
variance is given as follows.

• For the Poisson point process, we have Var(#(Φ∩BR)) = mRd(BR). In particular,
Var(#(Φ ∩BR)) is proportional to the volume of BR. See Figure 1.1.

• For the shifted lattice, one can prove that Var(#(Φ∩BR)) = O(Rd−1) as R → ∞.
That is, Var(#(Φ∩BR)) is asymptotically bounded by the surface area of BR. See
Figure 1.2.

In fact, the bound one gets for the shifted lattice is optimal in the sense that there
exists no stationary point process Φ such that Var(#(Φ ∩ BR)) = O(Rd−k) for any
k > 1. This is a consequence of Beck’s Theorem. (Note that our point processes are
locally square integrable).

Theorem 1.3 (Beck’s Theorem [15, Theorem 5.1]). Let Φ be a stationary point process
on Rd. Then, for every R0 > 0 there exists a C > 0 such that

1

R

∫ R

0

Var(#(Φ ∩Br)) dr ≥ CRd−1, for all R ≥ R0

2



1.1 Hyperuniformity

Figure 1.1: Six samples from a homogeneous Poisson process on R2, with the boundary of a
ball BR marked: for each sample, we count the amount of points that fall inside
BR. The radius R is chosen such that E[#(Φ ∩BR)] = 50.

Figure 1.2: Six samples from a randomly shifted lattice on R2, with the boundary of a ball
BR marked. Again, the radius R is chosen such that E[#(Φ ∩ BR)] = 50: we
observe that the amount of points tends to be closer to the average than in the
Poisson case.
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Processes with low asymptotic number variance (such as shifted lattices) are “more
uniform” than Poisson processes; this motivated Torquato and Stillinger [59] to introduce
the following definition.

Definition 1.4 (Torquato and Stillinger [59]). Let Φ be a stationary point process on
Rd.

(i) We say that Φ is hyperuniform if

lim
R→∞

Var(#(Φ ∩BR))

Rd
= 0.

(ii) We say that Φ is Class I hyperuniform if

Var(#(Φ ∩BR)) = O(Rd−1)

as R → ∞.

Thus randomly shifted lattices are Class I hyperuniform, whereas the homogeneous
Poisson process is not hyperuniform.

Examples of hyperuniform systems include lattices, crystals, certain quasicrystals, but
also many disordered random processes [16, 58, 59]. Such systems have attracted the
attention of scientists in the last two decades, as such systems seem to crop up in nature:
for example, the pattern of photoreceptors in some birds’ eyes seems to be hyperuniform.
See the survey by Torquato [58] for this perspective. Pure mathematicians have also been
interested in hyperuniformity, proving or disproving it for a variety of point processes and
relating it to other concepts such as invariant transports and rigidity [15, 16, 27, 35, 36].

Note that, if Z is a locally finite subset of Rd, it defines a measure µZ by µZ(B) =

#(Z ∩ B): therefore, every point process defines a random measure. Stationarity and
hyperuniformity can be defined for random measures, just like in the point process case.

1.2 Point processes from substitution rules

We will be interested in the question of hyperuniformity for a class of point processes
which are closely related to substitution tilings and arise in the theory of aperiodic order.

Tilings and multisets

Rather than starting from the formal definition of a tiling, we start with an example.
Figure 1.4 is a picture of a chair tiling. It is a tiling of R2, i.e. a set of subsets of R2

whose union is R2 and whose intersections have measure 0. Every tile in the tiling is a
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1.2 Point processes from substitution rules

Figure 1.3: The four L-shaped prototiles τ1, τ2, τ3, τ4 used for the chair tiling. The origin of
the coordinate system is marked by a black dot.

Figure 1.4: A chair tiling of the plane by the prototiles τ1, τ2, τ3, τ4. The Delone sets Λ1, Λ2,
Λ3, Λ4 which define the tiling are pictured by black dots.

5



Introduction

translate of one of the four prototiles τ1, τ2, τ3, τ4 ⊂ R2 depicted in Figure 1.3. In other
words, there exist locally finite sets Λ1,Λ2,Λ3,Λ4 such that the tiling is given by

{Txτj | j ∈ [4], x ∈ Λj}.

In Figure 1.4, the points in the set Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4 are marked by black dots.
Given the prototiles τ1, τ2, τ3, τ4, the tiling is uniquely determined by the collection
Λ = (Λ1,Λ2,Λ3,Λ4). Moreover, the sets Λj as well as their union are Delone sets
in the following sense:

Definition 1.5. A discrete subset Λ ⊂ Rd is Delone if the following properties hold.

(i) Λ is uniformly discrete, i.e. there exists r > 0 such that the distance between any
two distinct points in Λ is at least r.

(ii) Λ is relatively dense, i.e. there exists R > 0 such that for every x ∈ Rd there exists
y ∈ Λ such that d(x, y) ≤ R.

Remark 1.6. Note that, when representing a tiling using Delone sets as above, we are
making a choice of prototiles. We could represent the same tiling by using different
translates of the prototiles in Figure 1.3: then the Delone sets Λ1,Λ2,Λ3,Λ4 would have
to be translated appropriately.

Now we formalize the above situation. Let ℓ ∈ N, and define [ℓ] = {1, · · · , ℓ}.
We define a multiset in Rd with ℓ colors, or ℓ-multiset, as an ℓ-tuple Λ = (Λj)j∈[ℓ],

where each Λj is a subset of Rd: the Λj are the components of Λ. We will always write
multisets in bold to distinguish them from subsets of Rd. We say Λ is a Delone multiset
if Λj is Delone for all j ∈ [ℓ] and

⋃
j∈[ℓ] Λj is Delone (cf. Section 4.1.1).

Remark 1.7. The term “multiset” is not standard: other authors use it to refer to sets
with multiplicities instead [38]. We use the same definition as Lee, Moody, and Solomyak
[40].

Definition 1.8. Let τ1, · · · , τℓ be closed subsets of Rd and Λ = (Λ1, · · · ,Λℓ) be a multiset
in Rd with ℓ colors.

(i) We say Λ patches Rd with prototiles τ1, · · · , τℓ if, for all j, k ∈ [ℓ], x ∈ Λj, y ∈ Λk

such that (x, j) ̸= (y, k), Txτj ∩Tyτk has measure zero. In this case, we say the set
{Txτj | j ∈ [ℓ], x ∈ Λj} is a patch.

(ii) If Λ patches Rd with prototiles τ1, · · · , τℓ, its support is the union suppΛ =⋃
j∈[ℓ],x∈Λj

Txτj.

(iii) We say Λ tiles S ⊂ Rd with prototiles τ1, · · · , τℓ if it patches Rd and suppΛ = S.
Then the set {Txτj | j ∈ [ℓ], x ∈ Λj} is a tiling of S by the prototiles τ1, · · · , τℓ.
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1.2 Point processes from substitution rules

With this terminology, the Delone multiset Λ = (Λ1, . . . ,Λ4) corresponding to the
chair tiling in Figure 1.4 tiles R2 with prototiles τ1, · · · , τ4 as above.

If Λ = (Λ1, · · · ,Λℓ) is a multiset and K ⊂ Rd, then we define the restriction
Λ ∩K := (Λ1 ∩K, . . . ,Λℓ ∩K). Similarly, dilations, translations and inclusion of mul-
tisets are defined componentwise. For j ∈ [ℓ], we define the colored point at the origin
as oj := (∅, . . . , ∅, {0}, ∅, . . . , ∅), where the singleton {0} is placed in the jth component.
An ℓ-multiset of the form Txoj for some x ∈ Rd and j ∈ [ℓ] is called a colored point.

Substitution rules and substitution spaces

The chair tiling from Figure 1.4 is just one of many in a space of chair tilings (with the
same prototiles) which can be generated from a substitution rule in the following sense.
Here, Pfin(Rd) denotes the collection of all finite subsets of Rd.

Definition 1.9. A substitution rule on Rd with ℓ colors is a pair S = (λ,∆) where

• λ > 1 is the scaling constant of S, and

• ∆ ∈ Pfin(Rd)ℓ×ℓ is the displacement matrix of S.

Its associated substitution map ϱ : P(Rd)ℓ → P(Rd)ℓ maps Λ = (Λj)j∈[ℓ] to
ϱ(Λ) = (Λ′

j)j∈[ℓ], where

Λ′
j =

ℓ⋃
k=1

⋃
x∈∆jk

TxDλΛk

for all j ∈ [ℓ].

Informally, the substitution map acts by dilating the multiset and then “decomposing”
it.

Definition 1.10. Let S be a substitution rule on Rd with ℓ colors. We say S is stone
if there exist subsets τ1, · · · , τℓ ⊂ Rd with the following properties.

• For all j ∈ [ℓ], τj is compact and has positive Lebesgue measure.

• For all j ∈ [ℓ], ϱ(oj) tiles Dλτj with prototiles τ1, · · · , τℓ: i.e. we have

Dλτj =
ℓ⋃

k=1

⋃
x∈∆kj

Txτk

and for all x, y ∈ Rd, k, k′ ∈ [ℓ] such that (x, k) ̸= (y, k′), the set Txτk ∩ Tyτk′ has
measure 0.

Example 1.11. The chair substitution rule Schair is the following stone substitution rule
with prototiles τ1, . . . , τ4 as in Figure 1.5:

7
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Figure 1.5: The chair substitution rule. In the left column, we see the prototiles τ1, τ2, τ3, τ4,
with the origin marked by a black dot: the long sides of the prototiles have length
4. On the right, the tilings of D2τj defined by the chair substitution rule are
shown: the origin of the coordinate system is marked by a black dot, while the
displacements of each tile are marked by black squares.
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1.2 Point processes from substitution rules

• The scaling constant is λ = 2.

• The displacements which give rise to the displacement matrix ∆ are depicted in
Figure 1.5: For example, in the first column we see that ϱ(o1) has two points
of color 1, corresponding to the light blue tiles: the corresponding entry in the
displacement matrix is

∆11 = {(−1, 1)⊤, (1,−1)⊤}.

Remark 1.12. Note that the chair substitution has rotational symmetry: the prototiles
are rotations of each other, and the displacements are compatible with this rotation.
Most substitution rules on R2 have some kind of rotation or reflection symmetry, which
will become important later.

Definition 1.13. Let S be a substitution rule on Rd with ℓ colors.

(i) An ℓ-multiset Λ in Rd is S-legal if the following holds: for every finite subset p ⊂ Λ

there exist x ∈ Rd, j ∈ [ℓ] and N ∈ N such that p ⊂ ϱN(Txoj).

(ii) The substitution space ΩS is the set of all S-legal Delone ℓ-multisets.

Example 1.14. The multiset (Λ1, . . . ,Λ4) constructed from Figure 1.4 is Schair-legal,
where Schair is the substitution rule from Example 1.11. It thus defines a point in the
substitution space ΩSchair

.

The substitution matrix and primitive substitution

Definition 1.15. The full substitution matrix of a substitution rule S with displacement
matrix ∆ = (∆jk)j,k∈[ℓ] is the matrix Mfull ∈ Nℓ×ℓ

0 with entries

(Mfull)jk = #∆jk.

A substitution rule is primitive if its full substitution matrix Mfull is primitive, i.e. there
exists N ∈ N such that every coefficient of MN

full is strictly positive.

The full substitution matrix can be seen as a simplified version of the displacement
matrix, where we forget the specific translations; we call it full substitution matrix to
distinguish it from the spherical substitution matrix, which we will define later.

Example 1.16. By counting the tiles of each color in Figure 1.5, we see that the full

9
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substitution matrix of the chair rule is

Mfull =


2 1 0 1

1 2 1 0

0 1 2 1

1 0 1 2

 .

One can check that every entry of M2
full is positive, so that the chair substitution rule

is primitive.

Theorem 1.17 ([38, 41]). Let S be a primitive, stone substitution rule on Rd with
prototiles τ1, · · · , τℓ. Then:

(i) There exists a S-legal Delone multiset: therefore, the substitution space ΩS is
nonempty.

(ii) Every Λ ∈ ΩS tiles Rd with prototiles τ1, · · · , τℓ.

In the case of the chair substitution rule, we have already seen that (i) holds; (ii)
means that every element in the chair substitution space corresponds to a tiling of Rd

by translates of the four prototiles from Figure 1.3.

Measures on substitution spaces

Rather than just looking at individual legal Delone sets, we want to look at the whole
substitution space. In order to do this, we restrict ourselves to the case of finite local
complexity.

Definition 1.18. Let Λ be a Delone ℓ-multiset in Rd. We say Λ is FLC (or has finite
local complexity) if the following holds: for all compact K ⊂ Rd, the set of K-patterns

{TxΛ ∩K | x ∈ Rd}

has finitely many equivalence classes under translation.

We say a primitive, stone substitution rule S is FLC if every Λ ∈ ΩS is FLC. Most
substitution rules considered in the literature, including the chair substitution rule, are
FLC. Under the FLC assumption, we define a topology on the substitution space.

Definition 1.19. Let S be a primitive, stone, FLC substitution rule. Then the local
topology on its substitution space ΩS is the topology generated by the open sets

UK,V (Λ) = {Λ′ ∈ ΩS | ∃x ∈ V : TxΛ
′ ∩K = Λ ∩K}.

where K ⊂ Rd is compact, V ⊂ Rd is open, and Λ ∈ ΩS .

10



1.2 Point processes from substitution rules

Every translate of a S-legal multiset is still S-legal, so Rd acts on the space ΩS

by translation. This makes ΩS into a dynamical system which has the following nice
properties.

Theorem 1.20 ([48, 54]). Let S be a primitive, stone, FLC substitution rule. Then the
following properties hold.

(i) The substitution space ΩS is compact.

(ii) The space ΩS is minimal, i.e. every Rd-orbit is dense.

(iii) The space ΩS is uniquely ergodic, i.e. there exists a unique invariant probability
measure P on ΩS .

(iv) The substitution map restricts to a map ϱ : ΩS → ΩS , which is continuous and
surjective.

(v) The substitution map preserves the unique invariant probability measure P.

From now on we assume that S is a primitive, stone, FLC substitution rule and denote
by P the unique invariant probability measure on ΩS . Then, for every j ∈ [ℓ], we obtain
a stationary point process

Φj: ΩS −→ PLF(Rd), (Λk)k∈[ℓ] 7→ Λj.

As we did for Delone sets, it makes sense to consider the point processes Φ1, · · · ,Φℓ

to be a single object.

Definition 1.21. The vector point process associated to S is the tuple Φ = (Φj)j∈[ℓ],
where the Φj are the point processes Φj : ΩS → PLF(Rd) defined above.

Remark 1.22. As ϱ preserves the invariant probability measure P, Φj
d
= Φj ◦ ϱ for all

j ∈ [ℓ]. We say the point processes Φj are self-similar. This property will be important
later.

If w ∈ Cℓ, we can consider the random measure ⟨Φ, w⟩ :=
∑ℓ

j=1Φjwj: this is a pure
point measure.

Example 1.23. Let Schair be the chair substitution rule and Φ be its associated point
process.

(i) If w = (1, 1, 1, 1)⊤, ⟨Φ, w⟩ = Φ1 + Φ2 + Φ3 + Φ4 is the union Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4,
where (Λ1,Λ2,Λ3,Λ4) is a random element of ΩS .

(ii) If w = (0, 1, 0, 1)⊤, ⟨Φ, w⟩ = Φ2 + Φ4 is the union Λ2 ∪ Λ4, where (Λ1,Λ2,Λ3,Λ4)

is a random element of ΩS .

11
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(iii) If w = (1, 0, 0, 0)⊤, ⟨Φ, w⟩ = Φ1 is simply Λ1, where (Λ1,Λ2,Λ3,Λ4) is a random
element of ΩS .

The point processes ⟨Φ, w⟩ for these different choices of w are depicted in Figure 1.6.

(a) w = (1, 1, 1, 1)⊤ (b) w = (0, 1, 0, 1)⊤ (c) w = (1, 0, 0, 0)⊤

Figure 1.6: The point processes ⟨Φ, w⟩ marked as black dots for different choices of w ∈ C4.

The central question of this thesis is the following.

Problem 1.24. Let S be a primitive, stone, FLC substitution rule with ℓ colors and Φ

its associated vector point process. For which w ∈ Cℓ is ⟨Φ, w⟩ hyperuniform?

Definition 1.25. Let w ∈ Cℓ. We say S is hyperuniform for weights w if the random
measure ⟨Φ, w⟩ is hyperuniform.

1.3 Hyperuniformity of substitution point processes

Let S be a primitive, stone, FLC substitution rule on Rd with ℓ colors. Recall that the
substitution matrix Mfull is the matrix given by counting the elements of each coeffi-
cient of the displacement matrix. Then its PF eigenvalue is λPF = λd, and a left PF
eigenvector is given by the volumes of the prototiles.

It turns out hyperuniformity is related to the other eigenvalues and eigenvectors of
the matrix. In particular, there is the following criterion for hyperuniformity, proposed
by Oğuz, Socolar, Steinhardt, and Torquato [47] and Baake and Grimm [6]. They focus
on the case where the substitution rule has “pure point diffraction”: we will define this
later.

Theorem 1.26 ([6, 47]). Let S be a primitive, stone, FLC substitution rule in Rd with
substitution matrix Mfull and scaling constant λ. Assume S has pure point diffraction,
and let µ2 be the second largest eigenvalue of Mfull in absolute value. Then, if |µ2| < λ

d
2 ,

the substitution rule is hyperuniform for any choice of weights.

12



1.3 Hyperuniformity of substitution point processes

However, this criterion alone is usually inadequate to prove hyperuniformity beyond
dimension 1. Indeed, the substitution matrix Mfull of the chair rule has the eigenvectors

v1 =


1

1

1

1

 , v2 =


1

i

−1

−i

 , v3 =


1

−i

−1

i

 , v4 =


1

−1

1

−1

 .

with eigenvalues 4, 2, 2, 0 respectively: in particular SpecMfull = {4, 2, 0}. The second
largest eigenvalue of Mfull is µ2 = 2: therefore, |µ2| is not strictly smaller than λ

d
2 . This

means the above criterion does not prove hyperuniformity for the chair substitution rule.
In this thesis, we will prove the following sufficient condition for hyperuniformity,

which is robust enough to consider examples such as the chair substitution rule.

Theorem A. Let S be a primitive, stone, FLC substitution rule in R2 with ℓ prototiles,
substitution matrix Mfull and scaling constant λ. Let w ∈ Cℓ be a vector, and let S(w)
be the set of eigenvalues µ of Mfull with the following properties:

• µ ̸= λ2

• The generalized eigenspace Eµ is not orthogonal to the vector w.

Then, if |µ| < λ for all µ ∈ S(w), the substitution rule is hyperuniform for weights w.

The key point here is that, depending on the weight vector w, we are able to exclude
certain eigenvalues of Mfull; this is similar to a criterion for bounded displacement to a
lattice due to Solomon [53]. For example, for the chair rule, we obtain the following.

Example 1.27. Let w ∈ span{v1, v4}. Then the chair substitution rule is hyperuniform
for weights w.

Proof. If we choose w ∈ span{v1, v4}, w is orthogonal to the eigenvectors v2 and v3 with
eigenvalue 2. Then S(w) does not contain the eigenvalue 2, so S(w) = {0} or S(w) = ∅.
In either case, |µ| < 2 for all µ ∈ S(w): therefore, by Theorem A, Schair is hyperuniform
for weights w.

Symmetry

As we mentioned before, the chair substitution rule has rotational symmetry. Many
substitution rules have some kind of rotational or reflectional symmetry, as follows.

Definition 1.28. Let S be a substitution rule on Rd with ℓ colors, and let G < O(d) be
a finite subgroup equipped with an action on [ℓ], in addition to its usual action on Rd.

13
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We say S is a G-symmetric substitution rule if the displacement matrix ∆ = (∆j,k)j,k∈[ℓ]

satisfies
∆g·j,g·k = g ·∆j,k

for all g ∈ G, j, k ∈ [ℓ].

For example, the chair rule is C4-symmetric, where a generator R ∈ C4 acts on R2

by rotating by π
2

counterclockwise, and on [4] by the permutation (1234). This can be
observed in Figure 1.5. (In fact, the chair rule is even D4-symmetric, but we will not
need this fact here.)

If S is G-symmetric, we can consider its spherical substitution matrix Msph, which is
the matrix given by identifying prototiles that are the same under the action of G: see
Definition 7.16 for the concrete definition. For example, for the chair substitution rule,
all the prototiles are rotations of one another, and the substitution of each prototile has
4 tiles, hence the spherical substitution matrix is Msph = (4).

In general, given a substitution rule, determining the spherical substitution matrix is
much easier than determining the full substitution matrix. We can use it to state a very
simple sufficient criterion for hyperuniformity, at least for certain choices of weights.

Theorem B. Let S be a G-symmetric, primitive, stone, FLC substitution rule on R2.
Then the following holds: if |µ| < λ for all µ ∈ SpecMsph \{λ2}, then S is hyperuniform
for constant weights.

Proof. The group G acts on Cℓ by permuting the basis vectors: as the substitution
rule is G-symmetric, the matrix Mfull commutes with the action of G, and the spher-
ical matrix Msph is the transformation matrix of the restriction of Mfull to the space
Vsph ⊂ Cℓ of G-invariant vectors. Therefore, one can show that, for every eigenvalue
µ ∈ SpecMfull \ SpecMsph, the corresponding eigenspace Eµ is orthogonal to Vsph, and
in particular it is orthogonal to the constant vector (1, 1, · · ·)⊤ ∈ Vsph. Then the claim
follows by applying Theorem A: the set S(w) of the theorem contains only eigenvalues
of Msph.

This criterion is powerful enough to prove hyperuniformity not only for the chair rule,
but for many other substitution rules as well. The Tilings Encyclopedia [24] is a large
compendium of interesting tilings including many coming from symmetric substitution
rules. Armed with Theorem B, we can prove hyperuniformity for many substitution
rules from the encyclopedia.

Corollary 1.29. The following substitution rules are hyperuniform for constant weights.

• The Penrose substitution rule.

• The CAP substitution rule.
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(a) A Penrose tiling (b) A CAP tiling (c) A GLB tiling (d) Danzer 7-fold tiling

Figure 1.7: The tilings obtained from the substitution rules considered in Corollary 1.29.
Figures (b), (c) and (d) by Frettlöh, Harriss, and Gähler [24] licensed under CC
BY-NC-SA 2.0.

• The Ammann substitution rule.

• The Godréche-Lançon-Billard substitution rule.

• Danzer’s 7-fold substitution rule.

See Figure 1.7 for pictures of the tilings obtained from the rules in Corollary 1.29.

1.4 Proof methods

Diffraction

One of the core tools in the study of substitution rules is diffraction. If f ∈ L1(Rd),
denote its Fourier transform by f̂ . See Chapter 2 for the definition of complex measures.

Theorem 1.30 ([15, 20]). Let Φ be a stationary, locally square integrable random mea-
sure. Then there exist unique Radon measures η̂ and η̂+ on Rd

η̂(|f̂ |2) = Var(Φ(f)) and η̂+(|f̂ |2) = E[|Φ(f)|2]

for all f ∈ Cc(Rd). Moreover, these measures are related by

η̂+ = η̂ + |ι|2δ0

where ι is the intensity of the random measure Φ.

Both measures are known under the name “diffraction” in the literature. We refer to
η̂ and η̂+ as the centered diffraction and uncentered diffraction of Φ respectively. η̂ is
also known under the name Bartlett spectral measure in the probabilistic literature.

From now on, let S be a primitive, stone, FLC substitution rule on Rd with ℓ colors,
and Φ its associated vector point process. For every w ∈ Cℓ we denote by η̂w the centered
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diffraction of ⟨Φ, w⟩, which we refer to as the (centered) diffraction η̂w of S with weights
w.

Theorem 1.31. There exists a matrix of measures Ĥ = (Ĥjk)j,k∈[ℓ], the diffraction
matrix of S, with the following property: for all w ∈ Cℓ, we have

η̂w =
∑
j,k∈[ℓ]

Ĥjkwjwk

We multiply matrices of measures with vectors by the usual formula, so we write

⟨Ĥw,w⟩ =
∑
j,k∈[ℓ]

Ĥjkwjwk.

Remark 1.32. In the literature of aperiodic order, diffraction is usually defined using
an ergodic average average due to Hof [34], instead of using the stochastic definition
above. As pointed out by Baake, Birkner, and Moody [9], Baake, Birkner, and Grimm
[10], both definitions coincide in the uniquely ergodic setting.

Specifically, given Λ = (Λj)j∈[ℓ] ∈ ΩS and w ∈ Cℓ, we define

µΛ,w :=
ℓ∑

j=1

∑
x∈Λj

δxwj

By the ergodic theorem, the limit

η+w = lim
R→∞

1

mRd(BR)
(µΛ,w|BR

∗µ̃Λ,w|BR
)

exists and is independent of the choice of Λ. Its Fourier transform is precisely the
(uncentered) diffraction of S with weights w. Here µ̃ denotes the adjoint of a complex
measure (cf. Chapter 2).

The above formula for the diffraction has a physical meaning: η̂w describes the outcome
of an X-ray diffraction experiment with diffractor µΛ,w; see Hof [34].

From now on, we will only use the centered diffraction, since we are interested in the
variance of the point processes rather than the squared expectation.

Hyperuniformity via diffraction

The reason we are concerned with diffraction is that a point process is hyperuniform
if and only if its diffraction decays fast around the origin. This has been known in
many forms since the discovery of hyperuniformity, but usually under some assumption
on the type of diffraction, such as assuming that the diffraction measure is absolutely
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continuous. We specifically use the following criterion due to Björklund and Hartnick
[16], which does not have this restriction.

Theorem 1.33 ([16]). Let Φ be a locally square integrable stationary point process on
Rd, and let η̂ be its (centered) diffraction measure. Then:

(i) Φ is hyperuniform if and only if limr→0
η̂(Br)
rd

= 0.

(ii) Φ is Class I hyperuniform if and only if η̂(Br) = O(rd+1) as r → 0.

Beyond just determining when a process is or is not hyperuniform, the behavior of the
diffraction around the origin encodes interesting information about the point process,
such as rigidity phenomena [28, 37]. Physicists have studied this topic extensively,
heuristically and with numerical experiments [25, 33, 47, 58], and there have also been
results in this direction in probability theory: see Coste [21] for a survey.

However, when it comes to the point processes coming from substitution rules specifi-
cally, the mathematical literature seems to be lacking: the only rigorous results seem to
be those of Baake and Grimm [6] for particular examples of one-dimensional self-similar
tilings. In this thesis, we will extend the work of [6] to a wider class of self-similar tilings
and prove a general bound for the diffraction of a substitution rule around the origin:
in particular, this will allow us to prove Theorem A.

Remark 1.34. Any regular Borel measure µ can be decomposed as µ = µpp+µac+µsc,
where µpp is its pure point part, µac its absolutely continuous part, and µsc its singular
continuous part.

The diffraction of a substitution rule is often pure point, but not always: there even
exist substitution rules which have singular continuous diffraction, such as the Godréche-
Lançon-Billard rule. Our methods will be robust enough so that we will not need to
make any assumptions on the type of the diffraction.

Renormalisation

Let S be a primitive, stone, FLC substitution rule on Rd with ℓ colors. Let λ be its
scaling factor, ∆ = (∆jk)j,k∈[ℓ] be its displacement matrix, Mfull be its full substitution
matrix, and Φ = (Φj)j∈[ℓ] be its associated point process.

In order to prove Theorem A, we will use renormalisation relations associated to a
substitution. These were originally introduced by Baake and Gähler [2] in the context of
substitution rules, but we will define them in greater generality, using the point process
associated to a substitution rule.

In particular, recall that for all j ∈ [ℓ], the point process Φj is self-similar : that is,
Φj

d
= Φj ◦ ϱ, where ϱ is the substitution map. If we write out the definition of ϱ and Φj,

we obtain the following.

17
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Theorem 1.35. The vector point process Φ = (Φj)j∈[ℓ] associated to S satisfies

Φk
d
=

ℓ∑
j=1

∑
x∈∆kj

TxDλΦj

for all k ∈ [ℓ]. We call these equations the renormalisation relations for Φ.

As both sides of the renormalisation relations have the same distribution, they have
the same diffraction matrix, hence we obtain the following renormalisation relation for
the diffraction matrix, originally due to Baake, Gähler, and Mañibo [11]. We denote the
Hermitian adjoint of a matrix A ∈ Cℓ×ℓ by A∗.

Theorem 1.36 ([11]). Let S be a primitive, FLC substitution rule in Rd with ℓ pro-
totiles, λ its scaling constant, and Mfull its substitution matrix. Let Ĥ be its diffraction
matrix. Then there exists a smooth, matrix-valued function A : Rd → Cℓ×ℓ which satis-
fies A(0) = 1

λdMfull, called the normalized Fourier matrix of the substitution rule, such
that the following holds:

Ĥ = A(Dλ−1Ĥ)A∗,

Baake, Gähler, and Mañibo [11] used the above renormalisation relation to study the
pure point part and the absolutely continuous part of the diffraction. In these cases,
there is a natural way to write Ĥ using a density function (with respect to either
the counting measure or the Lebesgue measure, respectively), which then satisfies a
recurrence relation. We improve on their methods by defining a self-similar density for
Ĥ , which exists even if Ĥ has a singular continuous component. Let B×

R := BR \ {0}
be the punctured ball of radius R around the origin.

Definition 1.37. Let R > 0.

(i) Let ν be a positive measure supported on B×
R . We say ν is λ-dilation invariant if

Dλν|B×
R
= ν.

(ii) A self-similar density of the diffraction matrix Ĥ on B×
R is a pair (h, ν) where

• ν is a λ-dilation invariant measure on B×
R , and

• h : B×
R → Cℓ×ℓ is a ν-integrable, matrix-valued function

such that Ĥ|B×
R
= hν.

Theorem 1.38. Let R > 0. Then there exists a self-similar density of the diffraction
matrix Ĥ on B×

R .

18
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Theorem 1.39. Let (h, ν) be a self-similar density of the diffraction matrix Ĥ on B×
R .

Then the following renormalisation relation holds:

h(ξ) = A(ξ)h(λξ)A(ξ)∗

for all ξ ∈ B×
λ−1R.

Linear cocycles

By Theorem 1.39, if we want to understand the diffraction around the origin, we need
to understand what happens when one multiplies repeatedly by the normalized Fourier
matrix.

Definition 1.40. The Fourier cocycle of the substitution rule S is the matrix function
given by the product

A(N)(ξ) = A(λ−N+1ξ)A(λ−N+2ξ) · · ·A(ξ)

for ξ ∈ Rd and N ∈ N.

This is analogous to the internal cocycle considered by Baake and Grimm [7] or the
spectral cocycle considered by Solomyak and Treviño [57].

Then, applying Theorem 1.39 repeatedly, we get the following expression for the self-
similar density around the origin.

Theorem 1.41. Let (h, ν) be a self-similar density on B×
R for the diffraction matrix Ĥ.

Then the self-similar density satisfies

h(λ−Nξ) = A(N)(λ−1ξ)h(ξ)A(N)(λ−1ξ)∗

for all ξ ∈ B×
R , N ∈ N.

The normalized Fourier matrix A is smooth, therefore A(ξ) = A(0) + O(∥ξ∥) as
ξ → 0. Then, if N is large, one would intuitively expect A(N)(ξ) to be similar to the
matrix power A(0)N , as most of the matrices in the product

A(N)(ξ) = A(λ−N+1ξ)A(λ−N+2ξ) · · ·A(ξ)

are close to A(0). We will prove the following theorem to this effect: this similar to a
theorem about products of converging matrices due to Dubiner [22]. See Section 2.4 for
the definition of the asymptotic symbols ⪅ and ≈.
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Theorem C. Let χ1 > · · · > χl be the distinct values of {log|µ| | µ ∈ SpecA(0), µ ̸= 0}
and let χl+1 = −∞. Let Ej := ⊕{Eµ | µ ∈ SpecA(0), log|µ| = χj} be the space
of generalized eigenvectors associated to χj for j ∈ [l + 1]. Then there exist uniquely
defined idempotent operators Pj : Cℓ → Cℓ for j ∈ [l + 1] such that ImPj = Ej and∑l+1

j=1 Pj = I and R > 0 such that the following hold.

For all ξ ∈ BR, there exist linear maps Pj(ξ) : Cℓ → Cℓ for all j ∈ [l + 1] such that∑l+1
j=1 Pj(ξ) = I and the following asymptotic inequalities hold:

(i) For all j ∈ [l + 1] we have

∥A(N)(ξ)Pj(ξ)x∥ ≈ eχjN∥Pj(ξ)x∥ (1.1)

as N → ∞.

(ii) For all j, k ∈ [l + 1] we have

∥PkA
(N)(ξ)Pj(ξ)x∥ ≲ λ−N∥A(N)(ξ)Pj(ξ)x∥ if j > k (1.2)

∥PkA
(N)(ξ)Pj(ξ)x∥ ⪅ max(eχk−χj , λ−1)N∥A(N)(ξ)Pj(ξ)x∥ if j < k (1.3)

as N → ∞.

(This is a simplified version of the theorem, see Theorem 5.3 for the full statement).

Proof sketch. For simplicity, we assume A(0) has an orthogonal basis of eigenvectors:
this assumption is not necessary in general.

Recall that the matrix Mfull is primitive with PF eigenvalue λd, which means A(0) =

λ−dMfull is primitive with PF eigenvalue 1 = eχ0 ; let wPF be its left PF eigenvector. For
ξ ∈ Rd, define

w(ξ) := lim
N→∞

(A(N)(ξ))∗wPF

One can prove the vector w(ξ) exists and is nonzero for small enough ξ. Define the space

Y1(ξ) := spanw(ξ).

Then the following dichotomy holds.

• If x ̸∈ Y1(ξ), ∥A(N)(ξ)x∥ ≈ eχ1N∥x∥ as N → ∞.

• If x ∈ Y1(ξ), ∥A(N)(ξ)x∥ ⪅ eχ2N∥x∥ as N → ∞.

Now, if B ∈ Cℓ×ℓ and k ∈ N, we define its k-th exterior power B∧k, which is an
operator on the k-th exterior power on Cℓ (cf. Section 5.2). Applying an argument
similar to the above to the exterior powers of the normalized Fourier matrix, one can
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define a filtration

Cℓ = Y0(ξ) ⊋ Y1(ξ) ⊋ Y2(ξ) ⊋ · · · ⊋ Yl+1(ξ) ⊇ {0}

such that, for all j ∈ [l + 1] and x ∈ Yj−1(ξ) \ Yj(ξ), we have

∥A(N)(ξ)x∥ ≈ eχjN∥x∥

Then the projections Pj(ξ) can be taken to be the orthogonal projections onto the spaces
Yj−1(ξ) ∩ Yj−1(ξ)

⊥: this proves part (i). We can prove part (ii) by using the explicit
formulas for the spaces.

Using Theorem C and Theorem 1.41, we obtain the following bound on the diffraction
of a substitution rule.

Theorem D. Let S be an FLC, primitive, stone substitution rule in Rd, and η̂w be its
diffraction with weights w ∈ Cℓ. Define the constants:

β∥(w) := d−max
{
logλ|µ|

∣∣ µ ∈ SpecMfull \ {λd}, w ̸∈ E⊥
µ

}
,

β⊥(w) := d+ 1−max
{
logλ|µ|

∣∣ µ ∈ SpecMfull \ {λd}, w ∈ E⊥
µ

}
,

β(w) := min
(
β⊥(w), β∥(w)

)
.

Then we have
η̂w(Br) ⪅ r2β(w)

as r → 0.

This bound implies Theorem A (hence Theorem B) which is the criterion for hy-
peruniformity we stated before: furthermore, we will often be able to prove Class I
hyperuniformity and obtain more precise bounds on η̂w(Br).

For w = (1, 1, · · ·)⊤, this criterion is analogous to a condition for bounded displacement
to a lattice due to Solomon [53]. We say two discrete subsets Γ,Γ′ ⊂ Rd are bounded
displacement equivalent if there exists a bijection ϕ : Γ → Γ′ such that supx∈Γ∥ϕ(x) −
x∥ < ∞.

Theorem 1.42 ([53]). Let S be a primitive, stone substitution rule on Rd, and assume
that |µ| < λ

d−1
d for all µ ∈ SpecMfull \ {λd} such that (1, 1, · · ·)⊤ ̸∈ E⊥

µ .

Then, for every self-similar Λ, there exists c > 0 such that the union Λ =
⋃ℓ

j=1 Λj is
bounded displacement equivalent to the lattice cZd.
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1.5 Structure of the thesis

This thesis is structured as follows:

• Chapter 2 contains the basic notation used in this thesis, including operations in
Rd, probabilistic notions and asymptotic inequalities.

• Chapter 3 introduces the theory of stationary random vector measures and their
autocorrelation and diffraction matrices. Vector measures are a straightforward
generalization of stationary random measures, and their autocorrelation and
diffraction are extensions of the scalar case. We also define hyperuniformity and
its characterization in terms of diffraction. This chapter is mainly expository.

• Chapter 4 introduces the theory of substitution rules and self-similar tilings. We
show that every appropriate substitution rule gives rise to a stationary random vec-
tor measure, hence we can ask about their hyperuniformity, diffraction and obtain
renormalisation relations. This chapter is also expository, except for Section 4.3.2,
where we define and prove the existence of self-similar densities in general.

• In Chapter 5 we prove a novel theorem about linear cocycles, using the theory of
exterior powers.

• In Chapter 6, we state and prove the main result of this thesis, which provides suf-
ficient criteria for hyperuniformity of a substitution rule in terms of its substitution
matrix.

• In Chapter 7 we apply the results of Chapter 6 to a wide variety of examples,
including both known and new examples of hyperuniform substitution rules.
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2 Preliminaries

2.1 Notation and basics

In this thesis, we write N for the natural numbers without 0 and N0 for the natural
numbers including 0. We write R for the real numbers and R≥0 for the non-negative
reals. For n ∈ N we let [n] = {1, · · · , n}. We denote the number of elements in a finite
set S by #S. We let BR ⊂ Rd be the closed ball of radius R around the origin, and
B×

R = BR \ {0} be the punctured ball.
Our inner products are always conjugate-linear in the second argument, as is standard

in the mathematical literature. We denote the conjugate-transpose of a matrix A ∈
Cℓ1×ℓ2 by A∗. We let ∧ be the exterior product of vectors, and A∧q be the q-th exterior
power of a matrix A: see Section 5.2 for details.

For x ∈ Rd and λ > 0, we write Tx for the translation operator on Rd and Dλ for the
dilation operator: these can also be applied to subsets of Rd as usual. If f is a function
on Rd, we define functions Txf and Dλf by (Txf)(y) = f(y−x) and (Dλf)(y) = f(λ−1y)

respectively. We also let mRd be the Lebesgue measure on Rd.
If f is a complex valued function on Rd, we denote its complex conjugate by f . We also

define the function f̃ by f̃(x) = f(−x). If f ∈ L1(Rd) we denote its Fourier transform by
f̂(ξ) =

∫
Rd f(x)e

−2πi⟨x,ξ⟩ dx or F(f), and its inverse Fourier transform by f̌ or F−1(f).
Later we will define vector and matrix valued measures, as well as colored subsets of

Rd (see Section 3.1 and Section 4.1.1). We will define translation, dilation and other
notions for these objects as well. In order to distinguish them from the scalar case, we
will denote vector and matrix functions and measures in bold, and we will do the same
for colored subsets of Rd.

2.2 Complex measures

We define the basic properties of complex measures: see [14, 18] for a more detailed
treatment and for proofs of the stated facts.

Let X be a locally compact Hausdorff space, and let Cc(X) be the space of (complex-
valued) continuous functions on X with compact support; we equip it with its usual
inductive limit topology. A (complex) measure on X is, as usual in the literature of
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aperiodic order and harmonic analysis, a continuous linear functional µ : Cc(X) → C.
Let C+

c (X) ⊂ Cc(X) be the subspace of nonnegative functions: a measure µ is positive
if µ(f) ≥ 0 for all f ∈ C+

c (X). By the Riesz representation theorem, a positive complex
measure (using this definition of a complex measure) is the same as a regular Radon
positive measure on X (using the classical definition of a measure as a function defined
on a σ-algebra). We let M(X) be the space of complex measures on X and M+(X) be
the space of positive measures on X. We equip M(X) with the weak-* topology.

If µ is a complex measure on X, there exists an associated positive measure |µ|, its total
variation measure, which is the unique positive measure such that |µ|(f) := sup|g|≤f |µ(g)|
for all f ∈ C+

c (X). Then one has Cc(X) ⊂ L1(|µ|), so one can extend µ to L1(|µ|) by
continuity. In particular, if A is a bounded Borel set, we can define µ(A) := µ(1A), where
1A is the characteristic function of A. The theorems of Fubini and Radon–Nikodym hold
for complex measures as well.

Remark 2.1. This is the way Bourbaki [18] defines a measure, and it is ubiquitous in
the fields of harmonic analysis and aperiodic order [14, 34, 45]. Note that, using this
definition, the map µ : Cc(R) → C given by ϕ 7→

∫∞
−∞ ϕ(x) sin(x) dx is a complex measure

even though it is not a “signed measure”, as µ(A) is not well-defined for unbounded Borel
sets A. This is why we need to assume A is bounded when defining µ(A).

Now we focus on the case X = Rd for some d ∈ N. We define the following operations
on complex measures:

Definition 2.2. Let µ be a complex measure on X.

(i) The conjugate of µ is the measure µ defined by µ(f) = µ(f) for all f ∈ Cc(X).

(ii) The adjoint of µ is the measure µ̃ defined by µ̃(f) = µ(f̃) for all f ∈ Cc(X).

(iii) If g is a locally integrable function on X, the product of g and µ is the measure
gµ defined by (gµ)(f) = µ(gf) for all f ∈ Cc(X).

(iv) If X = Rd, the translation of µ by x ∈ Rd is the measure Txµ defined by (Txµ)(f) =

µ(T−xf) for all f ∈ Cc(Rd), where T−xf(y) = f(y + x).

(v) If X = Rd, the dilation of µ by λ > 0 is the measure Dλµ defined by (Dλµ)(f) =

µ(Dλ−1f) for all f ∈ Cc(Rd).

In addition, one can define the Fourier transform of a complex measure on Rd. Recall
that, if f ∈ L1(Rd), its Fourier transform f̂ is defined by f̂(ξ) =

∫
Rd f(x)e

−2πi⟨x,ξ⟩ dx. We
also define the convolution of two functions f, g ∈ L1(Rd) by (f ∗ g)(x) =

∫
Rd f(y)g(x−

y) dy.

Definition 2.3. Let µ ∈ M(Rd).
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(i) We say µ is translation bounded if the following holds: for every f ∈ C+
c (Rd), the

set
{ |µ|(Txf) | x ∈ Rd }

is bounded.

(ii) We say µ is positive definite if the following holds: for every f ∈ Cc(Rd), we have

µ(f ∗ f̃) ≥ 0.

Definition 2.4. Let µ ∈ M(Rd) be a translation bounded measure. We say µ̂ ∈ M(Rd)

is a Fourier transform of µ if

(i) for all f ∈ Cc(Rd), |f̂ |2 ∈ L1(|µ̂|), and

(ii) µ(f ∗ f̃) = µ̂(|f̂ |2).

We say µ is Fourier transformable if it has a unique Fourier transform.

Theorem 2.5 ([14]). Let µ be a positive definite measure on Rd. Then it is Fourier
transformable.

2.3 Random variables and stochastic notation

In this thesis we will make extensive use of random variables. For the reader’s conve-
nience, we define the basic notions and notation we will use.

Recall that a probability space is a set Ω equipped with a σ-algebra F and a probability
measure P. Given a measurable space X, an X-valued random variable on the probability
space (Ω,F ,P) is a measurable function x : Ω → X. If ω ∈ Ω, we let xω be the value
of x at ω, and refer to it as a sample of the random object x. In line with common
practice in probability theory, we will often say x is a random variable without specifying
the underlying probability space: then, it is understood that all random objects being
considered are defined over the same probability space Ω.

If f : X → Y is a measurable function between measurable spaces and x : Ω → X is a
random variable with probability space Ω, we let f(x) : Ω → Y be the random variable
defined by ω 7→ f(xω). Two random variables x, y are equidistributed if x∗P = y∗P′,
where P and P′ are the probability measures on their underlying probability spaces: in
this case we write x

d
= y.

Now let x, y be complex valued random variables. We say x is integrable (resp. square
integrable) if the integrals

∫
Ω
|xω| dP(ω) and

∫
Ω
|xω|2 dP(ω) are finite respectively. Then,

if x, y are integrable and square integrable, we define the expectation and variance by
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2 Preliminaries

E[x] =
∫
Ω
xω dP(ω) and Var[x] = E [|x− E[x]|2] respectively. We also define the covari-

ance of x and y by Cov(x, y) = E
[
(x− E[x]) (y − E[y])

]
.

2.4 Asymptotic notation

We will be concerned with the asymptotic behaviour of functions. In this section we will
define the asymptotic notation we need. In particular, we will be interested in asymptotic
inequalities where the constants are independent of a certain second parameter. For the
reader’s convenience, we define this notion.

Definition 2.6. Let X be a topological space, Y a set, x0 ∈ X and f, g : X \{x0}×Y →
R≥0 be two functions.

• We write f(x, y) ≲ g(x, y) or f(x, y) = O(g(x, y)) as x → x0 uniformly for y ∈ Y

if there exists a neighbourhood U of x0 and a constant C > 0 such that f(x, y) ≤
Cg(x, y) for all x ∈ U , y ∈ Y . We also write f(x, y) ≳ g(x, y) if g(x, y) ≲ f(x, y),
and ≍ if both ≲ and ≳ hold.

• We write f(x, y) = o(g(x, y)) as x → x0 uniformly for y ∈ Y if for every ϵ > 0

there exists a neighbourhood U of x0 such that f(x, y) ≤ ϵ g(x, y) for all x ∈ U ,
y ∈ Y .

If X = N, we define these asymptotic symbols as N → ∞ in the usual way. We can
also define these symbols for functions f, g : X → R≥0 as x → x0, by letting Y be the
set with one element: in this way one recovers the usual meaning of O, o, ≲ and ≳.

We also define a new asymptotic notation, which is weaker than the usual asymptotic
inequalities: intuitively, it measures decay only “up to subexponential factors”.

Definition 2.7. Let Y be a set.

(i) Let f, g : N × Y → R≥0. We write f(N, y) ⪅ g(N, y) as N → ∞ uniformly for
y ∈ Y if lim supN→∞

1
N
log supy∈Y f(N, y) ≤ lim supN→∞

1
N
log supy∈Y g(N, y).

(ii) Let f, g : R≥0×Y → R≥0. We write f(r, y) ⪅ g(r, y) as r → 0 uniformly for y ∈ Y

if lim supr→0
1
r
log supy∈Y f(r, y) ≤ lim supr→0

1
r
log supy∈Y g(r, y).

We define ⪆ analogously, using lim inf instead of lim sup, and write ≈ if both ⪅ and ⪆

hold. We can also define these notions without the second argument y, in which case we
write f(N) ⪅ g(N) as N → ∞. Note that we set log 0 = −∞.

Remark 2.8. In particular cases, the relation ⪅ can be expressed as follows:

• For α ∈ R, f(r) ⪅ rα as r → 0 if and only if, for all ϵ > 0, f(r) = O(rα+ϵ) as
r → 0.
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2.4 Asymptotic notation

• f(r) ⪅ 0 as r → 0 if and only if, for all k ∈ R, f(r) = O(rk) as r → 0.

For example, r log(r) ⪅ r as r → 0 even though r log(r) is not ≲ r, and r− log r ⪅ 0 as
r → 0. Similar statements hold for functions of N as N → ∞.
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3 Diffraction of random vector
measures

In this chapter, we will introduce the basics of stationary random vector measures and
their diffraction. Random vector measures are a generalization of random measures, so
the theory here will be a straightforward generalization of the theory of diffraction of
stationary random measures. See [9, 10, 20, 39] for the classical case.

3.1 Vector measures

Definition 3.1. Let A be a finite set. A CA-measure µ on X is a vector of complex
measures µ = (µa)a∈A. We say µa is the a-th entry or a-th component of µ.

We denote by M(X,CA) := M(X)A the space of CA-measures on X. We equip it
with the product topology, where each M(X) is equipped with the weak-* topology,
also called the vague topology.

In all examples we consider, A will be either A = [ℓ] or A = [ℓ1] × [ℓ2] for some
ℓ, ℓ1, ℓ2 ∈ N, in which case µ is a Cℓ-measure or a Cℓ1×ℓ2-measure respectively. We refer
to the former as vector measures and the latter as matrix measures.

If µ = (µa)a∈A is a CA-measure on X and f ∈ Cc(X), we define a vector µ(f) ∈ CA

with entries µ(f) = (µa(f))a∈A: this defines a continuous linear map µ : Cc(X) → CA

which uniquely determines µ. When viewed as linear maps, the topology on M(X,CA)

is the strong operator topology : a net (Φj)j∈J converges to Φ if Φj(f) → Φ(f) in norm
for all f ∈ Cc(X). We use integral notation to evaluate vector and matrix measures, so∫
X
f(x) dµ(x) := µ(f).

We can define the total variation measure of a vector or matrix measure, in analogy
to the complex case. The proof that this is a measure can be found in Bourbaki [18].

Definition 3.2. Let A be a finite set and µ = (µa)a∈A be a CA-measure on X. The
total variation measure ∥µ∥ is the unique positive measure on X such that

∥µ∥(f) = sup
g∈Cc(X),|g|≤f

|µ(g)| for all f ∈ C+
c (X)
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3 Diffraction of random vector measures

As for the case of complex measures, we can extend µ to L1(∥µ∥) by continuity. Then,
for every f ∈ L1(∥µ∥), we have the inequality |

∫
X
f dµ| ≤

∫
X
|f | d∥µ∥.

We also have an analogue of the Radon–Nikodym theorem for stationary random
measures.

Theorem 3.3 (Radon–Nikodym Theorem). Let A be a finite set and µ = (µa)a∈A be
a CA-measure on X. Let ν be a positive measure on X such that µ(f) = 0 for all
f ∈ C+

c (X) with ν(f) = 0. Then there exists a unique vector of functions h = (ha)a∈A

such that µa = ha ν for all a ∈ A. We call h the Radon–Nikodym derivative of µ with
respect to ν.

Furthermore, for vector measures, we define the following operations.

Definition 3.4. Let ℓ, ℓ1, ℓ2 ∈ N.

(i) Let µ = (µj)
ℓ
j=1 be a Cℓ-measure on X and w ∈ Cℓ. We define the complex

measure ⟨µ, w⟩ by ⟨µ, w⟩ =
∑ℓ

j=1wjµj.

(ii) Let M = (µij)i∈[ℓ1], j∈[ℓ2] be a Cℓ1×ℓ2-measure on X and w ∈ Cℓ2 . We define the
Cℓ1-measure Mw by the entries (Mw)i =

∑ℓ2
j=1 µijwj for all i ∈ [ℓ1].

(iii) Let µ be a Cℓ2-measure on X and A ∈ Cℓ1×ℓ2 be a matrix. We define the Cℓ1-
measure Aµ by the entries (Aµ)i =

∑ℓ2
j=1Aijµj for all i ∈ [ℓ1].

(iv) Let µ = (µj)
ℓ
j=1 be a Cℓ-measure on X = Rd and let x = (xj)

ℓ
j=1 be an ℓ-tuple of

elements of Rd. Then we define the translation of µ by x as the Cℓ-measure Txµ

with entries (Txµ)j = Txj
µj for all j ∈ [ℓ]. If x ∈ Rd is a single vector, we define

Txµ = T(x,x,···,x)µ.

(v) Let µ be a Cℓ-measure on X = Rd and let λ > 0. Then we define the Cℓ-measure
Dλµ (the dilation of µ by λ) with entries (Dλµ)j = Dλµj for all j ∈ [ℓ].

3.2 Stationary random vector measures

Let d, ℓ ∈ N. Recall that M(Rd,Cℓ) is equipped with the strong operator topology,
which induces a Borel σ-algebra on M(Rd,Cℓ). Therefore it makes sense to talk about
random Cℓ-measures: explicitly, a random Cℓ-measure on Rd is a measurable function
µ : Ω → M(Rd,Cℓ). Equivalently, we can characterize a random Cℓ-measure as an ℓ-
tuple µ = (µj)j∈[ℓ], where each µj is a random complex measure over the same underlying
probability space Ω.

Definition 3.5. A random Cℓ-measure Φ is stationary if the following holds: for all
x ∈ Rd, TxΦ

d
= Φ.
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3.2 Stationary random vector measures

Note that a random Cℓ-measure is the same as an ℓ-tuple of random complex measures
over the same probability space.

Remark 3.6. The equality TxΦ
d
= Φ has the following consequence: for all f ∈ Cc(Rd),

Φ(f)
d
= Φ(T−xf) as Cℓ-valued random variables. A random measure with this property

is called wide-sense stationary, and this is actually enough to define the autocorrelation
measure.

Definition 3.7. Let Φ be a stationary random Cℓ-measure on Rd. We say it is locally
square integrable if, for all f ∈ Cc(Rd), we have E[∥Φ(f)∥2] < ∞.

From now on we assume all stationary random measures are locally square
integrable. Note that every locally square integrable stationary random Cℓ-measure is
also locally integrable, i.e. E[∥Φ(f)∥] < ∞.

The literature on stationary measures heavily focuses on point processes, i.e. stationary
random measures Φ such that Φ is almost surely a countable sum of Dirac measures.
Every example we consider in this thesis will be a linear combination of point processes.

Definition 3.8. An ℓ-colored point process is a stationary random Cℓ-measure Φ =

(Φ1, · · · ,Φℓ) such that Φj is almost surely a pure point measure: that is, it can be
written as

Φj =
∑
y∈Zj

δy

for some discrete subset Zj ⊂ Rd. We also refer to Φ as a vector point process, or just a
point process if there is no potential for confusion with the scalar case.

Example 3.9. Let Γ = Z2 and Ω = {TxΓ | x ∈ R2}. We have Ω = R2/Z2 = T2: using
the uniform distribution on Ω, we can define a stationary random measure by

Φ : Ω → M(R2), Γ′ 7→ ΦΓ′ =
∑
y∈Γ′

δy

Example 3.10. The homogeneous Poisson process on Rd with intensity λ [39] is the
unique stationary point process with the two following properties:

(i) The expectation of Φ is given by E[Φ(f)] = λmRd(f)

(ii) For any f, f ′ ∈ Cc(Rd) such that f and f ′ have disjoint support, Φ(f) and Φ(f ′)

are independent random variables.
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3 Diffraction of random vector measures

3.3 Moments and autocorrelation of stationary

random complex measures

Now we define the first and second moments of stationary random Cℓ-measures. Due to
the stationarity, they can be defined in a simplified form.

Definition 3.11. Let Φ be a stationary random Cℓ-measure on Rd. The intensity of Φ
is the unique vector ι ∈ Cℓ satisfying

E[Φ(f)] = ιmRd(f)

for all f ∈ Cc(Rd).

Lemma 3.12. Let Φ be a stationary random Cℓ-measure on Rd and let f ∈ Cc(Rd) with
mRd(f) = 1. Then Φ has a unique intensity ι given by ι = E[Φ(f)]

Proof. Consider the map L : Cc(Rd) → Cℓ given by f 7→ E[Φ(f)]. As Φ is locally square
integrable, L is a Cℓ-valued measure with entries Lj given by Lj(f) = E[Φj(f)]: this
follows from Campbell’s formula for stationary random measures.

Furthermore, as Φ is stationary, for all x ∈ Rd, f ∈ Cc(Rd) we have:

L(Txf) = E[Φ(Txf)] = E[Φ(f)] = L(f)

Therefore, for all j ∈ [ℓ], there exists a unique ιj ∈ C such that Lj(f) = ιjmRd(f) [19,
Chapter 7]. Therefore, L = ιmRd for ι = (ιj)

ℓ
j=1, which means ι is the unique intensity

of Φ. As mRd(f) = 1, we have ι = E[Φ(f)].

Example 3.13. Before we define the “homogeneuous Poisson process on Rd with inten-
sity λ”, which satisfies E[Φ(f)] = λmRd(f). Its intensity in the sense of Definition 3.11
is therefore ι = λ, justifying the name.

A complex-valued stationary random measure Φ on Rd always has an autocorrelation
measure as we will now define.

Definition 3.14. Let Φ be a stationary random measure on Rd. The (centered) auto-
correlation measure η of Φ is the unique measure on Rd such that

Var(Φ(f)) = η(f ∗ f̃)

for all f ∈ Cc(Rd).
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3.3 Moments and autocorrelation of stationary random complex measures

Remark 3.15. One can also define an uncentered autocorrelation η+ of Φ by requiring

η+(f ∗ f̃) = E[|Φ(f)|2]

for all f ∈ Cc(Rd) instead The uncentered autocorrelation exists if and only if the
centered autocorrelation exists, and they are related by the following formula [16, Section
2.1]:

η+(f) = η(f) + |ι|2mRd(f).

In the literature, the term "autocorrelation" may be used to refer to either the centered
or the uncentered autocorrelation: we will always use the centered autocorrelation unless
otherwise stated.

The existence and uniqueness of such measures is well known in the point process case
[9, 10], sometimes defined via other related quantities such as the reduced second factorial
moment measure [15, 20, 39]. The name “autocorrelation” is typical in the literature of
aperiodic order. The existing literature only handles the case where Φ is positive: as
we want to make sure they also exists in the complex valued case, we provide a proof,
but it is essentially the same as the classical case, which can be found in the references
above.

Recall that a measure is positive definite if η(f ∗ f̃) ≥ 0 for all f ∈ Cc(Rd).

Theorem 3.16. Let Φ be a stationary random measure on Rd. Then Φ has a unique
autocorrelation measure η, and it is positive definite.

To prove this we need the following lemma first:

Lemma 3.17. Let η, η′ be two measures on Rd such that η(f ∗ f̃) = η′(f ∗ f̃) for all
f ∈ Cc(Rd). Then η = η′

Proof. For all f, g ∈ Cc(Rd), the following polarization identity holds:

f ∗ g̃ =
1

4

3∑
t=0

it(f + itg) ∗ f̃ + itg (3.1)

Therefore we can conclude that η(f ∗ g̃) = η′(f ∗ g̃) for all f, g ∈ Cc(Rd).
Now let (gα)α∈A be an approximate identity, i.e. a net in Cc(Rd) such that f ∗ g̃α → f

in the strong topology (see Moody and Strungaru [45, Definition 4.7.5]). Then

η(f) = lim
α

η(f ∗ g̃α) = lim
α

η′(f ∗ g̃α) = η′(f)

for all f ∈ Cc(Rd), which concludes the proof.
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3 Diffraction of random vector measures

Proof of Theorem 3.16. By Lemma 3.17, any two autocorrelation measures η, η′ are
equal, as we have η(f ∗ f̃) = η′(f ∗ f̃) = VarΦ(f): this means the autocorrelation
measure is unique if it exists. Furthermore, we have η(f ∗ f̃) = VarΦ(f) ≥ 0 for all
f ∈ Cc(Rd), so any η defined this way is positive definite.

We need to show that an autocorrelation measure η exists. To do this, pick any
ρ ∈ Cc(Rd) such that mRd(ρ) = 1: then we define the measure η on Cc(Rd) by the
following formula:

η(f) = E
[∫

Rd

∫
Rd

f(y − x)ρ(x) dΦ(x)dΦ(y)

]
− |ι|2mRd(f)

(This is the same formula as in Björklund and Byléhn [15, Definition 2.7], except for
the different setting and notation). This is a complex measure on Rd: we need to check
that this is the autocorrelation measure of Φ.

So let f ∈ Cc(Rd). Then we have

(f ∗ f̃)(y − x) =

∫
Rd

f(x− z)f(y − z) dz (*)

for all x, y ∈ Rd. Therefore

η(f ∗ f̃) = E
[∫

Rd

∫
Rd

(f ∗ f̃)(x− y)ρ(x) dΦ(x)dΦ(y)

]
− |ι|2mRd(f ∗ f̃)

= E
[∫

Rd

∫
Rd

∫
Rd

f(x− z)f(y − z)ρ(x) dΦ(x)dΦ(y) dz

]
− |ι|2mRd(f ∗ f̃) (*)

=

∫
Rd

E
[∫

Rd

∫
Rd

f(x− z)f(y − z)ρ(x) dΦ(x)dΦ(y)

]
dz − |ι|2mRd(f ∗ f̃)

(Fubini)

=

∫
Rd

E
[∫

Rd

∫
Rd

f(x)f(y)ρ(x+ z) dΦ(x)dΦ(y)

]
dz − |ι|2mRd(f ∗ f̃)

(Φ stationary)

= E
[∫

Rd

∫
Rd

f(x)f(y)

∫
Rd

ρ(x+ z) dz dΦ(x)dΦ(y)

]
− |ι|2mRd(f ∗ f̃) (Fubini)

= mRd(ρ)E
[∫

Rd

∫
Rd

f(x)f(y) dΦ(x)dΦ(y)

]
− |ι|2mRd(f ∗ f̃)

= E
[
Φ(f)Φ(f)

]
− |E[Φ(f)]|2

= Var(Φ(f))

Fubini is applicable because the term inside the integrals is continuous and compactly
supported as a function of x, y, z, and Φ is assumed to be locally square integrable.

Therefore, η(f ∗ f̃) = Var(Φ(f)) for all f ∈ Cc(Rd), which shows that η is indeed the
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3.3 Moments and autocorrelation of stationary random complex measures

autocorrelation measure of Φ.

If Φ = (Φj)
ℓ
j=1 is a stationary random Cℓ-measure, for every w ∈ Cℓ we obtain a

stationary random measure ⟨Φ, w⟩ =
∑ℓ

j=1wjΦj. For example, if w = (1, · · · , 1)⊤ is
the constant vector, then ⟨Φ, w⟩ =

∑ℓ
j=1Φj, while if w = ej for some j ∈ [ℓ], then

⟨Φ, w⟩ = Φj. Each one of these has its own autocorrelation measure: we define the
autocorrelation matrix of Φ, which contains the information of all these autocorrelation
measures. This is analogous to the “pair autocorrelation matrix” in [11].

Definition 3.18. Let Φ be a stationary random Cℓ-measure on Rd. Its (centered) auto-
correlation matrix H , if it exists, is the unique Cℓ×ℓ-valued measure with the following
property: for all w ∈ Cℓ, ⟨Hw,w⟩ is the autocorrelation measure of ⟨Φ, w⟩.

Theorem 3.19. Let Φ = (Φj)
ℓ
j=1 be a stationary random Cℓ-measure on Rd. Then

Φ has an autocorrelation matrix H = (Hjk)
ℓ
j,k=1, whose entries are determined by the

following formula:

Hjk(f ∗ f̃) = Cov(Φj(f),Φk(f))

for all f ∈ Cc(Rd), j, k ∈ [ℓ].

Furthermore, every coefficient of H is a linear combination of positive definite mea-
sures.

Proof. For every w ∈ Cℓ, the random measure ⟨Φ, w⟩ has a positive definite autocorre-
lation measure ηw, which by definition satisfies:

Var(⟨Φ(f), w⟩) = ηw(f ∗ f̃)

For j, k ∈ [ℓ] and t ∈ {0, 1, 2, 3}, let wj,k,t = ej+ itek and let ηj,k,t be the corresponding
autocorrelation measure. Then we define a matrix measure H by setting

Hjk :=
1

4

3∑
t=0

itηj,k,t
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3 Diffraction of random vector measures

for j, k ∈ [ℓ]. Using the polarization identity from before (3.1),

Hjk(f ∗ f̃) = 1

4

3∑
t=0

itηj,k,t(f ∗ f̃)

=
1

4

3∑
t=0

it Var(Φj(f) + itΦk(f))

= Cov(Φj(f),Φk(f))

and for any w = (wj)
ℓ
j=1 ∈ Cℓ, we have:

⟨H(f ∗ f̃)w,w⟩ =
ℓ∑

j,k=1

wjwkHjk(f ∗ f̃)

=
ℓ∑

j,k=1

wjwk Cov(Φj(f),Φk(f))

= Var

(
ℓ∑

j=1

wjΦj(f)

)
= Var(⟨Φ(f), w⟩)

Therefore the matrix of measures H we just defined is in fact the autocorrelation
matrix of Φ, and its coefficients are given as in the statement of the theorem.

Finally, by definition of the autocorrelation measure of a point process, ηj,k,t is positive
definite for all j, k ∈ [ℓ] and t ∈ {0, 1, 2, 3}, so its coefficients Hjk are linear combinations
of positive definite measures.

Note that, in the above proof, we are forced to consider complex measures to use the
polarization identity, even if the original random measures are positive. This is one of
the reasons we need to work with complex measures.

3.4 Ergodicity

If a stationary random measure Φ is ergodic, then one gets a formula for the autocor-
relation based on spatial averages. In this section we will prove a formula of this form
assuming the stationary random measure Φ is uniquely ergodic. This property is not
usually defined in probability theory textbooks, as it requires putting a topology on the
state space Ω: however, it will be satisfied for the point processes we consider later.

Definition 3.20. Let Ω be a compact metric space equipped with a continuous Rd-action
T . We say Ω is uniquely ergodic if it has a unique T -invariant probability measure.
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3.4 Ergodicity

Definition 3.21. A uniquely ergodic stationary random Cℓ-measure on Rd is a tuple
(Ω,Φ) such that

(i) Ω is a compact metric space equipped with a continuous Rd-action which makes
it uniquely ergodic, and

(ii) Φ : Ω → M(X,Cℓ) is a continuous Rd-equivariant map, i.e. for all x ∈ Rd and
ω ∈ Ω, we have TxΦ(ω) = Φ(Txω).

As Ω has a unique Rd-invariant probability measure, Φ is a random measure: thanks
to the equivariance we see that it is in fact a stationary random Cℓ-measure. As Ω

is compact, Φ is locally square integrable. As usual, we say Φ is a uniquely ergodic
stationary random measure, leaving the underlying space Ω implicit.

If Φ is a uniquely ergodic stationary random Cℓ-measure on Rd and w ∈ Cℓ, the
complex-valued stationary random measure ⟨Φ, w⟩ is also uniquely ergodic: for the rest
of this section we will focus on complex measures.

The following pointwise ergodic theorem holds for uniquely ergodic Rd-actions. It is
analogous to the classical pointwise ergodic theorem for uniquely ergodic N-actions. As
it is hard to find a reference for this result, we provide a proof for convenience.

Theorem 3.22 (Pointwise ergodic theorem for uniquely ergodic Rd-actions). Let F ∈
C(Ω), and ω ∈ Ω. Then

lim
R→∞

1

mRd(BR)

∫
BR

F (Txω) dx =

∫
Ω

F (ω′) dµ(ω′)

Proof. For R > 0, define the probability measure µR on Ω by

µR(F ) :=
1

mRd(BR)

∫
BR

F (Txω) dx

for F ∈ C(Ω).

By the Banach-Alaoglu theorem, the space of probability measures on Ω is compact
in the weak topology, so the net (µR)R>0 has an accumulation point.

Now we show every accumulation point is translation invariant: so let (Rn)n∈N be a
sequence of radii such that Rn → ∞ and a limit µ∞ = limn→∞ µRn exists in the weak
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3 Diffraction of random vector measures

topology. Then, for every F ∈ C(Ω) and x ∈ Rd, we have

|µRn(TxF )− µRn(F )| = | 1

mRd(BRn)

∫
BRn

TxF (Tyω)− F (Tyω) dy|

=
1

mRd(BRn)
|
∫
TxBRn

F (Tyω) dy −
∫
BRn

F (Tyω) dy|

≤ ∥F∥∞
mRd(BRn)

(mRd(TxBRn \BRn) +mRd(BRn \ TxBRn))

→ 0

Therefore µ∞(TxF ) = µ∞(F ) for all x ∈ Rd and F ∈ C(Ω), which means µ∞ is trans-
lation invariant. This means µ∞ must be equal to the unique Rd-invariant probability
measure µ on Ω, so in fact µR → µ in the weak topology as R → ∞.

Unwinding the definitions for any F ∈ C(Ω) yields

lim
R→∞

µR(F ) =

∫
Ω

F (ω′) dµ(ω′),

as claimed.

We can use this to characterize the intensity and autocorrelation of a uniquely ergodic
stationary random measure. As the proofs are similar, we only provide the proof for the
autocorrelation, which is harder.

Corollary 3.23. Let Φ be a uniquely ergodic stationary random measure on Rd with
underlying space Ω, and ω ∈ Ω. Then the intensity ι of Φ is given by the formula

ι = lim
R→∞

1

mRd(BR)

∫
BR

Φω(Txf) dx

for any f ∈ Cc(Rd) with mRd(f) = 1.

Corollary 3.24. Let Φ be a uniquely ergodic stationary random measure on Rd with
underlying space Ω, and ω ∈ Ω.

Then the autocorrelation η of Φ is given by the formula

η(f) + |ι|2mRd(f) = lim
R→∞

1

mRd(BR)

∫
BR

∫
Rd

f(x− y) dΦω(x) dΦω(y)

for all f ∈ Cc(Rd).

Proof. It suffices to consider functions of the form f = g ∗ g̃ for g ∈ Cc(Rd), as these are
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3.4 Ergodicity

dense in Cc(Rd). Then we have

η(g ∗ g̃) + |ι|2mRd(f) = E[|Φ(g)|2]

Applying the pointwise ergodic theorem to the right hand side, we obtain

η(g ∗ g̃) + |ι|2mRd(f) = lim
R→∞

1

mRd(BR)

∫
BR

|TzΦω(g)|2 dz

= lim
R→∞

1

mRd(BR)

∫
BR

∫
Rd

∫
Rd

g(x+ z)g(y + z) dΦω(x) dΦω(y) dz

The function (z, y, x) 7→ g(x+z)g(y + z) is in Cc(BR×Rd×Rd), so we can apply Fubini
to change the order of integration and apply a change of variables on z 7→ z − y to
obtain:

η(g ∗ g̃) + |ι|2mRd(f) = lim
R→∞

1

mRd(BR)

∫
Rd

∫
Rd

∫
BR

g(x+ z)g(y + z) dz dΦω(x) dΦω(y)

= lim
R→∞

1

mRd(BR)

∫
Rd

∫
Rd

∫
TyBR

g(x− y + z)g(z) dz dΦω(x) dΦω(y)

Now let R0 > 0 be such that g is supported in BR0 . Then the term under the integral
can only be nonzero if y ∈ BR+R0 , as otherwise g(z) = 0 for all z ∈ TyBR. Therefore, the
integral remains the same if we integrate y over BR+R0 and z over Rd, and the function
(y, x, z) 7→ g(x− y + z)g(z) is in Cc(BR+R0 × Rd × Rd), so we can apply Fubini again:

η(g ∗ g̃) + |ι|2mRd(f) = lim
R→∞

1

mRd(BR)

∫
BR+R0

∫
Rd

∫
Rd

g(x− y + z)g(z) dz dΦω(x) dΦω(y)

= lim
R→∞

1

mRd(BR)

∫
BR+R0

∫
Rd

(g ∗ g̃)(x− y) dΦω(x) dΦω(y)

= lim
R→∞

1

mRd(BR−R0)

∫
BR

∫
Rd

(g ∗ g̃)(x− y) dΦω(x) dΦω(y)

= lim
R→∞

1

mRd(BR)

∫
BR

∫
Rd

(g ∗ g̃)(x− y) dΦω(x) dΦω(y)

Where the last step holds because limR→∞
mRd (BR−R0

)

mRd (BR)
= 1. This concludes the proof.

Note that, by standard approximation arguments, the formulas in the above corollaries
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3 Diffraction of random vector measures

also hold when f = 1BR
.

3.5 Diffraction of stationary random vector measures

Recall that the autocorrelation measure is always positive definite. Therefore, by The-
orem 3.16, we can define the following:

Definition 3.25. Let Φ be a stationary random measure on Rd with autocorrelation
measure η. The (centered) diffraction measure η̂ of Φ is the Fourier transform of its
autocorrelation measure η.

Remark 3.26. The diffraction measure η̂ of Φ satisfies

Var(Φ(f)) = η̂(|f̂ |2)

for all f ∈ Cc(Rd). A measure satisfying this property is also called the Bartlett spectral
measure or structure factor [15, 20, 21].

Remark 3.27. Recall that, as was the case for the autocorrelation, one could define
the uncentered diffraction η̂+ which satisfies

E[|Φ(f)|2] = η̂+(|f̂ |2)

for all f ∈ Cc(Rd) instead. In this case, η̂+ = η̂ + |ι|2δ0, where ι is the intensity of Φ.
The term “diffraction” is often used to refer to the uncentered version, particularly in
the literature of aperiodic order: we will however always use the centered version unless
otherwise specified.

Example 3.28.

(i) Using the Poisson summation formula, we see that the lattice process has (cen-
tered) autocorrelation η = δZ2−mRd , hence it has (centered) diffraction η̂ = δZ2\{0}.
It has intensity ι = 1.

(ii) The Poisson process with intensity λ > 0 has (centered) autocorrelation η = λδ0,
hence it has diffraction η̂ = λmRd .

Analogously, in the vector-valued case, we define the diffraction matrix as follows:

Definition 3.29. Let Φ be a stationary random Cℓ-measure on Rd. The diffraction
matrix Ĥ of Φ is the componentwise Fourier transform of its autocorrelation matrix H .

The following lemma is a direct consequence of Theorem 3.19 and Theorem 2.5, to-
gether with the polarization identity Equation (3.1).
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3.6 Hyperuniformity

Lemma 3.30. Let Φ = (Φj)
ℓ
j=1 be a stationary random Cℓ-measure on Rd with auto-

correlation matrix H = (Hjk)
ℓ
j,k=1. Then the following hold:

(i) The entries of Ĥ are given by

Ĥjk(fg) = Cov(Φj(f),Φk(g))

for all f, g ∈ Cc(Rd) and j, k ∈ [ℓ].

(ii) For all w ∈ Cℓ, ⟨Ĥw,w⟩ is the diffraction measure of ⟨Φ, w⟩. That is, for all
f ∈ Cc(Rd) we have the identity

Var(⟨Φ, w⟩(f)) = ⟨Ĥw,w⟩(|f̂ |2)

In the scalar case, the Fourier transform of a positive definite measure is a positive
measure. Here, an analogous result holds.

Lemma 3.31. For all w ∈ Cℓ, ⟨Ĥw,w⟩ is a positive measure.

Proof. Let f ∈ Cc(Rd). Then, for all w ∈ Cℓ, we have ⟨Ĥw,w⟩(|f̂ |2) ≥ 0. As ⟨Ĥw,w⟩
is the diffraction measure of ⟨Φ, w⟩, it is positive.

In the uniquely ergodic case, the diffraction matrix vanishes at zero. Note that this
happens because we are using the centered autocorrelation measure: otherwise we would
get an atom at the origin related to the intensity (compare with [5, Proposition 9.2]).

Lemma 3.32. Assume Φ is uniquely ergodic. Then Ĥ({0}) = 0.

Proof. Björklund and Hartnick [16] prove this in the case where Φ is positive: the
same proof works when Φ is complex. Then, if Φ is a Cℓ-measure, for all w ∈ Cℓ,
⟨Ĥ({0})w,w⟩ = 0, as ⟨Ĥw,w⟩ is the diffraction of the uniquely ergodic stationary
random complex measure ⟨Φ, w⟩. This means that Ĥ({0}) is the zero matrix.

3.6 Hyperuniformity

Now we define the notion of hyperuniformity, introduced by Torquato and Stillinger [59]
in the context of point processes. Intuitively, hyperuniformity indicates a certain degree
of “order”, in the sense that the variance of the measure on large sets is less than one
would expect from random chance.

We will define hyperuniformity for complex-valued measures first, which is the classical
definition, and then we will extend it to vector-valued measures by using weights.

Definition 3.33. Let Φ be a stationary random (complex) measure on Rd.
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3 Diffraction of random vector measures

(i) We say Φ is hyperuniform if

lim
R→∞

VarΦ(BR)

Rd
= 0

(ii) We say Φ is Class I hyperuniform if

VarΦ(BR) = O(Rd−1)

as R → ∞.

The following examples justify the name “hyperuniformity”: informally, for a hype-
runiform random measure, the number variance VarΦ(BR) grows more slowly than it
would for a Poisson process.

Example 3.34.

(i) Let Φ be the Poisson process on Rd with intensity λ. Then the variance is given by
VarΦ(BR) = λmRd(BR), hence VarΦ(BR)

Rd = λmRd(B1) for all R > 0. This means Φ
is not hyperuniform.

(ii) Let ΦZd be the point process associated to the integer lattice on Rd. Then one
can compute that VarΦ(BR) = O(Rd−1) as R → ∞: in particular, Φ is Class I
hyperuniform.

The bound we get for the integer lattice is the “best possible” in the following sense:
there exists no stationary random measure Φ such that VarΦ(BR) = O(Rd−k) as R → ∞
for k > 1. This follows from the following theorem.

Theorem 3.35 (Beck’s Theorem [15, Theorem 5.1]). Let Φ be a stationary point process
on Rd. Then, for every R0 > 0 there exists a C > 0 such that

1

R

∫ R

0

Var(#Φ ∩Br) dr ≥ CRd−1, R ≥ R0

In particular, there exists no stationary point process Φ such that Var(#Φ ∩ BR) =

O(Rd−k) for any k > 1.

One of the most important properties of hyperuniformity is that it can be characterized
in terms of the diffraction measure: in particular, hyperuniformity is equivalent to fast
decay of the diffraction measure at the origin. While this has been known at least
experimentally since its invention, most existing proofs of this fact focus on the case
where the diffraction measure is absolutely continuous, as this is the most commonly
considered case in materials science and point process theory. For our purposes, we will
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3.6 Hyperuniformity

need the following criteria due to Björklund and Hartnick [16], which are valid without
making any assumptions on the type of the diffraction measure.

Theorem 3.36 ([16]). Let Φ be a stationary random measure on Rd and η̂ its diffraction
measure.

(i) For α ∈ [0, 1], we have Var(Φ(BR)) = O(Rd−α) as R → ∞ if and only if η̂(Br) =

O(rd+α) as r → 0.

(ii) For α ∈ [0, 1), we have Var(Φ(BR)) = o(Rd−α) as R → ∞ if and only if η̂(Br) =

o(rd+α) as r → 0.

(iii) Φ is hyperuniform if and only if η̂(Br) = o(rd) as r → 0.

(iv) Φ is Class I hyperuniform if and only if η̂(Br) = O(rd−1) as r → 0.

Note that bounds in the above theorem only hold for α ≤ 1, as we have already seen
that VarΦ(BR) grows at least as Rd−1. However, the diffraction η̂ can decay faster than
rd−1: indeed, if Φ is the point process associated to the integer lattice, then η̂(Br) = 0

for all r < 1.
Now let Φ be a stationary random Cℓ-measure on Rd. Recall that, for every w ∈ Cℓ, we

obtain a stationary random complex measure ⟨Φ, w⟩. Then we define hyperuniformity
for Φ depending on the weights w ∈ Cℓ.

Definition 3.37. Let Φ be a stationary Cℓ-valued measure on Rd, and w ∈ Cℓ.

(i) We say Φ is hyperuniform for weights w if ⟨Φ, w⟩ is hyperuniform.

(ii) We say Φ is Class I hyperuniform for weights w if ⟨Φ, w⟩ is Class I hyperuniform.

(iii) We say Φ is (Class I) hyperuniform for constant weights if it is (Class I) hyper-
uniform for weights w = (1, . . . , 1)⊤.
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4 From substitutions to point
processes

In this section, we introduce the basics of multi-color point sets, tilings and substitu-
tions. We show that every well-behaved substitution rule gives rise to a stationary vector
measure, and hence we are able to ask about its diffraction and hyperuniformity prop-
erties. Furthermore, we prove that the diffraction matrix of a substitution rule satisfies
a renormalisation relation, and express it in term of a self-similar density.

There exists a large literature on substitution rules, substitution rules and tilings:
see [5, 23, 48] for some surveys on the topic. However, the terminology, notation and
particular formalism are not standardized, so we will define the terms in the way that
is most convenient for us.

There is a discrepancy we need to deal with: most of the literature on substitution
rules concerns itself with substitutions of tilings, but diffraction and hyperuniformity
are properties of point sets and point processes. Given a tiling, one can produce a set
of points by choosing a center in each tile, but this choice is not canonical.

We will follow the approach of Lagarias and Wang [38], as well as Lee, Moody, and
Solomyak [41]. They defined substitution rules acting not on tilings, but families of dis-
crete sets, and showed that self-similar families exist if and only if they can be associated
with a self-similar tiling: therefore, both theories are equivalent.

4.1 Substitution rules

4.1.1 Multi-color sets

We denote the powerset of Rd by P(Rd), and the set of finite subsets of Rd by Pfin(Rd).

Definition 4.1. A multiset in Rd with ℓ colors, or ℓ-multiset in Rd, is a multiset in Rd

with alphabet [ℓ]: that is, an ℓ-tuple Λ = (Λ1, · · · ,Λℓ) of subsets of Rd.

Remark 4.2. This terminology is not standard: some authors [40] use “multiset” to
refer to our definition, while others [38] use it to refer to sets with multiplicity. We stick
to our definition, as we will not need to consider sets with multiplicity.
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4 From substitutions to point processes

Notation 4.3. Let Λ = (Λj)j∈[ℓ],Λ
′ = (Λ′

j)j∈[ℓ] be multisets in Rd with ℓ colors.

• If B ⊂ Rd, we define the restriction of Λ to B, written Λ ∩ B, as the multiset
given by (Λ ∩B) = (Λj ∩B)j∈[ℓ].

• For x ∈ Rd, we define the translate of Λ by x, written TxΛ, as the multiset given
by (TxΛ)j = TxΛj for all j ∈ [ℓ].

• For λ > 0, we define the dilate of Λ by λ, written DλΛ, as the multiset given by
(DλΛ)j = DλΛj for all j ∈ [ℓ].

• For j ∈ [ℓ], we let oj be the multiset which has {0} in the j-th color and is empty
for all other colors: that is, oj = (oj,k)k∈[ℓ] where

oj,k =

{0} if j = k,

∅ otherwise.

• A colored point is a multiset of the form Txoj for some x ∈ Rd and j ∈ [ℓ].

• We say Λ is a subset of Λ′, written Λ ⊂ Λ′, if Λj ⊂ Λ′
j for all j ∈ [ℓ]. If p is a

colored point and p ⊂ Λ, we write p ∈ Λ.

• We let #Λ ∈ Cℓ be the vector given by #Λ = (#Λj)j∈[ℓ].

• We say Λ is r-uniformly discrete if the union
⋃

j∈[ℓ] Λj is r-uniformly discrete, i.e.
the distance between any two distinct points in

⋃
j∈[ℓ] Λj is at least r.

• We say Λ is R-relatively dense with radius R if each Λj is R-relatively dense for all
j ∈ [ℓ], i.e. for every x ∈ Rd and j ∈ [ℓ], there exists y ∈ Λj such that d(x, y) < R.

• We say Λ is Delone if it is both uniformly discrete and relatively dense.

Remark 4.4. Other sources define multi-color sets as subsets of P(Rd × [ℓ]) instead:
that is, sets of tuples (x, j) where x ∈ Rd is a point and j ∈ [ℓ] is a color. There is
a canonical bijection P(Rd)ℓ ∼= P(Rd × [ℓ]), so we can also think of multi-color sets
as subsets of Rd where every point is labeled with a color. It is useful to keep both
viewpoints in mind.

Remark 4.5. There is nothing, in principle, stopping us from defining multisets with
infinitely many colors. There are some important examples of this kind: possibly the
most famous is the pinwheel tiling, which contains infinitely many rotations of the same
basic tiles [5]. There also has been work on the case where one uses a compact space of
labels instead of a finite set [42]. With some effort, the definitions in this section could
be extended to this case, but we will not do so here.
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4.1 Substitution rules

4.1.2 Substitution rules and self-similar sets

Definition 4.6. A substitution rule on Rd with ℓ colors is a pair S = (λ,∆) where

• λ > 1 is the scaling constant of S, and

• ∆ ∈ Pfin(Rd)ℓ×ℓ is the displacement matrix of S.

Definition 4.7. Let S = (λ,∆) be a substitution rule with ℓ colors, and let ∆ =

(∆jk)j,k∈[ℓ] be the entries of the displacement matrix. Then we define its associated
substitution map ϱ : P(Rd)ℓ → P(Rd)ℓ as follows: if Λ = (Λj)j∈[ℓ], its image ϱ(Λ) =

(Λ′
j)j∈[ℓ] is given by

Λ′
j =

ℓ⋃
k=1

⋃
x∈∆jk

TxDλΛk

for all j ∈ [ℓ].

Note that we can also write this as

ϱ(Λ) =
⋃
p∈Λ

ϱ(p)

where the union runs over all colored points p in Λ.
Substitution rules are important because they can be used to define and construct

self-similar multisets.

Definition 4.8. Let S be a substitution rule with ℓ colors. A multiset Λ ∈ P(Rd)ℓ is
self-similar (with rule S) if there exists N ∈ N such that

(i) there exists a colored point pΛ ∈ Λ such that

Λ =
∞⋃
n=0

ϱnN(pΛ), and

(ii) For all n ∈ [N ], the union

ϱn(pΛ) =
⋃̇

q∈ϱn−1(Λ)
ϱ(q)

is disjoint.

We call pΛ the seed point of Λ. We will leave out the reference to S when it is clear
from the context.

Remark 4.9. The above definition requires some explanation, as it does not exactly
match the usual definitions. First, condition (i) guarantees that ϱN(Λ) = Λ, is an
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4 From substitutions to point processes

“irreducible Delone set satisfying an inflation functional equation” in the sense of Lagarias
Lagarias and Wang [38]. Condition (ii) guarantees that the substitution map does not
send two points to the same point: therefore ϱN(Λ) = Λ also holds if one counts
multiplicities. If one defines substitution rules acting on tilings instead of multi-color
sets, condition (ii) automatically holds, and condition (i) implies that Λ is S-legal (see
Definition 4.31), a condition which is usually included in the definition of a self-similar
tiling.

Central to the study of substitution rules is the substitution matrix M , a matrix which
encodes many of its properties.

Definition 4.10. The (full) substitution matrix of S is the matrix M ∈ Nℓ×ℓ given by

Mjk = #∆jk

for j, k ∈ [ℓ].

In Chapter 7, we will define a spherical substitution matrix Msph ∈ Nℓ×ℓ, so later we
will call M the full substitution matrix to avoid confusion: in the literature, the term
“substitution matrix” or “inflation matrix” can refer to either one. For now we will call
it “substitution matrix”.

Definition 4.11. We say S is primitive if the substitution matrix M is a primitive
matrix: that is, if there exists N ∈ N such that all of the entries of MN are positive.

Primitivity of a substitution rule has the following geometric interpretation: if S is
primitive, then there exists N0 ∈ N such that for all j ∈ [ℓ], ϱN(oj) contains a point of
every color. This implies that every image of ϱN contains a point of every color.

Furthermore, if S is primitive, the substitution matrix satisfies the well-known Perron–
Frobenius theorem:

Lemma 4.12 (Perron–Frobenius Theorem, [51]). Let M be a primitive matrix. Then:

(i) M has a positive eigenvalue λPF , its Perron–Frobenius eigenvalue (or PF eigen-
value for short), such that every other eigenvalue has a strictly smaller absolute
value.

(ii) λPF has algebraic and geometric multiplicity 1.

(iii) The PF eigenvalue λPF has an eigenvector with strictly positive entries.

(iv) Every nonnegative eigenvector of M is an eigenvector of λPF .

An eigenvector of λPF with strictly positive entries is called a Perron–Frobenius eigen-
vector, or PF eigenvector for short: it may be a left or right PF eigenvector.
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We still have not proven that self-similar multisets exist (for nice substitution rules).
A good way to prove S admits a self-similar multiset is to show that it is stone. A stone
substitution rule is a substitution rule that produces tilings of the plane, as we will now
explain.

Definition 4.13. Let τ1, · · · , τℓ be closed subsets of Rd and Λ = (Λ1, · · · ,Λℓ) be a
multiset in Rd with ℓ colors.

(i) We say Λ patches Rd with prototiles τ1, · · · , τℓ if, for all j, k ∈ [ℓ], x ∈ Λj, y ∈ Λk

such that (x, j) ̸= (y, k), Txτj ∩Tyτk has measure zero. In this case, we say the set
{Txτj | j ∈ [ℓ], x ∈ Λj} is a patch.

(ii) If Λ patches Rd with prototiles τ1, · · · , τℓ, its support is the union suppΛ =⋃
j∈[ℓ],x∈Λj

Txτj.

(iii) We say Λ tiles S ⊂ Rd with prototiles τ1, · · · , τℓ if it patches Rd and suppΛ = S.
Then the set {Txτj | j ∈ [ℓ], x ∈ Λj} is a tiling of S by the prototiles τ1, · · · , τℓ.

Remark 4.14. Sometimes, tilings are defined using a topological condition instead,
specifically requiring that tiles intersect only at their boundaries. For sufficiently nice
prototiles, this is equivalent to the above definition. We follow the definition in [38].

Definition 4.15. Let S be a substitution rule with ℓ colors. We say the nonempty,
compact subsets τ1, · · · , τℓ ⊂ Rd are the canonical prototiles of S if they satisfy the
following equation:

Dλτj =
ℓ⋃

k=1

⋃
x∈∆kj

Txτk

for all j ∈ [ℓ].

The above equation is called the multi-tile functional equation by [38].
The space of all compact subsets of Rd is a complete metric space with respect to the

Hausdorff metric. Then Banach’s fixed point theorem guarantees the following.

Theorem 4.16 ([52, Theorem 4.89]). Let S be a substitution rule. Then there exist
canonical prototiles τ1, · · · , τℓ of S, and they are unique.

In general, the canonical prototiles could have measure zero or be otherwise patho-
logical. We will want to assume this is not the case.

Definition 4.17. Let S be a substitution rule. λ the scaling constant and λPF the PF
eigenvalue of the substitution matrix M . We say S is a stone substitution rule if the
following properties hold:

(i) All of the canonical prototiles τ1, · · · , τℓ have positive Lebesgue measure.
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4 From substitutions to point processes

(ii) For all j ∈ [ℓ], ϱ(oj) tiles Dλτj with the canonical prototiles.

Theorem 4.18. Let S be a primitive, stone substitution rule, λ its scaling constant, M
its substitution matrix, and λPF the PF eigenvalue of its substitution matrix. Then the
following hold.

(i) The vector (mRd(τj))j∈[ℓ] is a left PF eigenvector of M .

(ii) The PF eigenvalue of M is λPF = λd

Proof. By definition of the canonical prototiles, we have

Dλτj =
ℓ⋃

k=1

⋃
x∈∆kj

Txτk (*)

for all j ∈ [ℓ]. Furthermore, Condition (ii) of the definition of a stone substitution rule,
the intersection Txτk ∩ Tyτk′ has Lebesgue measure 0. Then, by taking the measure on
both sides of (∗), we obtain

λdmRd(τj) =
ℓ∑

k=1

∑
x∈∆kj

mRd(τk)

In other words, if we set vPF = (mRd(τj))j∈[ℓ], we have λdvPF = MTvPF . This means
vPF is a nonnegative eigenvector of M with eigenvalue λd: by the Perron–Frobenius
theorem, this is only possible if vPF is a PF eigenvector and λd is the PF eigenvalue.
This concludes the proof.

Then, Lagarias and Wang [38] proved that being stone is equivalent to admitting a
self-similar Delone multiset.

Theorem 4.19 ([38, Theorem 2.4]). Let S be a primitive substitution rule. Then the
following conditions are equivalent.

(i) There exists a self-similar Delone Λ.

(ii) There exists a self-similar Delone Λ which tiles Rd with the canonical prototiles
τ1, · · · , τℓ.

(iii) S is a stone substitution rule.

Therefore, if we want to prove a primitive substitution rule admits a self-similar Delone
multiset, it suffices to prove it is stone, which is something one can do by drawing pictures
of the prototiles: see [5, Section 6] or Section 7.2.3 for examples. Furthermore, it means
the definition of substitution rules using point sets is equivalent to the definition using
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tilings (such as in [5, 48]), as every substitution rule with a Delone self-similar set is a
stone substitution rule.

Remark 4.20. Note that statement of Lagarias and Wang [38, Theorem 2.4] only
says that ϱN(Λ) = Λ, which is weaker than our definition of self-similar multisets,
which requires the existence of a seed point pΛ. However, the Λ given in the proof is
constructed from a seed point, so it is also self-similar in our sense.

Remark 4.21 (Recentering). Let S be a stone substitution rule and τ1, · · · , τℓ. Then,
for every tuples of vectors z = (z1, · · · , zℓ) ∈ Rd we can define a recentered substitution
rule TzS which has the same scaling constant and is a stone substitution rule with
canonical prototiles τ ′j = Tzjτj for all j ∈ [ℓ]. Its displacement matrix ∆′ = (∆′

jk)j,k∈[ℓ]

is given by
∆′

jk = {x+ λzj − zk | x ∈ ∆jk},

where ∆jk are the entries of the displacement matrix of S.
The recentered substitution rule TzS produces the same self-similar tilings as S, so

one would like whatever properties we study to be invariant under recentering. In fact,
the criteria for hyperuniformity we will prove in Chapter 6 will only depend on the
substitution matrix M , hence they will not depend on the choice of recentering.

4.2 Substitution spaces and counting processes

In this section, we associate a vector point process to each primitive, stone, FLC substi-
tution rule, and study its properties. For this, we will first define the substitution space
of a substitution rule, and will use it to define a vector point process.

4.2.1 Hulls of FLC sets

In this section, we define FLC multisets, their hulls, and their basic properties. All
results in this section are well-known for FLC sets and tilings [40, 48, 50] and their
extension to multisets is straightforward.

Definition 4.22. Let Λ be a Delone ℓ-multiset in Rd. We say Λ is FLC (or has finite
local complexity) if the following holds: for all compact K ⊂ Rd, the set of K-patterns

{TxΛ ∩K | x ∈ Rd}

has finitely many equivalence classes under translation.
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4 From substitutions to point processes

We denote the set of FLC ℓ-multisets in Rd by Pℓ
FLC(Rd). If Λ is a Delone ℓ-multiset

which tiles Rd, there is a convenient way to check whether it’s FLC: intuitively, Λ is
FLC if there are only finitely many ways of putting tiles next to each other in the tiling
given by Λ.

Lemma 4.23 ([48]). Let Λ be a Delone ℓ-multiset in Rd which tiles Rd with prototiles
τ1, · · · , τℓ. Assume the set of 2-patches

T (2) := {p, q ∈ Λ | suppp ∩ supp q ̸= ∅}

has finitely many equivalence classes under translation. Then Λ is FLC.

In particular, in R2, the above condition is satisfied if the tiling defined is edge-to-edge,
i.e. the tiles are polygons and their intersections are sides or corners. More generally, Λ
is FLC if it defines a tiling which is sibling edge-to-edge as defined by Goodman-Strauss
[32].

Definition 4.24. Let Λ be an FLC ℓ-multiset in Rd, K ⊂ Rd be compact and V ⊂ Rd

be open. We define the cylinder set

UK,V (Λ) = {Λ′ ∈ Pℓ
disc(Rd) | ∃x ∈ V : TxΛ

′ ∩K = Λ ∩K}.

The local topology on Pℓ
disc(Rd) is the topology generated by the cylinder sets UK,V (Λ)

for all compact K ⊂ Rd, open V ⊂ Rd, and Λ ∈ Pℓ
disc(Rd).

In fact, these sets can be used to define a uniformity for the space Ω [17, 44, 50, 60].

Theorem 4.25 ([50]). Let Λ be a Delone multiset in Rd. Then the following are equiv-
alent:

(i) Λ is FLC.

(ii) The set {TxΛ | x ∈ Rd} is relatively compact in the local topology.

Remark 4.26. If Λ is not FLC, one can use a coarser topology, such as the local rubber
topology, to get similar results. In the FLC case, this is equivalent to the local topology
[8].

Definition 4.27. Let Λ be an FLC multiset in Rd. The hull of Λ is the set

ΩΛ = {TxΛ | x ∈ Rd}

where the closure is taken in the local topology.

Definition 4.28. Let Λ be an FLC multiset in Rd.

52



4.2 Substitution spaces and counting processes

• Λ is repetitive if, for every finite p ⊂ Λ, the set

{x ∈ Rd | Txp ⊂ Λ}

is relatively dense.

• Λ has uniform cluster frequencies if, for all finite p ⊂ Λ, the limit

lim
R→∞

1

mRd(BR)
#{x ∈ BR : Txp ⊂ TyΛ}

exists uniformly for y ∈ Rd.

Theorem 4.29 ([40, 50]). Let Λ be an FLC multiset in Rd. Then

(i) Λ is repetitive if and only if ΩΛ is a minimal dynamical system, and

(ii) Λ has uniform cluster frequencies if and only if ΩΛ is uniquely ergodic.

Remark 4.30. Theorem 4.29 has the following consequence: for all Λ1,Λ2 ∈ ΩΛ and
all compact K ⊂ Rd, there exists a translation x ∈ Rd such that TxΛ1 ∩K = Λ2 ∩K:
one says Λ and Λ′ are “locally isomorphic” [48].

Now we turn to the specific case of Delone multisets coming from substitution rules.
In the last section, we already considered some multisets associated to substitution rules,
namely the self-similar sets. In order to associate a dynamical system to a substitution
rule, we will relax this notion as follows.

Definition 4.31. Let S be a substitution rule on Rd with ℓ colors.

(i) An ℓ-multiset Λ in Rd is S-legal if the following holds: for every finite subset
p ⊂ Λ there exists a colored point q and N ∈ N such that p ⊂ ϱN(p). In other
words, there exists j ∈ [ℓ] and N ∈ N such that ϱN(oj) contains a translate of p.

(ii) The substitution space ΩS is the set of all S-legal Delone ℓ-multisets.

Remark 4.32. Note that any self-similar multiset Λ, using our definition, is S-legal. If
pΛ is the seed point of Λ, we have Λ =

⋃∞
n=0 ϱ

nN(pΛ) by definition, hence every finite
subset of Λ is contained in ϱnN(pΛ) for some n ∈ N. In particular, if S is primitive and
stone, ΩS is not empty.

Here, the fact that Λ is constructed from a seed point is important. If Λ is a Delone
multiset which decomposes as Λ = Λ1∪̇Λ2 with ϱ(Λ1) = Λ1 and ϱ(Λ2) = Λ2, Λ may
not be legal, as a finite subset p ⊂ Λ that contains points from both Λ1 and Λ2 may
not necessarily be contained in ϱN(q) for any colored point q, N ∈ N: see [5, Example
4.2]. This is why most sources include legality in the definition of self-similarity for sets
or tilings.
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4 From substitutions to point processes

Let S be a substitution rule. We say S is FLC if it admits an FLC self-similar multiset
Λ.

Theorem 4.33 ([48]). Let S be a primitive, stone, FLC substitution rule on Rd with ℓ

colors. Then:

(i) Every legal multiset Λ is FLC, repetitive and has uniform cluster frequencies.

(ii) For every legal Λ, ΩΛ = ΩS .

(iii) Every Λ ∈ ΩS tiles Rd with the canonical prototiles τ1, · · · , τℓ.

(iv) The substitution space ΩS is compact, minimal and uniquely ergodic.

Furthermore, the substitution map acts on the substitution space, as follows.

Theorem 4.34 ([56]). The substitution map ϱ has the following properties:

(i) The restricted map ϱ : ΩS → ΩS is a continuous surjection.

(ii) For all x ∈ Rd and Λ ∈ ΩS , ϱ(TxΛ) = Tλxϱ(Λ).

Remark 4.35. One may ask if ϱ is an homeomorphism. In fact [55], this is the case
if and only if S is aperiodic, i.e. for all Λ ∈ ΩS there exists no x ∈ Rd \ {0} such that
TxΛ = Λ.

4.2.2 The vector point process associated to a substitution rule

In this section, we will define the vector point process associated to an FLC set or substi-
tution rule, and use it to define its autocorrelation, diffraction and hyperuniformity. We
will also show that this definition is equivalent to the ergodic definition of autocorrelation
due to Hof [34], other than the fact that we use the centered autocorrelation.

Definition 4.36. (i) Let Λ an FLC ℓ-multiset in Rd which is repetitive and has uni-
form cluster frequencies. Then the vector point process Φ = (Φ1, · · ·Φℓ) associated
to Λ is the ℓ-point process with components

Φj: ΩΛ −→ M(Rd), (Λk)k∈[ℓ] 7→
∑
x∈Λj

δx

(ii) If S is a primitive, stone, FLC substitution rule, the vector point process associated
to S is the vector point process associated to any Λ ∈ ΩS .

Note that the latter is well-defined: for any Λ ∈ ΩS , we obtain the same hull ΩΛ = ΩS ,
hence the same vector point process Φ.
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4.2 Substitution spaces and counting processes

Theorem 4.37. Let Φ be the vector point process associated to a FLC multiset Λ which
is repetitive and has uniform cluster frequencies, or the vector point process associated to
a primitive, stone, FLC substitution rule S. Then Φ is a uniquely ergodic vector point
process on Rd.

Proof. It suffices to show the theorem when Φ is the vector point process associated to
an FLC multiset Λ, as the vector point process associated to a substitution rule S is
also of this form.

As seen in Remark 4.30, all elements of ΩΛ are locally isomorphic, hence there exists
r > 0 such that every Λ ∈ ΩS is r-uniformly discrete. This implies there exists a
constant C > 0 such that, for all j ∈ [ℓ],

|Φω(f)j| =
∑
x∈Λj

f(x) ≤ C∥f∥∞mRd(supp f)

which means that Φ is a continuous linear map ΩS → M(Rd,Cℓ).
By construction, Φ is equivariant under the action of Rd: as ΩS is a uniquely ergodic

dynamical system, this means Φ is a uniquely ergodic stationary random measure on
Rd. This concludes the proof.

Remark 4.38. Here we are implicitly using the unique ergodicity of ΩS , as otherwise we
would need to choose a specific probability measure µ on ΩΛ. In general, every ergodic
component of ΩΛ would give rise to a different ergodic point process: then the theorems
from Section 3.4 would apply not to every element of ΩΛ, but only to a set of generic
multisets.

Now we can extend all properties of point processes we defined in Chapter 3 to sub-
stitution rules.

Definition 4.39. Let S be a primitive, stone, FLC substitution rule, and Φ be its
associated vector point process.

(i) The autocorrelation measure η̂w of S with weights w ∈ Cℓ is the autocorrelation
measure of the random stationary measure ⟨Φ, w⟩.

(ii) The intensity ι of S is the intensity of Φ.

(iii) The autocorrelation matrix of S is the autocorrelation matrix of Φ.

(iv) The diffraction matrix of S is the diffraction matrix of Φ.

(v) We say S is hyperuniform for weights w if Φ is hyperuniform for weights w.

(vi) We say S is Class I hyperuniform for weights w if Φ is Class I hyperuniform for
weights w.
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4 From substitutions to point processes

So let S be a primitive, stone, FLC substitution rule, and Φ be its associated vector
point process. Thanks to the unique ergodicity we get the following expression the
autocorrelation of ⟨Φ, w⟩ as a weighted spatial average, which follows from Corollary
3.24.

Corollary 4.40. Let w ∈ Cℓ. Then the autocorrelation of ⟨Φ, w⟩ satisfies

η(f) + |⟨ι, w⟩|2mRd(f) = lim
R→∞

1

mRd(BR)

∑
j,k∈[ℓ]

wjwk

∑
x∈Λj∩BR

∑
y∈Λk

f(y − x)

In the literature of aperiodic order, it is customary to define the autocorrelation of an
FLC set via a formula like the right hand side of the equation in Corollary 4.40: this
approach was introduced by Hof [34]. This means our definition of the autocorrelation
coincides with the usual definition for FLC, minimal, uniquely ergodic sets, other than
the fact that we are using the centered autocorrelation instead of the uncentered version,
which explains the extra |⟨ι, w⟩|2mRd(f) term (see Remark 3.15).

By the ergodicity of Φ, we also get a similar result for the intensity of Φ: namely,
ι = (freqΛ(oj))j∈[ℓ], where

freqΛ(oj) = lim
R→∞

1

mRd(BR)
#{x ∈ BR : Txoj ∈ Λ}

is the relative frequency of the color j in Λ.

The above formula for the autocorrelation can be used to get a criterion for hyper-
uniformity which depends only on a single sample. This highlights the fact that, even
though hyperuniformity is most easily defined in a probabilistic way, it is also a statement
about the geometry of particular S-legal sets.

Corollary 4.41. Let w ∈ Cℓ. Then S is hyperuniform for weights w ∈ Cℓ if and only
if, for some ω ∈ ΩS , we have

lim
R1,R2→∞

1

mRd(BR1)

∑
j,k∈[ℓ]

∑
x∈Λj∩BR1

∑
y∈Λk

wjwk1BR2
(x− y)− |⟨ι, w⟩|2mRd(BR1)

 = 0

Proof. One has to show, with standard arguments in ergodic theory, that the formula
for the autocorrelation in Corollary 4.40 holds with f = 1BR2

,
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4.3 Renormalisation relations

4.3 Renormalisation relations

4.3.1 Renormalisation measures and the normalized Fourier
matrix

Let S be an FLC, primitive, stone substitution rule with scaling constant λ and dis-
placement matrix ∆ = (∆jk)j,k∈[ℓ].

Theorem 4.42 (Renormalisation of the vector point process associated to a substitu-
tion rule). The vector point process Φ = (Φj)j∈[ℓ] associated to S satisfies the following
relations

Φk
d
=

ℓ∑
j=1

∑
x∈∆kj

TxDλΦj

for all k ∈ [ℓ]. We call these the renormalisation relations for Φ.

Proof. Let µ be the unique translation invariant probability measure on the hull ΩS . As
ϱ(TxΛ) = Tλxϱ(Λ), one can check ϱ∗µ = µ ◦ ϱ is also a translation invariant probability
measure on ΩS : by unique ergodicity this means ϱ∗µ = µ.

Let ϱ∗Φ = (Φ′
j)j∈[ℓ] be the random vector measure defined by concatenating ϱ : ΩS →

ΩS and Φ : ΩS → M(Rd,Cℓ). Explicitly, ϱ∗Φ is given by

Φ′
k =

ℓ∑
j=1

∑
x∈∆kj

TxDλΦj

for all k ∈ [ℓ]. But we have ϱ ◦ µ = µ, hence ϱ∗Φ
d
= Φ. Then, by comparing the k-th

components, we obtain

Φk
d
= Φ′

k =
ℓ∑

j=1

∑
x∈∆kj

TxDλΦj

If we consider the intensity of both sides of the renormalisation relations, we obtain
the following well known result.

Corollary 4.43. The intensity ι of S satisfies

ι = λ−dMι.

Therefore, ι is a right PF eigenvector of the substitution matrix M .
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4 From substitutions to point processes

Now we will use Theorem 4.42 to obtain a similar result for the diffraction matrix Ĥ :
this will be the renormalisation relation for the diffraction matrix, originally introduced
by Baake, Gähler, and Mañibo [11].

Definition 4.44. The normalized Fourier matrix of S is the matrix function A : Rd →
Cℓ×ℓ with entries Ajk(ξ) given by

Ajk(ξ) = λ−d
∑

x∈∆jk

e2πi⟨x,ξ⟩.

Remark 4.45. Let M be the (full) substitution matrix of S. Then we have:

A(0) = λ−dM

Theorem 4.46. The diffraction matrix measure Ĥ satisfies

Ĥ = A(Dλ−1Ĥ)A∗

where the product of matrix functions with matrix measures is defined by the matrix
product formula, as in Definition 3.4.

In order to prove this theorem, recall the following property of the Fourier transform
of functions.

Lemma 4.47. Let f ∈ L2(Rd) be a Fourier transformable function on Rd, x ∈ Rd. Then

F(Dλ−1T−xf)(ξ) = λ−de2πi⟨x,ξ⟩DλF(f)(ξ)

Proof. By density, it suffices to assume f ∈ L1(Rd) ∩ L2(Rd). Then

F(Dλ−1T−xf)(ξ) =

∫
Rd

f(λ(z + x))e−2πi⟨z,ξ⟩ dz

=

∫
Rd

f(u)e−2πi⟨λu−x,ξ⟩ λ−ddu (Substitute u = λ(z + x))

= λ−de2πi⟨x,ξ⟩
∫
Rd

f(u)e−2πi⟨u,λ−1ξ⟩ du

= λ−de2πi⟨x,ξ⟩Dλf̂(ξ)

Proof of Theorem 4.46. For x ∈ Rd, let c(x) : Rd → Cℓ be the function defined by
c(x)(ξ) = e2πi⟨x,ξ⟩.
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4.3 Renormalisation relations

Componentwise, the equation in the statement of the theorem reads

Ĥmn = λ−2d
∑
j,k∈[ℓ]

∑
x∈∆mj

y∈∆nk

c(x− y)Dλ−1Ĥjk.

It suffices to check the equation holds for all functions of the form |f̂ |2 for f ∈ Cc(Rd),
as this uniquely determines the Fourier transform of a measure. So let f ∈ Cc(Rd).
Then, using the properties of the diffraction matrix and Lemma 4.47, we get

Ĥmn(|f̂ |2) = Cov(Φm(f),Φn(f)) (Definition of diffraction measure)

= Cov

 ℓ∑
j=1

∑
x∈∆mj

TxDλΦj(f),
ℓ∑

k=1

∑
y∈∆nk

TyDλΦk(f)

 (Self-similarity of Φ)

= Cov

 ℓ∑
j=1

∑
x∈∆mj

Φj (Dλ−1T−xf) ,
ℓ∑

k=1

∑
y∈∆nk

Φk (Dλ−1T−yf)


=

ℓ∑
j,k=1

∑
x∈∆mj

y∈∆nk

Ĥjk

(
(λ−dc(x)Dλf̂)(λ−dc(y)Dλf̂)

)

=
ℓ∑

j,k=1

∑
x∈∆mj

y∈∆nk

Ĥjk(λ
−2dc(x− y)|Dλf̂ |2)

= λ−2d

ℓ∑
j,k=1

∑
x∈∆mj

y∈∆nk

c(x− y)Dλ−1Ĥjk(|f̂ |2).

This completes the proof.

4.3.2 Renormalisation via density functions

In this section, we define self-similar densities as a tool to study the diffraction measure
Ĥ .

Definition 4.48. Let M ∈ M(Rd,Cℓ×ℓ) be a matrix valued measure on Rd. A density
of M is a tuple (h, ν) where

(i) ν is a positive (scalar, and not necessarily σ-finite) measure on Rd, and

(ii) h is a locally integrable Cℓ×ℓ-valued function on Rd such that M = hν.

We call h the density function of M with respect to the base ν.

Example 4.49.
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4 From substitutions to point processes

• A Cℓ×ℓ-measure M on Rd is pure point if and only if the function h : Rd → Cℓ

given by h(ξ) = M({ξ}) is a density function of M with respect to the counting
measure ν. (Note that the counting measure is not a measure in the Bourbaki
sense, as it is not σ-finite, but hν still makes sense as a matrix valued measure
since h is locally integrable with respect to ν).

• A Cℓ×ℓ-measure M on Rd is absolutely continuous if and only if it has a density
with respect to the Lebesgue measure mRd .

• Let M be a Cℓ×ℓ-measure. Recall that there exists a total variation measure
ν = ∥M∥, as defined in Section 3.1, such that every coefficient of H is absolutely
continuous with respect to ν. Then, by Radon–Nikodym for the coefficients, M
has a density with respect to ν. This means every Cℓ×ℓ-measure has a density
function with respect to some appropriate base.

We will want to use densities to study the diffraction measure Ĥ . The first important
fact we will need is that the density of Ĥ is a positive semidefinite matrix almost
everywhere.

Lemma 4.50. Let (h, ν) be a density of Ĥ. Then h(ξ) is a positive semidefinite matrix
for ν-almost all ξ.

Proof. For any vector w ∈ Cℓ, consider the measure Mw defined by Mw(f) = ⟨M(f)w,w⟩
for f ∈ Cc(Rd). By Lemma Lemma 3.31, Mw is a positive measure for all w ∈ Cℓ.

Furthermore, we have:

Mw(f) = ⟨Ĥ(f)w,w⟩ =
〈(∫

Rd

f(ξ)h(ξ) dν(ξ)

)
w,w

〉
=

∫
Rd

f(ξ)⟨h(ξ)w,w⟩ dν(ξ)

This shows that ⟨h(·)w,w⟩ is a density function for the positive measure Mw with
base ν: as Mw is positive, this means ⟨h(ξ)w,w⟩ ≥ 0 for ν-almost every ξ ∈ Rd.

Now let S be a dense, countable subset of {w ∈ Cℓ | ∥w∥ = 1}: for every w ∈ S, let
Aw be the set of ξ such that ⟨h(ξ)w,w⟩ is not positive semidefinite. Then Aw is a null
set, hence the union AS =

⋃
w∈S Aw also is.

Now let ξ ̸∈ AS. This means ⟨h(ξ)w,w⟩ ≥ 0 for all w ∈ S. But S is a dense subset of
the unit complex sphere, hence this means ⟨h(ξ)w,w⟩ ≥ 0 for all w ∈ Cℓ with norm 1:
therefore h(ξ) is positive semidefinite. As AS is a null set, this means h(ξ) is positive
semidefinite for ν-almost all ξ, which concludes the proof.

In order to study the diffraction measure Ĥ , we want to use a density (h, ν) which is
compatible with the self-similarity of Ĥ . Specifically, we want to find a density (h, ν)

such that the density function h satisfies a renormalisation relation analogous to the one
satisfied by Ĥ .
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4.3 Renormalisation relations

In order to find this density function, we need to choose the base ν appropriately. It
will suffice to choose ν to be dilation invariant, in the sense we will define now. Recall
that, for R > 0, B×

R = BR \ {0} is the punctured ball of radius R around 0.

Definition 4.51. Let R > 0, and let ν be a positive measure on B×
R . We say ν is

λ-dilation invariant if Dλν|B×
R
= ν.

We will want to find a density function h for Ĥ|BR
such that the base ν is λ-dilation

invariant. Under our assumptions, Ĥ({0}) = 0, so it suffices to find a density for Ĥ|B×
R
.

If Ĥ is pure point, we can simply use the counting measure on B×
R as a base. If Ĥ is

absolutely continuous, we get the following.

Example 4.52. Assume Ĥ is an absolutely continuous measure on B×
R : that is, it has

some density (h,mRd). Here the Lebesgue measure satisfies DλmRd = λ−dmRd , so this
is not a dilation invariant density. One way to fix this would be to define a base and a
density function by

ν ′(f) =

∫
B×

R

f(ξ)

∥ξ∥
mRd(dξ)

h′(ξ) = ∥ξ∥h(ξ)

for all f ∈ Cc(b
×
R), ξ ∈ B×

R . This clearly satisfies h′ν ′ = hmRd = Ĥ , and Dλν
′ = ν ′. This

is, implicitly, how Baake, Gähler, and Mañibo [11] analyzed the absolutely continuous
part of the diffraction measure of substitution rules.

A second way to do this is the following: let L = BR \Bλ−1R and define

ρ(ξ) =
∞∑
n=0

λnd1{Dλ−nL}(ξ)

ν ′′ = ρmRd

h′′ =
h

ρ

for all f ∈ Cc(b
×
R), ξ ∈ B×

R . Then h′′ is a density function of Ĥ with base ν ′′, and ν ′′

is λ-dilation invariant. Our general proof will use a similar construction to this second
variant.

Theorem 4.53. For all R > 0, Ĥ|B×
R

has a λ-dilation invariant density.

Proof. In the following proof, if ν1, ν2 are two positive measures on a space X, we will
write ν1 ≪ ν2 if ν1 is absolutely continuous with respect to ν2, i.e. ν1(S) = 0 for all
Borel sets S such that ν2(S) = 0. Our goal will be to construct a σ-finite, λ-dilation
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4 From substitutions to point processes

invariant measure ν on BR such that ∥Ĥ∥|BR
≪ ν, as then the Radon–Nikodym theorem

implies that Ĥ|BR
has a density function with respect to ν. (See Section 3.1 for the

matrix version of the Radon–Nikodym theorem.)
By Theorem 4.46, we have ∥Ĥ∥ = ∥A(Dλ−1Ĥ)A∗∥ ≤ ∥A∥2∥Dλ−1Ĥ∥, where by ∥A∥

we mean the positive function ξ 7→ ∥A(ξ)∥, and by ∥Ĥ∥ and ∥Dλ−1Ĥ∥ we mean the
total variation measures of Ĥ and Dλ−1Ĥ .

Therefore ∥Ĥ∥ ≪ ∥Dλ−1Ĥ∥. By iterating this process, we deduce ∥Ĥ∥ ≪ ∥Dλ−nĤ∥
for all n ∈ N.

Now let let L = BR \ Bλ−1R. We define the positive measure ν0 := ∥Ĥ∥|L, to be the
total variation of Ĥ restricted to L, and we define a positive measure ν by

ν =
∞∑
n=0

Dλ−nν0

As ∥Ĥ∥ is a positive, σ-finite measure, so is ν. By construction, it is clear that
(Dλν|supp ν) = ν. We want to show that ∥Ĥ∥|BR

≪ ν, as this implies the existence
of a density function by the Radon–Nikodym theorem.

To see this, let S ⊂ BR be a Borel set such that ν(S) = 0 and write Sn := S ∩Dλ−nL:
as supp Ĥ ⊂ BR, we have S ∩ supp Ĥ ⊂

⋃∞
n=0 Sn: as ν is positive, we have ν(Sn) = 0

for all S. But we have ∥Ĥ∥ ≪ Dλ−n∥Ĥ∥, hence ν(Sn) = Dλ−nν0(Sn) = 0 implies
∥Ĥ∥(Sn) = 0. Therefore, ∥Ĥ∥(S) =

∑∞
n=0∥Ĥ∥(Sn) = 0.

Remark 4.54. Note that the base ν in the proof satisfies ν(B×
r ) = ∞ for all r > 0, so it

does not extend to a measure on BR in the sense of Bourbaki. This is not as problem for
us, as Ĥν will still make sense as a matrix valued measure. One way to see this is that,
even though ν is not a Radon measure on BR, it is a Radon measure on the punctured
ball B×

R , as every compact subset of B×
R is bounded away from 0.

We define the following:

Definition 4.55. A self-similar density h of Ĥ on B⊗
R is a density function of Ĥ|B×

R

such that the base ν is λ-dilation invariant.

By Theorem 4.53, a self-similar density exists for every R > 0. Now we show that
self-similar densities satisfy a renormalisation relation.

Theorem 4.56. Let (h, ν) be a self-similar density of Ĥ on B×
R . Then the density

function h satisfies
h(ξ) = A(ξ)h(λξ)A(ξ)∗

for all ξ ∈ Bλ−1R.
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Proof. Let f ∈ Cc(Bλ−1R) be a test function. Then we have

Dλ−1Ĥ(f) =

∫
BR

f(λ−1ξ)h(ξ) ν ′(dξ)

=

∫
Bλ−1R

f(ξ)h(λξ)Dλν
′(dξ)

=

∫
Bλ−1R

f(ξ)h(λξ) ν ′(dξ)

Hence the density of Dλ−1Ĥ with respect to ν ′ is given by ξ 7→ h(λξ). We know Ĥ

satisfies Ĥ = A(·)Dλ−1ĤA(·), so comparing the densities of both sides with respect to
ν ′ give

h(ξ) = A(ξ)h(λξ)A(ξ)∗

for all ξ ∈ Bλ−1R, which completes the proof.

We will want to use this to study the decay of the diffraction measures of S around
the origin. This is given by the following lemma.

Theorem 4.57. Let S be a primitive, stone, FLC substitution rule, λ > 0 its scaling
constant, and Ĥ its diffraction matrix. Let R > 0 and let (h, ν) be a self-similar density
of Ĥ on B×

R .
Let w ∈ Cℓ, and let η̂w = ⟨Hw,w⟩ be the diffraction of S with weights w.

(i) Let β > 0, and assume

⟨h(λ−Nξ)w,w⟩ ≲ ∥h(ξ)∥λ−βN

as N → ∞ uniformly for ν-almost every ξ ∈ BR. Then we have η̂w(Br) ≲ r2β.

(ii) Let β > 0 and A ⊂ BR be a Borel set such that
∫
A
∥h(ξ)∥ ν(dξ) > 0 and

⟨h(λ−Nξ)w,w⟩ ≳ ∥h(ξ)∥λ−βN

as N → ∞ uniformly for ν-almost every ξ ∈ A. Then we have η̂w(Br) ≳ r2β.

The same statements hold if we replace ≲ with ⪅ and ≳ with ⪆ (recall the definitions
of ⪅ and ⪆ from Section 2.4).

Proof. We prove the statements for ≲ and ≳: the proof for ⪅ and ⪆ is analogous. By
definition of a density, we have:

η̂w(Br) =

∫
Br

⟨h(ξ)w,w⟩ ν(dξ)
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4 From substitutions to point processes

Note that, in order to bound η̂w(Br) as r → ∞, it suffices to bound η̂w(Bλ−N ) as N → ∞:
to see this, r → η̂w(Br) is an increasing function, and that the sequence an = λ−n satisfies
|an−1

an
|, | an

an−1
| < ∞.

Let S :=
∫
Br
∥h(ξ)∥2 dν(ξ): as h ∈ L2

loc(Rd,Cℓ×ℓ; ν), we have S < ∞.
For part (i), we have

η̂⟨w,Φ⟩(Bλ−Nr) =

∫
B

λ−Nr

⟨h(ξ)w,w⟩ ν(dξ)

=

∫
BR

⟨h(λ−Nξ)w,w⟩ ν(dξ) (Dλν = ν)

≤ S sup
ξ∈BR

⟨h(λ−Nξ)w,w⟩

≲ λ−βN

as N → ∞. This proves (i).
To prove (ii), note that we have

η̂⟨w,Φ⟩(Bλ−Nr) =

∫
B

λ−Nr

⟨h(ξ)w,w⟩ dνk(ξ)

≥
∫
B

λ−Nr
∩λ−NA

⟨h(ξ)w,w⟩ ν(dξ)

=

∫
Br∩A

⟨h(λ−Nξ)w,w⟩ν(dξ) (Dλν = ν)

≥ λ−βN

∫
A

∥h(ξ)∥ ν(dξ)

as N → ∞.

We will also need the following fact.

Lemma 4.58. Let S be a primitive, stone, FLC substitution rule and Ĥ be its diffraction
matrix. Let R > 0, and let (h, ν) be a self-similar density of Ĥ on B×

R . Then we have

lim
N→∞

h(λ−Nξ) = 0

for ν-almost all ξ ∈ B×
R .

Proof. Assume, towards a contradiction, that there exists some Borel set A ⊂ B×
R of

positive measure such that limN→∞ h(λ−Nξ) ̸= 0. Without loss of generality, we may
assume that there exists some w ∈ Cℓ and ϵ > 0 such that Re⟨h(λ−Nξ)w,w⟩ ≥ ϵ for all
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4.3 Renormalisation relations

ξ ∈ A, N ∈ N. But then we have

η̂⟨w,Φ⟩(Bλ−NR) =

∫
B

λ−NR

⟨h(ξ)w,w⟩ ν(dξ)

≥
∫
A∩B

λ−NR

⟨h(ξ)w,w⟩ ν(dξ)

≥
∫
A

ϵ ν(dξ) ≥ ϵν(A) > 0

However, by Lemma 3.32, we have limN→∞ η̂⟨w,Φ⟩(Bλ−NR) = η̂⟨w,Φ⟩({0}) = 0, which
contradicts the previous inequality.

Note that this depends on the fact that h is chosen to be self-similar: if Ĥ is absolutely
continuous and we use the Lebesgue measure ν = mRd as a base, the density h does not
need to vanish at the origin.

By the previous lemma, we are interested in the behavior of h(λ−Nξ) as N → ∞. We
want to study this using the renormalisation relation for the diffraction density. This
motivates the following definition:

Definition 4.59. The Fourier cocycle of the substitution rule S is the matrix function
given by

A(N)(ξ) = A(λ−N+1ξ)A(λ−N+2ξ) · · ·A(ξ)

for ξ ∈ Rd and N ∈ N.

Corollary 4.60. Let (h, ν) be a self-similar density of Ĥ on B×
R with respect to the

substitution rule S = (τ∗, λ,∆∗). Then the density function h satisfies

h(λ−Nξ) = A(N)(λ−1ξ)h(ξ)A(N)(λ−1ξ)∗

for all ξ ∈ B×
R , N ∈ N.
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5 Linear cocycles around the origin

In this chapter, we will prove Theorem 5.3, which controls the behavior of linear cocycles
such as the ones arising from the renormalisation relations of self-similar tilings.

5.1 Linear cocycles around the origin

In this section, let ∥·∥ be any norm on Cℓ, and fix λ > 0. Let A : Rd → Cℓ×ℓ be a matrix-
valued function: unlike in the previous chapters, here we do not write it in bold, in order
to ease the notation. For all ξ ∈ Rd and N ∈ N we define the cocycle associated to A by
the product A(N)(ξ) = A(λ−N+1ξ) · · ·A(ξ). In this section we will prove Theorem 5.3,
which is a theorem about the asymptotic behavior of the linear cocycle. This theorem
will hold under the following assumption.

Assumption 5.1. Let A : Rd → Cℓ×ℓ be a matrix-valued function. We assume A is
Lipschitz at 0: that is, A(ξ) = A(0) +O(∥ξ∥) as ξ → 0.

Note that this assumption is satisfied if A is smooth, as it is the case for the linear
cocycles arising from renormalisation relations of self-similar tilings.

Let A be a matrix function that satisfies Assumption 5.1. Let χ1 > · · · > χl be the
distinct values of {log|µ| | µ ∈ SpecA(0) \ {0}} and let χl+1 = −∞: we call these
the Lyapunov exponents of A(0). For µ ∈ SpecA(0), denote its generalized eigenspace
by Eµ, and let Ej := ⊕{Eµ | µ ∈ SpecA(0), log|µ| = χj} be the space of generalized
eigenvectors associated to χj for j ∈ [l+1]. Then there exist uniquely defined idempotent
operators Pj : Cℓ → Cℓ for j ∈ [l + 1] such that imgPj = Ej and

∑l+1
j=1 Pj = I: we call

these the projections associated to the spaces Ej. Note that we are not assuming that
the Pj are orthogonal projections. Also define mj := dimEj.

We would like to know how A(N)(ξ)x behaves as N → ∞. If we restrict ourselves
to the case of matrix powers, we can obtain the following result by elementary linear
algebra.

Example 5.2. Assume B ∈ Cℓ×ℓ is unitarily diagonalizable, let χ1, · · · , χl be the finitely
many values of {log|µ| | µ ∈ SpecB}, and let E1, · · · , El the corresponding sums of
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5 Linear cocycles around the origin

eigenspaces. Then, if x ∈ Ej, we have

∥BNx∥ = eχjN∥x∥ (5.1)

BNx ∈ Ej (5.2)

for all N ∈ N.

Our goal will be to prove an analogous result for the linear cocycle A(N)(ξ), under
Assumption 5.1.

Theorem 5.3. Let A be a matrix valued function satisfying Assumption 5.1.
Then there exists R > 0 such that the following holds: for all ξ ∈ BR, there exist

projections Pj(ξ) for all j ∈ [l+1] such that
∑l+1

j=1 Pj(ξ) = I and the following asymptotic
inequalities hold:

(i) For all j ∈ [l + 1] we have

∥A(N)(ξ)Pj(ξ)x∥ ≈ eχjN∥Pj(ξ)x∥ (5.3)

as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ.

(ii) For all j, k ∈ [l + 1] we have

∥PkA
(N)(ξ)Pj(ξ)x∥ ≲ λ−N∥A(N)(ξ)Pj(ξ)x∥ if j > k (5.4)

∥PkA
(N)(ξ)Pj(ξ)x∥ ⪅ max(eχk−χj , λ−1)N∥A(N)(ξ)Pj(ξ)x∥ if j < k (5.5)

as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ.

(iii) For all j ∈ [l] such that mj = 1:

∥A(N)(ξ)Pj(ξ)x∥
∥Pj(ξ)x∥

≳ eχjN (5.6)

as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ.

(iv) If A(0) is diagonalizable, for all j ∈ [l]:

∥A(N)(ξ)Pj(ξ)x∥
∥Pj(ξ)x∥

≍ eχjN (5.7)

as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ.

Remark 5.4. Dubiner [22] proved a similar theorem for the case of a sequence of matri-
ces An converging to a limit matrix A, without assumptions on the speed of convergence.
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5.2 Exterior powers

In this setting he was able to show Inequality (5.3) and weaker versions of Inequalities
(5.5) and (5.4). However, for our application, the stronger bounds on the speed of decay
in Inequalities (5.5) and (5.4) will be crucial, as will be the uniformity for ξ.

Remark 5.5. In general, if (An)n∈N is an arbitrary sequence of matrices and A(N) =

AN · · ·A1 is its associated linear cocycle, one asks for the possible values of the set

{ lim
N→∞

1

N
log∥A(N)x∥ | x ∈ Cℓ},

as well as the spaces where these values are attained. These are called the Lyapunov
exponents and Lyapunov spaces of the sequence, respectively: therefore, our theorem
characterizes the Lyapunov exponents and spaces of the sequence (A(λ−nξ))N∈N in terms
of the Lyapunov exponents and spaces of the limit matrix A(0).

There exists a large literature on the theory of Lyapunov exponents and spaces, par-
ticularly in the setting of cocycles arising from dynamical systems, or their continuous
analogues: see [1, 13]. However, note that our case does not fit into the most common
setting of Lyapunov theory: the map x 7→ λ−1x is not measure preserving, so our cocycle
does not satisfy the conditions of Oseledet’s Theorem. This is why we will not make use
of the existing literature on Lyapunov theory, instead providing an elementary proof of
Theorem 5.3.

Remark 5.6. If we equip Cℓ with an inner product such that the projections Pj and
Pj(ξ) are orthogonal projections for all j ∈ [l + 1], we can interpret the fractions in the
theorem by the formula

∥PkA
(N)(ξ)Pj(ξ)x∥
∥Pj(ξ)x∥

= cos ̸ (Ek, A
(N)Pj(ξ)x),

where the angle between a subspace U and a vector v is given by ̸ (U, v) = minu∈U ̸ (u, v).
Therefore, Equations (5.4) and (5.5) tell us that A(N)(ξ)Pj(ξ)x is “asymptotically orthog-
onal” to Ek whenever k ̸= j: the intuition is that A(N)(ξ)Pj(ξ)x is close to being in Ej,
which is orthogonal to the other eigenspaces. In the subsequent sections we will mostly
reason using norms and inner products instead of angles, but it is still useful to keep
this image in mind.

5.2 Exterior powers

In order to prove Theorem 5.3, we will use the formalism of exterior products in order
to represent linear subspaces. Here we will spell out some basic facts about exterior

69



5 Linear cocycles around the origin

products which we will need: everything in this section is either known or elementary,
but we were not able to find a convenient reference for all of them.

If V is a finite dimensional vector space over C, we denote by V ∧q the q-th exterior
power of V , which can be defined as the dual of the space of alternating multilinear
maps from V q to C, or as an appropriate quotient of the q-th tensor power V ⊗q: see
Michler and Kowalsky [43] for a more detailed definition. For q1, q2 ∈ N we denote the
wedge product by ∧ : V ∧q1 × V ∧q2 → V ∧(q1+q2). This has the following property: for all
q ∈ N, the map (v1, · · · , vq) 7→ v1 ∧ · · · ∧ vq is an alternating multilinear map.

For the rest of this chapter, let ℓ, q ∈ N and fix an inner product on Cℓ. We will
consider the exterior power (Cℓ)∧q, which we denote as Cℓ∧q to ease the notation. Then
we can define a corresponding inner product on (Cℓ)∧q with the following property: if
α = v1 ∧ · · · ∧ vq, β = w1 ∧ · · · ∧ wq,

⟨α, β⟩ = det J(α, β)

where J(α, β) ∈ Cℓ×ℓ is the matrix with entries Ji,k = ⟨vi, wk⟩. This inner product makes
the wedge product continuous.

We will take a closer look at what happens when one takes the wedge product of q
vectors.

Lemma 5.7. Let α ∈ Cℓ∧q and a1, · · · , aq ∈ Cℓ be linearly independent. The following
are equivalent:

(i) There is some c ∈ C such that cα = a1 ∧ · · · ∧ aq

(ii) The space H = {v ∈ Cℓ | α ∧ v = 0} is spanned by the aj.

If either of these are true, we have {v ∈ Cℓ | α∧v = 0} = span(a1, · · · , aq). In particular,
the span of the vectors aj is independent of the particular choice of vectors to represent
α.

Proof. To show (i) =⇒ (ii), note that cα = a1 ∧ · · · ∧ aq implies α ∧ aj = 0 for all
j ∈ [q], so they are all in the space H. Furthermore, if we pick aq+1, · · · , aℓ such that
a1, · · · , aℓ is a basis, we have ∥α∧aq+1∧ · · · ∧aℓ∥ = det(a1 · · · aℓ) ̸= 0, so the aq+1, · · · , aℓ
are ℓ− q linearly independent vectors not in H. Therefore H = span(a1, · · · , aq), and in
particular dimH = q.

For the opposite direction, let a1, · · · , aq be a basis of H and complete it to a basis of
Cℓ as before. Now let J = {(j1, · · · , jq) ∈ [ℓ]q | j1 < · · · < jq} and aJ = aj1 ∧ · · · ∧ajq for
J ∈ J . Then the set {aJ | J ∈ J } is a basis of Cℓ∧q. Furthermore, for every j ∈ [ℓ] and
J ∈ J , we have aJ ∧ aj = 0 if and only if j ∈ J , and the set {aJ ∧ aj | J ∈ J , j ̸∈ J} is
linearly independent.
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5.2 Exterior powers

Write α =
∑

J∈J cJaJ , for coefficients cJ ∈ C: by the above two properties, α∧aj = 0

implies cJ = 0 for all J ∈ J such that j ̸∈ J . As α∧ aj = 0 for all j ∈ [q], we must have
cJ = 0 for every J ∈ J except for J = (1, · · · , q): this concludes the proof.

Due to this lemma, the following is well-defined.

Definition 5.8. If α ∈ Cℓ∧q can be written as α = a1 ∧ · · · ∧ aq for linearly independent
vectors a1, · · · , aq ∈ Cℓ, we say α is a q-blade or decomposable q-vector, and let its
span be defined by spanα = span(a1, · · · , aq), where the aj are any q vectors such that
α = a1 ∧ · · · ∧ aq. (By Lemma 5.7, this quantity does not depend on the choice of the
aj.) We also let πα be the orthogonal projection onto the subspace spanα ⊂ Cℓ.

Definition 5.9. Let q1, q2 ∈ N, α ∈ Cℓ∧q1 , and β ∈ Cℓ∧q2 . We write α ⊂ β if there
exists some γ such that β = α ∧ γ. If α, β are blades, this is the case if and only if
spanα ⊂ span β.

We will need certain geometric properties of the exterior powers.

Lemma 5.10. Let q, q′ ∈ N, α, β be q-blades, α′, β′ be q′-blades.

(i) Assume spanα ⊥ spanα′. Then we have ⟨α ∧ α′, α ∧ β′⟩ = ∥α∥2⟨α′, β′⟩.

(ii) Assume spanα ⊥ spanα′. Then we have ∥α ∧ α′∥ = ∥α∥∥α′∥

(iii) For all x ∈ Cℓ, we have ∥α ∧ x∥ = ∥α∥∥(I − πα)x∥.

Proof. First we prove (i). Let α = a1∧· · ·∧aq, α′ = a′1∧· · ·∧a′q′ and β′ = b′1∧· · ·∧b′q′ . Let
A be the matrix with columns a1, · · · , aq, B be the matrix with columns b′1, · · · , b′q′ , and
A′ be the matrix with columns a′1, · · · , a′q′ . By assumption, we have spanα ⊥ spanα′:
this means that ⟨ai, a′j⟩ = 0 for all i, j, so A′∗A = 0. Therefore, we obtain

⟨α ∧ α′, α ∧ β′⟩ =

∣∣∣∣∣A∗A A∗B

A′∗A A′∗B

∣∣∣∣∣ =
∣∣∣∣∣A∗A A∗B

0 A′∗B

∣∣∣∣∣ = det(A∗A) det(A′∗B) = ∥α∥2⟨α′, β′⟩

This proves (i). (ii) follows immediately from (i).
To show (iii), note that παx ∈ spanα, and therefore α ∧ παx = 0; and also

spanα ⊥ span(1− πα)x. Then using (i), we have

∥α ∧ x∥ = ∥α ∧ (1− πα)x∥ = ∥α∥∥(1− πα)x∥

which concludes the proof.

Lemma 5.11. Let Bq(Cℓ) ⊂ Cℓ∧q be the set of q-blades in Cℓ∧q. Then its closure in the
norm topology of Cℓ∧q is Bq(Cℓ) ∪ {0}.

71



5 Linear cocycles around the origin

Proof. To see 0 is in the closure of Bq(Cℓ), let α ∈ Bq(Cℓ): then limn→∞
1
n
α = 0.

Now let (αn)n∈N be a sequence of q-blades in Cℓ∧q converging to some α ∈ Cℓ∧q \ {0}.
We want to show that α is a q-blade.

For every n ∈ N, choose an orthonormal basis an1 , · · · , anq of spanαn and cn ∈ C such
that αn = cna

n
1 ∧· · ·∧anq . The space of orthonormal sets of q vectors in Cℓ is compact, so

by passing to a subsequence we can assume that there exists an orthonormal set a1, · · · , aq
such that anj → aj as n → ∞ for all j ∈ [q]. Then there exists some c ∈ C \ {0} such
that limn→∞ cn = c and

α = lim
n→∞

αn = lim
n→∞

cn(a
n
1 ∧ · · · ∧ anq ) = ca1 ∧ · · · ∧ aq

so α is a q-blade.

Lemma 5.12. For all q-blades α, β we have

∥πα − πβ∥ ≤ 2
∥α− β∥

min(∥α∥, ∥β∥)

Proof. As πα and πβ are orthogonal projections, it suffices to show that

∥(I − πβ)παx∥ ≤ ∥α− β∥∥παx∥
∥β∥

and

∥(I − πα)πβx∥ ≤ ∥α− β∥∥πβx∥
∥α∥

for all x ∈ Cℓ, as we have (πα − πβ)x = 0 for all x not in spanα+span β. We show only
the first inequality, as the second follows by swapping α and β.

Let x ∈ Cℓ. Then, using Lemma 5.10, we have

∥β ∧ παx∥ = ∥β∥∥(I − πβ)παx∥ =⇒ ∥(I − πβ)παx∥ =
∥β ∧ παx∥

∥β∥
.

On the other hand, we can write β ∧ παx = (β − α) ∧ παx, as παx ∈ spanα.
Therefore

∥(I − πβ)παx∥ =
∥(β − α) ∧ παx∥

∥β∥
≤ ∥α− β∥∥παx∥

∥β∥
.

This concludes the proof.

Now let A ∈ Cℓ×ℓ. Then we define the q-th exterior power of A as the linear map
A∧q : Cℓ∧q → Cℓ∧q by

A∧q(v1 ∧ · · · ∧ vq) = Av1 ∧ · · · ∧ Avq
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for all v1, · · · , vq ∈ Cℓ.
Then the generalized eigenvalues of A∧q can be given in terms of the generalized

eigenvalues of A.

Lemma 5.13. Let A ∈ Cℓ×ℓ and let B = (v1, · · · , vℓ) be an ordered basis of Cℓ such
that A is in upper Jordan normal form with respect to this basis. Let µ1, · · · , µℓ be the
corresponding diagonal entries of A, which are the generalized eigenvalues of A repeated
according to their multiplicity.

Let
B′ = {vj1 ∧ · · · ∧ vjq | j1, · · · , jq ∈ [ℓ], j1 < · · · < jq}

be the corresponding basis of Cℓ∧q, ordered lexicographically on the indices. Let (aJK)J,K
be the coefficients of the transformation matrix of A∧q with respect to the basis B′, indexed
by ordered q-tuples of indices J,K. Then A∧q has the following properties:

(i) For J = (j1, · · · , jq), the corresponding diagonal entry of A∧q is given by aJJ =

µj1 · · ·µjq .

(ii) For J = (j1, · · · , jq), K = (k1, · · · , kq) with J < K, we have

• aKJ = 0

• aJK ̸= 0 =⇒ aJJ = aKK.

(iii) A∧q is upper triangular with respect to the basis B′, and its generalized eigenvalues
with multiplicity are given by {µj1 · · ·µjq | 1 ≤ j1 < · · · < jq ≤ ℓ}.

Proof. By assumption, A is in Jordan normal form with respect to the basis B. There-
fore, for every j ∈ [ℓ], one of the following holds:

• vj is an eigenvector of A with eigenvalue µj: that is, Avj = µjvj.

• vj is a generalized eigenvector of A with eigenvalue µj: that is, Avj = µjvj + vk

for some k < j where µj = µk.

Using this, one can deduce (i) and (ii) by computing A∧q(vj1 ∧ · · · ∧ vjq) for j1 < · · · <
jq: one gets the diagonal entry µ1 · · ·µq, and one gets off-diagonal entries if some of
the vectors are generalized eigenvectors, but they stay within the same Jordan block.
Statement (iii) follows immediatly from (i) and (ii).

Lemma 5.14. For all A,B ∈ Cℓ×ℓ, the inequality

∥A∧q −B∧q∥ ≤ qmax(∥A∥, ∥B∥)q−1∥A−B∥

holds.

73



5 Linear cocycles around the origin

Proof. This follows by induction on q. For q = 1 it holds trivially. Furthermore, if it
holds for q ∈ N, we have

∥A∧(q+1) −B∧(q+1)∥ = ∥(A∧q −B∧q) ∧ A+B∧q ∧ (A−B)∥
≤ qmax(∥A∥, ∥B∥)q−1∥A−B∥∥A∥+ ∥B∥q∥A−B∥
≤ (q + 1)max(∥A∥, ∥B∥)q∥A−B∥

where at the second line we use the induction hypothesis. This concludes the proof.

5.3 Proof of Theorem 5.3

Now we set out to prove Theorem 5.3. The proof is morally analogous to the QR
algorithm for computing eigenvalues, which has been generalized to compute Lyapunov
exponents [29, 46].

5.3.1 The power method

For this section, equip Cℓ with an arbitrary inner product and its corresponding norm:
in the next section, we will make a specific choice of inner product.

Lemma 5.15. Let (am)m∈N be a sequence of positive real numbers. Then, for all M ∈ N,
the following inequality holds

M∏
m=1

am ≤ exp

(
M∑

m=1

(am − 1)

)

Proof. Take the logarithm of both sides of the inequality and use log x = log(1+(x−1)) ≤
x− 1.

Lemma 5.16. Let A : Rd → Cℓ×ℓ be a matrix function satisfying Assumption 5.1, and
R > 0.

(i) For all k ∈ N such that A(0)k ̸= 0, the matrix cocycle satisfies

∥A(N)(ξ)∥ ≲ ∥A(0)k∥
N
k

as N → ∞ uniformly for ξ ∈ BR.

(ii) The matrix cocycle satisfies

∥A(N)(ξ)∥ ⪅ ρ(A(0))N
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5.3 Proof of Theorem 5.3

as N → ∞ uniformly for ξ ∈ BR, where ρ(A(0)) = max{|µ| | µ ∈ SpecA(0)} is
the spectral radius of A(0).

Proof. We prove both parts separately:

(i) For the first part, let N ∈ N: we can always write it as N = kM + r for some
M ∈ N, r ∈ {0, · · · , k−1}. Then taking the limit as N → ∞ is the same as taking
the limit as M → ∞ for all r ∈ {0, · · · , k − 1}.

Recall that, for N ∈ N, the linear cocycle is given by A(N)(ξ) = A(λ−N+1ξ) · · ·A(ξ).
Then we can decompose it as

A(N)(ξ) = A(r)(λ−kMξ)
M−1∏
m=0

A(k)(λ−kmξ)

(where the iterated product is taken from right to left) because

A(r)(λ−kMξ) = A(λ−(kM+r)+1ξ) · · ·A(λ−kMξ)

A(k)(λ−kmξ) = A(λ−k(m+1)+1ξ) · · ·A(λ−kmξ)

Therefore, using the submultiplicativity of the matrix norm, we obtain

∥A(N)(ξ)∥
∥A(0)k∥M

≤ ∥A(r)(λ−kMξ)∥
M−1∏
m=0

∥A(k)(λ−kmξ)∥
∥A(0)k∥

Using A(ξ) = A(0) + O(∥ξ∥) as ξ → 0 and Lemma 5.14, we can bound the two
factors as follows.

• We have
∑M−1

m=0

(
1− ∥A(k)(λ−kmξ)∥

∥A(0)k∥

)
≲ ∥ξ∥ as M → ∞ uniformly for ξ ∈ BR,

because we can bound the sum by a geometric series. Therefore, by Lemma 5.15,∏M−1
m=0

∥A(k)(λ−kmξ)∥
∥A(0)k∥ ≲ e∥ξ∥ ≲ 1 as M → ∞ uniformly for ξ ∈ BR.

• We have ∥A(r)(λ−kMξ)∥ ≲ 1 as M → ∞ uniformly for r ∈ {0, · · · , k − 1},
ξ ∈ BR.

Putting both of these facts together, we have

∥A(N)(ξ)∥
∥A(0)k∥M

≤ ∥A(r)(λ−kMξ)∥
M−1∏
m=0

∥A(k)(λ−kmξ)∥
∥A(0)k∥

≲ 1

as N → ∞ uniformly for ξ ∈ BR.
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5 Linear cocycles around the origin

Finally, we have M = N
k
− r

k
which means

∥A(N)(ξ)∥ ≲ ∥A(0)k∥M = ∥A(0)k∥
N
k ∥A(0)k∥−

r
k ≲ ∥A(0)k∥

N
k

as N → ∞ uniformly for ξ ∈ BR. This concludes the proof of (i).

(ii) For the proof of (ii), we distinguish two cases:

• Assume A(0)k = 0 for some k ∈ N: then ρ(A(0)) = 0. This means we want to
prove ∥A(N)(ξ)∥ decays faster than any exponential function. As in the first
part, for all N ∈ N, we can write N = kM+r with M ∈ N, r ∈ {0, · · · , k−1}.
Then we have

1

N
log∥A(N)(ξ)∥ =

1

N
log∥A(r)(λ−kMξ)∥+ 1

N

M−1∑
m=0

log∥A(k)(λ−kmξ)∥

≲ − 1

N

M−1∑
m=0

m ≲ −N

This implies that 1
N
log∥A(N)(ξ)∥ → −∞ as N → ∞, uniformly for ξ ∈ BR,

therefore ∥A(N)(ξ)∥ ⪅ 0 = ρ(A(0)) as N → ∞ uniformly for ξ ∈ BR.

• Now assume A(0) is not nilpotent, so we can apply part (i) for every k ∈ N.
Define a sequence (an)n∈N by

aN := sup
ξ∈BR

log∥A(N)(ξ)∥

By the submultiplicativity of the matrix norm, this sequence is subadditive, so
Fekete’s Lemma tells us that limN→∞

aN
N

= infN∈N
aN
N

. Let χ := limN→∞
aN
N

=

limN→∞
1
N
log supξ∈BR

∥A(N)(ξ)∥. Then, by part (i), for all k ∈ N we have

χ = lim
M→∞

akM
kM

≤ 1

k
log∥A(0)k∥

By taking the limit as k → ∞, we obtain χ ≤ limk→∞
1
k
log∥A(0)k∥ =

log ρ(A(0)), which concludes the proof.

Lemma 5.17. Let A : Rd → Cℓ×ℓ be a matrix function satisfying Assumption 5.1,
and assume there exists an eigenvector v be an eigenvector of A(0)∗ whose eigenvalue µ

satisfies |µ|k = ∥A(0)k∥ > 0 for some k ∈ N. We denote the conjugate of µ by µ.
Define w(N)(ξ) := µ−NA(N)∗(ξ)v. Then:
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(i) The limit w(ξ) := limN→∞w(N)(ξ) exists for all ξ.

(ii) ∥w(ξ)− w(N)(ξ)∥ = O(λ−N∥ξ∥)

(iii) ∥w(ξ)− v∥ = O(∥ξ∥)

(iv) ∥w(ξ)∥ = 1 +O(∥ξ∥)

(v) ⟨A(N)(ξ)w(ξ), v⟩ = µN(1 +O(∥ξ∥))

(vi) ∥A(N)(ξ)w(ξ)∥ ≍ |µ|N

as ξ → 0, N → ∞.

Proof. By Lemma 5.16, we have ∥A(N)(ξ)∥ ≲ ∥A(0)k∥N
k = |µ|N as N → ∞: therefore

∥µ−N−1A(N)∗(ξ)∥ ≲ 1 as ξ → 0, N → ∞.
Then the differences w(N+1)(ξ)− w(N)(ξ) are bounded by

∥w(N+1)(ξ)− w(N)(ξ)∥ = ∥µ−N−1A(N+1)∗(ξ)v − µ−NA(N)∗(ξ)v∥
≤ ∥µ−N−1A(N)∗(ξ)∥∥A(λ−Nξ)∗v − µv∥
≤ ∥µ−N−1A(N)∗(ξ)∥∥A(λ−Nξ)∗ − A(0)∗∥∥v∥
= O(λ−N∥ξ∥)

as ξ → 0, N → ∞.
We can write w(N)(ξ) = v +

∑N
n=1

(
w(n)(ξ)− w(n−1)(ξ)

)
: as N → ∞, the latter sum

is bounded by a telescoping series with exponent λ, therefore the limit w(ξ) exists and
satisfies (i) and (iii). Furthermore, we have

w(ξ)− w(N)(ξ) =
∞∑

n=N+1

w(n)(ξ)− w(n−1)(ξ) = O(λ−N∥ξ∥)

as N → ∞, ξ → 0, where again we are bounding the series by a geometric series.
Statement (iv) follows directly from (iii).

For (v), we have

⟨A(N)(ξ)w(ξ), v⟩ = ⟨w(ξ), µNµ−NA(N)(ξ)∗v⟩
= µN⟨w(ξ), w(N)(ξ)⟩
= µN(∥w(ξ)∥2 + ⟨w(ξ), w(N)(ξ)− w(ξ)⟩)
= µN(1 +O(∥ξ∥))

as ξ → 0, N → ∞, using (ii) and (iv).
Now we only have to prove (vi). From Lemma 5.16 we obtain ∥A(N)(ξ)∥ ≲ |µ|N , which
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5 Linear cocycles around the origin

is the upper bound. For the lower bound, we use (v):

∥A(N)(ξ)w(ξ)∥ ≥ |⟨A(N)(ξ)w(ξ), v⟩|
= |µ|N(1 +O(∥ξ∥))

Example 5.18. If A(ξ) is the normalized Fourier matrix of a primitive substitution rule,
the vector given by vj = mRd(τj) is an eigenvector of A(0)∗ with eigenvalue 1 = ∥A(0)∥.
Then one can show that w(ξ) is given by w(ξ)j = x1τj(ξ) (up to a constant factor), as this
is the vector function that satisfies w(ξ) = A(ξ)∗w(λ−1ξ). Then w(ξ) can be understood
as the cocycle analogue of an eigenvector, and the proof of Lemma 5.17 is analogous to
the power method for finding the top eigenvector.

5.3.2 Defining the subspaces

From now on, we let A be a matrix-valued function satisfying Assumption 5.1. As before,
we define A(N)(ξ) = A(λ−N+1ξ) · · ·A(ξ). Let χj, Ej, Pj be as in Section 5.1 and define
mj := dimEj.

We will want to pick a basis of Cℓ of the following form.

Definition 5.19. A descending Jordan basis for a matrix A ∈ Cℓ×ℓ is a basis v1, · · · , vℓ
with the following properties:

• A is in lower Jordan normal form with respect to this basis.

• The diagonal entries µj with respect to the basis satisfy |µ1| ≥ |µ2| ≥ · · · ≥ |µℓ|.

Example 5.20. Consider the matrix

A =


1 0 0 0

0 1 0 0

0 0 1
2

0

0 0 1 1
2

 .

Then the standard basis is a descending Jordan basis for A.

Every square matrix over the complex numbers has a Jordan normal form, so in partic-
ular it admits a descending Jordan basis. Furthermore, given a descending Jordan basis,
we can choose an appropriate inner product on Cℓ which makes this basis orthonormal.
For the rest of this section, we fix a descending Jordan basis v1, · · · , vℓ for A(0)

and an inner product on Cℓ such that the basis is orthonormal with respect
to the inner product. Let µ1, · · · , µℓ be corresponding diagonal entries of A(0).

By the definition of a descending Jordan basis, the first m1 vectors span E1, the next
m2 span E2, and so on. For j ∈ {0, · · · , l + 1}, define m(j) = m1 + · · · + mj as the
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5.3 Proof of Theorem 5.3

sum of the first j multiplicities for j = 0, · · · , l + 1, setting m(0) := 0. As the basis is
orthonormal, A(0)∗ is in upper Jordan normal form with respect to this basis, and the
diagonal entries are given by µj.

We will characterize the Lyapunov spaces of the cocycle by using exterior algebra.
Recall that, for A ∈ Cℓ×ℓ, A∧q is the q-th exterior power of A, which is the linear
operator on Cℓ∧q which satisfies

A∧q(w1 ∧ · · · ∧ wq) = Aw1 ∧ · · · ∧ Awq

for all w1, · · · , wq ∈ Cℓ.
In our case, for all q ∈ [ℓ], we can consider the matrix function A∧q defined by

A∧q(ξ) = A(ξ)∧q, and its associated cocycle A(N)∧q(ξ) = A(λ−N+1ξ)∧q · · ·A(ξ)∧q.
Then we can define:

Definition 5.21. Let j ∈ [ℓ]. We define

αj = v1 ∧ · · · ∧ vj

µ(j) = µ1µ2 · · ·µj

β
(N)
j (ξ) = µ(j)

−NA(N)∗∧jαj

βj(ξ) = lim
N→∞

β
(N)
j (ξ)

whenever the latter limit exists. Here, by A(N)∗∧j we mean the product (A(N)∧j(ξ))∗ =

A∧j(ξ)∗ · · ·A∧j(λ−N+1ξ)∗.

We want to use Lemma 5.17 to prove that, for appropriate choices of q, the limits
βq(ξ) exist. We will do this by choosing q = m(j) for j = 1, · · · , l+1: then αq will be an
eigenvector satisfying the assumptions of Lemma 5.17.

Lemma 5.22. Let j ∈ [l] and q := m(j). Then the following properties hold:

(i) The matrix function A∧q satisfies Assumption 5.1: that is, we have the bound
∥A(ξ)∧q − A(0)∧q∥ = O(∥ξ∥) as ξ → 0.

(ii) A(0)∧q∗ has the eigenvalue µ(j) with the eigenvector αq.

(iii) There exists k ∈ N such that ∥A(0)∧q∥k = |µ(q)|k.

Proof. Part (i) follows from Lemma 5.14, using the fact that A satisfies Assumption 5.1.
For the rest, we note that the structure of A(0)∧q∗ is described by Lemma 5.13, as the

vectors v1, · · · , vq put A(0)∗ in upper Jordan normal form by assumption: this means
the A(0)∧q∗ is in upper triangular form, where the diagonal entries are products of the
eigenvalues of A(0)∗ with multiplicity, and the off-diagonal entries are are associated to
vectors in the same Jordan block of A(0)∗.
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5 Linear cocycles around the origin

By the way we have chosen q, the vectors v1, · · · , vq are the generalized eigenvectors
of A(0)∗ associated to the exponents χ1, · · · , χj, so that |µt| < eχj for all t > q. In
particular, if s ≤ q and t > q, vs and vt correspond to different Jordan blocks in A(0)∗.
Then, using Lemma 5.13, the transformation matrix of A(0)∧q∗ can be written as(

µ(q) 0⊤

0 M

)

where 0 denotes the column vector of zeros of appropriate size, and M is a matrix with
spectral norm strictly less than |µ(q)|.

Therefore, for any sufficiently large k ∈ N, we have ∥M∥k < |µ(q)|k and therefore
∥(A(0)∧q∗)k∥ = |µ(q)|k, which concludes the proof of (iii).

Example 5.23. We illustrate the phenomena described in Lemma 5.22 for the concrete
example A from Example 5.20. This matrix has, has µ1 = 1, µ2 = 1, µ3 =

1
2
, µ4 =

1
2
, so

it has the Lyapunov exponents χ1 = 0 and χ2 = log 1
2
, with multiplicities m1 = 2 and

m2 = 2. Taking the exterior power of A∗ with q = m(1) = 2, and representing it with
respect to the basis {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4}, we obtain the matrix

1 0 0 0 0 0

0 1
2

1 0 0 0

0 0 1
2

0 0 0

0 0 0 1
2

1 0

0 0 0 0 1
2

0

0 0 0 0 0 1
4


.

From this, we see it can be written in the block form given in Lemma 5.22. One can
compute that the operator norm of (A∧2∗)3 is equal to 1.

Theorem 5.24. Let j ∈ [l + 1], set q := m(j). Then the following properties hold:

(i) The limit βq(ξ) := limN→∞ β
(N)
q (ξ) exists and is an q-blade or zero.

(ii) ∥β(N)
q (ξ)− βq(ξ)∥ = O(λ−N∥ξ∥) as N → ∞, ξ → 0.

(iii) ∥βq(ξ)− αq∥ = O(∥ξ∥) as N → ∞, ξ → 0.

(iv) ∥βq(ξ)∥ = 1 +O(∥ξ∥) as N → ∞, ξ → 0.

(v) ⟨A(N)∧q(ξ)βq(ξ), αq⟩ = |µ(q)|N(1 +O(∥ξ∥)) as N → ∞, ξ → 0.

(vi) ∥A(N)∧q(ξ)βq(ξ)∥ ≍ |µ(q)|N as N → ∞, ξ → 0.

as ξ → 0, N → ∞.
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Proof. By Lemma 5.22, the matrix function A∧q satisfies all the assumptions of Lemma
5.17, with respect to the vector αq: from this, almost every statement directly by taking
v = αq. The only thing we have not proved yet is that βq(ξ) is a q-blade or zero, but
this follows from the fact that β

(N)
q (ξ) is a blade for all N and Lemma 5.11.

Definition 5.25. For j ∈ [l + 1], define the subspaces

Yj(ξ) :=
(
span βm(j)

(ξ)
)⊥

,

and set Y0(ξ) = Cℓ. Define

Ej(ξ) := Yj−1(ξ) ∩ Yj(ξ)
⊥

for j ∈ [l + 1], and let Pj(ξ) be the orthogonal projection onto Ej(ξ).

5.3.3 Proving the inequalities

Our goal will be to show that the projections Pj(ξ) we just defined satisfy the inequal-
ities from Theorem 5.3. In particular, this will mean that the subspaces Yj(ξ) are the
Lyapunov subspaces of linear cocycle of the sequence A(λ−N+1ξ) (see [13] for a defini-
tion).

First, we make the following crucial observation:

Lemma 5.26. Let j ∈ [l + 1]. Then

A(ξ)Yj(ξ) ⊆ Yj(λ
−1ξ)

Proof. Set q := m(j) and let x ∈ Yj(ξ). By definition, this means that for all u ∈
span βq(ξ), we have ⟨x, u⟩ = 0. Furthermore, by definition of the βq, we know that
A(ξ)∗βq(λ

−1ξ) and βq(ξ) are linearly dependent, so spanA(ξ)∗βq(λ
−1ξ) = span βq(ξ),

Now let u′ ∈ span βq(λ
−1ξ): then A(ξ)∗u′ ∈ spanA(ξ)∗βq(λ

−1ξ) = span βq(ξ), which
implies ⟨A(ξ)x, u′⟩ = ⟨x,A(ξ)∗u′⟩ = 0: and thus A(ξ)x ∈ span βq(ξ)

⊥, which is what we
wanted to show.

Using this, we are ready to prove the bounds in Theorem 5.3.

Lemma 5.27. Let j, k ∈ [l + 1], such that j < k. Then

∥PjA
(N)(ξ)Pk(ξ)x∥ ≲ λ−N∥ξ∥∥Pk(ξ)x∥

as N → ∞, ξ → 0 uniformly for x ∈ Cℓ.
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5 Linear cocycles around the origin

Proof. Let y = Pk(ξ)x. Without loss of generality we can assume that y ̸= 0, as
otherwise we have 0 on both sides of the inequality. Also let q := m(j).

By definition of the Lyapunov subspaces, we have A(N)(ξ)Yk(ξ) ⊂ Yk(λ
−Nξ), therefore

A(N)y = (I − P(j)(ξ))A
(N)(ξ)y

Define P(j) := P1 + · · · + Pj and P(j)(ξ) := P1(ξ) + · · · + Pj(ξ) for j ∈ [l + 1].
By Theorem 5.24, we have ∥Pm − Pm(ξ)∥ = O(∥ξ∥) for all m ∈ [l], which implies
∥P(m) − P(m)(ξ)∥ = O(∥ξ∥), therefore ∥Pk(I − P(j)(ξ))∥ = O(∥ξ∥) as ξ → 0. Therefore

∥PjA
(N)(ξ)y∥

∥A(N)(ξ)y∥
=

∥Pj(I − P(j)(λ
−Nξ))A(N)(ξ)y∥

∥A(N)(ξ)y∥
≤ ∥Pj(I − P(j)(λ

−Nξ))∥
= O(λ−N∥ξ∥)

as N → ∞, ξ, x → 0.

Lemma 5.28. There exists a radius R > 0 such that the following properties hold.

(i) If x ∈ Yj(ξ), ∥A(N)(ξ)x∥ ⪅ e−χjN∥x∥ as N → ∞, uniformly for x and ξ ∈ BR.

(ii) If x ∈ Yj(ξ)
⊥, ∥A(N)(ξ)x∥ ⪆ e−χj−1N∥x∥ as N → ∞, uniformly for x and ξ ∈ BR.

(iii) If j ∈ [l] and Ej+1 has a basis of eigenvectors of A(0), then (i) holds with ≲ instead
of ⪅.

(iv) If Ej has a basis of eigenvectors of A(0), then (ii) holds with ≳ instead of ⪆.

Proof. In the subsequent we write q := m(j). Note that, using the definition of the
cocycle and Lemma 5.16, we have ∥A(N)∧q(ξ)∥ ⪅ e(χ1+···+χj)N as N → ∞ uniformly for
ξ ∈ BR: we will use this fact multiple times in the proof.

(i) Let x ∈ Yj(ξ). Then, by Lemma 5.27, we have

∥A(N)(ξ)x∥ ≲ ∥(1− P1 − · · · − Pj)A
(N)(ξ)x∥

as N → ∞ uniformly for all small enough ξ. Furthermore we have

|⟨A(N)∧qβq(ξ), αq⟩| ≍ |µ(q)|N ≍ ∥A(N)∧qβq(ξ)∥

as N → ∞, ξ → 0. Therefore, if we let π
(N)
q (ξ) be the orthogonal projection

onto spanA(N)∧qβq(ξ) and use Lemma 5.12, we can conclude that there exist some
radius R > 0, some number N0 ∈ N and some constant 0 < C < 1 such that
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∥P1+ · · ·+Pj −π
(N)
q (ξ)∥ ≤ C for all ξ ∈ BR and N large enough. Therefore, there

exists some radius R > 0 such that

∥A(N)(ξ)x∥ ≲ ∥(1− P1 − · · · − Pj)A
(N)(ξ)x∥ ≲ ∥(1− π(N)

q (ξ))A(N)(ξ)x∥

as N → ∞ uniformly for x and ξ ∈ BR. The last term is, by definition, orthogonal
to A(N)∧qβq(ξ), therefore its norm can be estimated using Lemma 5.16 to obtain

∥(1− π(N)
q (ξ))A(N)(ξ)x∥ =

∥A(N)∧(q+1)(βq(ξ) ∧ x)∥
∥A(N)∧qβq(ξ)∥

⪅ e−χjN∥x∥

as N → ∞ uniformly for x and ξ ∈ BR.

(ii) Let x ∈ Yj(ξ)
⊥: that is, x ∈ span βq(ξ). This means there exists a unique (q − 1)-

blade γ(ξ, x) orthogonal to x such that βq(ξ) = γ(ξ, x)∧x. Therefore, there exists
a radius R > 0 such that

∥A(N)(ξ)x∥ ≥ ∥A(N)∧q(ξ)βq(ξ)∥
∥A(N)(ξ)γ(ξ, x)∥

⪆ e−χj−1N∥x∥

as N → ∞ uniformly for x and ξ ∈ BR. Again, we are using Lemma 5.16 in the
last step.

(iii) Assume Ej+1 has a basis of eigenvectors of A(0). Then, applying Lemma 5.13 to the
basis v1, · · · , vℓ, we deduce that the top eigenspaces of A(0)∧(q+1) also have a basis
of eigenvectors, therefore ∥A(0)∧(q+1)∥ = ρ(A(0)∧(q+1)). Then, by Lemma 5.16,
∥A(N)∧(q+1)(ξ)∥ ≲ ρ(A(0)∧(q+1))N as N → ∞ uniformly for ξ ∈ BR. Then the
same argument as in (i) using ≲ instead of ⪅.

(iv) Same as in (iii).

Lemma 5.29. Let j, k ∈ [l + 1] with j < k.
Then

∥PkA
(N)(ξ)Pj(ξ)x∥ ⪅ max(eχk−χj , λ−1)N∥A(N)(ξ)Pj(ξ)x∥

as N → ∞ uniformly for x ∈ Cℓ and ξ ∈ BR.

Sketch. The following argument is inspired by Dubiner [22]. The idea is as follows: if
x ∈ Yj(0), multiplying it by A(0) will amplify its component in Ej(0) relative to the
norm of x, so A(0)Nx

∥A(0)Nx∥ will “converge to Ej”.
Now, if x ∈ Yj(ξ), multiplying it by A(ξ) will also tend to amplify the component in

Ej(ξ), but there is also an error of order O(ξ∥x∥) relative to the ξ = 0 case: in particular,
A(ξ)x may fail to be in Ej(λ

−nx) even if x ∈ Ej(ξ). We will need to control this error,
which accounts for the worse bound in the lemma, when compared to Lemma 5.27.
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5 Linear cocycles around the origin

Proof. Let y = Pj(ξ)x: without loss of generality we can assume y ̸= 0. Also let

CN :=
∥PkA

(N)(ξ)y∥
∥A(N)(ξ)y∥

qN :=
∥A(N−1)(ξ)y∥
∥A(N)(ξ)y∥

eχj

µ := eχk−χj

Also let L1 > 0 be such that e−χk∥A(λ−Nξ)− A(0)∥ ≤ L1λ
−N for all ξ ∈ BR.

We claim that the following inequality holds:

CN ≤

(
N∏
k=1

qk

)
µNC0 + L1

N∑
k=1

(
N∏

n=N−k

qn

)
λ−N+kµk−1 (5.8)

Assuming that this inequality holds, we can prove the lemma. To see this, note that
we have

∏N
n=1 qn ≈ 1 as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ: therefore, there exists

an increasing function ϵ : N → R≥0 such that ϵ(N)−1 ≤
∏N

n=1 qN ≤ ϵ(N) for all N ∈ N,
x ∈ Cℓ and ξ ∈ BR, and lim supN→∞

1
N
log ϵ(N) ≤ 0. Then we have

CN ≤

(
N∏
k=1

qk

)
µNC0 + L1

N∑
k=1

(
N∏

n=N−k

qn

)
λ−N+kµk−1

≤ µNϵ(N)C0 +
N∑
k=1

ϵ(N)ϵ(N − k)λ−N+kµk−1

≤ max(µ, λ−1)N(ϵ(N)C0 +Nϵ(N)2µ−1L1)

⪅ max(µ, λ−1)N

as N → ∞ uniformly for x ∈ Cℓ, ξ ∈ BR, which is the statement of the lemma. Therefore,
as long as we can prove (5.8), we are done.

In order to prove (5.8), note that CN satisfies the following recursive inequality for
N ∈ N.

CN =
∥PkA

(N)(ξ)y∥
∥A(N)y∥

≤ qNe
−χj

∥PkA
(N)(ξ)y∥

∥A(N−1)y∥

≤ qNe
−χj

∥PkA(0)A
(N−1)(ξ)y∥

∥A(N−1)y∥

+ qNe
−χj

∥Pk(A(λ
−N+1ξ)− A(0))A(N−1)(ξ)y∥

∥A(N−1)y∥
≤ qNµCN−1 + L1qNλ

−N+1

84



5.3 Proof of Theorem 5.3

Using this, we can prove (5.8) by induction. For N = 0, the inequality reads C0 ≤ C0,
so nothing is to be done. For higher N we have:

CN ≤ qNµCN−1 + L1qNλ
−N+1

≤ qNµ

((
N−1∏
n=1

qn

)
µN−1C0 +

N−1∑
k=1

L1

(
N−1∏

n=N−k

qn

)
λ−N+k+1µk−2

)
+ L1qNλ

−N+1

=

((
N∏
k=1

qk

)
µNC0 + L1

N−1∑
k=1

(
N∏

n=N−k

qn

)
λ−N+k+1µk−2

)
+ L1qNλ

−N+1

=

(
N∏
k=1

qk

)
µNC0 + L1

N−1∑
k=0

(
N∏

n=N−k

qn

)
λ−N+k+1µk−2

=

(
N∏
k=1

qk

)
µNC0 + L1

N∑
k=1

(
N∏

n=N−k

qn

)
λ−N+kµk−1

Which finishes the proof by induction of Inequality (5.8), and hence the lemma.

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let A be a matrix function satisfying Assumption 5.1. Note that
it suffices to prove that there exists some norm on Cℓ such that the inequalities in
Theorem 5.3 hold: as all norms on Cℓ are equivalent, this means the inequalities will
hold for any norm.

Pick a descending Jordan basis v1, · · · , vℓ of A(0) and pick an inner product of Cℓ

which makes this basis orthonormal. Then we can define the projections Pj(ξ) as in
Definition 5.25, using this inner product, and all the lemmas we have proven so far hold.

Then, using the norm induced by this inner product, we check the inequalities.

• Inequalities (5.3), (5.7) and (5.6) follow from Lemma 5.28.

• Inequality (5.5) follows from Lemma 5.29.

• Inequality (5.4) follows from Lemma 5.27.

This concludes the proof.
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6 Main Argument

In this section, we use the tools we have developed to study the diffraction of substitution
rules around the origin and provide sufficient conditions for their hyperuniformity in
terms of their substitution matrix.

6.1 Statement

Let S be a primitive, stone, FLC substitution rule on Rd with ℓ colors. Let λ > 1 be its
scaling constant and Mfull be its full substitution matrix as defined in Chapter 4 (now
we call it full substitution matrix to distinguish it from the spherical substitution matrix
Msph we will define in Chapter 7). Recall that Mfull is a primitive matrix with Perron–
Frobenius eigenvalue λd. For each µ ∈ SpecMfull, denote the corresponding generalized
eigenspace by Eµ.

For every w ∈ Cℓ, let η̂w be the diffraction measure of the substitution rule S with
weights w, and define the following constants:

β∥(w) := d−max
{
logλ|µ|

∣∣ µ ∈ SpecMfull \ {λd}, w ̸∈ E⊥
µ

}
,

β⊥(w) := d+ 1−max
{
logλ|µ|

∣∣ µ ∈ SpecMfull \ {λd}, w ∈ E⊥
µ

}
,

β(w) := min
(
β⊥(w), β∥(w)

)
.

Note these expressions make sense even if 0 ∈ SpecMfull, in which case log 0 = −∞:
we never need to subtract two infinities. We also define max ∅ = −∞.

Recall that we defined the asymptotic notation ⪅, such that f(r) ⪅ rα as r → 0 if
and only if for every ε > 0 we have f(r) ≲ rα−ϵ (see Section 2.4 for details).

The most general theorem on the decay of η̂w around the origin we will prove is the
following:

Theorem 6.1. Let w ∈ Cℓ, and let η̂w be the diffraction measure of S with weights w.
Then the diffraction satisfies

η̂w(Br) ⪅ r2β(w)

as r → 0.
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Remark 6.2. Recall that, as we defined in Remark 4.21, it is possible to recenter the
substitution rule S in a way that displaces the canonical prototiles but still results in the
same tilings. As Theorem 6.1 only depends on the substitution matrix Mfull, and not
on the particular displacements, the bounds we obtain stay stable under recentering. In
particular, if Theorem 6.1 proves that S is (Class I) hyperuniform for weights w, any of
its recentered substitution rules will also be (Class I) hyperuniform for weights w.

From Theorem 6.1, we get the following criterion for hyperuniformity.

Corollary 6.3. Assume d ∈ {1, 2}. Then, for every w ∈ Cℓ, the following holds: if
|µ| < λ

d
2 for all µ ∈ SpecMfull \ {λd} such that w ̸∈ E⊥

µ , then S is hyperuniform for
weights w.

Proof. By definition, Φ is hyperuniform for weights w if and only if η̂w(Br) = o(rd) as
r → 0, where η̂w is the diffraction measure of ⟨Φ, w⟩. Then we have:

• For all µ ∈ SpecMfull \ {λd} with w ̸∈ E⊥
µ , we have |µ| < λ

d
2 by assumption.

Therefore β∥(w) > d− d
2
= d

2
.

• For all µ ∈ SpecMfull \ {λd} with w ∈ E⊥
µ , we have |µ| < λd, as λd is the PF

eigenvalue of the substitution matrix. Therefore β⊥(w) > d+ 1− d = 1.

By Theorem 6.1, we have η̂w(Br) ⪅ r2β(w) as r → 0. But for d = 1, 2, we have β(w) =

min(β⊥(w), β∥(w)) > min(d
2
, 1) ≥ d

2
, so η̂w(Br) = o(rd) as r → 0. This means S is

hyperuniform for weights w.

6.2 Proof of Theorem 6.1

Let A be the normalized Fourier matrix of the substitution rule S. Let χ1 > · · · >
χl > χl+1 be the Lyapunov exponents of A(0) and E1, · · · , El+1 their corresponding
spaces of generalized eigenvectors with projections P1, · · · , Pl+1, as defined in Section 5.1.
Also let R > 0 be small enough so that the conclusions of Theorem 5.3 hold for the
normalized Fourier matrix A: let P1(ξ), · · · , Pl+1(ξ) be the projections from the theorem.
By Theorem 4.53, the diffraction matrix Ĥ of S admits a self-similar density (h, ν) on
B×

R .
Fix w ∈ Cℓ, and define the two following subsets of [l + 1]:

J∥(w) = {j ∈ [l + 1] | w ̸∈ E⊥
j }

J⊥(w) = {j ∈ [l + 1] | w ∈ E⊥
j }

Then the constants from Theorem 6.1 can be restated as follows:
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6.2 Proof of Theorem 6.1

Lemma 6.4. The constants β∥ and β⊥ from Theorem 6.1 are given by

• β∥(w) = min{− χj

log λ
| j ∈ J∥(w) \ {1}}

• β⊥(w) = 1 + min{− χj

log λ
| j ∈ J⊥(w) \ {1}}

Proof. Recall that β∥(w) is defined as

d−max
{
logλ|µ|

∣∣ µ ∈ SpecMfull \ {λd}, w ̸∈ E⊥
µ

}
Using the fact that A(0) = λ−dMfull, we see that µ ∈ SpecMfull satisfies log |µ|

λd = χj

if and only if generalized eigenspace Eµ is contained in Ej. Therefore w ∈ E⊥
j holds if

and only if w ∈ E⊥
µ for every µ ∈ SpecMfull such that log |µ|

λd = χj. If this is the case,
we have:

− χj

log λ
= − log|µ| − d log λ

log λ
= d− logλ|µ|.

Therefore the definitions of β∥(w) and β⊥(w) coincide with the equations in the state-
ment of the lemma. This concludes the proof.

The proof of Theorem 6.1 hinges on the following lemma.

Lemma 6.5. For all j ∈ [l + 1] \ {1} and k ∈ J∥(w), we have

∥PkA
(N)(λ−1ξ)Pj(ξ)x∥ ⪅ λ−β(w)N∥Pj(ξ)x∥

as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ.

Proof. Depending on j and k, we will find α, γ such that α+γ ≥ β(w) and the following
inequalities hold:

∥A(N)(λ−1ξ)Pj(ξ)x∥ ⪅ λ−αN∥Pj(ξ)x∥
∥PkA

(N)(λ−1ξ)Pj(ξ)x∥ ⪅ λ−γN∥A(N)(λ−1ξ)Pj(ξ)x∥
(6.1)

as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ. If we achieve this, we have

∥PkA
(N)(ξ)Pj(ξ)x∥ =

∥PkA
(N)(λ−1ξ)Pj(ξ)x∥

∥A(N)(λ−1ξ)Pj(ξ)x∥
∥A(N)(λ−1ξ)Pj(ξ)x∥ ⪅ λ−(α+γ)N

as N → ∞ uniformly for ξ ∈ BR, x ∈ Cℓ, which concludes the proof of the lemma. (If
the denominator of the fraction is 0 the left hand side is 0 as well, so the inequality still
holds.)

In order to find α, γ, we need to consider different cases. We will use Theorem 5.3 for
all of these, using the characterization of β∥ and β⊥ from Lemma 6.4.
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• Case j ̸∈ J⊥(w): In this case, Equation (5.3) from Theorem 5.3 reads

∥A(N)(λ−1ξ)Pj(ξ)x∥ ⪅ eχjN∥Pj(ξ)x∥

Furthermore, we have

∥PkA
(N)(λ−1ξ)Pj(ξ)x∥ ⪅ ∥A(N)(λ−1ξ)Pj(ξ)x∥

Then, using the fact that eχjN = λ
χj

log λ
N , we see that Inequalities (6.1) hold with

α = − χj

log λ
and γ = 0. As α ≥ β∥(w) ≥ β(w), we have α + γ ≥ β(w).

• Case j ∈ J⊥(w), j > k: In this case, Equations (5.3) and (5.4) from Theorem 5.3
read:

∥A(N)(λ−1ξ)Pj(ξ)x∥ ⪅ eχjN∥Pj(ξ)x∥
∥PkA

(N)(λ−1ξ)Pj(ξ)x∥ ≲ λ−N∥A(N)(λ−1ξ)Pj(ξ)x∥

Therefore, Inequalities (6.1) hold if we set α = − χj

log λ
and γ = 1. In this case

α + γ = 1− χj

log λ
≥ β⊥ ≥ β.

• Case j ∈ J⊥(w), j < k: In this case, Equations (5.3) and (5.5) from Theorem 5.3
read:

∥A(N)(λ−1ξ)Pj(ξ)x∥ ⪅ eχjN∥Pj(ξ)x∥
∥PkA

(N)(λ−1ξ)Pj(ξ)x∥ ⪅ max(eχk−χj , λ−1)N∥A(N)(λ−1ξ)Pj(ξ)x∥

Therefore, Inequalities (6.1) hold if we set α = − χj

log λ
and γ = min(

χj−χk

log λ
, 1). In this

case we have either α+γ = − χj

log λ
+1 ≥ β⊥ or α+γ = −χj +

χj−χk

log λ
= − χk

log λ
≥ β∥.

In both cases we have α + γ ≥ β.

Then, for every j, k as in the statement of the lemma, we have found α, γ such that
Inequalities (6.1) hold and α + γ ≥ β(w). This concludes the proof.

In Lemma 6.5, we exclude the case j = 1 This is justified by the following lemma.

Lemma 6.6. For ν-almost every ξ ∈ BR, we have P1(ξ)h(ξ)P1(ξ) = 0.

Proof. The first Lyapunov exponent of A(0), χ1 = 0, has multiplicity m1 = 1. Therefore,
by Inequality (5.6) of Theorem 5.3, we have

∥A(N)(ξ)P1(ξ)x∥ ≳ ∥P1(ξ)x∥

as N → ∞ uniformly for all ξ ∈ BR, x ∈ Cℓ. This means there exist some c > 0 and
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N0 ∈ N such that
∥A(N)(ξ)P1(ξ)x∥ ≥ c∥P1(ξ)x∥

for all ξ ∈ BR, N ≥ N0.
As h(ξ) is positive semidefinite for all ξ, we can find f1(ξ), · · · , fℓ(ξ) such that h(ξ) =∑ℓ
t=1 ft(ξ)ft(ξ)

∗. Therefore

∥h(λ−Nξ)∥ = ∥A(N)(λ−1ξ)h(ξ)A(N)∗(λ−1ξ)∥
≥ ∥A(N)(λ−1ξ)P1(ξ)h(ξ)P1(ξ)A

(N)∗(λ−1ξ)∥

=
ℓ∑

t=1

∥A(N)(λ−1ξ)P1(ξ)ft(ξ)∥2

≥ c

ℓ∑
t=1

∥P1(ξ)ft(ξ)∥2

≥ c∥P1(ξ)h(ξ)P1(ξ)∥

for all ξ ∈ BR, N ≥ N0.
On the other hand, by Lemma 4.58, we have h(λ−Nξ) → 0 as N → ∞, so the

inequality we just proved implies ∥P1(ξ)h(ξ)P1(ξ)∥ = 0, as we wanted to show.

Proof of Theorem 6.1. By Lemma 4.57, it suffices to show

⟨h(λ−Nξ)w,w⟩ ⪅ λ−2β(w)N ∥h(ξ)∥ as N → ∞, (6.2)

uniformly for ξ ∈ BR.
By Lemma 4.50, h(ξ) is positive semidefinite for ν-almost every ξ. Hence for ν-almost

every ξ there exist orthogonal vectors f1(ξ), . . . , fℓ(ξ) (possibly some zero) with

h(ξ) =
ℓ∑

t=1

ft(ξ)ft(ξ)
∗.

Therefore

⟨h(λ−Nξ)w,w⟩ =
ℓ∑

t=1

|⟨A(N)(ξ)ft(ξ), w⟩|2,

and it is enough to prove

|⟨A(N)(ξ)ft(ξ), w⟩| ⪅ λ−β(w)N ∥ft(ξ)∥,

as N → ∞, uniformly for ξ ∈ BR and for all t ∈ [ℓ].
We can decompose this further using the projections Pj(ξ) and Pj from Theorem 5.3.
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We have
∑l+1

j=1 Pj =
∑l+1

j=1 Pj(ξ) = I, so we can bound

∣∣⟨A(N)(ξ)ft(ξ), w⟩
∣∣ = ∣∣∣∣∣

〈( l+1∑
k=1

Pk

)
A(N)(λ−1ξ)

( l+1∑
j=1

Pj(ξ)ft(ξ)
)
, w

〉∣∣∣∣∣
=

∣∣∣∣∣
l+1∑
j,k=1

〈
A(N)(λ−1ξ)Pj(ξ)ft(ξ), P

∗
kw
〉∣∣∣∣∣

≤
l+1∑
j,k=1

∣∣〈A(N)(λ−1ξ)Pj(ξ)ft(ξ), P
∗
kw
〉∣∣ .

Therefore, in order to prove the theorem, it suffices to prove

|⟨A(N)(λ−1ξ)Pj(ξ)ft(ξ), P
∗
kw⟩| ⪅ λ−β(w)N∥Pj(ξ)ft(ξ)∥∥P ∗

kw∥ (⋆)

as N → ∞ uniformly for all ξ ∈ BR, t ∈ [ℓ] and j, k ∈ [l + 1]. If we are able to prove
this inequality, we are done.

It suffices to prove (⋆) for all ξ, t, j, k such that Pj(ξ)ft(ξ) ̸= 0 and P ∗
kw ̸= 0, as

otherwise both sides of the asymptotic inequality are 0. But:

• By Lemma 6.6, we have P1(ξ)ft(ξ) = 0.

• If k ̸∈ J∥(w), we have k ∈ J⊥(w). By definition, this means w ⊥ Ek: as Pk is a
projection with image Ek, this means P ∗

kw = 0

This means that we only need prove the inequality (⋆) for the j, k ∈ [l + 1] such that
j ̸= 1 and k ∈ J∥(w). These are precisely the indices we considered in Lemma 6.5:
therefore, Lemma 6.5 proves the (⋆) uniformly for all ξ ∈ BR, t ∈ [ℓ] and j, k ∈ [l + 1].
This completes the proof.
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7 Examples

In this last chapter, we will apply the results of Chapter 6 to a wide variety of substitution
rules.

7.1 One-dimensional substitution rules with two

colors

First, we turn our attention to the simplest nontrivial substitution rules possible: one-
dimensional substitution rules with two colors. In this case, the substitution matrix only
has one non-PF eigenvalue, so Theorem 6.1 specializes to the following:

Corollary 7.1. Let S be a primitive, stone, FLC substitution rule on R with ℓ = 2.
Let λ be its scaling constant, µ2 be the smallest eigenvalue of the full substitution matrix
Mfull, and v2 be the corresponding right eigenvector. For all w ∈ C2, let η̂w be the
diffraction of S with weights w. Then we have

η̂w(Br) ⪅ r2β(w)

as r → 0, where

β(w) :=

2− logλ|µ2| if w ⊥ v2

1− logλ|µ2| otherwise

Furthermore, the inequality holds with ≲ unless µ2 = 0, in which case we have η̂w(Br) ⪅

0 as r → 0.

In the generic case where w is not orthogonal to the second eigenvector, this is the
bound originally conjectured by Oğuz, Socolar, Steinhardt, and Torquato [47] and has
been checked for several examples by the same authors and also by Baake and Grimm
[6], as we will see in the examples below.

Proof of Corollary 7.1. The only part of Corollary 7.1 that does not follow directly from
Theorem 6.1 is the claim that we can replace ⪅ with ≲. In order to see this, we repeat
the outline of the proof of Theorem 6.1, which simplifies significantly. In particular,
Mfull is diagonalizable, as it has two distinct eigenvalues.
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Let R > 0 be a radius such that the conclusions of Theorem 5.3 hold for the normalized
Fourier matrix A(ξ) of S. The eigenvalues of A(0) = λ−1Mfull are 1 and λ−1µ2, hence
the Lyapunov exponents are χ1 = 0 and χ2 = logλ|µ2| − 1.

Let h be a self-similar density of Ĥ|B×
R

with base ν. As h(ξ) is positive semidefinite, it
is diagonalizable everywhere: furthermore, by Lemma 6.6, we have P1(ξ)h(ξ)P1(ξ)

∗ = 0

for ν-almost every ξ ∈ B×
R .

Therefore, h(ξ) has rank at most 1 for ν-almost every ξ ∈ B×
R , so there exists a vector-

valued function f : B×
R → C2 with P2(ξ)f(ξ) = f(ξ) such that h(ξ) = f(ξ)f(ξ)∗.

Now we consider two cases:

• Assume w ̸⊥ v2: then β(w) = 1− logλ|µ2|, so λ−β(w) = eχ2 . Furthermore, we have
P2f(ξ) = f(ξ) for ν-almost every ξ ∈ B×

R . Then we can compute:

⟨h(λ−Nξ)w,w⟩ = |⟨f(λ−Nξ), w⟩|2

= |⟨A(N)(λ−1ξ)P2f(ξ), w⟩|2

≤ ∥A(N)(λ−1ξ)P2f(ξ)∥2∥w∥2

≲ e2χ2N

= λ−2β(w)N

as N → ∞ uniformly for ξ ∈ B×
R . In the last inequality we use Theorem 5.3, where

we have ≲ instead of ⪅ because A(0) is diagonalizable.

• Assume w ⊥ v2: then β(w) = 2− logλ|µ2|, so λ−β(w) = λ−1eχ2 .

As w is orthogonal to v2, we have P ∗
2w = 0, so P ∗

1w = w.

⟨h(λ−Nξ)w,w⟩ = |⟨f(λ−Nξ), w⟩|2

= |⟨A(N)(λ−1ξ)P2f(ξ), P
∗
1w⟩|2

≤ ∥P1A
(N)(λ−1ξ)P2f(ξ)∥2∥w∥2

≲ λ−1e2χ2N

= λ−2β(w)N

as N → ∞ uniformly for ξ ∈ B×
R .

By Theorem 4.57, this is enough to prove η̂w(Br) ≲ r2β(w) as r → 0.

In what follows, we only consider examples where the canonical prototiles are intervals:
every stone substitution rule with this property is face-to-face, hence FLC.

Remark 7.2. So far we have considered only geometric substitution rules, which act
on multisets of points in Rd. In the one-dimensional case, the are roughly equivalent
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to symbolic substitution rules, i.e. maps ϱ0 : A → A∗ where A is a finite alphabet and
A∗ is the set of finite words over A. Indeed, every primitive symbolic substitution rule
ϱ0 can be turned into a primitive geometric substitution rule unique up to recentering,
and every geometric substitution rule with interval prototiles is obtained in this way.
See Baake and Grimm [5] for details on this correspondence. For each example we
consider below, we explicitly give the geometric substitution rule, and also write the
corresponding symbolic substitution for the convenience of experienced readers.

Fibonacci substitution rule

The most famous example of a one-dimensional substitution rule is the Fibonacci sub-
stitution rule, given symbolically by 1 7→ 12, 2 7→ 1.

Example 7.3. The (geometric) Fibonacci substitution rule on R is a substitution rule
SFib = (λ,∆) with 2 colors, where λ = τ = 1+

√
5

2
and the displacement matrix ∆ ∈

Pfin(R)2×2 is given by

∆ =

(
{0} {0}
{1} ∅

)
.

Figure 7.1: A tiling obtained from the Fibonacci substitution rule.

This is a primitive, stone, FLC substitution rule, with canonical prototiles τ1 = [0, 1]

and τ2 = [0, τ−1]. Its substitution matrix is given by

Mfull =

(
1 1

1 0

)

with eigenvalues µ1 = τ and µ2 = −τ−1: the eigenvector to µ2 is (τ−2,−τ−1)⊤, so w is
orthogonal to v2 if and only if w is proportional to the PF eigenvector vPF = (τ−1, τ−2)⊤.
Then β(w) = 1−logτ τ

−1 = 2 if w is not proportional to vPF , and β(w) = 2−logτ τ
−1 = 3

if it is.
Therefore, using Corollary 7.1, we obtain the following.

Corollary 7.4. Let w ∈ C2 and η̂w be the diffraction of SFib with weights w. Then we
have

η̂w(Br) ≲ r4
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as r → 0, so SFib is Class I hyperuniform for weights w. Furthermore, if w is propor-
tional to vPF , then

η̂w(Br) ≲ r6

as r → 0.

The generic bound was already known [6, 7, 47]: it can also be proven using the model
set description of the Fibonacci tilings. The better bound for PF weights has not been
noticed before, to the best of our knowledge.

Thue–Morse substitution rule

Example 7.5. The Thue–Morse substitution rule on R is a substitution rule STM =

(λ,∆), where λ = 2 and the displacement matrix ∆ ∈ Pfin(R)2×2 is given by

∆ =

(
{0} {1}
{1} {0}

)

This is a primitive, stone, FLC substitution rule with canonical prototiles τ1 = τ2 =

[0, 1].
Its substitution matrix is given by

Mfull =

(
1 1

1 1

)

Here the second eigenvalue is µ2 = 0, so we obtain the following.

Corollary 7.6. For any weights w, η̂w(Br) ⪅ 0 as r → 0. In particular, STM is
hyperuniform of Class I for all weights w.

In fact, in this case, one obtains periodic solutions for w = (1, 1)⊤. For w = (1,−1)⊤

(the balanced case) Baake and Grimm [3] derived sharper asymptotics.

A periodic two-color substitution

Example 7.7 ([5, Ex. 4.2]). Consider the substitution rule S on R with scaling constant
λ = 3 and displacement matrix

∆ =

(
{0, 2} {1}
{1} {0, 2}

)

In this case, the canonical prototiles are τ1 = τ2 = [0, 1], and the second eigenvalue is
µ2 = 1. Therefore, Corollary 7.1 would give the bound η̂w(Br) ≲ r2. However, it turns
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out that the self-similar sets of this rule are all periodic, hence we have η̂w(Br) = 0 for all
w and all r < 1. This is an example where the bound from Corollary 7.1 is not optimal.

An antihyperuniform example

Now we consider the substitution rule with symbolic form 1 7→ 11112, 2 7→ 12222.

Example 7.8. Define the substitution rule S on R with λ = 5 and

∆ =

(
{0, 1, 2, 3} {0}

{4} {1, 2, 3, 4}

)

This substitution rule is primitive and stone with canonical prototiles τ1 = τ2 = [0, 1].
The substitution matrix is

Mfull =

(
4 1

1 4

)
with smallest eigenvalue µ2 = 3 and corresponding eigenvector v2 = (1,−1)⊤.

Corollary 7.9. Let S be as above and w ∈ C2.

(i) If w = (1, 1)⊤ (that is, if one gives all tiles the same weight), we have η̂w(Br) ≲

r2(2−log5 3). In particular, because 2(2− log5 3) = ∼2.6, S is Class I hyperuniform
for this choice of weights.

(ii) If w is not a multiple of (1, 1)⊤, then η̂w(Br) ≲ r2(1−log5 3).

Note that 2(1−log5 3) = ∼0.6 < 1: therefore, part (ii) does not prove hyperuniformity
for w ∈ (1, 1)⊤. In fact, with more careful analysis, one can show that, in fact, η̂w(Br) ≍
r0.6, so that S is antihyperuniform for these weights. This is peculiar for the following
reason: if ΛΛΛ = (Λ1,Λ2) ∈ Ω, after recentering if necessary, the sets Λ1 and Λ1 ∪ Λ2 are
MLD equivalent, but one of them is hyperuniform and the other one is not. This means
that hyperuniformity is not preserved under MLD equivalence, contradicting standing
conjectures in the field. See [31] for a more detailed discussion of this phenomenon.

Figure 7.2: Two tilings constructed from the rule in Example 7.8, with one color in green and
the other in red. One can see that tilings constructed with this rule tend to have
large patches with mostly one color, followed by large patches with mostly the
other color. This suggests the tilings may not be hyperuniform.
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7.2 Symmetric substitution rules

In two or more dimensions, most substitution tilings are defined via symmetry: there
often exists some group of rigid motions which is compatible with the substitution rule.
In this case, we will be able to use Theorem 6.1 to prove that a large class of symmetric
substitution tilings are hyperuniform.

In this section, we introduce a formalism to describe symmetric substitution rules, use
it to define several examples, and discuss their hyperuniformity and degree of uniformity.

7.2.1 Symmetric substitution systems

First, we define symmetric substitution systems, and show how one can efficiently con-
struct them and check their basic properties.

Definition 7.10. Let G < O(d) be a finite subgroup equipped with an action on [ℓ], in
addition to its usual action on Rd. We say S is a G-symmetric substitution rule if the
displacement matrix ∆ = (∆j,k)j,k∈[ℓ] satisfies

∆g·j,g·k = g ·∆j,k

for all g ∈ G, j, k ∈ [ℓ].

If S is a G-symmetric substitution rule, it suffices to define the displacements for a
set of representatives of the orbits of G on [ℓ]. Furthermore, in order to check whether
it is a stone substitution rule, it suffices to check it on this set of representatives.

Lemma 7.11. Let S be a primitive, G-symmetric substitution rule with canonical pro-
totiles τ1, · · · , τℓ. Then, for all g ∈ G, we have

g · τj = τg·j

Proof. Let JG ⊂ [ℓ] be a set of representatives of the orbits of G, and, for j ∈ [ℓ], define
new tiles

τ ′j =
⋃
g∈G

g · τg−1·j.

Then the tiles τ ′1, · · · , τ ′ℓ are compact and satisfy the equation

Dλτ
′
j =

⋃
i∈[ℓ]

⋃
x∈∆j,i

Txτ
′
i .

By Theorem 4.16, the canonical prototiles of S are unique, hence τj = τ ′j for all j ∈ [ℓ].
As the prototiles τ ′j satisfy τ ′j = g · τ ′g−1·j, we are done.
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Lemma 7.12. Let ℓ ∈ N, and let G < O(d) be a finite subgroup equipped with an action
on [ℓ]. Let JG ⊂ [ℓ] be a set of representatives of the orbits of G, and let (ϱj)j∈JG

be a collection of finite ℓ-color subsets of Rd. Then there exists a unique G-symmetric
substitution rule S such that ϱ(oj) = ϱj for all j ∈ JG.

Lemma 7.13. Let S be a G-symmetric primitive substitution rule with ℓ colors and
τ1, · · · , τℓ be compact subsets of Rd. Then the following are equivalent:

(i) S is a stone substitution with canonical prototiles τ1, · · · , τℓ.

(ii) The following conditions hold:

(i) For all j ∈ [ℓ], g ∈ G, τg·j = g · τj

(ii) For some set of representatives JG ⊂ [ℓ] of the action of G and all j0 ∈ JG

and k ∈ [ℓ], ϱ(oj0) tiles Dλτj with prototiles τ1, · · · , τℓ.

Proof. The implication (i) ⇒ (ii) is clear by the definition of a G-symmetric substitution
rule and Lemma 7.11.

So assume (ii) holds: we want to show ϱ(oj) tiles Dλτj with prototiles τ1, · · · , τℓ for
all j ∈ [ℓ]. So let JG be a set of representatives of the orbits of G on [ℓ]. Then, for every
j ∈ [ℓ], there exists j0 ∈ JG and g ∈ G such that j = g · j0. Then

ϱ(oj) = ϱ(og·j0) = g · ϱ(oj0)

because of the symmetry of S. By assumption, ϱ(oj0) tiles Dλτj0 with prototiles
τ1, · · · , τℓ: therefore, g · ϱ(oj0) = ϱ(oj) tiles g · Dλτj0 = Dλτj with the same prototiles.
This concludes the proof.

7.2.2 The spherical substitution matrix

Let S be a substitution rule with ℓ colors. If S is G-symmetric for some finite group
G, this has consequences for the structure of the substitution matrix Mfull, which we
will study in the rest of this section. These will help us apply Theorem 6.1 to prove
hyperuniformity of symmetric substitution systems.

Let S be a G-symmetric substitution rule with ℓ colors. Then the action of G on [ℓ]

induces a unitary action of G on Cℓ, by permuting the standard basis vectors: that is,
g · ej = eg·j for j ∈ [ℓ]. The substitution and Fourier matrices of S interact with this
action as follows:

Lemma 7.14.

(i) The full substitution matrix Mfull of S satisfies g ·Mfull = Mfull · g for all g ∈ G.
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(ii) The normalized Fourier matrix A(ξ) satisfies g ·A(ξ) = A(g · ξ) · g for all g ∈ G.

Proof. By definition of a G-symmetric substitution rule, we have

(g ·A(ξ))jk = A(ξ)g·j,k

= λ−d
∑

x∈∆g·j,k

e2πi⟨x,ξ⟩

= λ−d
∑

x∈∆j,g−1·k

e2πi⟨g
−1x,ξ⟩

= A(ξ)j,g−1·k

= (A(g · ξ) · g)jk

for all j, k ∈ [ℓ]. This shows (ii). As Mfull = A(0), (i) immediately follows.

As Mfull commutes with the action of G, the generalized eigenspaces of Mfull are G-
invariant. Furthermore, as G acts on Cℓ by permutations, its action is unitary. Then
the following holds.

Lemma 7.15. Let V ⊂ Cℓ be a subspace which is both G-invariant and Mfull-invariant.
Then, for every µ ∈ SpecMfull with generalized eigenspace Eµ, exactly one of the follow-
ing holds:

(i) µ ∈ SpecMfull|V and Eµ ∩ V ̸= 0

(ii) µ /∈ SpecMfull|V and Eµ ⊥ V

Therefore, we can get information about the spectral theory of Mfull by decomposing
the substitution matrix into certain G-invariant subspaces. In particular, let Vsph be
the space of G-invariant vectors in Cℓ. This is also Mfull-invariant, so we can define the
following:

Definition 7.16. Let JG be a set of representatives of the orbits of G on [ℓ], and let
i1 < · · · < iℓ0 be the elements of JG. Then the spherical substitution matrix Msph is the
ℓ0 × ℓ0 matrix defined by

(Msph)jk =
∑
g∈G

#∆ij ,g·ik

for j, k ∈ [ℓ0].

The spherical substitution matrix Msph is the transformation matrix of the restriction
of the substitution operator Mfull to the subspace Vsph. Therefore we obtain the following:

Lemma 7.17. Let λ ∈ SpecMfull and Eλ be its eigenspace. Then exactly one of the
following holds:
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(i) λ ∈ SpecMsph and λ has a G-invariant eigenvector.

(ii) λ /∈ SpecMsph and every eigenvector of λ is orthogonal to Vsph.

Using this lemma, we can apply Theorem 6.1 to get a sufficient condition for hyperuni-
formity for G-symmetric substitution systems with G-invariant eigenvectors, as follows:

Corollary 7.18. Let S be a G-symmetric, primitive, FLC substitution rule on R2. Then
the following holds: if |µ| < λ for all µ ∈ SpecMsph \ {λ2} and w ∈ Cℓ is a G-invariant
vector, then S is hyperuniform for weights w.

Remark 7.19. The spherical matrix corresponds to the trivial representation of G. One
can obtain similar matrices by looking at other irreducible representations of G: this
gives a decomposition of Mfull into blocks corresponding to the irreducible components of
the action of G. Alternatively, one can write Mfull as a matrix with entries in the group
ring C[G], providing a compact description of the substitution matrix (this requires
some care if the action is not free). This has been used by Sadun [49] (see also [12])
to study the cohomology of substitution spaces. We will also use this later in specific
examples.

7.2.3 Examples

In this section, we give examples of symmetric substitution systems in dimension 2, and
discuss their hyperuniformity and spectral properties.

For every example we consider, the symmetry group G will either be the cyclic group
of rotations or the dihedral group.

• G = Cn, where the generator R acts on R2 by rotation by 2π
n

radians counterclock-
wise. For i ∈ [n], we set gi := Ri−1, so we have G = {g1, g2, · · · , gn}.

• G = Dn, the dihedral group of order 2n, generated by the rotation R by 2π
n

radians
counterclockwise, and the reflection S in the x-axis. For i ∈ [n], we set gi := Ri−1

and gn+i := Ri−1S: this gives us an ordering G = {g1, g2 · · · , g2n}.

Remark 7.20 (A picture is worth a thousand words). For these examples, explicitly
writing down the displacement matrix ∆ would often be cumbersome and not very
enlightening. As is common in the literature, we will instead define the substitution rule
by showing a picture of the patches defined by ϱ(oj) for all j ∈ JG, where JG is a set
of representatives of the orbits of G on [ℓ]: as long as one marks each tile in a way that
makes its color clear, this is enough to determine ϱ(oj) for all j ∈ JG, and hence the
substitution rule S (see Lemma 7.13). The way G operates on the colors will also be
apparent from the pictures.
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Chair substitution rule

Example 7.21. We define the chair substitution rule S on R2 as the C4-symmetric rule
given by Figure 7.4. We check that this is a primitive, stone, FLC substitution rule.

• From the picture, it is apparent that the support of ϱ(o1) is exactly D2τ1: therefore
S is stone with scaling constant λ = 2 and the pictured prototiles τ1, τ2, τ3, τ4.

• After applying the substitution rule twice, all four orientations of the original
prototile appear, hence S is primitive.

• Figure 7.5 shows a portion of a chair tiling, i.e. a tiling obtained from a legal
multiset of S. From the figure, we see that the tiling is not edge-to-edge, but it
is sibling edge-to-edge [32]: the intersection between two tiles is either empty, a
vertex, a side of both tiles, or one half of a side of one tile. This implies that it
is FLC, as there are only finitely many ways to surround each tile satisfying these
rules.

There is only one prototile up to rotation. Therefore, the spherical substitution matrix
is Msph = (4).

Figure 7.3: The four prototiles of the chair substitution rule, with the origin marked in black.
The rotational symmetry is apparent.

Corollary 7.22. The chair rule is hyperuniform for constant weights.

The full substitution matrix of the chair substitution rule is given by

Mfull =


2 1 0 1

1 2 1 0

0 1 2 1

1 0 1 2

 :

the first row can be read from Figure 7.4, and the other rows follow from the C4-
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Figure 7.4: The prototile τ1 and the patch of ϱ(o1).

symmetry. It has eigenvalues 4, 2, 2, 0, with eigenvectors

v1 =


1

1

1

1

 , v2 =


1

i

−1

−i

 , v3 =


1

−i

−1

i

 , v4 =


1

−1

1

−1

 .

Then Theorem 6.1 gives us the following bounds.

Corollary 7.23. Let S be the chair substitution rule and w ∈ C4. Then

(i) If w ∈ span{v1, v4}, then η̂w(Br) ⪅ r4 as r → 0. In particular, S is hyperuniform
of Class I with these weights.

(ii) If w /∈ span{v1, v4}, then η̂w(Br) ⪅ r2 as r → 0.

Proof. If w ∈ span{v1, v4}, w is orthogonal to the eigenspaces of the eigenvalue 2,
therefore β⊥(w) = 3 − log2 2 = 2 and β∥(w) = 2 − log2 0 = ∞. Then β(w) = 2, so
Theorem 6.1 implies η̂w(Br) ⪅ r4.

Otherwise, we have β(w) = β∥(w) = 2− log2 2 = 1, so η̂w(Br) ⪅ r2.

Part (ii) does not prove hyperuniformity for these weights: if the bound were sharp,
this would mean that the chair substitution rule is not hyperuniform for these weights.

In the literature, one often considers a variant of the chair substitution rule, the block
substitution rule [4], which has the same substitution matrix but where the prototiles
are all squares: as the substitution matrix is the same, the bounds from Corollary 7.23
still hold.

For the block substitution rule, self-similar sets are limit-periodic, and Baake and
Grimm [4] computed the diffraction measure explicitly. In this case, we can prove that
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Figure 7.5: A chair tiling.

there are choices of weights for which the block substitution rule is not hyperuniform.

Theorem 7.24. Let Sblock be the block substitution rule and w = (1, 0, 0, 0)⊤. Then
η̂w(Br) ≳ r2 as r → 0.

Proof. By Theorem 4.57, it suffices to find a subset A ⊂ Br which is not a null set and
such that η̂w(D2−nA) ≳ 4−n: as Sblock is pure point diffractive, it suffices to do this for
a single point.

In fact, Baake and Grimm [4, Equation (25)] showed that

η̂w(2
−n(1, 0)⊤) =

∣∣∣∣ 14n 1

1− ϵn

∣∣∣∣2 ≍ 4−n

as n → ∞, where ϵn = e−2πi2−n . This completes the proof.

Similar results should hold for other choices of weights not in span{v1, v4}. This
suggests that the same is true for the chair substitution rule.
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Penrose substitution rule

Example 7.25. The Penrose substitution rule SPen, is a D10-symmetric substitution
rule defined as depicted in Figure 7.6. It is primitive, stone and FLC, with scaling
constant λ = τ = 1+

√
5

2
.

Figure 7.6: The prototiles τ1 and τ21 on the left, together with the supports of ϱ(o1) and
ϱ(o21) on the right. On the right, the origin of each tile is marked. We picture
the tiles τ1, · · · , τ10 in pink, τ11, · · · , τ20 in brown, and the tiles τ21, · · · , τ30 in light
blue, note that the triangles have an axis of reflection symmetry, so the colors are
needed to distinguish them.

Here, Msph = ( 2 1
1 1 ) with non-PF eigenvalue −τ−2, so the hypothesis of Corollary 7.18

holds for symmetric weights. Therefore:

Theorem 7.26. The Penrose rule is hyperuniform for any symmetric choice of weights,
such as w = (1, 1, · · ·)⊤.

In order to write exact bounds for the diffraction around the origin, we need the full
substitution matrix. This is a 40 × 40 matrix, but, as mentioned in Remark 7.19, we
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Figure 7.7: Example Penrose tiling. As before, the tiles τ11 to τ20 and τ31 to τ40 are depicted
in darker colors to distinguish them.

can write it in a compact way using symmetry.

Theorem 7.27. For symmetric weights w, η̂w(Br) ⪅ rα as r → 0 for the Penrose rule,
where α = 2(3− logφ(µ2)) = ∼2.85.

Proof. In particular, as D10 acts freely on C40, we can assume it acts diagonally on
C20⊕C20. For g ∈ D10, let Z(g) ∈ C20×20 be the unique G-equivariant matrix such that
Z(g)e1 = eg·1. Then, by inspecting Figure 7.6, we see that the full substitution matrix
is given by

Mfull =

(
Z(R7) + Z(R6S) Z(R7)

Z(R3S) Z(R4)

)
Using a computer algebra system, one can compute that this matrix is diagonalizable

and its second largest eigenvalue is µ2 = ∼2.13.

This bound is probably not sharp: numerical experiments and heuristic calculations
[25, 33] suggest that the best exponent is η̂w(Br) ⪅ r8, at least for constant weights.
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Proving this rigorously would require a more detailed analysis of the diffraction of the
Penrose rule, such as using the representation of Penrose tilings as model sets; see Baake
and Grimm [5, Example 7.11].

Remark 7.28. Note that the map Z : G → C20×20 used above is not the action of
G on C20: as G is non-abelian, the matrices representing the action on G are not G-
equivariant. Instead, if we identify C20 with the group ring C[D10] and let G act by left
multiplication, then Z(g) is the matrix representing right multiplication by g.

Danzer’s 7-fold tiling

Example 7.29. Danzer’s 7-fold tiling is a D7-symmetric substitution rule with scaling

constant λ =

√
1 +

sin( 2π
7
)

π
7

= ∼2.8: the displacements and canonical prototiles are shown

in Figure 7.8, and an example tiling is shown in Figure 7.9. One can deduce from the
pictures that the substitution rule is primitive, stone and FLC.

Figure 7.8: Danzer’s 7-fold substitution rule. Figure by Frettlöh, Harriss, and Gähler [24]
licensed under CC BY-NC-SA 2.0.

Note that λ is not a Pisot number, hence its dynamical spectrum has no eigenvalues
and its diffraction has no pure point component [26, 54]. Thanks to our approach using
self-similar densities, we are able to estimate its diffraction around the origin exactly
the same as for the previous examples: we do not even need to figure out whether the
diffraction is singular continuous or absolutely continuous.
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Figure 7.9: A Danzer tiling. Figure by Frettlöh, Harriss, and Gähler [24] licensed under CC
BY-NC-SA 2.0.

Theorem 7.30. Danzer’s 7-fold rule is hyperuniform for any symmetric choice of
weights.

Proof. The spherical substitution matrix Msph =
(

2 1 2
1 5 3
2 3 3

)
has non-PF eigenvalues ap-

proximately ∼2.1 and ∼0.06, both smaller than λ.

Theorem 7.31. The diffraction of Danzer’s 7-fold rule has η̂w(Br) ⪅ rα with α = ∼2.6.
for any symmetric choice of weights w.

Proof. Similarly to the Penrose case, D7 acts freely on the colors of Danzer’s 7-fold rule,
so, after ordering the colors appropriately, we can write

Mfull =

(
Z(S)+Z(R7S) Z(R4) Z(R3)+Z(R10S)

I I+Z(S)+R3+Z(R10)Z(S)+Z(R4) Z(R3)Z(S)+Z(R10)+Z(S)

Z(R4)Z(S)+Z(R10) Z(R4)+Z(R5)+Z(R8)Z(S) Z(S)+Z(R6)+Z(R8)

)
,

where r and s are the 14 × 14 permutation matrices representing the actions of R and
S on C28, and I is the 28× 28 identity matrix.
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One can compute using numerical methods that the second largest eigenvalue is ap-
proximately µ2 = ∼4.3. Thus

β∥(w) = 2− logλ(∼2.1) = ∼2.6

β⊥(w) ≥ 3− logλ(∼4.3) = ∼1.6

which means giving 2β(w) = ∼3.1.

Other examples

The Tilings encyclopedia [24] is a large compendium of interesting tilings including many
coming from symmetric substitution rules. As long as they are primitive, stone and FLC,
one can apply Theorem 6.1 to try to prove hyperuniformity for many of these tilings:
in order to do this, we only need to find their spherical matrix. All the information we
need can be obtained from the pictures in the encyclopedia.

Theorem 7.32. The following substitution rules are hyperuniform for any symmetric
choice of weights:

(i) Godréche–Lançon–Billard (modified as in [11, Fig. 3]).

(ii) CAP

(iii) Watanabe Ito Soma 12-fold

(iv) Ammann A3

Proof. Note that, for rules (i), (ii) and (iii), the prototiles depicted in the encyclopedia
are not the canonical prototiles. However, we still know the rules are stone, because
they define self-similar Delone subsets. For the Godréche–Lançon–Billard, the canonical
prototiles have fractal boundary and have been computed by Godrèche and Lançon [30].
The advantage of the polygonal prototiles depicted in the encyclopedia is that they prove
the substitution rules are FLC, as they define edge-to-edge tilings.

In order to prove the tilings are hyperuniform, we need to compute their spherical
substitution matrix, and compare largest non-PF eigenvalue µ2 with the scaling constant
λ. We do this in Table 7.1. If the scaling constant is not written in the encyclopedia, we
can compute it as λ =

√
λPF , where λPF is the PF eigenvalue. For all of the example,

we see that |µ2| < λ, which means they are hyperuniform for any choice of symmetric
weights by Corollary 7.18.
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Rule λ Msph µ2

Godréche–Lançon–Billard (modified)
1

2
(5 +

√
5) = ∼3.6 ( 10 5

5 5 )
1

2
(15− 5

√
5) = ∼1.9

CAP 3+
√
5

2

(
3 1 1 2
1 0 0 0
3 0 1 1
3 0 2 3

)
1

Watanabe Ito Soma 12-fold 2 +
√
3

(
7 8 16
2 3 6
2 2 4

)
7− 4

√
3

Ammann A3 3+
√
5

2

(
1 3 2
1 1 0
0 1 1

)
1

Table 7.1: For each rule in Theorem 7.32, we list its scaling constant, spherical substitution
matrix, and largest non-PF eigenvalue. In all of these cases, we have |µ2| < λ, so
the substitution rule is hyperuniform for symmetric weights.

(a) A GLB tiling (b) A CAP tiling (c) A WIS tiling (d) An Ammann tiling

Figure 7.10: The tilings obtained from the substitution rules considered in Theorem 7.32.
Figures (a), (b), (c) and (d), by Frettlöh, Harriss, and Gähler [24] licensed under
CC BY-NC-SA 2.0.
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