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1 Introduction

In this thesis, we study the properties of point processes arising in the field of aperiodic
order. Specifically, we study point processes arising from substitution rules. We obtain
bounds for the decay of their diffraction around the origin, and hence derive a sufficient
criterion for their hyperuniformity.

We rigorously prove a conjecture by Oguz, Socolar, Steinhardt, and Torquato [47],
and extend the work of Baake and Grimm [6] to a wider class of examples. We are able
to prove hyperuniformity for most substitution rules on the plane with rigid symmetries:
we are able to do this even when the diffraction has a singular continuous component, a

case that had been hard to handle until now.

1.1 Hyperuniformity

In order to discuss hyperuniformity, we introduce some basic probabilistic language.
First, we set down some notation. Let d € N, and let mpa be the Lebesgue measure
on R?. Given z € R? and A € R*, we denote by T, : R — R? and D, : R? — R?
the translation by x and dilation by A, respectively. Translations and dilations act on
subsets, functions and measures in the obvious way (cf. Definition 2.2). Given R > 0,
we denote by Bg the closed Euclidean ball of radius R around the origin.

For any set S, let #S be its cardinality if S is finite, and #S = oo if S is infinite. We
say that a subset Z C R? is locally finite if #(Z N B) < oo for all relatively compact
B C R and denote by Prr(R?) the set of all locally finite subsets of R?. We equip
Prr(RY) with the smallest o-algebra such that the map

pp: Prr(RY) = NU{oo}, Z+— #(ZNDB)

is measurable for every Borel set B C R

Given a probability space (2, 4,P), a random variable ® : Q — Prr(R?) is called
a point process on RY with distribution measure ®,P = P o ®~'. We think of a point
process as a random locally finite subset of R?. If ®, ® are two point processes, we write
oL@ if they have the same distribution.

A point process ® is called locally square integrable if E[#(® N B)?] < oo for all
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relatively compact B C R?; it is called stationary if T,® L & for all v € RY.

For the rest of this introduction, all point processes will be assumed to be
locally square integrable and stationary.

Two prototypical examples of stationary point processes are the homogeneous Poisson

process and the shifted integer lattice.

Example 1.1. The homogeneous Poisson process |39] on R? with intensity 1 is the

unique stationary point process with the following two properties.

(i) For every Borel set B C R?, the expectation of #(®N B) is given by E[#(®NB)] =
de<B)

(ii) For any disjoint Borel sets B, B’ C R?, the random variables #(® N B) and #(® N
B') are independent.

Example 1.2. Let I' = Z¢. Then the randomly shifted integer lattice is the random set

T,T, where z € [0,1)¢ is a uniformly distributed random vector.

If ® is a stationary point process, then there exists a unique number ¢ > 0, called the
intensity of ®, such that
E[#(®N B)] = ¢ - mz(B)

for all Borel B C RY i.e. the expected number of points of ® that fall inside B is
proportional to the volume of B.

The variance Var(#(®N Bg)) of the number of points of ® that fall inside Bp is called
the number variance of ®. For the two examples we have introduced so far, the number

variance is given as follows.

e For the Poisson point process, we have Var(#(® N Bg)) = mgi(Bg). In particular,
Var(#(® N Bg)) is proportional to the volume of Bg. See Figure 1.1.

e For the shifted lattice, one can prove that Var(#(® N Bg)) = O(R41) as R — co.
That is, Var(#(® N Bg)) is asymptotically bounded by the surface area of Bg. See
Figure 1.2.

In fact, the bound one gets for the shifted lattice is optimal in the sense that there
exists no stationary point process ® such that Var(#(® N Bgr)) = O(R*) for any
k > 1. This is a consequence of Beck’s Theorem. (Note that our point processes are

locally square integrable).

Theorem 1.3 (Beck’s Theorem [15, Theorem 5.1]). Let ® be a stationary point process
on R?. Then, for every Ry > 0 there exists a C' > 0 such that

1 R
}_%/ Var(#(® N B,))dr > CR*™,  for all R > R,
0



1.1 Hyperuniformity

Figure 1.1: Six samples from a homogeneous Poisson process on R?, with the boundary of a
ball Br marked: for each sample, we count the amount of points that fall inside
Bpg. The radius R is chosen such that E[#(® N Br)|] = 50.

Figure 1.2: Six samples from a randomly shifted lattice on R?, with the boundary of a ball
Bpr marked. Again, the radius R is chosen such that E[#(® N Bg)] = 50: we

observe that the amount of points tends to be closer to the average than in the
Poisson case.
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Processes with low asymptotic number variance (such as shifted lattices) are “more
uniform” than Poisson processes; this motivated Torquato and Stillinger [59] to introduce

the following definition.

Definition 1.4 (Torquato and Stillinger [59]). Let ® be a stationary point process on
R¢.
(i) We say that & is hyperuniform if

lim Var(#(® N Bg))

R—o0 Rd - 0

(ii) We say that ® is Class I hyperuniform if
Var(#(® N Bg)) = O(R*™)

as R — oo.

Thus randomly shifted lattices are Class I hyperuniform, whereas the homogeneous
Poisson process is not hyperuniform.

Examples of hyperuniform systems include lattices, crystals, certain quasicrystals, but
also many disordered random processes [16, 58, 59]. Such systems have attracted the
attention of scientists in the last two decades, as such systems seem to crop up in nature:
for example, the pattern of photoreceptors in some birds’ eyes seems to be hyperuniform.
See the survey by Torquato [58] for this perspective. Pure mathematicians have also been
interested in hyperuniformity, proving or disproving it for a variety of point processes and
relating it to other concepts such as invariant transports and rigidity [15, 16, 27, 35, 36].

Note that, if Z is a locally finite subset of RY, it defines a measure uz by puz(B) =
#(Z N B): therefore, every point process defines a random measure. Stationarity and

hyperuniformity can be defined for random measures, just like in the point process case.

1.2 Point processes from substitution rules

We will be interested in the question of hyperuniformity for a class of point processes

which are closely related to substitution tilings and arise in the theory of aperiodic order.

Tilings and multisets

Rather than starting from the formal definition of a tiling, we start with an example.
Figure 1.4 is a picture of a chair tiling. It is a tiling of R?, i.e. a set of subsets of R?

whose union is R? and whose intersections have measure 0. Every tile in the tiling is a



1.2 Point processes from substitution rules

Figure 1.3: The four L-shaped prototiles 71, 19, 73, 74 used for the chair tiling. The origin of
the coordinate system is marked by a black dot.

Figure 1.4: A chair tiling of the plane by the prototiles 71, 72, 73, 74. The Delone sets Ay, Ao,
A3, Ag which define the tiling are pictured by black dots.
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translate of one of the four prototiles 1,7, 73, 74 C R? depicted in Figure 1.3. In other

words, there exist locally finite sets Ay, As, A3, A4 such that the tiling is given by
{Tom; [ J € 4],z € Ay}

In Figure 1.4, the points in the set Ay U Ay U A3 U Ay are marked by black dots.
Given the prototiles 7,7, 73,74, the tiling is uniquely determined by the collection
A = (Ay, Ay, A3, Ay). Moreover, the sets A; as well as their union are Delone sets

in the following sense:

Definition 1.5. A discrete subset A C R? is Delone if the following properties hold.

(i) A is uniformly discrete, i.e. there exists r > 0 such that the distance between any

two distinct points in A is at least 7.

(ii) A is relatively dense, i.e. there exists R > 0 such that for every z € R? there exists
y € A such that d(z,y) < R.

Remark 1.6. Note that, when representing a tiling using Delone sets as above, we are
making a choice of prototiles. We could represent the same tiling by using different
translates of the prototiles in Figure 1.3: then the Delone sets A, Ay, A3, Ay would have
to be translated appropriately.

Now we formalize the above situation. Let ¢ € N, and define [¢] = {1,---, (}.
We define a multiset in R® with ¢ colors, or (-multiset, as an (-tuple A = (A;);ei,
where each A; is a subset of R%: the A; are the components of A. We will always write

multisets in bold to distinguish them from subsets of R%. We say A is a Delone multiset
if A; is Delone for all j € [(] and [J;c/q A; is Delone (cf. Section 4.1.1).

Remark 1.7. The term “multiset” is not standard: other authors use it to refer to sets
with multiplicities instead [38]. We use the same definition as Lee, Moody, and Solomyak
[40].

Definition 1.8. Let 7, - - -, 74 be closed subsets of R? and A = (A, - -+, Ay) be a multiset
in R? with ¢ colors.

(i) We say A patches R® with prototiles 11,---, 7 if, for all j,k € [(],x € Aj,y € Ay
such that (x,j) # (y, k), T,7; N1, 7 has measure zero. In this case, we say the set
{T,7j | j €],z € Aj} is a patch.

(i) If A patches R? with prototiles 7y, -+, 7, its support is the union supp A =
Ujem,xez\j Te7;.

(iii) We say A tiles S C RY with prototiles 71, - - -, 74 if it patches R? and supp A = S.
Then the set {T,7; | j € [{],x € A;} is a tiling of S by the prototiles 74, - - -, 7.



1.2 Point processes from substitution rules

With this terminology, the Delone multiset A = (Ay,...,A4) corresponding to the
chair tiling in Figure 1.4 tiles R? with prototiles 74, - - -, 74 as above.

If A = (A,---,A) is a multiset and K C R? then we define the restriction
ANK =(MNK,...,A;n K). Similarly, dilations, translations and inclusion of mul-
tisets are defined componentwise. For j € [¢], we define the colored point at the origin
as 0j == (0,...,0,{0},0,...,0), where the singleton {0} is placed in the jth component.
An /-multiset of the form T,0; for some x € R? and j € [{] is called a colored point.

Substitution rules and substitution spaces

The chair tiling from Figure 1.4 is just one of many in a space of chair tilings (with the
same prototiles) which can be generated from a substitution rule in the following sense.
Here, Psn(R?) denotes the collection of all finite subsets of R?.

Definition 1.9. A substitution rule on R? with ¢ colors is a pair S = (\, A) where

e )\ > 1is the scaling constant of S, and

o A € Py (R is the displacement matriz of S.
Its associated substitution map o : P(RY)* — P(R?)’ maps A = (A));eq to
o(A) = (A))elg, where
¢
No=J | TDa
k=1 xGA]—k
for all j € [/].
Informally, the substitution map acts by dilating the multiset and then “decomposing”
it.
Definition 1.10. Let S be a substitution rule on R? with ¢ colors. We say S is stone
if there exist subsets 7, - - -, 7, C R? with the following properties.

e For all j € [{], 7; is compact and has positive Lebesgue measure.

e For all j € [{], o(0;) tiles Dy7; with prototiles 7y, ---, 7 i.e. we have
¢
D)\Tj = U U Tka
k=1 IEA;W'

and for all z,y € R k, k' € [(] such that (z,k) # (y, k'), the set T, 7 N T, 74 has

measure 0.

Example 1.11. The chair substitution rule Sqnair is the following stone substitution rule

with prototiles 7, ..., 74 as in Figure 1.5:
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] l
> L
u
>
] ﬁ
Figure 1.5: The chair substitution rule. In the left column, we see the prototiles 71, 72, 73, T4,
with the origin marked by a black dot: the long sides of the prototiles have length
4. On the right, the tilings of Dy7; defined by the chair substitution rule are

shown: the origin of the coordinate system is marked by a black dot, while the
displacements of each tile are marked by black squares.
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e The scaling constant is A = 2.

e The displacements which give rise to the displacement matrix A are depicted in
Figure 1.5: For example, in the first column we see that p(o;) has two points
of color 1, corresponding to the light blue tiles: the corresponding entry in the

displacement matrix is

Ay ={(-1,1)",(1,-1"}.

Remark 1.12. Note that the chair substitution has rotational symmetry: the prototiles
are rotations of each other, and the displacements are compatible with this rotation.
Most substitution rules on R? have some kind of rotation or reflection symmetry, which

will become important later.

Definition 1.13. Let S be a substitution rule on R?* with ¢ colors.

(i) An /-multiset A in R? is S-legal if the following holds: for every finite subset p C A
there exist z € R, j € [¢] and N € N such that p C o™ (T,0;).

(ii) The substitution space s is the set of all S-legal Delone (-multisets.

Example 1.14. The multiset (Aq,...,A,) constructed from Figure 1.4 is Seai-legal,
where Sgnair is the substitution rule from Example 1.11. It thus defines a point in the

substitution space (g

chair *

The substitution matrix and primitive substitution

Definition 1.15. The full substitution matriz of a substitution rule § with displacement

matrix A = (Ajz)j ke is the matrix Me,y € Ngxe with entries
(Mpan) ji = #Aj.

A substitution rule is primitive if its full substitution matrix Mz, is primitive, i.e. there

exists N € N such that every coefficient of MY, is strictly positive.
The full substitution matrix can be seen as a simplified version of the displacement
matrix, where we forget the specific translations; we call it full substitution matriz to

distinguish it from the spherical substitution matriz, which we will define later.

Example 1.16. By counting the tiles of each color in Figure 1.5, we see that the full
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substitution matrix of the chair rule is

210 1
1210
Man=o 1 5
101 2

One can check that every entry of MZ, is positive, so that the chair substitution rule
is primitive.
Theorem 1.17 (|38, 41|). Let S be a primitive, stone substitution rule on R? with

prototiles Ty, -+, 7. Then:

(i) There exists a S-legal Delone multiset: therefore, the substitution space Qs is

nonempty.
(ii) Every A € Qg tiles R? with prototiles Ty, - -, 7.

In the case of the chair substitution rule, we have already seen that (i) holds; (ii)
means that every element in the chair substitution space corresponds to a tiling of R?

by translates of the four prototiles from Figure 1.3.

Measures on substitution spaces

Rather than just looking at individual legal Delone sets, we want to look at the whole
substitution space. In order to do this, we restrict ourselves to the case of finite local

complexity.
Definition 1.18. Let A be a Delone f-multiset in R%. We say A is FLC (or has finite
local complexity) if the following holds: for all compact K C R?, the set of K-patterns

{T,ANK |z e RY}

has finitely many equivalence classes under translation.

We say a primitive, stone substitution rule § is FLC if every A € Qs is FLC. Most
substitution rules considered in the literature, including the chair substitution rule, are

FLC. Under the FLC assumption, we define a topology on the substitution space.

Definition 1.19. Let S be a primitive, stone, FLC substitution rule. Then the local
topology on its substitution space (s is the topology generated by the open sets

Ukv(A)={A €Qs | Iz eV : TLANK =ANK}.

where K C R? is compact, V C R? is open, and A € Q.

10



1.2 Point processes from substitution rules

Every translate of a S-legal multiset is still S-legal, so R? acts on the space Qg
by translation. This makes ()s into a dynamical system which has the following nice

properties.

Theorem 1.20 (|48, 54]). Let S be a primitive, stone, FLC substitution rule. Then the
following properties hold.

(i) The substitution space Qs is compact.
(ii) The space Qs is minimal, i.e. every R¥-orbit is dense.

(i1i) The space Qs is uniquely ergodic, i.e. there exists a unique invariant probability

measure P on Q.

(iv) The substitution map restricts to a map o : Qs — s, which is continuous and

surjective.

(v) The substitution map preserves the unique invariant probability measure P.

From now on we assume that S is a primitive, stone, FLC substitution rule and denote
by PP the unique invariant probability measure on {)s. Then, for every j € [¢], we obtain

a stationary point process
®;: Qs — Prr(RY), (Ak)keig = A;.

As we did for Delone sets, it makes sense to consider the point processes ®q,---,®,

to be a single object.

Definition 1.21. The vector point process associated to S is the tuple ® = (®;);¢q,
where the ®; are the point processes ®; : Q0 — Pry (]Rd) defined above.

Remark 1.22. As g preserves the invariant probability measure PP, ®; 4 ®; o p for all
J € [f]. We say the point processes ®; are self-similar. This property will be important

later.

If w € C’, we can consider the random measure (®, w) := Z§:1 ®,w;: this is a pure

point measure.

Example 1.23. Let Scuair be the chair substitution rule and ® be its associated point

process.
(1) If w= (1, 1, 1, ].)T, <<I>,w> = @1 + @2 + cbg -+ @4 is the union A1 U A2 U A3 U A4,

where (A1, Ag, A3, Ay) is a random element of ().

(i) If w = (0,1,0,1)T, (®,w) = &y + P, is the union Ay U Ay, where (Ay, Ay, Az, Ay)

is a random element of ()s.

11
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(iii) If w = (1,0,0,0)7, (®,w) = ®, is simply Ay, where (A1, Ay, A3, Ay) is a random
element of Qs.

The point processes (®,w) for these different choices of w are depicted in Figure 1.6.

(a) w = (15 1,1 ]-)T (b) w = (07 1,0, l)T (C) w = (1505 0, O)T

Figure 1.6: The point processes (®,w) marked as black dots for different choices of w € C*.

The central question of this thesis is the following.

Problem 1.24. Let S be a primitive, stone, FLC substitution rule with ¢ colors and ®

its associated vector point process. For which w € C* is (®,w) hyperuniform?

Definition 1.25. Let w € C!. We say S is hyperuniform for weights w if the random
measure (®,w) is hyperuniform.

1.3 Hyperuniformity of substitution point processes

Let S be a primitive, stone, FLC substitution rule on R? with ¢ colors. Recall that the
substitution matrix My, is the matrix given by counting the elements of each coeffi-
cient of the displacement matrix. Then its PF eigenvalue is Apr = A%, and a left PF
eigenvector is given by the volumes of the prototiles.

It turns out hyperuniformity is related to the other eigenvalues and eigenvectors of
the matrix. In particular, there is the following criterion for hyperuniformity, proposed
by Oguz, Socolar, Steinhardt, and Torquato [47] and Baake and Grimm [6]. They focus
on the case where the substitution rule has “pure point diffraction” we will define this
later.

Theorem 1.26 ([6, 47|). Let S be a primitive, stone, FLC substitution rule in R with
substitution matriz Mey and scaling constant A. Assume S has pure point diffraction,
and let uy be the second largest eigenvalue of My in absolute value. Then, if |pa] < )\%,

the substitution rule is hyperuniform for any choice of weights.

12



1.3 Hyperuniformity of substitution point processes

However, this criterion alone is usually inadequate to prove hyperuniformity beyond

dimension 1. Indeed, the substitution matrix Mz, of the chair rule has the eigenvectors

1 1 1

1 —1 -1
V1 =

—_ = =

with eigenvalues 4,2, 2, 0 respectively: in particular Spec Mgy = {4,2,0}. The second
largest eigenvalue of My, is s = 2: therefore, |us| is not strictly smaller than A%, This
means the above criterion does not prove hyperuniformity for the chair substitution rule.
In this thesis, we will prove the following sufficient condition for hyperuniformity,

which is robust enough to consider examples such as the chair substitution rule.

Theorem A. Let S be a primitive, stone, FLC substitution rule in R? with ¢ prototiles,
substitution matriz My and scaling constant X. Let w € C* be a vector, and let S(w)

be the set of eigenvalues p of Mgy with the following properties:
o pF N
o The generalized eigenspace E,, is not orthogonal to the vector w.

Then, if || < X for all p € S(w), the substitution rule is hyperuniform for weights w.

The key point here is that, depending on the weight vector w, we are able to exclude
certain eigenvalues of Mp,y; this is similar to a criterion for bounded displacement to a

lattice due to Solomon [53]. For example, for the chair rule, we obtain the following.

Example 1.27. Let w € span{vy, v4}. Then the chair substitution rule is hyperuniform

for weights w.

Proof. 1f we choose w € span{v;,vs}, w is orthogonal to the eigenvectors v, and vs with
eigenvalue 2. Then S(w) does not contain the eigenvalue 2, so S(w) = {0} or S(w) = 0.
In either case, |u| < 2 for all € S(w): therefore, by Theorem A, Schair is hyperuniform
for weights w. O]

Symmetry

As we mentioned before, the chair substitution rule has rotational symmetry. Many

substitution rules have some kind of rotational or reflectional symmetry, as follows.

Definition 1.28. Let S be a substitution rule on R? with ¢ colors, and let G < O(d) be

a finite subgroup equipped with an action on [¢], in addition to its usual action on R?.

13
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We say S is a G-symmetric substitution rule if the displacement matrix A = (A; 1) kel

satisfies

for all g € G, j,k € [{].

For example, the chair rule is Cy-symmetric, where a generator R € Cy acts on R?
3
observed in Figure 1.5. (In fact, the chair rule is even Dj-symmetric, but we will not
need this fact here.)

If S is G-symmetric, we can consider its spherical substitution matriz Mgy, which is

by rotating by Z counterclockwise, and on [4] by the permutation (1234). This can be

the matrix given by identifying prototiles that are the same under the action of G: see
Definition 7.16 for the concrete definition. For example, for the chair substitution rule,
all the prototiles are rotations of one another, and the substitution of each prototile has
4 tiles, hence the spherical substitution matrix is My, = (4).

In general, given a substitution rule, determining the spherical substitution matrix is
much easier than determining the full substitution matrix. We can use it to state a very

simple sufficient criterion for hyperuniformity, at least for certain choices of weights.

Theorem B. Let S be a G-symmetric, primitive, stone, FLC substitution rule on R2.
Then the following holds: if || < A\ for all p € Spec Mgn \ {\?}, then S is hyperuniform

for constant weights.

Proof. The group G acts on C’ by permuting the basis vectors: as the substitution
rule is G-symmetric, the matrix My, commutes with the action of G, and the spher-
ical matrix Mgy, is the transformation matrix of the restriction of Mg, to the space
Vipn C C* of G-invariant vectors. Therefore, one can show that, for every eigenvalue
p € Spec Mpy \ Spec My, the corresponding eigenspace E), is orthogonal to Vip,, and
in particular it is orthogonal to the constant vector (1,1,--+)" € Vi,n. Then the claim
follows by applying Theorem A: the set S(w) of the theorem contains only eigenvalues
of Mgph. O

This criterion is powerful enough to prove hyperuniformity not only for the chair rule,
but for many other substitution rules as well. The Tilings Encyclopedia [24] is a large
compendium of interesting tilings including many coming from symmetric substitution
rules. Armed with Theorem B, we can prove hyperuniformity for many substitution

rules from the encyclopedia.

Corollary 1.29. The following substitution rules are hyperuniform for constant weights.

e The Penrose substitution rule.

o The CAP substitution rule.

14
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1.4 Proof methods

(a) A Penrose tiling  (b) A CAP tiling (c) A GLB tiling (d) Danzer 7-fold tiling

Figure 1.7: The tilings obtained from the substitution rules considered in Corollary 1.29.
Figures (b), (c¢) and (d) by Frettloh, Harriss, and Géhler [24] licensed under CC
BY-NC-SA 2.0.

e The Ammann substitution rule.
e The Godréche-Langon-Billard substitution rule.

e Danzer’s 7-fold substitution rule.

See Figure 1.7 for pictures of the tilings obtained from the rules in Corollary 1.29.

1.4 Proof methods

Diffraction

One of the core tools in the study of substitution rules is diffraction. If f € L'(R%),

denote its Fourier transform by f . See Chapter 2 for the definition of complex measures.

Theorem 1.30 (|15, 20]). Let ® be a stationary, locally square integrable random mea-

sure. Then there exist unique Radon measures ) and i on R¢
A(If?) = Var(@(f)) and 0" (|f*) = E[|@(f)[]
for all f € C.(R?). Moreover, these measures are related by
N =0+ |6

where 1 is the intensity of the random measure P.

Both measures are known under the name “diffraction” in the literature. We refer to
7 and 7t as the centered diffraction and uncentered diffraction of ® respectively. 7) is
also known under the name Bartlett spectral measure in the probabilistic literature.

From now on, let S be a primitive, stone, FLC substitution rule on R? with ¢ colors,

and ® its associated vector point process. For every w € C’ we denote by 7,, the centered
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diffraction of (®,w), which we refer to as the (centered) diffraction 1, of S with weights
w.

Theorem 1.31. There exists a matriz of measures H = (ﬁjk)j’ke[g], the diffraction

matrix of S, with the following property: for all w € C', we have

T = Z I:fjk@jwk
Jkel]

We multiply matrices of measures with vectors by the usual formula, so we write

(Hw,w) = Z H 0 wy,.
J.kell]

Remark 1.32. In the literature of aperiodic order, diffraction is usually defined using
an ergodic average average due to Hof [34], instead of using the stochastic definition
above. As pointed out by Baake, Birkner, and Moody [9], Baake, Birkner, and Grimm
[10], both definitions coincide in the uniquely ergodic setting.

Specifically, given A = (A);ciq € Q2s and w € C’, we define

l

PAw = Z Z 51,‘@]'

J=1 CCEAj
By the ergodic theorem, the limit
= lim ! ( | B * |Br)
T = R—o0 de(BR) HAw B HAw|Br

exists and is independent of the choice of A. Its Fourier transform is precisely the
(uncentered) diffraction of S with weights w. Here f denotes the adjoint of a complex
measure (cf. Chapter 2).

The above formula for the diffraction has a physical meaning: 7,, describes the outcome

of an X-ray diffraction experiment with diffractor ya .,; see Hof [34].

From now on, we will only use the centered diffraction, since we are interested in the
variance of the point processes rather than the squared expectation.
Hyperuniformity via diffraction

The reason we are concerned with diffraction is that a point process is hyperuniform
if and only if its diffraction decays fast around the origin. This has been known in
many forms since the discovery of hyperuniformity, but usually under some assumption

on the type of diffraction, such as assuming that the diffraction measure is absolutely
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1.4 Proof methods
continuous. We specifically use the following criterion due to Bjérklund and Hartnick
[16], which does not have this restriction.

Theorem 1.33 ([16]). Let ® be a locally square integrable stationary point process on

R?, and let 7) be its (centered) diffraction measure. Then:

(i) ® is hyperuniform if and only if lim, o ’7(5[) = 0.

(i) ® is Class I hyperuniform if and only if H(B,) = O(r**') as r — 0.

Beyond just determining when a process is or is not hyperuniform, the behavior of the
diffraction around the origin encodes interesting information about the point process,
such as rigidity phenomena |28, 37]. Physicists have studied this topic extensively,
heuristically and with numerical experiments [25, 33, 47, 58|, and there have also been
results in this direction in probability theory: see Coste [21] for a survey.

However, when it comes to the point processes coming from substitution rules specifi-
cally, the mathematical literature seems to be lacking: the only rigorous results seem to
be those of Baake and Grimm [6] for particular examples of one-dimensional self-similar
tilings. In this thesis, we will extend the work of [6] to a wider class of self-similar tilings
and prove a general bound for the diffraction of a substitution rule around the origin:

in particular, this will allow us to prove Theorem A.

Remark 1.34. Any regular Borel measure p can be decomposed as jt = i + flac + [ise,
where p,,, is its pure point part, p,. its absolutely continuous part, and ps. its singular
continuous part.

The diffraction of a substitution rule is often pure point, but not always: there even
exist substitution rules which have singular continuous diffraction, such as the Godréche-
Langon-Billard rule. Our methods will be robust enough so that we will not need to

make any assumptions on the type of the diffraction.

Renormalisation

Let S be a primitive, stone, FLC substitution rule on R? with ¢ colors. Let A be its
scaling factor, A = (Aji);refq be its displacement matrix, Mg,y be its full substitution
matrix, and ® = (®;);ciq be its associated point process.

In order to prove Theorem A, we will use renormalisation relations associated to a
substitution. These were originally introduced by Baake and Géhler [2] in the context of
substitution rules, but we will define them in greater generality, using the point process
associated to a substitution rule.

In particular, recall that for all j € [¢], the point process ®; is self-similar: that is,
o < ®, 0 p, where p is the substitution map. If we write out the definition of ¢ and ®;,

we obtain the following.

17
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Theorem 1.35. The vector point process ® = (®;);cq associated to S satisfies

L
23N 1D,

J=1 LEEAkj
for all k € [¢]. We call these equations the renormalisation relations for ®.

As both sides of the renormalisation relations have the same distribution, they have
the same diffraction matrix, hence we obtain the following renormalisation relation for
the diffraction matrix, originally due to Baake, Géahler, and Manibo [11]. We denote the
Hermitian adjoint of a matrix A € C**¢ by A*.

Theorem 1.36 ([11]). Let S be a primitive, FLC substitution rule in R? with { pro-
totiles, X\ its scaling constant, and My its substitution matrix. Let H be its diffraction
matriz. Then there exists a smooth, matriz-valued function A : R? — C™* which satis-
fies A(0) = /\—ldeuH, called the normalized Fourier matrix of the substitution rule, such
that the following holds:

H = A(Dy,..H) A",

Baake, Géhler, and Manibo [11]| used the above renormalisation relation to study the
pure point part and the absolutely continuous part of the diffraction. In these cases,
there is a natural way to write H using a density function (with respect to either
the counting measure or the Lebesgue measure, respectively), which then satisfies a
recurrence relation. We improve on their methods by defining a self-similar density for
H, which exists even if H has a singular continuous component. Let B := Bp \ {0}

be the punctured ball of radius R around the origin.

Definition 1.37. Let R > 0.

i) Let v be a positive measure supported on By. We say v is A-dilation invariant if
R

D,v| BL=V-
(ii) A self-similar density of the diffraction matrix H on B} is a pair (h,v) where
e v is a A-dilation invariant measure on Bj, and
e h: By — C™!is a v-integrable, matrix-valued function

such that fI|B§: hv.

Theorem 1.38. Let R > 0. Then there exists a self-similar density of the diffraction

matric H on Bj,.
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1.4 Proof methods

Theorem 1.39. Let (h,v) be a self-similar density of the diffraction matriz H on Bj.

Then the following renormalisation relation holds:

h(§) = AN A

for all § € BY_, .

Linear cocycles

By Theorem 1.39, if we want to understand the diffraction around the origin, we need
to understand what happens when one multiplies repeatedly by the normalized Fourier

matrix.

Definition 1.40. The Fourier cocycle of the substitution rule S is the matrix function

given by the product
AN (E) = ANTHHAN ) - A
for ¢ € R? and N € N.

This is analogous to the internal cocycle considered by Baake and Grimm |7] or the
spectral cocycle considered by Solomyak and Trevino [57].
Then, applying Theorem 1.39 repeatedly, we get the following expression for the self-

similar density around the origin.

Theorem 1.41. Let (h,v) be a self-similar density on By for the diffraction matriz H.

Then the self-similar density satisfies
h(A™Ne) = AR AN (AT
for all§ € By, N € N.

The normalized Fourier matrix A is smooth, therefore A(¢) = A(0) + O(||£]|) as
¢ — 0. Then, if N is large, one would intuitively expect A™)(€) to be similar to the

matrix power A(0)Y, as most of the matrices in the product
AN(g) = ANTHOAN ) - A

are close to A(0). We will prove the following theorem to this effect: this similar to a
theorem about products of converging matrices due to Dubiner [22]. See Section 2.4 for

the definition of the asymptotic symbols g and ~.
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Theorem C. Let x; > --- > x; be the distinct values of {log|u| | p € Spec A(0), u # 0}
and let xi41 = —oo. Let Ej := ®{E, | p € Spec A(0),log|u| = x;} be the space
of generalized eigenvectors associated to x; for j € [l + 1]. Then there exist uniquely
defined idempotent operators P; : C* — C* for j € [l + 1] such that Im P; = E; and
22111 P; =1 and R > 0 such that the following hold.

For all € € Bg, there exist linear maps P;(€) : C¢ — C* for all j € [l + 1] such that

22111 P;(&) = I and the following asymptotic inequalities hold:

(1) For all j € [l + 1] we have
LA™ (&) Py(&)z]| = e[| Py(€)x] (1.1)
as N — oo.
(ii) For all j, k € [l + 1] we have

1AM (€) Py (€)all £ AN [ A (€) Pi(€)al| ifj >k (12
1P AP () P;(€)z]| £ max(e 0, XYY [|AM(© P&z ifj<k  (L13)

as N — oo.

(This is a simplified version of the theorem, see Theorem 5.3 for the full statement).

Proof sketch. For simplicity, we assume A(0) has an orthogonal basis of eigenvectors:
this assumption is not necessary in general.

Recall that the matrix Mg,y is primitive with PF eigenvalue ¢, which means A(0) =
A"4 My is primitive with PF eigenvalue 1 = eX°; let wpr be its left PF eigenvector. For
¢ € RY, define

w(é) = lim (AN (€)) wpr

N—oo

One can prove the vector w(§) exists and is nonzero for small enough £. Define the space

Yi(€) := spanw(©).

Then the following dichotomy holds.
o If 2 ¢ Yi(€), [AM(E)z] = Vx| as N — oo

o Itz € Yi(E), [AM(©)a]] S eV o] as N = oc.

Now, if B € C*** and k € N, we define its k-th exterior power B"¥, which is an
operator on the k-th exterior power on C* (cf. Section 5.2). Applying an argument

similar to the above to the exterior powers of the normalized Fourier matrix, one can
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1.4 Proof methods

define a filtration

C' =Y5(&) 2Y1(§) 2 Ya() 2 -+ 2 Y (§) 2 {0}
such that, for all j € [l + 1] and = € Y;_1() \ Y;(€), we have
LA™ ()| ~ 9|

Then the projections P;(§) can be taken to be the orthogonal projections onto the spaces
Y;o1(§) NY;_1(£)*: this proves part (i). We can prove part (ii) by using the explicit
formulas for the spaces. O

Using Theorem C and Theorem 1.41, we obtain the following bound on the diffraction
of a substitution rule.

Theorem D. Let S be an FLC, primitive, stone substitution rule in R?, and 9, be its
diffraction with weights w € C'. Define the constants:

B (w) := d — max {log|u| | u € Spec Mpn \ {\}, w & E; },
Bi(w) :=d+1—max {log,|u| | p € Spec My \ {X"}, w € Elf} :
f(w) := min (6L(w), ,BH(w)) )

Then we have
ﬁw(Br) < r2w)

asr — 0.

This bound implies Theorem A (hence Theorem B) which is the criterion for hy-
peruniformity we stated before: furthermore, we will often be able to prove Class I
hyperuniformity and obtain more precise bounds on 7),,(B,).

For w = (1,1,---) ", this criterion is analogous to a condition for bounded displacement
to a lattice due to Solomon [53]. We say two discrete subsets I',T" C R? are bounded
displacement equivalent if there exists a bijection ¢ : I' — I'" such that sup,p||¢(z) —
x| < 0.

Theorem 1.42 ([53]). Let S be a primitive, stone substitution rule on RY, and assume
that || < X7 for all p € Spec Mgy \ {\} such that (1,1,--)7 & E;.
Then, for every self-similar A, there exists ¢ > 0 such that the union A = U§:1 A; s

bounded displacement equivalent to the lattice cZ°.
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1.5 Structure of the thesis

This thesis is structured as follows:

22

Chapter 2 contains the basic notation used in this thesis, including operations in

R?, probabilistic notions and asymptotic inequalities.

Chapter 3 introduces the theory of stationary random vector measures and their
autocorrelation and diffraction matrices. Vector measures are a straightforward
generalization of stationary random measures, and their autocorrelation and
diffraction are extensions of the scalar case. We also define hyperuniformity and

its characterization in terms of diffraction. This chapter is mainly expository.

Chapter 4 introduces the theory of substitution rules and self-similar tilings. We
show that every appropriate substitution rule gives rise to a stationary random vec-
tor measure, hence we can ask about their hyperuniformity, diffraction and obtain
renormalisation relations. This chapter is also expository, except for Section 4.3.2,

where we define and prove the existence of self-similar densities in general.

In Chapter 5 we prove a novel theorem about linear cocycles, using the theory of

exterior powers.

In Chapter 6, we state and prove the main result of this thesis, which provides suf-
ficient criteria for hyperuniformity of a substitution rule in terms of its substitution

matrix.

In Chapter 7 we apply the results of Chapter 6 to a wide variety of examples,

including both known and new examples of hyperuniform substitution rules.



2 Preliminaries

2.1 Notation and basics

In this thesis, we write N for the natural numbers without 0 and Ny for the natural
numbers including 0. We write R for the real numbers and R, for the non-negative
reals. For n € N we let [n] = {1,---,n}. We denote the number of elements in a finite
set S by #S. We let B C R? be the closed ball of radius R around the origin, and
Bj; = Bg \ {0} be the punctured ball.

Our inner products are always conjugate-linear in the second argument, as is standard
in the mathematical literature. We denote the conjugate-transpose of a matrix A €
CH* by A*. We let A be the exterior product of vectors, and A”"? be the g-th exterior
power of a matrix A: see Section 5.2 for details.

For z € R? and \ > 0, we write T}, for the translation operator on R? and D, for the
dilation operator: these can also be applied to subsets of R? as usual. If f is a function
on R?, we define functions T}, f and Dy f by (T, f)(y) = f(y—=x) and (Drf)(y) = f(A\"1y)
respectively. We also let mgas be the Lebesgue measure on R%.

If f is a complex valued function on R, we denote its complex conjugate by f. We also
define the function f by f(z) = f(—z). If f € L'(R%) we denote its Fourier transform by
f(é) = Jga f(2)e™2@8) Az or F(f), and its inverse Fourier transform by f or F~1(f).

Later we will define vector and matrix valued measures, as well as colored subsets of
R?¢ (see Section 3.1 and Section 4.1.1). We will define translation, dilation and other
notions for these objects as well. In order to distinguish them from the scalar case, we
will denote vector and matrix functions and measures in bold, and we will do the same

for colored subsets of R?.

2.2 Complex measures

We define the basic properties of complex measures: see [14, 18] for a more detailed
treatment and for proofs of the stated facts.

Let X be a locally compact Hausdorff space, and let C,.(X) be the space of (complex-
valued) continuous functions on X with compact support; we equip it with its usual

inductive limit topology. A (complex) measure on X is, as usual in the literature of
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2 Preliminaries

aperiodic order and harmonic analysis, a continuous linear functional u : C.(X) — C.
Let CF(X) C C.(X) be the subspace of nonnegative functions: a measure y is positive
if u(f) > 0forall f € CH(X). By the Riesz representation theorem, a positive complex
measure (using this definition of a complex measure) is the same as a regular Radon
positive measure on X (using the classical definition of a measure as a function defined
on a o-algebra). We let M(X) be the space of complex measures on X and M, (X) be
the space of positive measures on X. We equip M(X) with the weak-* topology.

If 11 is a complex measure on X, there exists an associated positive measure |p|, its total
variation measure, which is the unique positive measure such that |p|(f) := supjy<¢|p(g)|
for all f € C7(X). Then one has C.(X) C L'(|u|), so one can extend p to L*(|u|) by
continuity. In particular, if A is a bounded Borel set, we can define p(A) := p(14), where
1 4 is the characteristic function of A. The theorems of Fubini and Radon—Nikodym hold

for complex measures as well.

Remark 2.1. This is the way Bourbaki [18] defines a measure, and it is ubiquitous in
the fields of harmonic analysis and aperiodic order [14, 34, 45]. Note that, using this
definition, the map p : C¢(R) — C given by ¢ — [ é(z) sin(z) dz is a complex measure
even though it is not a “signed measure”, as p(A) is not well-defined for unbounded Borel

sets A. This is why we need to assume A is bounded when defining p(A).

Now we focus on the case X = R for some d € N. We define the following operations

on complex measures:

Definition 2.2. Let u be a complex measure on X.

(i) The conjugate of u is the measure @ defined by 7(f) = (7) for all f € C.(X).

(ii) The adjoint of yu is the measure ji defined by fi(f) = u(f) for all f € C.(X).

(iii) If g is a locally integrable function on X, the product of g and p is the measure

g defined by (gp)(f) = p(gf) for all f € C.(X).

v = R®, the translation of u by x € is the measure T, ;s defined by (T, =
If X = R? th [ fub R%is th T, defined by (T ) (f
(T f) for all f € C.(R?), where T, f(y) = f(y + ).

(v) If X = R4, the dilation of u by A\ > 0 is the measure Dyp defined by (Dyu)(f) =
p(Dy-1 f) for all f € C.(RY).

In addition, one can define the Fourier transform of a complex measure on R¢. Recall

that, if f € L*(RY), its Fourier transform f is defined byf = fRd e~ 2mi@8) dx We
also define the convolution of two functions f, g € L*(R?) by (f * g)( fRd
y) dy.

Definition 2.3. Let u € M(R?).
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(i) We say pu is translation bounded if the following holds: for every f € CF(RY), the

set
{1u[(T.f) |z € R}

is bounded.

(ii) We say u is positive definite if the following holds: for every f € C.(R?), we have
p(f = f) =0.

Definition 2.4. Let u € M(R?) be a translation bounded measure. We say ji € M(R?)

is a Fourier transform of p if

(i) for all f € Co(RY), |f|* € L'(|p]), and

(i) u(f* )= a(f)-

We say p is Fourier transformable if it has a unique Fourier transform.

Theorem 2.5 ([14]). Let u be a positive definite measure on R Then it is Fourier

transformable.

2.3 Random variables and stochastic notation

In this thesis we will make extensive use of random variables. For the reader’s conve-
nience, we define the basic notions and notation we will use.

Recall that a probability space is a set {2 equipped with a o-algebra F and a probability
measure P. Given a measurable space X, an X -valued random variable on the probability
space (£2, F,P) is a measurable function =z : Q@ — X. If w € Q, we let z,, be the value
of x at w, and refer to it as a sample of the random object x. In line with common
practice in probability theory, we will often say x is a random variable without specifying
the underlying probability space: then, it is understood that all random objects being
considered are defined over the same probability space 2.

If f: X — Y is a measurable function between measurable spaces and z : 2 — X is a
random variable with probability space 2, we let f(x) : Q@ — Y be the random variable
defined by w — f(z,). Two random variables x,y are equidistributed if x,P = y, [P,
where P and P’ are the probability measures on their underlying probability spaces: in
this case we write = = Y.

Now let z,y be complex valued random variables. We say x is integrable (resp. square
integrable) if the integrals [ |z, | dP(w) and [, |z, |* dP(w) are finite respectively. Then,

if z,y are integrable and square integrable, we define the expectation and variance by
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Elz] = fQ r,, dP(w) and Var[z] = E [|z — E[z]|?] respectively. We also define the covari-
ance of x and y by Cov(z,y) = E [(:17 — Elz]) (y — E[?JD]

2.4 Asymptotic notation

We will be concerned with the asymptotic behaviour of functions. In this section we will
define the asymptotic notation we need. In particular, we will be interested in asymptotic
inequalities where the constants are independent of a certain second parameter. For the

reader’s convenience, we define this notion.

Definition 2.6. Let X be a topological space, Y aset, o € X and f,g: X \{zo} xY —
R>( be two functions.

e We write f(x,y) < g(z,y) or f(x,y) = O(g(z,y)) as v — xo uniformly fory € Y
if there exists a neighbourhood U of zy and a constant C' > 0 such that f(x,y) <
Cg(z,y) for all x € U, y € Y. We also write f(z,y) 2 g(x,y) if g(z,y) < f(x,y),
and =< if both < and 2 hold.

e We write f(x,y) = o(g(x,y)) as x — xo uniformly for y € Y if for every ¢ > 0
there exists a neighbourhood U of zg such that f(z,y) < eg(x,y) for all x € U,
yey.

If X = N, we define these asymptotic symbols as N — oo in the usual way. We can
also define these symbols for functions f,g: X — R>o as  — ¢, by letting ¥ be the
set with one element: in this way one recovers the usual meaning of O, o, < and 2.

We also define a new asymptotic notation, which is weaker than the usual asymptotic

inequalities: intuitively, it measures decay only “up to subexponential factors”.

Definition 2.7. Let Y be a set.
(i) Let f,g : NxY — Rso. We write f(N,y) < g(N,y) as N — oo uniformly for
y €Y if imsupy_,, v logsup,ey f(NV,y) < limsupy_,. v logsup,cy (N, y).
(ii) Let f,g:RsoxY — Rsq. We write f(r,y) S g(r,y) asr — 0 uniformly fory € Y
if lim sup,._, % log sup, ey f(r,y) <limsup,_,, % log sup, ey g(r,y).
We define £ analogously, using lim inf instead of limsup, and write ~ if both $ and g

hold. We can also define these notions without the second argument y, in which case we
write f(N) < g(N) as N — oo. Note that we set log 0 = —oc.

Remark 2.8. In particular cases, the relation $ can be expressed as follows:

e For a € R, f(r) £ r*asr — 0if and only if, for all € > 0, f(r) = O(r**) as
r — 0.
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e f(r) $0asr—0ifand only if, for all k € R, f(r) = O(r*) as r — 0.

For example, rlog(r) < r as r — 0 even though rlog(r) is not < 7, and r~1°¢” < 0 as

r — (0. Similar statements hold for functions of N as N — oo.
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3 Diffraction of random vector

measures

In this chapter, we will introduce the basics of stationary random vector measures and
their diffraction. Random vector measures are a generalization of random measures, so
the theory here will be a straightforward generalization of the theory of diffraction of

stationary random measures. See [9, 10, 20, 39] for the classical case.

3.1 Vector measures

Definition 3.1. Let A be a finite set. A C*-measure g on X is a vector of complex
measures p = (fg)aca- We say i, is the a-th entry or a-th component of .

We denote by M(X,CA4) := M(X)A the space of C*-measures on X. We equip it
with the product topology, where each M(X) is equipped with the weak-* topology,
also called the vague topology.

In all examples we consider, A will be either A = [(] or A = [¢1] X [¢5] for some
0, 01,0y € N, in which case p is a C’-measure or a C*‘2-measure respectively. We refer
to the former as vector measures and the latter as matriz measures.

If = (fta)aca is a CA-measure on X and f € C.(X), we define a vector u(f) € CA
with entries pu(f) = (fta(f))aca: this defines a continuous linear map p : Co.(X) — C4
which uniquely determines p. When viewed as linear maps, the topology on M (X, C4)
is the strong operator topology: a net (®;),c; converges to ® if ®;(f) — ®(f) in norm
for all f € C.(X). We use integral notation to evaluate vector and matrix measures, so
Jx f(@)dp(z) = pu(f).

We can define the total variation measure of a vector or matrix measure, in analogy

to the complex case. The proof that this is a measure can be found in Bourbaki [18].

Definition 3.2. Let A be a finite set and g = (14)aca be a CA-measure on X. The

total variation measure ||p|| is the unique positive measure on X such that

lpll(f) = sup [u(g)| forall feCl(X)
9€C(X),lgI1<f

29



3 Diffraction of random vector measures

As for the case of complex measures, we can extend g to L'(||p]|) by continuity. Then,
for every f € L'(||p])), we have the inequality | [, fdp| < [ |f]d]lp]l-
We also have an analogue of the Radon-Nikodym theorem for stationary random

measures.

Theorem 3.3 (Radon-Nikodym Theorem). Let A be a finite set and p = (fta)aca be
a CA-measure on X. Let v be a positive measure on X such that u(f) = 0 for all
[ € CHX) with v(f) = 0. Then there exists a unique vector of functions h = (hy)aca
such that pg = hev for all a € A. We call h the Radon—Nikodym derivative of p with

respect to v.

Furthermore, for vector measures, we define the following operations.

Definition 3.4. Let ¢,¢,¢, € N.
(i) Let o = (p;)i—; be a C'-measure on X and w € C. We define the complex
measure (u,w) by (@, w) = Z§:1 Wijht;-

(i) Let M = (ij)icier), jeeo] Pe @ C*2-measure on X and w € C. We define the
CY-measure Mw by the entries (Mw); = ?":1 pizw; for all @ € [4].

(iii) Let g be a C*2-measure on X and A € C*% be a matrix. We define the C*-
measure Ap by the entries (Ap); = Zfil A;jp; for all i € [44].

(iv) Let p = (p;)5—; be a C*-measure on X = R? and let & = (2;){_, be an (-tuple of
elements of R?. Then we define the translation of pu by = as the C’-measure T, pu

with entries (Tpp); = Ty, for all j € [(]. If x € R? is a single vector, we define
Tr“’ = T(a:,x,~~~,a:)l~'l"

(v) Let p be a Ct-measure on X = R? and let A > 0. Then we define the C*-measure
Dyp (the dilation of p by A) with entries (Dyp); = Dy, for all j € [(].

3.2 Stationary random vector measures

Let d,/ € N. Recall that M(R? C*) is equipped with the strong operator topology,
which induces a Borel o-algebra on M(R? C?). Therefore it makes sense to talk about
random C‘-measures: explicitly, a random C’-measure on R? is a measurable function
p:Q — M(RYCY. Equivalently, we can characterize a random C’-measure as an /-
tuple o = (115) jef, where each p; is a random complex measure over the same underlying

probability space Q.

Definition 3.5. A random C’-measure ® is stationary if the following holds: for all
reRY T, L.
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3.2 Stationary random vector measures

Note that a random C*-measure is the same as an ¢-tuple of random complex measures

over the same probability space.

Remark 3.6. The equality T, P 2 P has the following consequence: for all f € C.(RY),
®(f) < ®(T_,.f) as C'-valued random variables. A random measure with this property
is called wide-sense stationary, and this is actually enough to define the autocorrelation

measure.

Definition 3.7. Let ® be a stationary random C‘-measure on R?. We say it is locally
square integrable if, for all f € C.(R?), we have E[||®(f)]]?] < oo.

From now on we assume all stationary random measures are locally square
integrable. Note that every locally square integrable stationary random C’-measure is
also locally integrable, i.e. E[||®(f)||] < oc.

The literature on stationary measures heavily focuses on point processes, i.e. stationary
random measures ® such that ¢ is almost surely a countable sum of Dirac measures.

Every example we consider in this thesis will be a linear combination of point processes.

Definition 3.8. An /(-colored point process is a stationary random C’-measure ® =

(®y,- -+, Py) such that ®; is almost surely a pure point measure: that is, it can be
written as
=>4,
yeZ;

for some discrete subset Z; C R?. We also refer to ® as a vector point process, or just a

point process if there is no potential for confusion with the scalar case.

Example 3.9. Let I' = Z? and Q = {T,T' | x € R?}. We have Q = R?/Z? = T?: using

the uniform distribution on €2, we can define a stationary random measure by

0 MR?), ' &p=) 4,

yel”

Example 3.10. The homogeneous Poisson process on RY with intensity A [39] is the

unique stationary point process with the two following properties:

(i) The expectation of ® is given by E[®(f)] = Ampa(f)

(ii) For any f, f' € C.(RY) such that f and f’ have disjoint support, ®(f) and ®(f)

are independent random variables.
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3 Diffraction of random vector measures

3.3 Moments and autocorrelation of stationary

random complex measures

Now we define the first and second moments of stationary random C’-measures. Due to

the stationarity, they can be defined in a simplified form.

Definition 3.11. Let ® be a stationary random C’-measure on R%. The intensity of ®

is the unique vector ¢ € C* satisfying

E[®(f)] = emga(f)
for all f € C.(RY).

Lemma 3.12. Let ® be a stationary random C*-measure on R? and let f € C.(R?) with
mga(f) =1. Then ® has a unique intensity ¢ given by v = E[®(f)]

Proof. Consider the map L : C.(RY) — C* given by f + E[®(f)]. As @ is locally square
integrable, L is a C’-valued measure with entries L; given by L;(f) = E[®,(f)]: this
follows from Campbell’s formula for stationary random measures.

Furthermore, as @ is stationary, for all z € R?, f € C.(R?) we have:

L(T.f) = E[®(T..f)] = E[®(f)] = L(f)

Therefore, for all j € [¢], there exists a unique ¢; € C such that L;(f) = t;mpa(f) 19,
Chapter 7|. Therefore, L = tmpa for ¢ = (Lj)?zl, which means ¢ is the unique intensity

of ®. As mpa(f) =1, we have ¢ = E[®(f)]. O

Example 3.13. Before we define the “homogeneuous Poisson process on R? with inten-
sity A\”, which satisfies E[®(f)] = Amga(f). Its intensity in the sense of Definition 3.11

is therefore + = A, justifying the name.

A complex-valued stationary random measure ® on R¢ always has an autocorrelation

measure as we will now define.

Definition 3.14. Let ® be a stationary random measure on R%. The (centered) auto-

correlation measure 1 of ® is the unique measure on R? such that

Var(®(f)) = n(f * f)

for all f € C.(R?).
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3.3 Moments and autocorrelation of stationary random complex measures

Remark 3.15. One can also define an uncentered autocorrelation n* of ® by requiring

0wt (f * ) =E[e(f)]

for all f € C.(R?Y) instead The uncentered autocorrelation exists if and only if the
centered autocorrelation exists, and they are related by the following formula [16, Section
2.1]:

0 (f) = n(f) + lel*mga(f).

In the literature, the term "autocorrelation" may be used to refer to either the centered
or the uncentered autocorrelation: we will always use the centered autocorrelation unless

otherwise stated.

The existence and uniqueness of such measures is well known in the point process case
[9, 10], sometimes defined via other related quantities such as the reduced second factorial
moment measure |15, 20, 39]. The name “autocorrelation” is typical in the literature of
aperiodic order. The existing literature only handles the case where ® is positive: as
we want to make sure they also exists in the complex valued case, we provide a proof,
but it is essentially the same as the classical case, which can be found in the references

above.
Recall that a measure is positive definite if n(f = f) > 0 for all f € C,(R?).

Theorem 3.16. Let ® be a stationary random measure on R%. Then ® has a unique

autocorrelation measure 1, and it is positive definite.
To prove this we need the following lemma first:

Lemma 3.17. Let 1,1’ be two measures on RY such that n(f * f) =1/(f * f) for all
feC.(RY. Thenn=1n

Proof. For all f,g € C.(R%), the following polarization identity holds:
13
frg=1D i(f+i'g)=f+itg (3.1)
Therefore we can conclude that n(f x g) = /(f * §) for all f,g € C.(R?).

Now let (ga)aca be an approximate identity, i.e. a net in C,(R?) such that f g, — f
in the strong topology (see Moody and Strungaru [45, Definition 4.7.5]). Then

n(f) = limn(f * ga) = limn'(f * ga) = n'(f)

for all f € C.(RY), which concludes the proof. O
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3 Diffraction of random vector measures

Proof of Theorem 3.16. By Lemma 3.17, any two autocorrelation measures 7,7’ are
equal, as we have n(f * f) = 1n'(f % f) = Var ®(f): this means the autocorrelation
measure is unique if it exists. Furthermore, we have n(f % f) = Var ®(f) > 0 for all
f € C.(R?), so any 7 defined this way is positive definite.

We need to show that an autocorrelation measure 7 exists. To do this, pick any
p € C.(R?) such that mga(p) = 1: then we define the measure n on C.(R%) by the

following formula:

-k [/Rd L (y — x)p(x) A®(2)dP(y) | — |e[*mpa(f)

(This is the same formula as in Bjorklund and Byléhn [15, Definition 2.7|, except for
the different setting and notation). This is a complex measure on R%: we need to check
that this is the autocorrelation measure of ®.

So let f € C.(RY). Then we have

(FxDy-2)= | flo=2)Iy=-2)dz (*)
for all z,y € RY. Therefore
o5 D) =B | [ [ (7 Do = nole) 40()8)| ~ P <
B[ [ [ fa= G 2ipto) a0 as] — Pt ) (9

/Rd /Rd Rdfw—z fly=2)p (x)dfb(x)d@y)} dz — |o*mga(f * f)
(Fubini)

:/RdIE /R Rdf(x)mp(mz) d@(x)d@(y)} dz — [12mga(f * )

(® stationary)
e[ [ w7 / plo +2)d= d(@)AB(5) | P ) (Fubini)
— ) | [ [ £ T a0 | £ )

—E [0(/)2(])] - [El0(f)]
= Var(®(f))

Fubini is applicable because the term inside the integrals is continuous and compactly
supported as a function of z,y, z, and ® is assumed to be locally square integrable.
Therefore, n(f * f) = Var(®(f)) for all f € C.(R%), which shows that 7 is indeed the
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3.3 Moments and autocorrelation of stationary random complex measures

autocorrelation measure of . OJ

If & = (®;)%_, is a stationary random C’-measure, for every w € C* we obtain a
stationary random measure (®,w) = Z§:1

the constant vector, then (®, w) = Z?:l ®;, while if w = e; for some j € [{], then

w;®;. For example, if w = (1,---,1)7 is

(®,w) = ®;. Each one of these has its own autocorrelation measure: we define the
autocorrelation matriz of ®, which contains the information of all these autocorrelation

measures. This is analogous to the “pair autocorrelation matrix” in [11].

Definition 3.18. Let ® be a stationary random C‘-measure on R?. Its (centered) auto-
correlation matriz H , if it exists, is the unique C***-valued measure with the following

property: for all w € C¢, (Hw,w) is the autocorrelation measure of (®, w).

Theorem 3.19. Let ® = (@-)521 be a stationary random C*-measure on R Then

® has an autocorrelation matric H = (H; )g whose entries are determined by the

k=17
following formula:

Hji(f  [) = Cov(®;(f), Pr(f))

for all f € C.(R?), 5,k € [{].

Furthermore, every coefficient of H is a linear combination of positive definite mea-

SUTES.

Proof. For every w € C*, the random measure (®,w) has a positive definite autocorre-

lation measure 7,,, which by definition satisfies:

Var({(®(f), w)) = 1w (f * f)

For j,k € [(] and t € {0,1,2,3}, let w; x, = e;+i'e; and let n; ., be the corresponding

autocorrelation measure. Then we define a matrix measure H by setting

3
1 .
Hjy, = 1 ;Ztm,m
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3 Diffraction of random vector measures

for j, k € [¢]. Using the polarization identity from before (3.1),

Hjy f*f Zﬂhkt

- %;# Var(®;(f) + ' ®x(f))
= Cov(®;(f), ®u(f))

and for any w = (w;)i_, € C*, we have:

(H(f  fyw,w) = Y wjwgHy(f * f)

J,k=1

- Z w;wy, Cov(P;(f), Pr(f))

jk=1

= Var (Z wjfbj(f))

= Var((®(f), w))

Therefore the matrix of measures H we just defined is in fact the autocorrelation
matrix of ®, and its coefficients are given as in the statement of the theorem.

Finally, by definition of the autocorrelation measure of a point process, 7, is positive
definite for all j, k € [¢] and t € {0, 1,2, 3}, so its coefficients H;;, are linear combinations

of positive definite measures. n

Note that, in the above proof, we are forced to consider complex measures to use the
polarization identity, even if the original random measures are positive. This is one of

the reasons we need to work with complex measures.

3.4 Ergodicity

If a stationary random measure ® is ergodic, then one gets a formula for the autocor-
relation based on spatial averages. In this section we will prove a formula of this form
assuming the stationary random measure ® is uniquely ergodic. This property is not
usually defined in probability theory textbooks, as it requires putting a topology on the

state space 2: however, it will be satisfied for the point processes we consider later.

Definition 3.20. Let Q) be a compact metric space equipped with a continuous R%-action

T. We say € is uniquely ergodic if it has a unique T-invariant probability measure.
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3.4 Ergodicity

Definition 3.21. A uniquely ergodic stationary random C’-measure on R? is a tuple
(2, ®) such that

(i) Q is a compact metric space equipped with a continuous R%action which makes

it uniquely ergodic, and

(i) @ : Q — M(X,C" is a continuous R%equivariant map, i.e. for all x € R? and
w € Q, we have T, ®(w) = ®(T,w).

As Q has a unique R%invariant probability measure, ® is a random measure: thanks
to the equivariance we see that it is in fact a stationary random C‘-measure. As Q
is compact, ® is locally square integrable. As usual, we say ® is a uniquely ergodic

stationary random measure, leaving the underlying space §2 implicit.

If ® is a uniquely ergodic stationary random C‘-measure on R? and w € C, the
complex-valued stationary random measure (®, w) is also uniquely ergodic: for the rest

of this section we will focus on complex measures.

The following pointwise ergodic theorem holds for uniquely ergodic R%-actions. It is
analogous to the classical pointwise ergodic theorem for uniquely ergodic N-actions. As

it is hard to find a reference for this result, we provide a proof for convenience.

Theorem 3.22 (Pointwise ergodic theorem for uniquely ergodic R%-actions). Let F' €
C(92), and w € Q. Then

i o [ F(T) s - [ P du)

Proof. For R > 0, define the probability measure pug on by

pr(F) = F(T,w)dx

for F' e C(Q).

By the Banach-Alaoglu theorem, the space of probability measures on () is compact

in the weak topology, so the net (ug)g>o has an accumulation point.

Now we show every accumulation point is translation invariant: so let (R,)en be a

sequence of radii such that R, — oo and a limit g, = lim, o i1, exists in the weak
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3 Diffraction of random vector measures

topology. Then, for every F € C(Q2) and z € R?, we have

1
T.F)— F)=|———- T, F(T,w)— F(T,w)d
i (F) = pa () = s || T () = P
enil! I
=— F(T,w)dy — F(T,w)d
de(BRn)l T, ( y ) Yy - ( Y ) Z/l
P
~ mga(Bg,)

—0

(de(TxBRn \ BRn) + de(BRn \ TLUBRn)>

Therefore jio (T, F) = pioo(F) for all x € RY and F € C(Q), which means fio, is trans-
lation invariant. This means p, must be equal to the unique R%invariant probability
measure 4 on €2, so in fact ugr — p in the weak topology as R — oc.

Unwinding the definitions for any F' € C'(2) yields

R—o0

lim pgp(F) = /QF(WI) dp(w’),

as claimed. O

We can use this to characterize the intensity and autocorrelation of a uniquely ergodic
stationary random measure. As the proofs are similar, we only provide the proof for the

autocorrelation, which is harder.

Corollary 3.23. Let ® be a uniquely ergodic stationary random measure on RY with

underlying space €2, and w € ). Then the intensity ¢ of ® is given by the formula

1
t = lim —/ ®,(T,f)dx
R—o0 de(BR) Bgr ( f)

for any f € C.(R?) with mga(f) = 1.

Corollary 3.24. Let ® be a uniquely ergodic stationary random measure on RY with
underlying space 2, and w € €.

Then the autocorrelation n of ® is given by the formula

o)+ maa ) = Jim ——s [ ] @ =y at(@)a8.00)

for all f € C.(R?).

Proof. Tt suffices to consider functions of the form f = g* g for g € C.(R?), as these are
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3.4 Ergodicity
dense in C,(R?). Then we have
(g * g) + [t*mea(f) = E[|@(g)[]
Applying the pointwise ergodic theorem to the right hand side, we obtain
T, d
5 J, e
/ // x4 2)g(y + 2) dd,(z) dd,(y) dz
BR BR Rd JRA

The function (z,y,z) — g(z+2)g(y + 2) is in C.(Bg x R? x R%), so we can apply Fubini
to change the order of integration and apply a change of variables on z +— 2z — y to

~ 2 o
n(g # g) + [ mza(f) = Jim ——p s

= lim
R—o0 de

1
(
1
mga(Br)

obtain:

g(z + 2)g(y + 2) dz dd,(z) dD,,(y)

glx —y+ z)ﬁ dzdd,,(z)d®,(y)

Now let Ry > 0 be such that g is supported in Bg,. Then the term under the integral
can only be nonzero if y € Brg,, as otherwise g(z) = 0 for all z € T}, Bg. Therefore, the
integral remains the same if we integrate y over Br, g, and z over R%, and the function
(y,x,2) — g(x —y + 2)g(2) is in Co(Bryr, X R? x R%), so we can apply Fubini again:

- 1
o)+ lfmaaf) = Jim ——s [ [ o=yt 255 a0 o) 00
R+Rg
1
= lim / / xg)(z —y)dd, do,
R—o00 de(BR BR+R0 R4 g g ( ) ( )
= lim ——— / / x g)(x —y)dd, dd,
R—00 Mpd BR Ro) Br JRd g+9) (2) d2.(y)

] — y)d®,(z) dD,
RgrolodeBR/BR/Rdg*gx (z) d®y(y)

mea(Br-ro) _ 1 This concludes the proof. [

Where the last step holds because limg_,
mya(Br)

Note that, by standard approximation arguments, the formulas in the above corollaries
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3 Diffraction of random vector measures

also hold when f = 15,.

3.5 Diffraction of stationary random vector measures

Recall that the autocorrelation measure is always positive definite. Therefore, by The-

orem 3.16, we can define the following:

Definition 3.25. Let ® be a stationary random measure on R? with autocorrelation
measure 7. The (centered) diffraction measure 1 of ® is the Fourier transform of its

autocorrelation measure 7.

Remark 3.26. The diffraction measure 7) of ® satisfies

A~

A(11%)

Var(®(f))

for all f € C.(R?). A measure satisfying this property is also called the Bartlett spectral

measure or structure factor [15, 20, 21].

Remark 3.27. Recall that, as was the case for the autocorrelation, one could define

the uncentered diffraction ) which satisfies
E[@(f)I°] = 47 (1 /%)

for all f € C.(RY) instead. In this case, #* = 7 + |¢|*dy, where ¢ is the intensity of ®.
The term “diffraction” is often used to refer to the uncentered version, particularly in
the literature of aperiodic order: we will however always use the centered version unless

otherwise specified.

Example 3.28.

(i) Using the Poisson summation formula, we see that the lattice process has (cen-
tered) autocorrelation 7 = dz2 —mpga, hence it has (centered) diffraction 7) = dz2\ (0}

It has intensity ¢ = 1.

(ii) The Poisson process with intensity A > 0 has (centered) autocorrelation 7 = Ady,

hence it has diffraction 1 = Amgpa.
Analogously, in the vector-valued case, we define the diffraction matrix as follows:

Definition 3.29. Let ® be a stationary random C‘-measure on R?. The diffraction

matriz H of ® is the componentwise Fourier transform of its autocorrelation matrix H.

The following lemma is a direct consequence of Theorem 3.19 and Theorem 2.5, to-

gether with the polarization identity Equation (3.1).
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3.6 Hyperuniformity

Lemma 3.30. Let ® = ((Pj)?:l be a stationary random C*-measure on R with auto-

correlation matriz H = (ij)ﬁ w—1- Then the following hold:
(i) The entries of H are given by

H;i(f9) = Cov(®;(f), Pu(g))

for all f,g € C.(RY) and j,k € [{].

(ii) For all w € C, (Hw,w) is the diffraction measure of (®,w). That is, for all
f € C.(RY) we have the identity

Var((®,w)(f)) = (Hw, w)(|f[*)

In the scalar case, the Fourier transform of a positive definite measure is a positive

measure. Here, an analogous result holds.
Lemma 3.31. For all w € Ct, <I:Iw, w) is a positive measure.

Proof. Let f € C.(R%). Then, for all w € C¢, we have (Hw, w)(|f|?) > 0. As (Hw,w)

is the diffraction measure of (®, w), it is positive. ]

In the uniquely ergodic case, the diffraction matrix vanishes at zero. Note that this
happens because we are using the centered autocorrelation measure: otherwise we would

get an atom at the origin related to the intensity (compare with |5, Proposition 9.2]).
Lemma 3.32. Assume ® is uniquely ergodic. Then H({0}) = 0.

Proof. Bjorklund and Hartnick [16] prove this in the case where @ is positive: the
same proof works when @® is complex. Then, if ® is a C’-measure, for all w € C¢,
(H({0)w,w) = 0, as (Hw,w) is the diffraction of the uniquely ergodic stationary

random complex measure (®, w). This means that H({0}) is the zero matrix. O

3.6 Hyperuniformity

Now we define the notion of hyperuniformity, introduced by Torquato and Stillinger [59]
in the context of point processes. Intuitively, hyperuniformity indicates a certain degree
of “order”, in the sense that the variance of the measure on large sets is less than one
would expect from random chance.

We will define hyperuniformity for complex-valued measures first, which is the classical

definition, and then we will extend it to vector-valued measures by using weights.

Definition 3.33. Let ® be a stationary random (complex) measure on R,
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3 Diffraction of random vector measures

(i) We say ® is hyperuniform if

lim Var ®(Bg)

R—o0 Rd - 0

(ii) We say ® is Class I hyperuniform if
Var ®(Bg) = O(R*™)

as R — oo.

The following examples justify the name “hyperuniformity”. informally, for a hype-
runiform random measure, the number variance Var ®(Bpg) grows more slowly than it

would for a Poisson process.

Example 3.34.

(i) Let ® be the Poisson process on R? with intensity A\. Then the variance is given by
Var ®(Bg) = Ampa(Bgr), hence %&BR) = Ampga(By) for all R > 0. This means ¢

is not hyperuniform.

(i) Let ®z« be the point process associated to the integer lattice on R?. Then one
can compute that Var ®(Bg) = O(R*!) as R — oo: in particular, ® is Class I

hyperuniform.

The bound we get for the integer lattice is the “best possible” in the following sense:
there exists no stationary random measure ® such that Var ®(Bg) = O(R%*) as R — oo
for £ > 1. This follows from the following theorem.

Theorem 3.35 (Beck’s Theorem |15, Theorem 5.1]). Let ® be a stationary point process
on R, Then, for every Ry > 0 there exists a C' > 0 such that

1 R
}—%/ Var(#® N B,)dr > CR*™', R > R,
0

In particular, there exists no stationary point process ® such that Var(#® N Bg) =
O(R*) for any k > 1.

One of the most important properties of hyperuniformity is that it can be characterized
in terms of the diffraction measure: in particular, hyperuniformity is equivalent to fast
decay of the diffraction measure at the origin. While this has been known at least
experimentally since its invention, most existing proofs of this fact focus on the case
where the diffraction measure is absolutely continuous, as this is the most commonly

considered case in materials science and point process theory. For our purposes, we will
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3.6 Hyperuniformity

need the following criteria due to Bjorklund and Hartnick [16], which are valid without

making any assumptions on the type of the diffraction measure.

Theorem 3.36 ([16]). Let ® be a stationary random measure on RY and 1) its diffraction
measure.
(i) For a € (0,1], we have Var(®(Bg)) = O(R¥%) as R — oo if and only if H(B,) =
O(rite) as r — 0.

(ii) For a € [0,1), we have Var(®(Bg)) = o(R*™*) as R — oo if and only if (B,) =
o(rite) as r — 0.

(iii) ® is hyperuniform if and only if H(B,) = o(r?) as r — 0.
(iv) @ is Class I hyperuniform if and only if (B,) = O(r¢=1) asr — 0.

Note that bounds in the above theorem only hold for a < 1, as we have already seen

that Var ®(Bpg) grows at least as R4~!. However, the diffraction 7 can decay faster than
r4=1: indeed, if ® is the point process associated to the integer lattice, then 7(B,) = 0
for all r < 1.

Now let ® be a stationary random C’-measure on R?. Recall that, for every w € C¥, we
obtain a stationary random complex measure (®,w). Then we define hyperuniformity

for ® depending on the weights w € C*.

Definition 3.37. Let ® be a stationary C’-valued measure on R%, and w € C.

(i) We say ® is hyperuniform for weights w if (®,w) is hyperuniform.
(ii) We say ® is Class I hyperuniform for weights w if (®,w) is Class I hyperuniform.

(i) We say ® is (Class I) hyperuniform for constant weights if it is (Class I) hyper-

uniform for weights w = (1,...,1)".
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4 From substitutions to point

processes

In this section, we introduce the basics of multi-color point sets, tilings and substitu-
tions. We show that every well-behaved substitution rule gives rise to a stationary vector
measure, and hence we are able to ask about its diffraction and hyperuniformity prop-
erties. Furthermore, we prove that the diffraction matrix of a substitution rule satisfies
a renormalisation relation, and express it in term of a self-similar density.

There exists a large literature on substitution rules, substitution rules and tilings:
see |5, 23, 48| for some surveys on the topic. However, the terminology, notation and
particular formalism are not standardized, so we will define the terms in the way that
is most convenient for us.

There is a discrepancy we need to deal with: most of the literature on substitution
rules concerns itself with substitutions of tilings, but diffraction and hyperuniformity
are properties of point sets and point processes. Given a tiling, one can produce a set
of points by choosing a center in each tile, but this choice is not canonical.

We will follow the approach of Lagarias and Wang [38], as well as Lee, Moody, and
Solomyak [41]. They defined substitution rules acting not on tilings, but families of dis-
crete sets, and showed that self-similar families exist if and only if they can be associated

with a self-similar tiling: therefore, both theories are equivalent.

4.1 Substitution rules

4.1.1 Multi-color sets

We denote the powerset of R? by P(R?), and the set of finite subsets of R? by Pg,(R).

Definition 4.1. A multiset in R? with ¢ colors, or {-multiset in R?, is a multiset in R?
with alphabet [¢]: that is, an /-tuple A = (Ay,---, A;) of subsets of R

Remark 4.2. This terminology is not standard: some authors [40] use “multiset” to
refer to our definition, while others [38] use it to refer to sets with multiplicity. We stick

to our definition, as we will not need to consider sets with multiplicity.
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4 From substitutions to point processes

Notation 4.3. Let A = (A;);eiq, A’ = (A});eq be multisets in R with ¢ colors.

If B C R? we define the restriction of A to B, written A N B, as the multiset
given by (AN B) = (A; N B)jeg-

For z € RY, we define the translate of A by x, written T, A, as the multiset given
For A\ > 0, we define the dilate of A by A\, written D)A, as the multiset given by
(D)\A)j = D,\Aj for all] € [6]

For j € [{], we let o, be the multiset which has {0} in the j-th color and is empty

for all other colors: that is, 0; = (0j)kejq Where

(0} ifj=*k,

0jk = ,
1] otherwise.

A colored point is a multiset of the form T,0; for some x € R? and j € [/].

We say A is a subset of A’, written A C A’ if A; C Al forall j € [(]. If pisa
colored point and p C A, we write p € A.

We let #A € C* be the vector given by #A = (#A;) e

We say A is r-uniformly discrete if the union | J;_, A; is r-uniformly discrete, i.e.

i€l
the distance between any two distinct points in (J el A;j is at least r.

We say A is R-relatively dense with radius R if each A; is R-relatively dense for all
j €14, i.e. for every z € R? and j € [¢], there exists y € A; such that d(z,y) < R.

We say A is Delone if it is both uniformly discrete and relatively dense.

Remark 4.4. Other sources define multi-color sets as subsets of P(R¢ x [(]) instead:

that is, sets of tuples (,j) where z € R? is a point and j € [¢] is a color. There is

a canonical bijection P(R?)* = P(R? x [(]), so we can also think of multi-color sets

as subsets of R? where every point is labeled with a color. It is useful to keep both

viewpoints in mind.

Remark 4.5. There is nothing, in principle, stopping us from defining multisets with

infinitely many colors. There are some important examples of this kind: possibly the

most famous is the pinwheel tiling, which contains infinitely many rotations of the same

basic tiles [5]. There also has been work on the case where one uses a compact space of

labels instead of a finite set [42]. With some effort, the definitions in this section could

be extended to this case, but we will not do so here.
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4.1 Substitution rules

4.1.2 Substitution rules and self-similar sets

Definition 4.6. A substitution rule on R? with ¢ colors is a pair S = (\, A) where

e )\ > 1 is the scaling constant of S, and

e A € P, (R is the displacement matriz of S.

Definition 4.7. Let S = (A, A) be a substitution rule with ¢ colors, and let A =
(Ajk)jkecrg be the entries of the displacement matrix. Then we define its associated
substitution map o : P(R?Y)* — P(RY)* as follows: if A = (A;);eq, its image o(A) =
(A;)je[e] is given by

14
No=J | TDaA

k=1 xGA]—k

for all j € [/].

Note that we can also write this as

PEA

where the union runs over all colored points p in A.
Substitution rules are important because they can be used to define and construct

self-similar multisets.

Definition 4.8. Let S be a substitution rule with ¢ colors. A multiset A € P(R9) is
self-similar (with rule S) if there exists N € N such that

(i) there exists a colored point pp € A such that
A =[] o™ (pa), and
n=0

(ii) For all n € [N], the union

on) =, 1 0 219)
is disjoint.
We call pa the seed point of A. We will leave out the reference to & when it is clear

from the context.

Remark 4.9. The above definition requires some explanation, as it does not exactly

match the usual definitions. First, condition (i) guarantees that ¢™(A) = A, is an
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4 From substitutions to point processes

“irreducible Delone set satisfying an inflation functional equation” in the sense of Lagarias
Lagarias and Wang [38]. Condition (7i) guarantees that the substitution map does not
send two points to the same point: therefore oV(A) = A also holds if one counts
multiplicities. If one defines substitution rules acting on tilings instead of multi-color
sets, condition (7i) automatically holds, and condition (i) implies that A is S-legal (see
Definition 4.31), a condition which is usually included in the definition of a self-similar

tiling.

Central to the study of substitution rules is the substitution matriz M, a matrix which

encodes many of its properties.

Definition 4.10. The (full) substitution matriz of S is the matrix M € N given by
M, = #Aj
for 5,k € [¢].

In Chapter 7, we will define a spherical substitution matriz Mg, € N so later we
will call M the full substitution matriz to avoid confusion: in the literature, the term
“substitution matrix” or “inflation matrix” can refer to either one. For now we will call

it “substitution matrix”.

Definition 4.11. We say S is primitive if the substitution matrix M is a primitive

matrix: that is, if there exists N € N such that all of the entries of MY are positive.

Primitivity of a substitution rule has the following geometric interpretation: if S is
primitive, then there exists Ny € N such that for all j € [¢], o™ (0;) contains a point of
every color. This implies that every image of oV contains a point of every color.

Furthermore, if S is primitive, the substitution matrix satisfies the well-known Perron—

Frobenius theorem:

Lemma 4.12 (Perron-Frobenius Theorem, [51]). Let M be a primitive matriz. Then:

(i) M has a positive eigenvalue \pp, its Perron—Frobenius eigenvalue (or PF eigen-
value for short), such that every other eigenvalue has a strictly smaller absolute
value.

(11) Apr has algebraic and geometric multiplicity 1.
(11i)) The PF eigenvalue \pp has an eigenvector with strictly positive entries.

(iv) Every nonnegative eigenvector of M is an eigenvector of App.

An eigenvector of Apr with strictly positive entries is called a Perron—Frobenius eigen-

vector, or PF eigenvector for short: it may be a left or right PF eigenvector.
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4.1 Substitution rules

We still have not proven that self-similar multisets exist (for nice substitution rules).
A good way to prove & admits a self-similar multiset is to show that it is stone. A stone
substitution rule is a substitution rule that produces tilings of the plane, as we will now

explain.

Definition 4.13. Let 7y,---,7, be closed subsets of R and A = (Ay,---,A) be a
multiset in R? with ¢ colors.

(i) We say A patches R? with prototiles 1y,---, 7, if, for all j, k € [(],x € Aj,y € Ay
such that (x, ) # (v, k), T,7; N T, 7, has measure zero. In this case, we say the set
{T,7j | j €],z € Aj}is a patch.

(ii) If A patches R? with prototiles 71, -+, 7y, its support is the union suppA =
Uje[z],xe/\j Ty

(iii) We say A tiles S C R¢ with prototiles 71, - - -, 74 if it patches R? and supp A = S.
Then the set {T,7; | j € [{],x € A;} is a tiling of S by the prototiles 7y, - -, 7.

Remark 4.14. Sometimes, tilings are defined using a topological condition instead,
specifically requiring that tiles intersect only at their boundaries. For sufficiently nice

prototiles, this is equivalent to the above definition. We follow the definition in [38].

Definition 4.15. Let S be a substitution rule with ¢ colors. We say the nonempty,
compact subsets 71,---,7, C R? are the canonical prototiles of S if they satisfy the

following equation:
¢

D)\Tj = U U Tka

k=1 xEAkj
for all j € [/].
The above equation is called the multi-tile functional equation by [38|.

The space of all compact subsets of R? is a complete metric space with respect to the

Hausdorff metric. Then Banach’s fixed point theorem guarantees the following.

Theorem 4.16 ([52, Theorem 4.89|). Let S be a substitution rule. Then there exist

canonical prototiles 1, ---,7 of S, and they are unique.

In general, the canonical prototiles could have measure zero or be otherwise patho-

logical. We will want to assume this is not the case.

Definition 4.17. Let S be a substitution rule. A the scaling constant and Apr the PF
eigenvalue of the substitution matrix M. We say S is a stone substitution rule if the

following properties hold:

(i) All of the canonical prototiles 71, - -, 7 have positive Lebesgue measure.
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4 From substitutions to point processes

(ii) For all j € [€], o(0;) tiles Dy7; with the canonical prototiles.

Theorem 4.18. Let S be a primitive, stone substitution rule, X its scaling constant, M
its substitution matrix, and App the PF eigenvalue of its substitution matrix. Then the
following hold.

(i) The vector (mga(7;))jeiq s a left PF eigenvector of M.

(ii) The PF eigenvalue of M is App = \?

Proof. By definition of the canonical prototiles, we have

l
D)ﬂ'j = U U Tka (*)

k=1 IGAkj

for all j € [¢]. Furthermore, Condition (ii) of the definition of a stone substitution rule,
the intersection 7,7, N T, has Lebesgue measure 0. Then, by taking the measure on
both sides of (x), we obtain

¢

Nmga(r;) = Mg (7h)

k=1 CEEAkJ‘

In other words, if we set vpp = (mga(7;));cq, We have MNuprp = MTvpp. This means
vpp is a nonnegative eigenvector of M with eigenvalue A% by the Perron-Frobenius
theorem, this is only possible if vpp is a PF eigenvector and \? is the PF eigenvalue.

This concludes the proof. O

Then, Lagarias and Wang [38] proved that being stone is equivalent to admitting a

self-similar Delone multiset.

Theorem 4.19 (|38, Theorem 2.4|). Let S be a primitive substitution rule. Then the

following conditions are equivalent.
(1) There exists a self-similar Delone A.

(ii) There exists a self-similar Delone A which tiles R® with the canonical prototiles

Tyt Te-

(11i) S is a stone substitution rule.
Therefore, if we want to prove a primitive substitution rule admits a self-similar Delone
multiset, it suffices to prove it is stone, which is something one can do by drawing pictures

of the prototiles: see [5, Section 6] or Section 7.2.3 for examples. Furthermore, it means

the definition of substitution rules using point sets is equivalent to the definition using
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4.2 Substitution spaces and counting processes

tilings (such as in [5, 48]), as every substitution rule with a Delone self-similar set is a

stone substitution rule.

Remark 4.20. Note that statement of Lagarias and Wang [38, Theorem 2.4] only
says that ¢™(A) = A, which is weaker than our definition of self-similar multisets,
which requires the existence of a seed point pp. However, the A given in the proof is

constructed from a seed point, so it is also self-similar in our sense.

Remark 4.21 (Recentering). Let S be a stone substitution rule and 71, --,7,. Then,
for every tuples of vectors z = (21, -+, 2z,) € R? we can define a recentered substitution
rule T,S which has the same scaling constant and is a stone substitution rule with
canonical prototiles 7} = T, 7; for all j € [¢]. Its displacement matrix A" = (A%} ); ke
is given by

Al ={z+ X zj — 2 | € Ay},

where A, are the entries of the displacement matrix of S.

The recentered substitution rule 7,85 produces the same self-similar tilings as S, so
one would like whatever properties we study to be invariant under recentering. In fact,
the criteria for hyperuniformity we will prove in Chapter 6 will only depend on the

substitution matrix M, hence they will not depend on the choice of recentering.

4.2 Substitution spaces and counting processes

In this section, we associate a vector point process to each primitive, stone, FLC substi-
tution rule, and study its properties. For this, we will first define the substitution space

of a substitution rule, and will use it to define a vector point process.

4.2.1 Hulls of FLC sets

In this section, we define FLC multisets, their hulls, and their basic properties. All
results in this section are well-known for FLC sets and tilings [40, 48, 50| and their

extension to multisets is straightforward.

Definition 4.22. Let A be a Delone f-multiset in RY. We say A is FLC (or has finite
local complezity) if the following holds: for all compact K C R?, the set of K-patterns

{T,ANK | z € RY}

has finitely many equivalence classes under translation.
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4 From substitutions to point processes

We denote the set of FLC (-multisets in R¢ by P&, ~(R?). If A is a Delone f-multiset
which tiles R?, there is a convenient way to check whether it’'s FLC: intuitively, A is
FLC if there are only finitely many ways of putting tiles next to each other in the tiling
given by A.

Lemma 4.23 ([48]). Let A be a Delone (-multiset in R which tiles R® with prototiles

T1,- -, 7. Assume the set of 2-patches

T® .= {p,q € A |suppp Nsuppq # 0}

has finitely many equivalence classes under translation. Then A is FLC.

In particular, in R2, the above condition is satisfied if the tiling defined is edge-to-edge,
i.e. the tiles are polygons and their intersections are sides or corners. More generally, A
is FLC if it defines a tiling which is sibling edge-to-edge as defined by Goodman-Strauss
[32].

Definition 4.24. Let A be an FLC /-multiset in R?, K C R? be compact and V C R?
be open. We define the cylinder set
Ukv(A)={N P, R) | Jx eV :T,ANK=ANK}.
The local topology on PY,..(R?) is the topology generated by the cylinder sets Uk, (A)
for all compact K C R open V C R and A € P4 (RY).
In fact, these sets can be used to define a uniformity for the space Q [17, 44, 50, 60].

Theorem 4.25 (|50]). Let A be a Delone multiset in RY. Then the following are equiv-

alent:
(1) A is FLC.
(ii) The set {T,A | x € R} is relatively compact in the local topology.

Remark 4.26. If A is not FLC, one can use a coarser topology, such as the local rubber

topology, to get similar results. In the FLC case, this is equivalent to the local topology
18]
Definition 4.27. Let A be an FLC multiset in R?. The hull of A is the set

Op = (TLA |z € RY}

where the closure is taken in the local topology.

Definition 4.28. Let A be an FLC multiset in R%.
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4.2 Substitution spaces and counting processes

e A is repetitive if, for every finite p C A, the set
{x e RY| T,p C A}

is relatively dense.

e A has uniform cluster frequencies if, for all finite p C A, the limit

1
lim ———— Br: T, T,A
R (B 01 € B L2 € TAS

exists uniformly for y € RY.

Theorem 4.29 ([40, 50]). Let A be an FLC multiset in R?. Then

(i) A is repetitive if and only if Qa is a minimal dynamical system, and
(i) A has uniform cluster frequencies if and only if Q is uniquely ergodic.

Remark 4.30. Theorem 4.29 has the following consequence: for all A;, Ay € Q24 and
all compact K C R?, there exists a translation z € R? such that T,A; N K = Ay N K:

one says A and A’ are “locally isomorphic” [48].

Now we turn to the specific case of Delone multisets coming from substitution rules.
In the last section, we already considered some multisets associated to substitution rules,
namely the self-similar sets. In order to associate a dynamical system to a substitution

rule, we will relax this notion as follows.

Definition 4.31. Let S be a substitution rule on R?* with ¢ colors.

(i) An f-multiset A in R? is S-legal if the following holds: for every finite subset
p C A there exists a colored point g and N € N such that p C ¢ (p). In other
words, there exists j € [(] and N € N such that ¢"(0;) contains a translate of p.

(ii) The substitution space s is the set of all S-legal Delone ¢-multisets.

Remark 4.32. Note that any self-similar multiset A, using our definition, is S-legal. If
pa is the seed point of A, we have A = |J)7, 0"V (pa) by definition, hence every finite

subset of A is contained in ¢™"(py) for some n € N. In particular, if S is primitive and
stone, (s is not empty.

Here, the fact that A is constructed from a seed point is important. If A is a Delone
multiset which decomposes as A = AjUA, with o(A;) = A; and o(A) = Ay, A may
not be legal, as a finite subset p C A that contains points from both A; and A, may
not necessarily be contained in ¢"(q) for any colored point g, N € N: see [5, Example
4.2]. This is why most sources include legality in the definition of self-similarity for sets

or tilings.
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4 From substitutions to point processes

Let S be a substitution rule. We say § is FLC' if it admits an FLC self-similar multiset
A.

Theorem 4.33 ([48]). Let S be a primitive, stone, FLC substitution rule on R? with {

colors. Then:

(1) Every legal multiset A is FLC, repetitive and has uniform cluster frequencies.
(11) For every legal A, Qp = Qs.
(iii) Every A € Qg tiles R? with the canonical prototiles Ty, -+, 7.

(iv) The substitution space Qs is compact, minimal and uniquely ergodic.
Furthermore, the substitution map acts on the substitution space, as follows.

Theorem 4.34 ([56]). The substitution map o has the following properties:

(1) The restricted map o : Qs — Qs is a continuous surjection.

(ii) For all v € R? and A € Qs, o(T,A) = Th0(A).

Remark 4.35. One may ask if p is an homeomorphism. In fact [55], this is the case
if and only if S is aperiodic, i.e. for all A € Qg there exists no z € R?\ {0} such that
T.A = A.

4.2.2 The vector point process associated to a substitution rule

In this section, we will define the vector point process associated to an FLC set or substi-
tution rule, and use it to define its autocorrelation, diffraction and hyperuniformity. We
will also show that this definition is equivalent to the ergodic definition of autocorrelation
due to Hof [34], other than the fact that we use the centered autocorrelation.

Definition 4.36. (i) Let A an FLC /-multiset in R? which is repetitive and has uni-
form cluster frequencies. Then the vector point process ® = (®q,--- Dy) associated

to A is the ¢-point process with components

O Qp — MRY,  (Aeig = > 6

xEAJ—

(ii) If S is a primitive, stone, FLC substitution rule, the vector point process associated

to S is the vector point process associated to any A € .

Note that the latter is well-defined: for any A € (s, we obtain the same hull Q2 = Qg,

hence the same vector point process ®.
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4.2 Substitution spaces and counting processes

Theorem 4.37. Let ® be the vector point process associated to a FLC multiset A which
is repetitive and has uniform cluster frequencies, or the vector point process associated to
a primitive, stone, FLC substitution rule S. Then ® is a uniquely ergodic vector point

process on RY.

Proof. 1t suffices to show the theorem when @ is the vector point process associated to
an FLC multiset A, as the vector point process associated to a substitution rule § is
also of this form.

As seen in Remark 4.30, all elements of 25 are locally isomorphic, hence there exists
r > 0 such that every A € (g is r-uniformly discrete. This implies there exists a
constant C' > 0 such that, for all j € [(],

[@.(f)sl = D f(x) < ClIf |owmza(supp f)

:DEA]'

which means that @ is a continuous linear map Qs — M (R4, C).

By construction, @ is equivariant under the action of R?: as (s is a uniquely ergodic
dynamical system, this means ® is a uniquely ergodic stationary random measure on
R?. This concludes the proof. O]

Remark 4.38. Here we are implicitly using the unique ergodicity of (s, as otherwise we
would need to choose a specific probability measure ;1 on 25. In general, every ergodic
component of 25 would give rise to a different ergodic point process: then the theorems
from Section 3.4 would apply not to every element of 24, but only to a set of generic

multisets.

Now we can extend all properties of point processes we defined in Chapter 3 to sub-

stitution rules.

Definition 4.39. Let S be a primitive, stone, FLC substitution rule, and ® be its

associated vector point process.

i) The autocorrelation measure My, of S with weights w € C¢ is the autocorrelation
n g

measure of the random stationary measure (®,w).
The intensity ¢ of S is the intensity of ®.

The autocorrelation matriz of S is the autocorrelation matrix of ®.

)
)
(iv) The diffraction matriz of S is the diffraction matrix of ®.
) We say S is hyperuniform for weights w if ® is hyperuniform for weights w.
)

We say S is Class I hyperuniform for weights w if ® is Class I hyperuniform for

weights w.
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4 From substitutions to point processes

So let S be a primitive, stone, FLC substitution rule, and ® be its associated vector
point process. Thanks to the unique ergodicity we get the following expression the
autocorrelation of (®,w) as a weighted spatial average, which follows from Corollary
3.24.

Corollary 4.40. Let w € C*. Then the autocorrelation of (®,w) satisfies

n(f) + (e, w) *mga(f) = lim ———— ijwk Z Zf — )

R—oo M d B
wi(Br) jkelf] 2€A,NBg yehy,

In the literature of aperiodic order, it is customary to define the autocorrelation of an
FLC set via a formula like the right hand side of the equation in Corollary 4.40: this
approach was introduced by Hof [34]|. This means our definition of the autocorrelation
coincides with the usual definition for FLC, minimal, uniquely ergodic sets, other than
the fact that we are using the centered autocorrelation instead of the uncentered version,

which explains the extra |(¢, w)|?*mpa(f) term (see Remark 3.15).

By the ergodicity of ®, we also get a similar result for the intensity of ®: namely,

L = (freqa (0}))jelq, Where

1
fI‘qu(OJ) = }%I_EI;O m#{x S BR : Tij S A}

is the relative frequency of the color 7 in A.

The above formula for the autocorrelation can be used to get a criterion for hyper-
uniformity which depends only on a single sample. This highlights the fact that, even
though hyperuniformity is most easily defined in a probabilistic way, it is also a statement

about the geometry of particular S-legal sets.

Corollary 4.41. Let w € C*. Then S is hyperuniform for weights w € C* if and only

if, for some w € Qg, we have

im ——— [ Y wmids, (@ —y) — (e w)Pmgs(Ba) | =0

Ri1,Ra—00 Mpd (B
R ( Rl) J,ke[l] zEA;NBR, yEAg

Proof. One has to show, with standard arguments in ergodic theory, that the formula

for the autocorrelation in Corollary 4.40 holds with f =1, ,
O
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4.3 Renormalisation relations

4.3 Renormalisation relations
4.3.1 Renormalisation measures and the normalized Fourier
matrix

Let § be an FLC, primitive, stone substitution rule with scaling constant A and dis-

placement matrix A = (Ajx); kel

Theorem 4.42 (Renormalisation of the vector point process associated to a substitu-

tion rule). The vector point process ® = (®;);cq associated to S satisfies the following

l
o 23" S 1D,

J=1 mGAkj

relations

for all k € [¢]. We call these the renormalisation relations for ®.

Proof. Let p be the unique translation invariant probability measure on the hull 2s. As
o(T,A) = T),0(A), one can check p*u = p o o is also a translation invariant probability
measure on {1s: by unique ergodicity this means o*u = p.

Let o*® = (@;) jelg be the random vector measure defined by concatenating o : {25 —
Qs and ® : Qs — M(R?, C*). Explicitly, o*® is given by

l

=) T.D)\,

j=1 mGAkj

for all k£ € [¢(]. But we have g o u = u, hence o*® 4y, Then, by comparing the k-th

components, we obtain
¢

=0 = Y T.D\P,

7j=1 :EGAkj

]

If we consider the intensity of both sides of the renormalisation relations, we obtain

the following well known result.

Corollary 4.43. The intensity ¢ of S satisfies
L= \""Me.

Therefore, v is a right PF eigenvector of the substitution matriz M.
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4 From substitutions to point processes

Now we will use Theorem 4.42 to obtain a similar result for the diffraction matrix H:
this will be the renormalisation relation for the diffraction matrix, originally introduced
by Baake, Géhler, and Manibo [11].

Definition 4.44. The normalized Fourier matriz of S is the matrix function A : R¢ —
C** with entries A;;(¢) given by

A]k(f) _ )\7(1 Z 62771‘(90,5}'

T€A ),
Remark 4.45. Let M be the (full) substitution matrix of S. Then we have:
A(0) = XM
Theorem 4.46. The diffraction matrixz measure H satisfies
H=A(D,.H)A*

where the product of matriz functions with matriz measures is defined by the matric

product formula, as in Definition 3.4.

In order to prove this theorem, recall the following property of the Fourier transform

of functions.

Lemma 4.47. Let f € L*(R?) be a Fourier transformable function on RY, x € R, Then
F(Dr-T-of)(€) = A 4e*™ 9 DAF(f)(€)
Proof. By density, it suffices to assume f € L'(R?) N L*(RY). Then
FDATf)(E) = [ FOG+ e d:

f( Je 2riu—e8) N—dgy, (Substitute u = A(z + z))

-\ d 27rzz§ f( ) —2mi(u, A" 15>d

_ )\_d€2m<w’§>D)\f(§) n

Proof of Theorem 4.46. For x € R?, let c¢(x) : R? — C’ be the function defined by
o) (€) = 0.
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4.3 Renormalisation relations

Componentwise, the equation in the statement of the theorem reads

mn =\ 2 Z Z D>\ lij.

j ke Z] CUEAm]
YAk

It suffices to check the equation holds for all functions of the form |f|? for f € C,(R%),
as this uniquely determines the Fourier transform of a measure. So let f € C.(R%).

Then, using the properties of the diffraction matrix and Lemma 4.47, we get

Hyn(|f1?) = Cov(®,(f), @ (f)) (Definition of diffraction measure)

Jj=1 CCEA"L]‘ k=1 yeApng

L
(Dj (DA 1T_xf Z Z (I)k D>\ 1T—yf)

j=1 2€Am; k=1 yEAnk

¢ ¢
= Cov (Z T.DA®;(f), Y > T,Da®(f) | (Self-similarity of @)

Jk=1x€Am;
YEA Lk
¢
=AY Y ele —y) Dy Ha(|f1P).
j,k):]. CL’EAm]'
yEAnk
This completes the proof. O

4.3.2 Renormalisation via density functions

In this section, we define self-similar densities as a tool to study the diffraction measure

A~

H.

Definition 4.48. Let M € M(R? C**) be a matrix valued measure on R%. A density
of M is a tuple (h,v) where

(i) v is a positive (scalar, and not necessarily o-finite) measure on R, and

(i) h is a locally integrable C**“-valued function on R? such that M = hv.
We call h the density function of M with respect to the base v.

Example 4.49.
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4 From substitutions to point processes

e A C™-measure M on R? is pure point if and only if the function h : R4 — C*
given by h(§) = M ({{}) is a density function of M with respect to the counting
measure v. (Note that the counting measure is not a measure in the Bourbaki
sense, as it is not o-finite, but hv still makes sense as a matrix valued measure

since h is locally integrable with respect to v).

o A C”“-measure M on R? is absolutely continuous if and only if it has a density

with respect to the Lebesgue measure mpa.

o Let M be a C™“measure. Recall that there exists a total variation measure
v = ||M||, as defined in Section 3.1, such that every coefficient of H is absolutely
continuous with respect to v. Then, by Radon—Nikodym for the coefficients, M
has a density with respect to v. This means every C**‘-measure has a density

function with respect to some appropriate base.

We will want to use densities to study the diffraction measure H. The first important
fact we will need is that the density of H is a positive semidefinite matrix almost

everywhere.

Lemma 4.50. Let (h,v) be a density of H. Then h(€) is a positive semidefinite matriz

for v-almost all €.

Proof. For any vector w € C¥, consider the measure M, defined by M,,(f) = (M (f)w, w)
for f € C.(RY). By Lemma Lemma 3.31, M, is a positive measure for all w € C*.

Furthermore, we have:

A~

M) = o) = ([ HOmO w10)) ww) = [ niew v avie

This shows that (h(-)w,w) is a density function for the positive measure M, with
base v: as M, is positive, this means (h(£)w,w) > 0 for v-almost every £ € R<.

Now let S be a dense, countable subset of {w € C* | ||w]|| = 1}: for every w € S, let
A, be the set of £ such that (h(§)w,w) is not positive semidefinite. Then A, is a null
set, hence the union Ag = J,,cg Aw also is.

Now let £ ¢ Ag. This means (h(£)w,w) > 0 for all w € S. But S is a dense subset of
the unit complex sphere, hence this means (h(¢)w,w) > 0 for all w € C* with norm 1:
therefore h(§) is positive semidefinite. As Ag is a null set, this means h(§) is positive

semidefinite for v-almost all £, which concludes the proof. O

In order to study the diffraction measure H, we want to use a density (h,r) which is
compatible with the self-similarity of H. Specifically, we want to find a density (h,v)
such that the density function h satisfies a renormalisation relation analogous to the one
satisfied by H.
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4.3 Renormalisation relations

In order to find this density function, we need to choose the base v appropriately. It
will suffice to choose v to be dilation invariant, in the sense we will define now. Recall
that, for R > 0, Bj; = Br \ {0} is the punctured ball of radius R around 0.

Definition 4.51. Let R > 0, and let v be a positive measure on Bj;. We say v is

A-dilation invariant if Dyv|px=v.

We will want to find a density function h for H|p,, such that the base v is A-dilation
invariant. Under our assumptions, H({0}) = 0, so it suffices to find a density for H| By
If H is pure point, we can simply use the counting measure on B} as a base. If His

absolutely continuous, we get the following.

Example 4.52. Assume H is an absolutely continuous measure on Bj;: that is, it has
some density (h,mpa). Here the Lebesgue measure satisfies Dymgae = A\~%mpga, so this
is not a dilation invariant density. One way to fix this would be to define a base and a
density function by

f(§)

I// = - a(d
(f) B €] mga(d§)

W) = llElIh(E)

for all f € C.(b%), € € BY. This clearly satisfies '/ = hmgs = H, and Dyv/ = /. This
is, implicitly, how Baake, Géahler, and Manibo [11] analyzed the absolutely continuous
part of the diffraction measure of substitution rules.

A second way to do this is the following: let L = Bg \ B)-1z and define

p(&) =D A" I{Dy- L}(§)
n=0

V' = pmpa

hl/ — E

p

for all f € C.(by), £ € Bpy. Then h” is a density function of H with base v, and v
is A-dilation invariant. Our general proof will use a similar construction to this second

variant.
Theorem 4.53. For all R > 0, I:I]le% has a A-dilation invariant density.

Proof. In the following proof, if v, 15 are two positive measures on a space X, we will
write v < 1y if vy is absolutely continuous with respect to vy, i.e. v1(S) = 0 for all

Borel sets S such that 15(S) = 0. Our goal will be to construct a o-finite, A-dilation
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4 From substitutions to point processes

invariant measure v on By, such that || H|||5,<< v, as then the Radon Nikodym theorem
implies that H |B, has a density function with respect to v. (See Section 3.1 for the
matrix version of the Radon-Nikodym theorem.)

By Theorem 4.46, we have |H| = ||A(Dy-1H)A*|| < ||A||?||Dx-1+ H||, where by || A|
we mean the positive function & — ||A(€)||, and by |[H|| and ||Dy-1+H|| we mean the
total variation measures of H and Dy H.

Therefore | H|| < || Dy H||. By iterating this process, we deduce | H|| < || Dy H]|
for all n € N.

Now let let L = By \ By-15. We define the positive measure vy := || H|||z, to be the

total variation of H restricted to L, and we define a positive measure v by

0
V= E D)\fnl/o
n=0

As |H| is a positive, o-finite measure, so is v. By construction, it is clear that
(DaVl|suppr) = v. We want to show that ||[H|||p,< v, as this implies the existence
of a density function by the Radon-Nikodym theorem.

To see this, let S C Bg be a Borel set such that v(S) = 0 and write S,, := SN Dy-nL:
as supp H C By, we have S Nsupp H C U~ Sn: as v is positive, we have v(S,) = 0
for all S. But we have |[H|| < Dy-«||H]|, hence v(S,) = Dy-n1p(S,) = 0 implies
|EL)|(S,) = 0. Therefore, | EI|(S) = X235l EL[(S,) = 0. .

Remark 4.54. Note that the base v in the proof satisfies v(B)) = oo for all r > 0, so it
does not extend to a measure on By in the sense of Bourbaki. This is not as problem for
us, as Hv will still make sense as a matrix valued measure. One way to see this is that,
even though v is not a Radon measure on Bpg, it is a Radon measure on the punctured

ball Bj;, as every compact subset of B} is bounded away from 0.
We define the following;:

Definition 4.55. A self-similar density h of H on B is a density function of I:I\B}x2

such that the base v is A-dilation invariant.

By Theorem 4.53, a self-similar density exists for every R > 0. Now we show that

self-similar densities satisfy a renormalisation relation.

Theorem 4.56. Let (h,v) be a self-similar density of H on Bj. Then the density

function h satisfies
h(§) = A(h(A)A()"
for all £ € By-1g.
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4.3 Renormalisation relations

Proof. Let f € C.(Byx-1g) be a test function. Then we have

Dy H(f) = : FATOR(E) v/(d)

_ /B F(©R(AE) Dav/(de)

A—1R

- [ renoova

A—1lR

Hence the density of Dy-1 H with respect to v/ is given by & — h(\E). We know H
satisfies H = A(-)D,\AIA{A(-), so comparing the densities of both sides with respect to
V' give

h(¢) = A(§)h(A)A()"
for all £ € By-1g, which completes the proof. O

We will want to use this to study the decay of the diffraction measures of S around

the origin. This is given by the following lemma.

Theorem 4.57. Let S be a primitive, stone, FLC substitution rule, X > 0 its scaling
constant, and H its diffraction matriz. Let R > 0 and let (h,v) be a self-similar density
of H on Bj.

Let w € C*, and let i, = (Hw,w) be the diffraction of S with weights w.

(i) Let >0, and assume

(RN w, w) < RN
as N — oo uniformly for v-almost every & € Bg. Then we have H,(B,) < r?’.
(i) Let >0 and A C By be a Borel set such that [,||h(§)[|v(d§) > 0 and

(A w, w) 2 [|R(§)IA

as N — oo uniformly for v-almost every & € A. Then we have 9, (B,) = .

The same statements hold if we replace S with < and 2, with £ (recall the definitions
of S and Z from Section 2.4).

Proof. We prove the statements for < and 2: the proof for $ and g is analogous. By

definition of a density, we have:

fu(By) = / (R(€)w, w) w(d)

T
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4 From substitutions to point processes

Note that, in order to bound 7,,(B,) as r — o0, it suffices to bound 7,,( By-~) as N — oc:

to see this, r — 7,,(B,) is an increasing function, and that the sequence a,, = \™" satisfies

| a

n—1 Qan
s [ < oo
an an—1

Let S:= [, [R()]* dv(§): as h € L}, (R?,C™*v), we have S < oo.

loc

For part (i), we have

Pty (By) = / (h(€)w, w) v(de)

B,_n

~ [ h e, e (D =)

as N — oo. This proves (7).

To prove (i), note that we have

Aty (Bany) = / (R(€)w, w) dig(€)

B}\_N’V'

3 AL CIRTRLS
:/BOA<h()\_N§)w,w)V(d§) (D =v)

> N / 1€ v(de)

as N — oo. [l
We will also need the following fact.

Lemma 4.58. Let S be a primitive, stone, FLC substitution rule and H be its diffraction
matriz. Let R > 0, and let (h,v) be a self-similar density of H on Bp. Then we have

lim h(AN¢) =0

N—oo

for v-almost all £ € Bp;.

Proof. Assume, towards a contradiction, that there exists some Borel set A C Bj; of
positive measure such that limy_,., R(A"VE) # 0. Without loss of generality, we may
assume that there exists some w € C* and € > 0 such that Re(h(A™V¢)w, w) > € for all
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4.3 Renormalisation relations

¢ € A, N € N. But then we have

Aoty (Brxg) = / (h(€)w, w) v(de)

B,-~pg

> [ @)
AQBA_NR
> / ev(dé) > ev(A) >0
A
However, by Lemma 3.32, we have limy_,o fjw,@)(Brx-~g) = Nw,a)({0}) = 0, which
contradicts the previous inequality. O]

Note that this depends on the fact that h is chosen to be self-similar: if H is absolutely
continuous and we use the Lebesgue measure v = mpa as a base, the density h does not
need to vanish at the origin.

By the previous lemma, we are interested in the behavior of R(A™V¢) as N — co. We
want to study this using the renormalisation relation for the diffraction density. This

motivates the following definition:

Definition 4.59. The Fourier cocycle of the substitution rule S is the matrix function
given by
AN = ANTHHAN ) - A6

for ¢ € R? and N € N.

Corollary 4.60. Let (h,v) be a self-similar density of H on B with respect to the
substitution rule S = (T, A, A,). Then the density function h satisfies

R(ATNE) = AMATTOR(OAM (A1)

forall¢ € By, N € N,
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5 Linear cocycles around the origin

In this chapter, we will prove Theorem 5.3, which controls the behavior of linear cocycles

such as the ones arising from the renormalisation relations of self-similar tilings.

5.1 Linear cocycles around the origin

In this section, let ||-|| be any norm on C¥, and fix A > 0. Let A : R? — C*** be a matrix-
valued function: unlike in the previous chapters, here we do not write it in bold, in order
to ease the notation. For all ¢ € RY and N € N we define the cocycle associated to A by
the product AN (&) = ANN+E) ... A(€). In this section we will prove Theorem 5.3,
which is a theorem about the asymptotic behavior of the linear cocycle. This theorem

will hold under the following assumption.

Assumption 5.1. Let A : R — C¢ be a matriz-valued function. We assume A is
Lipschitz at 0: that is, A(&) = A(0) + O(|]]) as & — 0.

Note that this assumption is satisfied if A is smooth, as it is the case for the linear
cocycles arising from renormalisation relations of self-similar tilings.

Let A be a matrix function that satisfies Assumption 5.1. Let x; > --- > x; be the
distinct values of {log|u| | € Spec A(0) \ {0}} and let x;41 = —oo: we call these
the Lyapunov exponents of A(0). For u € Spec A(0), denote its generalized eigenspace
by E,, and let E; := ®&{E, | u € Spec A(0),log|u| = x;} be the space of generalized
eigenvectors associated to x; for j € [[+1]. Then there exist uniquely defined idempotent
operators P; : C* — C’ for j € [l + 1] such that img P; = E; and 22111 P; =1I: we call
these the projections associated to the spaces Ej. Note that we are not assuming that
the P; are orthogonal projections. Also define m; := dim Ej.

We would like to know how A)(¢)z behaves as N — oo. If we restrict ourselves
to the case of matrix powers, we can obtain the following result by elementary linear
algebra.

Example 5.2. Assume B € C* is unitarily diagonalizable, let x4, - - -, x; be the finitely
many values of {log|u| | © € Spec B}, and let Ej,---, E; the corresponding sums of
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5 Linear cocycles around the origin

eigenspaces. Then, if x € E;, we have

1BY 2| = ]|z (5.1)

BNz € E; (5.2)
for all N € N.

Our goal will be to prove an analogous result for the linear cocycle A (¢), under
Assumption 5.1.

Theorem 5.3. Let A be a matriz valued function satisfying Assumption 5.1.
Then there exists R > 0 such that the following holds: for all & € Bg, there exist

projections P;(&) for all j € [I+1] such that Z?;ll P;(&) = I and the following asymptotic

inequalities hold:

(i) For all j € [l + 1] we have
1AM (E) Pi(€)all = V|| P& (5-3)

as N — oo uniformly for & € By, x € C*.

(it) For all j, k € [l + 1] we have

| P AMN () Py(©)z]| S AN AN (&) Py(&)z| ifj>k (54)
||PkA(N>(§)JDj(§)x|| =< max(exk‘xf,A‘l)N||A(N)(§)Pj(§)x|| if 1 <k (5.5)

as N — oo uniformly for ¢ € By, z € C.

(iii) For all j € [l] such that m; = 1:

AL+ n

5.6
7,z >0
as N — oo uniformly for & € Bg,xz € C*.
() If A(0) is diagonalizable, for all j € [I]:
[AME@ Pzl _ i~
PGE 0

as N — oo uniformly for & € By, x € C.

Remark 5.4. Dubiner |22] proved a similar theorem for the case of a sequence of matri-

ces A, converging to a limit matrix A, without assumptions on the speed of convergence.
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In this setting he was able to show Inequality (5.3) and weaker versions of Inequalities
(5.5) and (5.4). However, for our application, the stronger bounds on the speed of decay
in Inequalities (5.5) and (5.4) will be crucial, as will be the uniformity for &.

Remark 5.5. In general, if (A, ),en is an arbitrary sequence of matrices and AN =

Ay --- Ay is its associated linear cocycle, one asks for the possible values of the set
{ lim l10,5_>;||A(N)x|| |z € C%}
N—oo N ’

as well as the spaces where these values are attained. These are called the Lyapunov
exponents and Lyapunov spaces of the sequence, respectively: therefore, our theorem
characterizes the Lyapunov exponents and spaces of the sequence (A(A™")) yen in terms
of the Lyapunov exponents and spaces of the limit matrix A(0).

There exists a large literature on the theory of Lyapunov exponents and spaces, par-
ticularly in the setting of cocycles arising from dynamical systems, or their continuous
analogues: see |1, 13|. However, note that our case does not fit into the most common
setting of Lyapunov theory: the map x + A\~!z is not measure preserving, so our cocycle
does not satisfy the conditions of Oseledet’s Theorem. This is why we will not make use
of the existing literature on Lyapunov theory, instead providing an elementary proof of
Theorem 5.3.

Remark 5.6. If we equip C* with an inner product such that the projections P; and
P;(&) are orthogonal projections for all j € [[ 4 1], we can interpret the fractions in the

theorem by the formula

1P A () P (€)= ||
155(&) ]l

= cos /(Ey, AN P;(€)),

where the angle between a subspace U and a vector v is given by / (U, v) = min,ep £(u, v).
Therefore, Equations (5.4) and (5.5) tell us that A™)(¢) P;(€)x is “asymptotically orthog-
onal” to Ej, whenever k # j: the intuition is that AN (£)P;(&)x is close to being in Ej,
which is orthogonal to the other eigenspaces. In the subsequent sections we will mostly
reason using norms and inner products instead of angles, but it is still useful to keep

this image in mind.
5.2 Exterior powers

In order to prove Theorem 5.3, we will use the formalism of exterior products in order

to represent linear subspaces. Here we will spell out some basic facts about exterior
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5 Linear cocycles around the origin

products which we will need: everything in this section is either known or elementary,
but we were not able to find a convenient reference for all of them.

If V is a finite dimensional vector space over C, we denote by V"7 the ¢-th exterior
power of V| which can be defined as the dual of the space of alternating multilinear
maps from V? to C, or as an appropriate quotient of the ¢-th tensor power V®%: see
Michler and Kowalsky [43] for a more detailed definition. For ¢;,¢2 € N we denote the
wedge product by A : VA x Ve — AN@+4a2) - This has the following property: for all
¢ € N, the map (vy,---,v,) — v1 A --- Ay, is an alternating multilinear map.

For the rest of this chapter, let £,q € N and fix an inner product on C!. We will
consider the exterior power (C)"¢, which we denote as C*\? to ease the notation. Then
we can define a corresponding inner product on (C*)"? with the following property: if

a=v A Avg, f=wi A ANw,,

(o, ) = det J(a, B)

where J(a, ) € C** is the matrix with entries .J; ; = (v;, wy,). This inner product makes
the wedge product continuous.
We will take a closer look at what happens when one takes the wedge product of ¢

vectors.

Lemma 5.7. Let « € C* and ay,---,a, € C* be linearly independent. The following

are equivalent:

(i) There is some ¢ € C such that ca = ay A --- A aq

(i) The space H = {v € C*' | a« Av =0} is spanned by the a;.

If either of these are true, we have {v € C* | aAv = 0} = span(ay,- - -, a,). In particular,
the span of the vectors a; is independent of the particular choice of vectors to represent

Q.

Proof. To show (i) = (ii), note that ca = a; A --- A a, implies a A a; = 0 for all

J € [q], so they are all in the space H. Furthermore, if we pick a,41,- -, a; such that
ar,---,a is a basis, we have ||a Aag1 A+~ Aag|| = det(ay - - - ar) # 0, so the agy1, -+, a
are { — ¢ linearly independent vectors not in H. Therefore H = span(ay,---,a,), and in

particular dim H = gq.

For the opposite direction, let ay,-- -, a, be a basis of H and complete it to a basis of
C* as before. Now let J = {(j1, -, Jjq) € [()7| j1 < -+ < j,} and ay = aj, A---Aay, for
J € J. Then the set {a; | J € J} is a basis of C*9. Furthermore, for every j € [¢] and
J € J, we have ay Aa; =0 if and only if j € J, and the set {a; Aa; | J € T,j & J} is
linearly independent.
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Write a = ;. ; csa, for coefficients c; € C: by the above two properties, a Aa; = 0
implies ¢; = 0 for all J € J such that j ¢ J. As aAa; =0 for all j € [¢], we must have
cy =0 for every J € J except for J = (1,---,q): this concludes the proof. ]

Due to this lemma, the following is well-defined.

Definition 5.8. If o € C*\? can be written as a = a; A - - - A a, for linearly independent
vectors ay,---,a, € C* we say « is a g-blade or decomposable q-vector, and let its
span be defined by spana = span(ay, - - -, a,), where the a; are any ¢ vectors such that
a=a; N---Na, (By Lemma 5.7, this quantity does not depend on the choice of the

a;.) We also let 7, be the orthogonal projection onto the subspace spana C C'.

Definition 5.9. Let ¢, € N, a € C”%, and 8 € C”2. We write a C f3 if there
exists some 7 such that 5 = a A ~vy. If a, are blades, this is the case if and only if
span a C span f3.

We will need certain geometric properties of the exterior powers.

Lemma 5.10. Let ¢, ¢ € N, «a, 8 be g-blades, o/, 5" be ¢'-blades.
(i) Assume spana L spana’. Then we have (a Ao/, A ') = ||a||*(/, B').
(11) Assume spana L spana/. Then we have ||a A /|| = [|a||||/]|

(iii) For all x € C*, we have ||a A z|| = ||a||[|(I — 7o)z

Proof. First we prove (i). Let a = a1\---Aag, &' = ajA\---Aay, and ' = by A- - -Ab,. Let

A be the matrix with columns ay, - - -, aq, B be the matrix with columns b}, -, b}, and
A’ be the matrix with columns aj,---,a;,. By assumption, we have spana L spana’:
this means that (a;,a}) = 0 for all 4, j, so A”"A = 0. Therefore, we obtain
A*A A*B A*A A*B
alNd,aNf) = = = det(A*A) det(A”"B) = ||a||*(c,

This proves (i). (ii) follows immediately from (7).
To show (i), note that m,x € spanca, and therefore a A T,z = 0; and also

span« L span(l — m,)z. Then using (i), we have
loe Al = e A (1 = )| = [lef[[[(1 = 7o) ]|

which concludes the proof. O]

Lemma 5.11. Let B,(C%) C C* be the set of g-blades in C*". Then its closure in the
norm topology of C*\ is B,(C*) U {0}.
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5 Linear cocycles around the origin

Proof. To see 0 is in the closure of B,(C’), let a € B,(C’): then lim, o +a = 0.

Now let (a™),en be a sequence of g-blades in C** converging to some a € C*\7\ {0}.
We want to show that « is a g-blade.

For every n € N, choose an orthonormal basis af, - -, a7 of spana™ and ¢, € C such
that o™ = c,ay A---Aag. The space of orthonormal sets of ¢ vectors in C' is compact, so
by passing to a subsequence we can assume that there exists an orthonormal set a;, - - -, a,
such that a} — a; as n — oo for all j € [g]. Then there exists some ¢ € C\ {0} such
that lim,,_,~ ¢, = ¢ and

a=lim a, = lim c,(a} A---ANal)) = caip N\ -+ N ag
q
n—oo n—oo

so « is a g-blade. O

Lemma 5.12. For all g-blades a,  we have

o — Bl
min([[e], [|3]])

170 = gl <2

Proof. As m, and ms are orthogonal projections, it suffices to show that

o = B[ lmaz]]
and
13l
o = Blll|mp|
(et

I(] = mg)mac]| <

I(] = ma)mga]| <

for all z € C', as we have (7, —73)x = 0 for all  not in span a + span 3. We show only
the first inequality, as the second follows by swapping a and .
Let 2 € C’. Then, using Lemma 5.10, we have

1B A mal]

18 A 7ol = 1B = ma)maal] = (I = m)maal] = ===

On the other hand, we can write § A m,x = (8 — @) A Tax, as Tox € spana.

Therefore
(8 =) Amaz| _ |la = Bllllmaz]

18]l - 18]l
This concludes the proof. n

I = mg)ma|| =

Now let A € C**. Then we define the g-th exterior power of A as the linear map
AN CIN 5 CH by

AM(vp Ao Avy) = Avp A -+ A Ao,
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for all vy,---,v, € C".
Then the generalized eigenvalues of A”? can be given in terms of the generalized

eigenvalues of A.

Lemma 5.13. Let A € C™¢ and let B = (v1,---,vs) be an ordered basis of C* such
that A is in upper Jordan normal form with respect to this basis. Let py,---, ue be the
corresponding diagonal entries of A, which are the generalized eigenvalues of A repeated
according to their multiplicity.

Let
B ' ={vj, N Awvj, | 1y dg €05 < - < g}

be the corresponding basis of C*, ordered lexicographically on the indices. Let (ayx )i
be the coefficients of the transformation matriz of A" with respect to the basis B, indexed

by ordered q-tuples of indices J, K. Then A" has the following properties:
(i) For J = (j1,--+,Jq), the corresponding diagonal entry of A™ is given by a;; =
Fjy = Fg-
(i) For J = (j1,-+,Jq), K = (kv,---,ky) with J < K, we have
® axy; =10
e ajx #0 = ay; = agk.
(111) A" is upper triangular with respect to the basis B', and its generalized eigenvalues

with multiplicity are given by {pj, -~ py, | 1 < g1 < -+ < jg < L}

Proof. By assumption, A is in Jordan normal form with respect to the basis B. There-

fore, for every j € [¢], one of the following holds:

e v; is an eigenvector of A with eigenvalue p;: that is, Av; = pjv;.

e v; is a generalized eigenvector of A with eigenvalue p;: that is, Av; = pv; + vy
for some k < j where p; = pu.
Using this, one can deduce (i) and (ii) by computing A" (v;, A--- Aw;, ) for j; <--- <
Jq: one gets the diagonal entry g ---j1,, and one gets off-diagonal entries if some of
the vectors are generalized eigenvectors, but they stay within the same Jordan block.

Statement (iii) follows immediatly from (i) and (ii). O
Lemma 5.14. For all A, B € C™*, the inequality
1A — B < qmax(||A]l, [|BI)* || A — Bl

holds.
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5 Linear cocycles around the origin

Proof. This follows by induction on ¢q. For ¢ = 1 it holds trivially. Furthermore, if it
holds for ¢ € N, we have

[A4°6) — B < [[(AY = BY) A A+ B A (A= B)|
< qmax(Al, B4 = BIIA] + B4 - B
< (g 1) max(J4], | B)714 - B|

where at the second line we use the induction hypothesis. This concludes the proof. [J

5.3 Proof of Theorem 5.3

Now we set out to prove Theorem 5.3. The proof is morally analogous to the QR
algorithm for computing eigenvalues, which has been generalized to compute Lyapunov

exponents [29, 46].

5.3.1 The power method

For this section, equip C* with an arbitrary inner product and its corresponding norm:

in the next section, we will make a specific choice of inner product.

Lemma 5.15. Let (G, )men be a sequence of positive real numbers. Then, for all M € N,

the following inequality holds
M M
H Ay < €Xp (Z(am — 1))
m=1 m=1

Proof. Take the logarithm of both sides of the inequality and use log z = log(1+(z—1)) <

x— 1.

O

Lemma 5.16. Let A : R — C™* be a matriz function satisfying Assumption 5.1, and
R > 0.

(i) For all k € N such that A(0)* # 0, the matriz cocycle satisfies
N
LA S 11A©)*]*

as N — oo uniformly for £ € Bpg.

(11) The matriz cocycle satisfies

1A @) 5 p(A0)Y
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5.3 Proof of Theorem 5.3

as N — oo uniformly for & € Bgr, where p(A(0)) = max{|u| | n € Spec A(0)} is
the spectral radius of A(0).

Proof. We prove both parts separately:

(i) For the first part, let N € N: we can always write it as N = kM + r for some
M e N, re{0,---,k—1}. Then taking the limit as N — oo is the same as taking
the limit as M — oo for all € {0,---, k — 1}.

Recall that, for N € N, the linear cocycle is given by AN (£) = AN"NHLE) - A(€).

Then we can decompose it as

M-1
AN (&) = ADAFME) TT AB(AFme)

m=0

(where the iterated product is taken from right to left) because

A(’")()\_ka) = A()\—(kMJrT‘)Hg) . A()\—kM5>
A(k)(/\—kmg) _ A()\—k(m+1)+1£> . A()\_kmg)

Therefore, using the submultiplicativity of the matrix norm, we obtain

AN _ oy rmaey TT JADO7)
e = 470N =G

Using A(§) = A(0) + O(J|€]l) as & — 0 and Lemma 5.14, we can bound the two
factors as follows.

e We have Z%;ol <1 — W) < |[£]| as M — oo uniformly for & € B,

because we can bound the sum by a geometric series. Therefore, by Lemma 5.15,

| | s W < el <1 as M — oo uniformly for € € Bp.

e We have ||[AM(AFME)|| <1 as M — oo uniformly for r € {0,---, k — 1},
€ € Bp.

Putting both of these facts together, we have

AN (&) ekt 17 TAB Q)|
2 ST A0 () <1
e < 470N =G =

as N — oo uniformly for £ € Bg.
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5 Linear cocycles around the origin

% which means

Finally, we have M = T

JAYE)] < IAO)HM = A F A < A0 F

as N — oo uniformly for £ € Bg. This concludes the proof of (i).
(ii) For the proof of (ii), we distinguish two cases:

e Assume A(0)* = 0 for some k € N: then p(A(0)) = 0. This means we want to
prove ||AM ()| decays faster than any exponential function. As in the first
part, for all N € N, we can write N = kM +r with M € N, r € {0,--- , k—1}.

Then we have

M—1
1 1 1
— (V) S (r)(\—kM = (k) (\—km
~ 10 AM(©)] = - log AV (M| + N;OloguA ()|
1M—l

This implies that - log||A™)(¢)|| — —oco as N — oo, uniformly for £ € B,
therefore ||AM)(¢)]| £ 0= p(A(0)) as N — oo uniformly for £ € Bp.

e Now assume A(0) is not nilpotent, so we can apply part (i) for every k € N.

Define a sequence (a,)nen by

ay := sup logl| AN (¢)]
§€EBR
By the submultiplicativity of the matrix norm, this sequence is subadditive, so
Fekete’s Lemma tells us that limy_,o % = infyen 4. Let x = limy o0 5 =

limy o0 - log supec g, [[AMN(€)||. Then, by part (i), for all k € N we have

.oapy 1 k
= —_— < j—
X = fm r S g lesl A0

By taking the limit as & — oo, we obtain y < limkﬁmilogHA(O)kH =
log p(A(0)), which concludes the proof.

]

Lemma 5.17. Let A : R? — C™¢ be a matriz function satisfying Assumption 5.1,

and assume there exists an eigenvector v be an eigenvector of A(0)* whose eigenvalue i

satisfies [a|* = ||A(0)¥|| > 0 for some k € N. We denote the conjugate of 1i by p.
Define w™N)(¢) := =N AMN*(&)v. Then:
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5.3 Proof of Theorem 5.3

(i) The limit w(€) := limy_,0 wN (&) exists for all €.
(i) [lw(€) — w™M ()]l = OANg])
(ii1) |Jw(§) —vll = O(lI]])

(w) [lw(@)l =1+ O([€l])

(v) (AN (w(€),v) = ™ (1 +O(|&]]))

(vi) AN (E)w(&)]| = [p|™

as & = 0, N — oo.

Proof. By Lemma 5.16, we have [|[AM ()] < |JAO)¥||* = |u/~ as N — oo: therefore
| N AN ()| <1as & — 0, N — oo.
Then the differences w™+1 (&) — w™(€) are bounded by

[w™N D (€) — w™M ()| = [N TTANTDH(E)o — N AN (o]
< VAN AN 0 — |
< NP AN ANTNE) T — A0)7I[|l]
= O\NlEl

as & - 0, N — oc.
We can write w™ (&) = v + 25:1 (w™ (&) —w™D(€)): as N — oo, the latter sum
is bounded by a telescoping series with exponent A, therefore the limit w(&) exists and

satisfies (i) and (7). Furthermore, we have
w(€) —wM(E) = D w(E) —w" ) =00 el)
n=N+1

as N — 00,& — 0, where again we are bounding the series by a geometric series.
Statement (iv) follows directly from (7).

For (v), we have

as £ — 0, N — oo, using (i) and (iv).
Now we only have to prove (vi). From Lemma 5.16 we obtain [|A™) (&) < |u|™, which
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5 Linear cocycles around the origin

is the upper bound. For the lower bound, we use (v):

AN (©w ()] = (AN (E)w(€), v))|
= |ul" (1 +O(lll) O

Example 5.18. If A(¢) is the normalized Fourier matrix of a primitive substitution rule,
the vector given by v; = mpa(7;) is an eigenvector of A(0)* with eigenvalue 1 = || A(0)]|.
Then one can show that w(&) is given by w(§); = ]TT\] (&) (up to a constant factor), as this
is the vector function that satisfies w(¢) = A(&)*w(A71€). Then w(€) can be understood
as the cocycle analogue of an eigenvector, and the proof of Lemma 5.17 is analogous to

the power method for finding the top eigenvector.

5.3.2 Defining the subspaces

From now on, we let A be a matrix-valued function satisfying Assumption 5.1. As before,
we define AN (¢) = ANNHLE) .- A(E). Let xj, Ej, Pj be as in Section 5.1 and define
m; = dim Ej.

We will want to pick a basis of C* of the following form.
Definition 5.19. A descending Jordan basis for a matrix A € C** is a basis vy, - - -, vy

with the following properties:

e A is in lower Jordan normal form with respect to this basis.
e The diagonal entries ;; with respect to the basis satisfy |pq| > 2] > -+ > |-

Example 5.20. Consider the matrix

100 0
40100
0010
0011

Then the standard basis is a descending Jordan basis for A.

Every square matrix over the complex numbers has a Jordan normal form, so in partic-
ular it admits a descending Jordan basis. Furthermore, given a descending Jordan basis,
we can choose an appropriate inner product on C* which makes this basis orthonormal.
For the rest of this section, we fix a descending Jordan basis v, - - -, v, for A(0)
and an inner product on C’ such that the basis is orthonormal with respect
to the inner product. Let uy,- -, uy be corresponding diagonal entries of A(0).

By the definition of a descending Jordan basis, the first m; vectors span Fy, the next
my span FE,, and so on. For j € {0,---,0+ 1}, define m¢;y = my + --- + m; as the
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5.3 Proof of Theorem 5.3

sum of the first j multiplicities for j = 0,---,1 + 1, setting m := 0. As the basis is
orthonormal, A(0)* is in upper Jordan normal form with respect to this basis, and the
diagonal entries are given by ;.

We will characterize the Lyapunov spaces of the cocycle by using exterior algebra.
Recall that, for A € C** A" is the g-th exterior power of A, which is the linear

operator on C'? which satisfies
AM(wy A+ Awy) = Awg A -+ - A Aw,

for all wy,---,w, € C".
In our case, for all ¢ € [¢], we can consider the matrix function A”"? defined by
AN(E) = A(€)M, and its associated cocycle AN (£) = A(NTNFIEN ... A(E)N,

Then we can define:

Definition 5.21. Let j € [¢]. We define

a; =V N\ AV
MGy = Hipb - - by
ﬂ](.N) (5) _ W—NA(N)*Aij
8;() = lim 5 (€)

whenever the latter limit exists. Here, by AY)*7 we mean the product (AN (€))* =

AN(E) - AN

We want to use Lemma 5.17 to prove that, for appropriate choices of ¢, the limits
Bq(§) exist. We will do this by choosing ¢ = my;y for j =1,---,14 1: then a4 will be an

eigenvector satisfying the assumptions of Lemma 5.17.
Lemma 5.22. Let j € [l] and q := my;). Then the following properties hold:
(i) The matriz function AN satisfies Assumption 5.1: that is, we have the bound
A" = A0)"]| = O(ll¢]l) as & — 0.
(i) A(0)"7* has the eigenvalue Ti;) with the eigenvector .
(iit) There exists k € N such that ||A(0)"||* = |uq "

Proof. Part (i) follows from Lemma 5.14, using the fact that A satisfies Assumption 5.1.

For the rest, we note that the structure of A(0)"?* is described by Lemma 5.13, as the
vectors vy, -+, v, put A(0)* in upper Jordan normal form by assumption: this means
the A(0)"?* is in upper triangular form, where the diagonal entries are products of the
eigenvalues of A(0)* with multiplicity, and the off-diagonal entries are are associated to

vectors in the same Jordan block of A(0)*.
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5 Linear cocycles around the origin

By the way we have chosen ¢, the vectors vy, ---,v, are the generalized eigenvectors
of A(0)* associated to the exponents xi,---,X;, so that |y < eX for all t > ¢. In
particular, if s < ¢ and t > ¢, vs and v; correspond to different Jordan blocks in A(0)*.

Ag*

Then, using Lemma 5.13, the transformation matrix of A(0)"?* can be written as

pg O
0 M

where 0 denotes the column vector of zeros of appropriate size, and M is a matrix with
spectral norm strictly less than |g)|.

Therefore, for any sufficiently large k& € N, we have |M|/* < |u|* and therefore
| (A(0)"*)*|| = |p(g|*, which concludes the proof of (iii). O

Example 5.23. We illustrate the phenomena described in Lemma 5.22 for the concrete
example A from Example 5.20. This matrix has, has pu; = 1, us = 1, u3 = %,/M = %, SO
it has the Lyapunov exponents x; = 0 and y2 = log %, with multiplicities m; = 2 and
my = 2. Taking the exterior power of A* with ¢ = m() = 2, and representing it with

respect to the basis {e; Aea, €1 Aeg,e1 Aey,ea Nes,ea Aey, e3Aeyg}, we obtain the matrix

100000
031000
0021000
0003 10
00004310
00000 7%

From this, we see it can be written in the block form given in Lemma 5.22. One can

compute that the operator norm of (A"?*)3 is equal to 1.
Theorem 5.24. Let j € [l + 1], set q := my;). Then the following properties hold:
(i) The limit 5,(€) := imn_oo BéN) (&) exists and is an q-blade or zero.
(ii) 118" (€) = Bl = OE) as N = 00, € 0.
(i) 115,(€) — agll = O(IEN) as N = 00, — 0.
() [[64(E)]l = 1+ O([[¢]]) as N — o0, & = 0.

(v) (APN(E)5,(€), ag) = ||V (1 + O([[EI) as N — o0, £ = 0.

(vi) [JAP"(E) By ()l < |pq)| ™ as N — 00, & — 0.

as & = 0, N — oo.
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5.3 Proof of Theorem 5.3

Proof. By Lemma 5.22, the matrix function A"? satisfies all the assumptions of Lemma
5.17, with respect to the vector «,: from this, almost every statement directly by taking
v = a,. The only thing we have not proved yet is that 5,(£) is a ¢-blade or zero, but
this follows from the fact that 8% (€) is a blade for all N and Lemma 5.11. O

Definition 5.25. For j € [[ 4+ 1], define the subspaces

L
Y5(6) i= (span n,, ()
and set (&) = C*. Define
Ej(€) =Y;-1() NY;(6)*

for j € [+ 1], and let P;(§) be the orthogonal projection onto Ej;(§).

5.3.3 Proving the inequalities

Our goal will be to show that the projections P;(&) we just defined satisfy the inequal-
ities from Theorem 5.3. In particular, this will mean that the subspaces Y;(§) are the
Lyapunov subspaces of linear cocycle of the sequence A(A™N11E) (see [13] for a defini-
tion).

First, we make the following crucial observation:

Lemma 5.26. Let j € [l +1]. Then
A©Y;(6) C V(A1)

Proof. Set q := m(; and let x € Y;(§). By definition, this means that for all u €
span f3,(€), we have (z,u) = 0. Furthermore, by definition of the 3,, we know that

A(&)*B,(A71E) and B,(€) are linearly dependent, so span A(£)*B,(A71¢) = span 3,(&),
Now let u/ € span 8,(A71€): then A(§)*u’ € span A(£)*B,(A"1¢) = span (,(§), which
implies (A()z,u') = (z, A(§)*u’) = 0: and thus A({)x € span 3,(£)*, which is what we

wanted to show. ]
Using this, we are ready to prove the bounds in Theorem 5.3.

Lemma 5.27. Let j, k € [l 4+ 1], such that j < k. Then
1A (€) Pu(€)ll S AN €N Pe(€)z

as N — 00,& — 0 uniformly for x € C.
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5 Linear cocycles around the origin

Proof. Let y = Py(§)x. Without loss of generality we can assume that y # 0, as
otherwise we have 0 on both sides of the inequality. Also let g := my;).
By definition of the Lyapunov subspaces, we have A (€)Y;(€) C Yi(A~NE), therefore

AWy = (I = Py () AN (€)y
Define Py = Py + --- + P; and P;)(§) = Pi(&) + -+ P;(§) for j € [l +1].
By Theorem 5.24, we have ||P,, — P,(&)| = O(||&]|) for all m € [l], which implies

| Pimy — Py (§) || = O([€]]), therefore || Py(I — Py (€))]| = O(||£]]) as & = 0. Therefore

1B AMEyll 1551 = Py (A AN (©)yl|

[AM )yl AN (E)yll
<121 = Piy(ANo)
= O0(A"éell)
as N — o0, &0 — 0. O

Lemma 5.28. There exists a radius R > 0 such that the following properties hold.
(i) If v € Y;(€), |AM (&) S eV ||z|| as N — oo, uniformly for x and & € Bp.

(ir) If v € Y;()*, |AM(€)z]| Z e~ N|z|| as N — oo, uniformly for & and & € Bg.

(i) If j € [l] and Ej41 has a basis of eigenvectors of A(0), then (i) holds with < instead

of S

(w) If E; has a basis of eigenvectors of A(0), then (ii) holds with 2 instead of Z.

Proof. In the subsequent we write ¢ := m(;. Note that, using the definition of the
cocycle and Lemma 5.16, we have ||AMN(¢)]| S etV as N — oo uniformly for

& € Br: we will use this fact multiple times in the proof.

i) Let x € Y;(£). Then, by Lemma 5.27, we have
J
JAN ]l S (1= P =+ — PYAN(E)al
as N — oo uniformly for all small enough £. Furthermore we have

(AR5, (&), ag)| = ™ = |AMMB,(©)

as N — 00,6 — 0. Therefore, if we let ng) (&) be the orthogonal projection
onto span AW )Aqﬂq(ﬁ) and use Lemma 5.12, we can conclude that there exist some
radius R > 0, some number Ny € N and some constant 0 < C' < 1 such that
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5.3 Proof of Theorem 5.3

\Pi+---+P— v (€)]] < C for all £ € Bi and N large enough. Therefore, there
exists some radius R > 0 such that

AN @] S N1 =Py =+ = PYAM (]| S (1 = 7 () AM ()]

q

as N — oo uniformly for x and £ € Bg. The last term is, by definition, orthogonal

to AW )Aqﬂq(ﬁ), therefore its norm can be estimated using Lemma 5.16 to obtain

_ [JAMNEI(B,(€) A )
A

I e

(1 = 7™M (€) AN (€|

as N — oo uniformly for z and ¢ € Bg.

(ii) Let x € Y;(&)*: that is, z € span 3,(£). This means there exists a unique (g — 1)-
blade v(&, x) orthogonal to = such that 5,(§) = v(§, z) A x. Therefore, there exists
a radius R > 0 such that

(™) AN BN = v

as N — oo uniformly for x and £ € Bg. Again, we are using Lemma 5.16 in the

last step.

(iii) Assume F;;; has a basis of eigenvectors of A(0). Then, applying Lemma 5.13 to the
basis vy, - - -, vy, we deduce that the top eigenspaces of A(0)@*+1) also have a basis
of eigenvectors, therefore ||A(0)"@+V| = p(A(0)Na*D). Then, by Lemma 5.16,
|AMINGED ()] < p(A0)MNIF)N as N — oo uniformly for € € Bi. Then the

same argument as in (7) using < instead of <.
(iv) Same as in (7). O

Lemma 5.29. Let j, k € [l + 1] with j < k.
Then
1PA(€) Py(€)x ]| £ max(eX ™, AV AW (€) By (&) |

as N — oo uniformly for v € C* and & € Bg.

Sketch. The following argument is inspired by Dubiner [22]. The idea is as follows: if
z € Y;(0), multiplying it by A(0) will amplify its component in E;(0) relative to the
A0)N g
1A0)N ]|
Now, if z € Y;(€), multiplying it by A(¢) will also tend to amplify the component in

norm of x, so will “converge to E;”.

E; (&), but there is also an error of order O(&||z||) relative to the £ = 0 case: in particular,
A(&)x may fail to be in E;(A™"x) even if z € E;(£). We will need to control this error,

which accounts for the worse bound in the lemma, when compared to Lemma 5.27. [
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5 Linear cocycles around the origin

Proof. Let y = P;(§)z: without loss of generality we can assume y # 0. Also let

| P A (©)y|
[A™ (©)y]]

AN Y@y
N A @)yl

l’L = eXk X3

ON =

Also let Ly > 0 be such that e™X*||A(NNE) — A(0)|| < LA™ for all € € Bg.
We claim that the following inequality holds:

Cy < (qu) HNCO+L12< 11 qn> AR (5.8)

k=1 n=N-—k

Assuming that this inequality holds, we can prove the lemma. To see this, note that
we have Hgil ¢, ~ 1 as N — oo uniformly for ¢ € Br,z € C’: therefore, there exists
an increasing function € : N — Rsq such that ¢(N)™! < H _1 gy < €(N) for all N € N,
z € C" and ¢ € Bg, and limsupy_, ., + loge(N) < 0. Then we have

N N N
Cy < (H %) 1N Co + Ly Z < H CIn) AN
n k

k=1 =N—

< 1"V e(N)Co + Z €(N)e(N — )N NHkpl

as N — oo uniformly for € C%, ¢ € Bp, which is the statement of the lemma. Therefore,

as long as we can prove (5.8), we are done.

In order to prove (5.8), note that Cy satisfies the following recursive inequality for
N e N.

IPAD @yl - IPANM Q]

Cy = <q T AN
N |AM)y| N A =1y ]]
1 PeA©) AN )y |
X3
< ane ATy
4 qen IPHADTYHE — A(0) AN (€)y]|

|AV=Dy]]
< qnpCy_1 4 LigyA™ !
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Using this, we can prove (5.8) by induction. For N = 0, the inequality reads Cy < Cy,
so nothing is to be done. For higher N we have:

Cn < qvpCn_1 + Ligy\ VT

N-1 N—1 N—1
< N—1 N\~ N+k+1 k=2 Liaw\—N+1
S gNp H qn | 1= Co + Z Ly an o + Lign
n=N-k

k=1

N—-1 N
= ((H qk> L Co + L Z ( an AN+k+1Mk2> +L1qN)\7N+1
=N—k

k=1

N-1 N
= (H%) uNCo+L12( 11 qn) TN 2
n k

k=1 k=0 \n=N-—
N
= <qu> MNCo+le< H qn>>\ Nk =1
k=1 k=1 \n=N—Fk
Which finishes the proof by induction of Inequality (5.8), and hence the lemma. O

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let A be a matrix function satisfying Assumption 5.1. Note that
it suffices to prove that there exists some norm on C’ such that the inequalities in
Theorem 5.3 hold: as all norms on C’ are equivalent, this means the inequalities will
hold for any norm.

Pick a descending Jordan basis vy, - -+, v, of A(0) and pick an inner product of C*
which makes this basis orthonormal. Then we can define the projections P;(¢) as in
Definition 5.25, using this inner product, and all the lemmas we have proven so far hold.

Then, using the norm induced by this inner product, we check the inequalities.

e Inequalities (5.3), (5.7) and (5.6) follow from Lemma 5.28.
e Inequality (5.5) follows from Lemma 5.29.

e Inequality (5.4) follows from Lemma 5.27.
This concludes the proof. O
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6 Main Argument

In this section, we use the tools we have developed to study the diffraction of substitution
rules around the origin and provide sufficient conditions for their hyperuniformity in

terms of their substitution matrix.

6.1 Statement

Let S be a primitive, stone, FLC substitution rule on R¢ with ¢ colors. Let A > 1 be its
scaling constant and Mg, be its full substitution matrix as defined in Chapter 4 (now
we call it full substitution matrix to distinguish it from the spherical substitution matrix
Mpn we will define in Chapter 7). Recall that Mg, is a primitive matrix with Perron—
Frobenius eigenvalue A\?. For each p € Spec My, denote the corresponding generalized
eigenspace by E,.

For every w € C, let 7, be the diffraction measure of the substitution rule S with

weights w, and define the following constants:

Bj(w) := d — max {log,|u| | 1 € Spec My \ {\}, w ¢ E,},
Bi(w) :=d+ 1 —max {logy|u| | p € Spec My \ {A"}, w € E, },
B(w) :=min (B (w), Bj(w)) .

Note these expressions make sense even if 0 € Spec Mgy, in which case log) = —oo:
we never need to subtract two infinities. We also define max () = —oo.

Recall that we defined the asymptotic notation 3, such that f(r) < r* as r — 0 if
and only if for every ¢ > 0 we have f(r) < r* ¢ (see Section 2.4 for details).

The most general theorem on the decay of 7),, around the origin we will prove is the

following;:

Theorem 6.1. Let w € C%, and let ), be the diffraction measure of S with weights w.
Then the diffraction satisfies
u(By) £ )

asr — 0.
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Remark 6.2. Recall that, as we defined in Remark 4.21, it is possible to recenter the
substitution rule § in a way that displaces the canonical prototiles but still results in the
same tilings. As Theorem 6.1 only depends on the substitution matrix Mgy, and not
on the particular displacements, the bounds we obtain stay stable under recentering. In
particular, if Theorem 6.1 proves that S is (Class I) hyperuniform for weights w, any of

its recentered substitution rules will also be (Class I) hyperuniform for weights w.
From Theorem 6.1, we get the following criterion for hyperuniformity.

Corollary 6.3. Assume d € {1,2}. Then, for every w € C*, the following holds: if
|| < A2 for all € Spec My \ {\?} such that w & Elf, then S is hyperuniform for

weights w.

Proof. By definition, @ is hyperuniform for weights w if and only if 7,(B,) = o(r?) as

r — 0, where 1), is the diffraction measure of (®,w). Then we have:

e For all u € Spec Mgy \ {\"} with w ¢ E,, we have |u| < AZ by assumption.

Therefore Bj(w) >d — 4 = £.

e For all 1 € Spec My \ {A"} with w € E,;, we have |u| < A%, as A\’ is the PF

eigenvalue of the substitution matrix. Therefore 5, (w) >d+1—d = 1.

By Theorem 6.1, we have 7,,(B,) S 7?*™) as r — 0. But for d = 1,2, we have B(w) =

min(S. (w), Bj(w)) > min(4,1) > 4, so 7,(B.) = o(r?) as r — 0. This means S is

hyperuniform for weights w. m

6.2 Proof of Theorem 6.1

Let A be the normalized Fourier matrix of the substitution rule §. Let y; > --- >
X: > Xi+1 be the Lyapunov exponents of A(0) and Fi,---, E;yy their corresponding
spaces of generalized eigenvectors with projections P, - - -, P, 1, as defined in Section 5.1.
Also let R > 0 be small enough so that the conclusions of Theorem 5.3 hold for the
normalized Fourier matrix A: let Py (), -+, Py1(§) be the projections from the theorem.
By Theorem 4.53, the diffraction matrix H of S admits a self-similar density (h,v) on
Bj.
Fix w € C%, and define the two following subsets of [I + 1]:

Then the constants from Theorem 6.1 can be restated as follows:
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6.2 Proof of Theorem 6.1

Lemma 6.4. The constants B and B, from Theorem 6.1 are given by
o Bj(w) =min{—% [ j € Jj(w) \ {1}}

o fi(w)=1+min{-%5 | j € Ti(w)\{1}}

Proof. Recall that 3j(w) is defined as
d — max {log, || | 1 € Spec Mgy \ I\, w ¢ E,f}

Using the fact that A(0) = A\=¢M;y;, we see that u € Spec My, satisfies log |/\%| =X
if and only if generalized eigenspace F,, is contained in E;. Therefore w € EJL holds if
and only if w € Elf for every € Spec Mg, such that log % = x;. If this is the case,

we have:
X; _ log|u| — dlog A

X — d —1log, |,
Tog \ Tog A ozl

Therefore the definitions of 5 (w) and 3, (w) coincide with the equations in the state-

ment of the lemma. This concludes the proof. n

The proof of Theorem 6.1 hinges on the following lemma.

Lemma 6.5. For all j € [l + 1]\ {1} and k € Jy(w), we have
| PeAN AT P (]| £ AN P ()|
as N — oo uniformly for ¢ € By, x € C.

Proof. Depending on j and k, we will find «, y such that a4+~ > f(w) and the following
inequalities hold:
AN A1) Py(€)a]| g AN [Py (&)

6.1
1P AT AT Py ()| £ ATV AMI (A1) Py (€) | oy

as N — oo uniformly for ¢ € Bg, v € C*. If we achieve this, we have

[P AN (A1) Py (€)
AN (A1) P (§)|

1P A (€) Py ()| = AP A Py (&) ]| g AN
as N — oo uniformly for ¢ € By, z € C%, which concludes the proof of the lemma. (If
the denominator of the fraction is 0 the left hand side is 0 as well, so the inequality still
holds.)

In order to find a, v, we need to consider different cases. We will use Theorem 5.3 for

all of these, using the characterization of 5 and 8, from Lemma 6.4.
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6 Main Argument
e Case j ¢ J,(w): In this case, Equation (5.3) from Theorem 5.3 reads
AP A1) Py(€)z]| 5 ™| Py
Furthermore, we have
|PA AP (O] £ 1A AP ()]

Then, using the fact that eV = )\lc%N, we see that Inequalities (6.1) hold with
and 7 = 0. As a > f§)(w) > f(w), we have o + v > S(w).

= 10g)\

e Case j € J,(w),j > k: In this case, Equations (5.3) and (5.4) from Theorem 5.3
read:

LA AT Py()a| £ N [[Pi(€)all
1P AN AT Py (€)all S ANV [AM (AT Pi(€)al

X
log A

Therefore, Inequalities (6.1) hold if we set @ = — and v = 1. In this case

aty=1-7245>8,>8

e Case j € J,(w),j < k: In this case, Equations (5.3) and (5.5) from Theorem 5.3
read:

AN AT Py()x]| £ N[ Pi(€)all
1P AT AT Py ()| £ max(eX ™, AHN AN (AT Py (€)a

Therefore, Inequalities (6.1) hold if we set @ = — 2 and v = min(%, 3%, 1). In this

+1>BLOI@+7_ XJ+X1Jog))<\k:_lcz(g/\—ﬁH

case we have either o+~ = — log X

In both cases we have o + v > .

Then, for every j,k as in the statement of the lemma, we have found «,~ such that
Inequalities (6.1) hold and o+~ > S(w). This concludes the proof. O

In Lemma 6.5, we exclude the case j = 1 This is justified by the following lemma.
Lemma 6.6. For v-almost every & € Bg, we have Py(§)h(§)P(§) = 0.

Proof. The first Lyapunov exponent of A(0), x1 = 0, has multiplicity m; = 1. Therefore,
by Inequality (5.6) of Theorem 5.3, we have

LA Pi(&)all Z [1P1(€)]

as N — oo uniformly for all £ € Bg,x € C*. This means there exist some ¢ > 0 and
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6.2 Proof of Theorem 6.1

Ny € N such that
AN () Py(&)z]| > el P (€)x]

for all £ € Br, N > Ny.
As h(§) is positive semidefinite for all £, we can find f1(£),- - -, fo(§) such that h(§) =
Zf:l fi(&) fi(§)*. Therefore

[RANE| = AN AR AN (A1)
> AN AT PLER(E P AN (A1)

= 1AM L) () f(©)

:1€
XN I AGIAGI
> c||[PL(§)h () Pi(E)]]

for all £ € Bg, N > Nj.
On the other hand, by Lemma 4.58, we have h(A™N¢) — 0 as N — oo, so the
inequality we just proved implies | P (§)h(£) P (€)|| = 0, as we wanted to show. ]

Proof of Theorem 6.1. By Lemma 4.57, it suffices to show
(RO w,w) £ XNPONRE as N = o0, (6.2)

uniformly for & € Bp.
By Lemma 4.50, h() is positive semidefinite for v-almost every £. Hence for v-almost

every ¢ there exist orthogonal vectors f1(&), ..., fi(§) (possibly some zero) with

h(&) = fl&)fi(O)".

Therefore ,

(RN w,w) = (AN £(€), w) P,

t=1

and it is enough to prove

(AN fu(&), w)| £ X PON £,

as N — oo, uniformly for £ € By and for all ¢ € [/].
We can decompose this further using the projections P;(¢) and P; from Theorem 5.3.
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6 Main Argument

We have Y51 P = Y24 Pi(€) = 1, so we can bound

J Jj=1

aieno.0] - |( (S n)amoro(3-ree).)

= 22 (AN P©)1i(6), Piw)
> (AN P(©) £i(€), Prw)]

jk=1

IN

Therefore, in order to prove the theorem, it suffices to prove

(AT AT Py () £i(€), Prw)l £ AP NIIP; (€) fu )| Prw | (*)

as N — oo uniformly for all £ € By, t € [{] and j,k € [l + 1]. If we are able to prove
this inequality, we are done.

It suffices to prove (%) for all £, ¢, j,k such that P;(§)fi(§) # 0 and Piw # 0, as
otherwise both sides of the asymptotic inequality are 0. But:

e By Lemma 6.6, we have P;(£)f;(§) = 0.

o If k£ & Jj(w), we have k € J, (w). By definition, this means w L Ej: as P is a
projection with image Fj, this means Pw = 0

This means that we only need prove the inequality (%) for the j, &k € [l + 1] such that

j # 1 and k € Jj(w). These are precisely the indices we considered in Lemma 6.5:

therefore, Lemma 6.5 proves the (x) uniformly for all £ € Bg, t € [¢] and j,k € [l + 1].

This completes the proof. n
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7 Examples

In this last chapter, we will apply the results of Chapter 6 to a wide variety of substitution

rules.

7.1 One-dimensional substitution rules with two

colors

First, we turn our attention to the simplest nontrivial substitution rules possible: one-
dimensional substitution rules with two colors. In this case, the substitution matrix only

has one non-PF eigenvalue, so Theorem 6.1 specializes to the following:

Corollary 7.1. Let § be a primitive, stone, FLC substitution rule on R with { = 2.
Let X be its scaling constant, po be the smallest eigenvalue of the full substitution matrix
Mz, and vy be the corresponding right eigenvector. For all w € C2, let 9, be the
diffraction of S with weights w. Then we have

as r — 0, where
2 —logy|pe| if w L vy
Blw) = _
1 —log,|ua| otherwise
Furthermore, the inequality holds with S unless pg = 0, in which case we have 1,,(B,) <
0 asr—0.

In the generic case where w is not orthogonal to the second eigenvector, this is the
bound originally conjectured by Oguz, Socolar, Steinhardt, and Torquato [47] and has
been checked for several examples by the same authors and also by Baake and Grimm

[6], as we will see in the examples below.

Proof of Corollary 7.1. The only part of Corollary 7.1 that does not follow directly from
Theorem 6.1 is the claim that we can replace < with <. In order to see this, we repeat
the outline of the proof of Theorem 6.1, which simplifies significantly. In particular,

My, is diagonalizable, as it has two distinct eigenvalues.
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Let R > 0 be a radius such that the conclusions of Theorem 5.3 hold for the normalized
Fourier matrix A(£) of S. The eigenvalues of A(0) = A~ My are 1 and A~!uy, hence
the Lyapunov exponents are y; = 0 and o = log, || — 1.

Let h be a self-similar density of H| gy With base v. As h(¢) is positive semidefinite, it
is diagonalizable everywhere: furthermore, by Lemma 6.6, we have P;(§)h(&)Pi(€)* =0
for v-almost every & € Bj;.

Therefore, h(§) has rank at most 1 for v-almost every £ € B}, so there exists a vector-
valued function f : B} — C? with P»(€)f(£) = f(&) such that h(§) = f(&)f ()"

Now we consider two cases:

e Assume w f vy: then B(w) = 1 —log,|us|, so A=) = ex2. Furthermore, we have
P f(&) = f(§) for v-almost every £ € Bj;. Then we can compute:

(AN w,w)y = [(F(ANE), w)|?
= [(AM AP F(€), w)|?
< JAMNTYPF (O] |w])?
SJ 62X2N

_ )\—Q,B(w)N

as N — oo uniformly for £ € Bj;. In the last inequality we use Theorem 5.3, where

we have < instead of < because A(0) is diagonalizable.
e Assume w L vy: then S(w) = 2 — log, ||, so A7) = \~lexz,

As w is orthogonal to vy, we have Pyw = 0, so Pfw = w.

(hA N w,w) = [(F(NNE), w)|?
= (AN P f(€), Prw)|®
< [PLAM AT P f ()| w])?
5 A le2eN

— )\726(w)N

as N — oo uniformly for £ € Bj.

By Theorem 4.57, this is enough to prove 7, (B,) < r2%®) as r — 0. O

In what follows, we only consider examples where the canonical prototiles are intervals:

every stone substitution rule with this property is face-to-face, hence FLC.

Remark 7.2. So far we have considered only geometric substitution rules, which act

on multisets of points in R?. In the one-dimensional case, the are roughly equivalent
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7.1 One-dimensional substitution rules with two colors

to symbolic substitution rules, i.e. maps gy : A — A* where A is a finite alphabet and
A* is the set of finite words over A. Indeed, every primitive symbolic substitution rule
0p can be turned into a primitive geometric substitution rule unique up to recentering,
and every geometric substitution rule with interval prototiles is obtained in this way.
See Baake and Grimm [5] for details on this correspondence. For each example we
consider below, we explicitly give the geometric substitution rule, and also write the

corresponding symbolic substitution for the convenience of experienced readers.

Fibonacci substitution rule

The most famous example of a one-dimensional substitution rule is the Fibonacci sub-

stitution rule, given symbolically by 1 +— 12,2 +— 1.

Example 7.3. The (geometric) Fibonacci substitution rule on R is a substitution rule
Sriy = (A, A) with 2 colors, where A\ = 7 = %5 and the displacement matrix A €
Prin(R)?*? is given by

A ({0} {0}>‘
{1y o0

Figure 7.1: A tiling obtained from the Fibonacci substitution rule.

This is a primitive, stone, FLC substitution rule, with canonical prototiles 71 = [0, 1]

and 7, = [0, 7 !]. Its substitution matrix is given by

11
Mfull = (1 O)
2 —I)T

with eigenvalues y; = 7 and py = —7~!: the eigenvector to pg is (772, —7 , SO W iS

orthogonal to v, if and only if w is proportional to the PF eigenvector vpp = (771, 772)".
Then f(w) = 1—log, 77! = 2 if w is not proportional to vpg, and f(w) = 2—log, 77! =3
if it is.

Therefore, using Corollary 7.1, we obtain the following.

Corollary 7.4. Let w € C? and 7, be the diffraction of Spy with weights w. Then we
have
ﬁw<Br) N rt
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as v — 0, so Sgy, is Class I hyperuniform for weights w. Furthermore, if w is propor-

tional to vpr, then
ﬁw(Br) S rf

asr — 0.

The generic bound was already known [6, 7, 47| it can also be proven using the model
set description of the Fibonacci tilings. The better bound for PF weights has not been
noticed before, to the best of our knowledge.

Thue—Morse substitution rule

Example 7.5. The Thue—Morse substitution rule on R is a substitution rule Sryp, =
(A, A), where A = 2 and the displacement matrix A € Py;,(R)**? is given by

0 1
A (o
{1} {0}
This is a primitive, stone, FLC substitution rule with canonical prototiles 7 = 7 =

0, 1].

Its substitution matrix is given by

11
Mg =
full (1 1)

Here the second eigenvalue is o = 0, so we obtain the following.

Corollary 7.6. For any weights w, 0y(B,) < 0 as v — 0. In particular, Sry is
hyperuniform of Class I for all weights w.

In fact, in this case, one obtains periodic solutions for w = (1,1)". For w = (1,—-1)"

(the balanced case) Baake and Grimm [3] derived sharper asymptotics.

A periodic two-color substitution

Example 7.7 (|5, Ex. 4.2]). Consider the substitution rule S on R with scaling constant

(102 1)
A‘({l} {oa})

In this case, the canonical prototiles are 7 = 7 = [0, 1], and the second eigenvalue is

A = 3 and displacement matrix

o = 1. Therefore, Corollary 7.1 would give the bound 7, (B,) < 2. However, it turns
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7.1 One-dimensional substitution rules with two colors

out that the self-similar sets of this rule are all periodic, hence we have 7,,(B,) = 0 for all

w and all » < 1. This is an example where the bound from Corollary 7.1 is not optimal.

An antihyperuniform example

Now we consider the substitution rule with symbolic form 1 — 11112,2 > 12222.

Example 7.8. Define the substitution rule & on R with A =5 and

~(1{0,1,2,3} {0}
A_< {4} {1,2,3,4})

This substitution rule is primitive and stone with canonical prototiles 7 = 7 = [0, 1].

4 1
Mgy =
full (1 4>

with smallest eigenvalue iy = 3 and corresponding eigenvector vy = (1, —1) .

The substitution matrix is

Corollary 7.9. Let S be as above and w € C2.

(i) If w = (1,1)" (that is, if one gives all tiles the same weight), we have Hy(B,) <
r2(2=loes3) - In particular, because 2(2 — logs 3) = ~2.6, S is Class I hyperuniform

for this choice of weights.

(i4) If w is not a multiple of (1,1)7, then f,(B,) < r?(1-1es3),

Note that 2(1—log; 3) = ~0.6 < 1: therefore, part (ii) does not prove hyperuniformity
for w € (1,1)". In fact, with more careful analysis, one can show that, in fact, 9, (B,) =<
r06, so that S is antihyperuniform for these weights. This is peculiar for the following
reason: if A = (A1, Ay) € Q, after recentering if necessary, the sets A; and A; U Ay are
MLD equivalent, but one of them is hyperuniform and the other one is not. This means
that hyperuniformity is not preserved under MLD equivalence, contradicting standing

conjectures in the field. See [31] for a more detailed discussion of this phenomenon.

Figure 7.2: Two tilings constructed from the rule in Example 7.8, with one color in green and
the other in red. One can see that tilings constructed with this rule tend to have
large patches with mostly one color, followed by large patches with mostly the
other color. This suggests the tilings may not be hyperuniform.
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7.2 Symmetric substitution rules

In two or more dimensions, most substitution tilings are defined via symmetry: there
often exists some group of rigid motions which is compatible with the substitution rule.
In this case, we will be able to use Theorem 6.1 to prove that a large class of symmetric
substitution tilings are hyperuniform.

In this section, we introduce a formalism to describe symmetric substitution rules, use

it to define several examples, and discuss their hyperuniformity and degree of uniformity.

7.2.1 Symmetric substitution systems

First, we define symmetric substitution systems, and show how one can efficiently con-

struct them and check their basic properties.

Definition 7.10. Let G < O(d) be a finite subgroup equipped with an action on [¢], in
addition to its usual action on R%. We say S is a G-symmetric substitution rule if the
displacement matrix A = (A;);rejq satisfies

forall g € G, j,k € [(].

If S is a G-symmetric substitution rule, it suffices to define the displacements for a
set of representatives of the orbits of G on [¢]. Furthermore, in order to check whether

it is a stone substitution rule, it suffices to check it on this set of representatives.

Lemma 7.11. Let S be a primitive, G-symmetric substitution rule with canonical pro-

totiles Ty, -+, 1. Then, for all g € G, we have

9-Tj = Tgj

Proof. Let Jg C [] be a set of representatives of the orbits of G, and, for j € [¢], define

new tiles
7—; = U g-Tg—1.5.
geG
Then the tiles 771, - - -, 7, are compact and satisfy the equation
Dytj = U U T,7;.
iell] z€A;,;

By Theorem 4.16, the canonical prototiles of S are unique, hence 7; = 7; for all j € [/].

As the prototiles 7 satisfy 77 = g - T; ~1;, we are done. ]
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Lemma 7.12. Let ¢ € N, and let G < O(d) be a finite subgroup equipped with an action
on [(]. Let Jo C [{] be a set of representatives of the orbits of G, and let (0;)jecre
be a collection of finite (-color subsets of R%. Then there exists a unique G-symmetric

substitution rule S such that p(o;) = o; for all j € Jg.

Lemma 7.13. Let § be a G-symmetric primitive substitution rule with ¢ colors and

T, -+, Te be compact subsets of RY. Then the following are equivalent:
(i) S is a stone substitution with canonical prototiles 11, -, 7.
(ii) The following conditions hold:
(1) Foralljell], ge G, 175, =9-T;

(ii) For some set of representatives Jg C [¢] of the action of G and all jo € Jg
and k € [{], o(o;,) tiles Dy1; with prototiles 1, - -, 7.

Proof. The implication (i) = (ii) is clear by the definition of a G-symmetric substitution
rule and Lemma 7.11.

So assume (ii) holds: we want to show p(0;) tiles Dy7; with prototiles 7y, -, 7, for
all j € []. So let J be a set of representatives of the orbits of G on [¢]. Then, for every
J € [f], there exists jo € Jg and g € G such that j = g - jo. Then

0(0;) = 0(04,) = g - 0(0j,)

because of the symmetry of S. By assumption, g(oj,) tiles D7, with prototiles
Ty, -+, 7 therefore, g - p(0;,) = 0(0;) tiles g - Dy7j, = D,7; with the same prototiles.

This concludes the proof. O

7.2.2 The spherical substitution matrix

Let & be a substitution rule with ¢ colors. If S is G-symmetric for some finite group
G, this has consequences for the structure of the substitution matrix Mgy, which we
will study in the rest of this section. These will help us apply Theorem 6.1 to prove
hyperuniformity of symmetric substitution systems.

Let S be a G-symmetric substitution rule with ¢ colors. Then the action of G on [¢]
induces a unitary action of G on C’, by permuting the standard basis vectors: that is,
g-e; = eg; for j € [¢]. The substitution and Fourier matrices of S interact with this

action as follows:

Lemma 7.14.
(i) The full substitution matriz My of S satisfies g - My = M - g for all g € G.
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(1) The normalized Fourier matriz A(§) satisfies g- A(§) = A(g-€)-g forall g € G.

Proof. By definition of a G-symmetric substitution rule, we have

(9 AE))jr = A(E) gk

_ )\—d Z 6271'1'(90,{)

xGAg%k

xGAJ-’g—l,k
= A(§)j 1k
= (A(g-&) - 9)jk

for all j,k € [¢]. This shows (ii). As Mgy = A(0), (i) immediately follows. O

As Mg commutes with the action of GG, the generalized eigenspaces of Mgy are G-
invariant. Furthermore, as G acts on C’ by permutations, its action is unitary. Then
the following holds.

Lemma 7.15. Let V C C¢ be a subspace which is both G-invariant and My -invariant.
Then, for every p € Spec Mpn with generalized eigenspace E,,, exactly one of the follow-
ing holds:

(i) € Spec Myaly and E, NV #0
(ii) & Spec M|y and E, L'V

Therefore, we can get information about the spectral theory of My, by decomposing
the substitution matrix into certain G-invariant subspaces. In particular, let Vi, be
the space of G-invariant vectors in C¢. This is also Mpy-invariant, so we can define the

following;:

Definition 7.16. Let Ju be a set of representatives of the orbits of G on [¢], and let
i1 < --- <y, be the elements of J;. Then the spherical substitution matriz Mgy, is the
ly X £y matrix defined by

(Msph>ﬂf - Z #Aipg'ik

geG

for 7, k € [£y).

The spherical substitution matrix Mgy, is the transformation matrix of the restriction

of the substitution operator Mg,y to the subspace Vi,,. Therefore we obtain the following:

Lemma 7.17. Let A\ € Spec My and E) be its eigenspace. Then exactly one of the
following holds:
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(i) X € Spec My, and A\ has a G-invariant eigenvector.
(it) X ¢ Spec My, and every eigenvector of \ is orthogonal to V.

Using this lemma, we can apply Theorem 6.1 to get a sufficient condition for hyperuni-

formity for G-symmetric substitution systems with G-invariant eigenvectors, as follows:

Corollary 7.18. Let S be a G-symmetric, primitive, FLC substitution rule on R?. Then
the following holds: if |u| < X\ for all i € Spec Mgy \ {N?} and w € C* is a G-invariant

vector, then S is hyperuniform for weights w.

Remark 7.19. The spherical matrix corresponds to the trivial representation of G. One
can obtain similar matrices by looking at other irreducible representations of G: this
gives a decomposition of Mg,y into blocks corresponding to the irreducible components of
the action of G. Alternatively, one can write Mg, as a matrix with entries in the group
ring C[G], providing a compact description of the substitution matrix (this requires
some care if the action is not free). This has been used by Sadun [49] (see also [12])
to study the cohomology of substitution spaces. We will also use this later in specific

examples.

7.2.3 Examples

In this section, we give examples of symmetric substitution systems in dimension 2, and
discuss their hyperuniformity and spectral properties.
For every example we consider, the symmetry group G will either be the cyclic group

of rotations or the dihedral group.

e (G = C,, where the generator R acts on R? by rotation by %’T radians counterclock-

wise. For i € [n], we set g; := R, so we have G = {g1,92, ", gn}-

e G = D,, the dihedral group of order 2n, generated by the rotation R by 27” radians
counterclockwise, and the reflection S in the z-axis. For i € [n], we set g; := R}

and g, ; := R*"1S: this gives us an ordering G = {g1,g2 " -, goan}-

Remark 7.20 (A picture is worth a thousand words). For these examples, explicitly
writing down the displacement matrix A would often be cumbersome and not very
enlightening. As is common in the literature, we will instead define the substitution rule
by showing a picture of the patches defined by p(o0;) for all j € Jg, where Jg is a set
of representatives of the orbits of G on [¢]: as long as one marks each tile in a way that
makes its color clear, this is enough to determine p(o;) for all j € Jg, and hence the
substitution rule S (see Lemma 7.13). The way G operates on the colors will also be

apparent from the pictures.
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Chair substitution rule

Example 7.21. We define the chair substitution rule S on R? as the C;-symmetric rule
given by Figure 7.4. We check that this is a primitive, stone, FLC substitution rule.

e From the picture, it is apparent that the support of p(0;) is exactly Dy : therefore

S is stone with scaling constant A = 2 and the pictured prototiles 7, 79, 73, 74.

e After applying the substitution rule twice, all four orientations of the original

prototile appear, hence S is primitive.

e Figure 7.5 shows a portion of a chair tiling, i.e. a tiling obtained from a legal
multiset of §. From the figure, we see that the tiling is not edge-to-edge, but it
is sibling edge-to-edge [32]: the intersection between two tiles is either empty, a
vertex, a side of both tiles, or one half of a side of one tile. This implies that it
is FLC, as there are only finitely many ways to surround each tile satisfying these

rules.

There is only one prototile up to rotation. Therefore, the spherical substitution matrix

is My = (4).
-

Figure 7.3: The four prototiles of the chair substitution rule, with the origin marked in black.
The rotational symmetry is apparent.

Corollary 7.22. The chair rule s hyperuniform for constant weights.

The full substitution matrix of the chair substitution rule is given by

= R )
S = N =
— NN~ O
o = O

the first row can be read from Figure 7.4, and the other rows follow from the C}-
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Figure 7.4: The prototile 71 and the patch of p(07).

symmetry. It has eigenvalues 4,2, 2,0, with eigenvectors

1 1 1

1 —1 -1
V1 =

—_ = =

Then Theorem 6.1 gives us the following bounds.

Corollary 7.23. Let S be the chair substitution rule and w € C*. Then

(i) If w € span{vy,vs}, then H,(B,) S r* asr — 0. In particular, S is hyperuniform
of Class I with these weights.

(ii) If w ¢ span{vy,vs}, then Ny (B,) Sr? asr — 0.

Proof. If w € span{vy,v4}, w is orthogonal to the eigenspaces of the eigenvalue 2,
therefore 8, (w) = 3 —logy2 = 2 and f(w) = 2 —log, 0 = co. Then B(w) = 2, so
Theorem 6.1 implies 7, (B,) < r*.

~

Otherwise, we have f(w) = §(w) =2 —log, 2 = 1, so 7j,(B,) S °. O

Part (ii) does not prove hyperuniformity for these weights: if the bound were sharp,
this would mean that the chair substitution rule is not hyperuniform for these weights.

In the literature, one often considers a variant of the chair substitution rule, the block
substitution rule [4], which has the same substitution matrix but where the prototiles
are all squares: as the substitution matrix is the same, the bounds from Corollary 7.23
still hold.

For the block substitution rule, self-similar sets are limit-periodic, and Baake and

Grimm [4] computed the diffraction measure explicitly. In this case, we can prove that
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Figure 7.5: A chair tiling.

there are choices of weights for which the block substitution rule is not hyperuniform.

Theorem 7.24. Let Syoer be the block substitution rule and w = (1,0,0,0)". Then
Hw(Br) 2 1% asr — 0.

Proof. By Theorem 4.57, it suffices to find a subset A C B, which is not a null set and
such that 7, (Dy-nA) 2 47™: as Syeer is pure point diffractive, it suffices to do this for
a single point.

In fact, Baake and Grimm [4, Equation (25)] showed that

2

= 47"

1

1
1 (27(1,0)7) = |—
M@ (L0)) = | o

227"

as n — 0o, where €, = e~ . This completes the proof. O

Similar results should hold for other choices of weights not in span{v;,vs}. This

suggests that the same is true for the chair substitution rule.
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7.2 Symmetric substitution rules

Penrose substitution rule

Example 7.25. The Penrose substitution rule Spe,, is a Dig-symmetric substitution

rule defined as depicted in Figure 7.6. It is primitive, stone and FLC, with scaling

constant A =7 = %5

Figure 7.6: The prototiles 71 and 791 on the left, together with the supports of o(0;) and
0(021) on the right. On the right, the origin of each tile is marked. We picture
the tiles 71, - -+, 70 in pink, 711, - - -, 790 in brown, and the tiles 751, - - -, T3¢ in light
blue, note that the triangles have an axis of reflection symmetry, so the colors are
needed to distinguish them.

Here, My, = (2 1) with non-PF eigenvalue —772, so the hypothesis of Corollary 7.18

holds for symmetric weights. Therefore:

Theorem 7.26. The Penrose rule is hyperuniform for any symmetric choice of weights,

such asw= (1,1,---)".

In order to write exact bounds for the diffraction around the origin, we need the full

substitution matrix. This is a 40 x 40 matrix, but, as mentioned in Remark 7.19, we
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7 Examples

Figure 7.7: Example Penrose tiling. As before, the tiles 711 to mo9 and 731 to 749 are depicted
in darker colors to distinguish them.

can write it in a compact way using symmetry.

Theorem 7.27. For symmetric weights w, 1,(B,) 5 r* as r — 0 for the Penrose rule,
where a = 2(3 — log,,(j12)) = ~2.85.

Proof. In particular, as Dy acts freely on C*, we can assume it acts diagonally on
C* @ C*®. For g € Dy, let Z(g) € C*°*2?Y be the unique G-equivariant matrix such that
Z(g)er = eg1. Then, by inspecting Figure 7.6, we see that the full substitution matrix
is given by

v _ (2B + 2(RSS) Z(R)
il Z(R3S) Z(RY)

Using a computer algebra system, one can compute that this matrix is diagonalizable
and its second largest eigenvalue is py = ~2.13. O

This bound is probably not sharp: numerical experiments and heuristic calculations
[25, 33] suggest that the best exponent is 7, (B,) < r®, at least for constant weights.
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7.2 Symmetric substitution rules

Proving this rigorously would require a more detailed analysis of the diffraction of the
Penrose rule, such as using the representation of Penrose tilings as model sets; see Baake
and Grimm [5, Example 7.11].

Remark 7.28. Note that the map Z : G — C**20 ysed above is not the action of
G on C?°: as (G is non-abelian, the matrices representing the action on G are not G-
equivariant. Instead, if we identify C*° with the group ring C[D14] and let G act by left

multiplication, then Z(g) is the matrix representing right multiplication by g.

Danzer's 7-fold tiling

Example 7.29. Danzer’s 7-fold tiling is a D7-symmetric substitution rule with scaling
in(2r
constant A = /1 + % = ~2.8: the displacements and canonical prototiles are shown
7

in Figure 7.8, and an example tiling is shown in Figure 7.9. One can deduce from the

pictures that the substitution rule is primitive, stone and FLC.

A —

-

Figure 7.8: Danzer’s 7-fold substitution rule. Figure by Frettloh, Harriss, and Géhler [24]
licensed under CC BY-NC-SA 2.0.

Note that A is not a Pisot number, hence its dynamical spectrum has no eigenvalues
and its diffraction has no pure point component [26, 54|. Thanks to our approach using
self-similar densities, we are able to estimate its diffraction around the origin exactly
the same as for the previous examples: we do not even need to figure out whether the

diffraction is singular continuous or absolutely continuous.
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Figure 7.9: A Danzer tiling. Figure by Frettloh, Harriss, and Géahler [24] licensed under CC
BY-NC-SA 2.0.

Theorem 7.30. Danzer’s 7-fold rule is hyperuniform for any symmetric choice of
weights.

Proof. The spherical substitution matrix Mg, = 351;

wwn

) has non-PF eigenvalues ap-

proximately ~2.1 and ~0.06, both smaller than . O]

Theorem 7.31. The diffraction of Danzer’s 7-fold rule has 7,,(B,) 5 r® with o = ~2.6.

for any symmetric choice of weights w.

Proof. Similarly to the Penrose case, D; acts freely on the colors of Danzer’s 7-fold rule,

so, after ordering the colors appropriately, we can write

Z(S)+Z(R"S) Z(R*Y) Z(R3)+Z(R'0S)
Mg = ( I I+Z(S)+R3+Z(R)Z(S)+Z(R*Y) Z(R®)Z(S)+Z(R'°)+2Z(S) >,
Z(RYZ(S)+Z(R'Y0) Z(RY)+Z(R®)+Z(R8)Z(S) Z(S)+Z(R%)+Z(R?)

where r and s are the 14 x 14 permutation matrices representing the actions of R and
S on C%, and I is the 28 x 28 identity matrix.
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7.2 Symmetric substitution rules

One can compute using numerical methods that the second largest eigenvalue is ap-

proximately po = ~4.3. Thus

Bi(w) = 2 —logy(~2.1) = ~2.6
Bi(w) >3 —log,(~4.3) = ~1.6

which means giving 25(w) = ~3.1. ]

Other examples

The Tilings encyclopedia [24] is a large compendium of interesting tilings including many
coming from symmetric substitution rules. As long as they are primitive, stone and FLC,
one can apply Theorem 6.1 to try to prove hyperuniformity for many of these tilings:
in order to do this, we only need to find their spherical matrix. All the information we

need can be obtained from the pictures in the encyclopedia.

Theorem 7.32. The following substitution rules are hyperuniform for any symmetric

choice of weights:

(1) Godréche—Langon—Billard (modified as in [11, Fig. 3]).
(i) CAP
(111) Watanabe Ito Soma 12-fold

(iv) Ammann A3

Proof. Note that, for rules (i), (ii) and (iii), the prototiles depicted in the encyclopedia
are not the canonical prototiles. However, we still know the rules are stone, because
they define self-similar Delone subsets. For the Godréche-Langon—Billard, the canonical
prototiles have fractal boundary and have been computed by Godréche and Langon [30].
The advantage of the polygonal prototiles depicted in the encyclopedia is that they prove
the substitution rules are FLC, as they define edge-to-edge tilings.

In order to prove the tilings are hyperuniform, we need to compute their spherical
substitution matrix, and compare largest non-PF eigenvalue p5 with the scaling constant
A. We do this in Table 7.1. If the scaling constant is not written in the encyclopedia, we
can compute it as A = /App, where A\pp is the PF eigenvalue. For all of the example,
we see that |us| < A, which means they are hyperuniform for any choice of symmetric
weights by Corollary 7.18. O
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Rule A M, o
1

Godréche-Lancon-Billard (modified) = (5 +/5) = ~3.6 (932) 5(15 —5v5) =~1.9

3112
CAP L (% 09 ?) 1

2 3023

Watanabe Ito Soma 12-fold 2++3 (é g 195) 7— 43
Ammann A3 3+2‘/5 (% 3 (2)> 1

011

Table 7.1: For each rule in Theorem 7.32, we list its scaling constant, spherical substitution
matrix, and largest non-PF eigenvalue. In all of these cases, we have |ua| < A, so
the substitution rule is hyperuniform for symmetric weights.

(a) A GLB tiling (b) A CAP tiling (c) A WIS tiling (d) An Ammann tiling

Figure 7.10: The tilings obtained from the substitution rules considered in Theorem 7.32.
Figures (a), (b), (¢) and (d), by Frettloh, Harriss, and Géhler [24] licensed under
CC BY-NC-SA 2.0.
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self-similar multiset, 47
span

of a blade, 71
stationary

random measure, 30
substitution

stone, 49
substitution map, 47
substitution matrix, 48

spherical, 100
substitution rule, 47

substitution space, 53

117



INDEX

support
of a multiset, 49
symmetric

substitution rule, 98

tiling, 49

total variation measure, 29

118

uniform cluster frequencies, 52
uniformly discrete, 46

uniquely ergodic, 37

vector measure, 29
vector point process

associated to a substitution rule, 54



	Introduction
	Hyperuniformity
	Point processes from substitution rules
	Hyperuniformity of substitution point processes
	Proof methods
	Structure of the thesis

	Preliminaries
	Notation and basics
	Complex measures
	Random variables and stochastic notation
	Asymptotic notation

	Diffraction of random vector measures
	Vector measures
	Stationary random vector measures
	Moments and autocorrelation of stationary random complex measures
	Ergodicity
	Diffraction of stationary random vector measures
	Hyperuniformity

	From substitutions to point processes
	Substitution rules
	Multi-color sets
	Substitution rules and self-similar sets

	Substitution spaces and counting processes
	Hulls of FLC sets
	The vector point process associated to a substitution rule

	Renormalisation relations
	Renormalisation measures and the normalized Fourier matrix
	Renormalisation via density functions


	Linear cocycles around the origin
	Linear cocycles around the origin
	Exterior powers
	Proof of Theorem 5.3
	The power method
	Defining the subspaces
	Proving the inequalities


	Main Argument
	Statement
	Proof of thm:main-theorem

	Examples
	One-dimensional substitution rules with two colors
	Symmetric substitution rules
	Symmetric substitution systems
	The spherical substitution matrix
	Examples


	Index

