KIT | KIT-Bibliothek | Impressum | Datenschutz

Rapid RASER MRI

Lehmkuhl, Sören ORCID iD icon 1; Fleischer, Simon ORCID iD icon 1; Yang, Jing ORCID iD icon 1; Chekmenev, Eduard Y.; Theis, Thomas; Appelt, Stephan; Korvink, Jan G. 1; Jouda, Mazin ORCID iD icon 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Conventional Magnetic Resonance Imaging (MRI) relies on high-power Radio-Frequency (RF) pulses to excite nuclear spins and in turn generate NMR signals. These pulses require large high-power RF-amplifiers and cause heat deposition in the tissue, which must be minimized for safety, presenting a growing problem when moving toward ever-higher field MRI. An alternative to RF-pulse excitation is self-excitation of nuclear spins using Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), where the nuclear spins undergo spontaneous transition, without RF excitation, from an over-populated state to a ground state. Here, the feasibility of recording rapid proton RASER MRI images of pyrazine at low concentration (120 mM) with large matrix (128x128 pixels) in as little as 78 ms is demonstrated at 500 MHz (11.7 T). We also recorded a time-series of images using a single bolus hyperpolarized pyrazine highlighting the feasibility of dynamic tracking. The demonstrated approach allows recording MRI scans without transmit-receive electronics of the MRI scanner, which is highly desirable for portable MRI as well as the emerging field of hyperpolarized MRI using, e.g., HP protons, $^{129}$Xe gas or HP $^{13}$C labeled biomolecules as molecular tracers and imaging agents


Verlagsausgabe §
DOI: 10.5445/IR/1000190441
Veröffentlicht am 11.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 1433-7851, 1521-3773
KITopen-ID: 1000190441
Erschienen in Angewandte Chemie International Edition
Verlag John Wiley and Sons
Seiten Art.-Nr.: e25699
Vorab online veröffentlicht am 28.01.2026
Nachgewiesen in Scopus
OpenAlex
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page