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H I G H L I G H T S

Comprehensive analysis of attacks and 
defenses in federated energy forecasting.
Data poisoning raises global errors by up 
to 131%.
Backdoor attacks increase local errors 
by up to 48%.
Generative manipulations outperform ran-
dom perturbations.
Security framework enhances resilience 
and restores accuracy.
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 A B S T R A C T

Federated learning is increasingly used in energy forecasting, enabling buildings to collaboratively predict load, 
photovoltaic generation, and prosumption while preserving data privacy. However, this collaborative nature 
introduces new vulnerabilities, as manipulations by a single participant can propagate across the network. 
Such attacks can undermine grid balancing, limit flexibility provision, and reduce trust in decentralized 
energy systems. This work presents a comprehensive study of adversarial threats and defenses in federated 
energy forecasting. We compare structured manipulations generated with Generative Adversarial Networks 
against simple random perturbations in two attack scenarios: (i) data poisoning, where corrupted training 
data degrade global accuracy, and (ii) backdoors, where hidden triggers distort predictions in targeted time 
windows. Our experiments show that poisoning can increase global forecasting errors by up to 131%, while 
backdoors raise local errors by up to 48%. In both cases, Generative Adversarial Network-based attacks 
are consistently more effective than random perturbations, with backdoors proving especially challenging to 
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detect due to their localized effect. To mitigate these threats, we evaluate four defense strategies: weighted 
aggregation, larger participant clusters, local retraining, and their coordinated integration into a secure 
framework. Results demonstrate that these defenses substantially reduce the impact of attacks, and in some 
cases even improve baseline accuracy, thereby enhancing the resilience of federated energy forecasting against 
adversarial manipulation.
1. Introduction

The increasing integration of renewable energy sources (RES) funda-
mentally transforms modern power systems. Variability and operational 
uncertainty increase as intermittent sources such as wind and PV 
generation become more prevalent. In this context, accurate short-
term forecasting of electricity demand, PV generation, and prosump-
tion is essential for efficient and reliable grid operation. Forecasts 
support a wide range of energy management tasks, including bat-
tery scheduling, demand response activation, and the optimization 
of PV self-consumption. At the residential and community level, pre-
cise predictions enable cost minimization, peak load reduction, and 
coordinated flexibility provision to local energy markets [1]. More 
generally, high-quality forecasts are essential for maintaining the real-
time balance of supply and demand in increasingly decentralized and 
dynamic grid environments [2].

Achieving high forecasting accuracy typically requires access to 
high-resolution consumption and generation data. However, the use 
of such granular data raises substantial privacy concerns. Energy time 
series may reveal sensitive user information, including occupancy pat-
terns and appliance usage. These concerns have contributed to public 
opposition against the large-scale deployment of smart metering in-
frastructure. Traditional privacy-preserving techniques, such as data 
aggregation, are often unsuitable for forecasting tasks, as they remove 
key temporal and user-specific patterns necessary for accurate model 
training [3].

Federated Learning (FL) addresses these challenges by enabling 
decentralized model training on client devices such as energy man-
agement systems (EMS). Only model updates are transmitted to a 
central server for aggregation, while raw data remains on-site [4]. To 
further mitigate challenges posed by non independent and identically 
distributed (non-iid) data, clustering can be employed to group clients 
with similar consumption or generation characteristics. Such grouping 
improves model convergence and enhances training stability.

Despite its privacy advantages, FL remains vulnerable to adversarial 
manipulation. Standard aggregation protocols accept client updates 
without verifying their integrity, creating opportunities for malicious 
interference [4]. Adversarial clients can exploit this by performing 
data poisoning, where local training is deliberately biased to degrade 
global model performance. Another threat arises from backdoor attacks 
that embed hidden triggers into local models. These models behave 
normally for typical inputs, but produce targeted mispredictions when 
specific patterns, such as temporal markers or atypical load profiles, 
are present. Because all updates are aggregated jointly, compromised 
model parameters propagate to every participant (Fig.  1).

While such vulnerabilities have been investigated in computer vi-
sion and natural language processing [5], their implications in energy 
systems are potentially more severe. At the building level, compro-
mised forecasts distort local energy management, leading to misaligned 
energy storage scheduling, inefficient demand response, and unreli-
able flexibility provision. Aggregated across participants, these biases 
accumulate into systematic deviations between expected and actual 
net load. This undermines local balancing, reduces the reliability of 
congestion forecasts, complicates the coordination of RES, and reduces 
confidence in decentralized energy systems [6].

To address this, we provide a comprehensive analysis of adversarial 
threats in federated energy forecasting and propose a defense frame-
work that mitigates both poisoning and backdoor attacks. Thus, we 
support the reliable deployment of FL in future energy systems.
2 
1.1. Related work

To provide a comprehensive understanding of the current research 
and challenges in federated energy systems, we review related work 
on security measures and adversarial attacks. Additionally, we examine 
implementations of these attacks in the domains of computer vision and 
natural language processing. Selected publications are summarized in 
Table  1.

FL, originally introduced by McMahan et al. [4], enables collab-
orative model training across distributed clients without direct data 
sharing. Initially developed for mobile and edge applications, its adop-
tion in the energy sector has expanded to several key domains where 
privacy preservation is critical.

In energy control, FL has been applied to decentralize the coordi-
nation of EMS. Lee et al. [22] propose a privacy-preserving framework 
for managing shared energy storage across multiple smart buildings, en-
abling coordinated scheduling of batteries and air conditioning systems 
through federated reinforcement learning. A consecutive study [23] ex-
tends this approach, showing that local model aggregation accelerates 
convergence and improves appliance-level scheduling under heteroge-
neous conditions. Rezazadeh et al. [24] further scale this concept to 
microgrids using a hierarchical architecture, where building-level EMS 
share hyperparameters with a federated layer. Their results demon-
strate improved coordination of prosumption, reduced operating costs, 
and lower CO2 emissions, all while preserving data privacy.

FL has also been explored in the context of non-intrusive load 
monitoring (NILM) and residential load forecasting. Giuseppi et al. [25] 
propose a decentralized FL variant without a central server, achieving 
comparable accuracy to federated averaging in appliance disaggrega-
tion while eliminating single points of failure. Wang et al. [26] address 
consumer classification using smart meter data by integrating federated 
training with privacy-preserving principal component analysis, demon-
strating strong performance with three weighted averaging strategies. 
He et al. [27] combine FL with K-means clustering for short-term 
load forecasting, showing that intra-cluster federated training improves 
prediction accuracy and protects household-level privacy.

Despite these advances, systematic investigations of adversarial ro-
bustness in federated energy systems remain limited. Qureshi et al. [17] 
investigate data poisoning in federated load forecasting with Long 
short-term memory (LSTM) models and show that simple strategies, 
such as sign flipping or additive noise, can substantially reduce fore-
casting accuracy. They further demonstrate that a defense based on 
spectral clustering significantly improves robustness. Building on this, 
Sievers et al. [21] show that stochastic perturbations are effective for 
data poisoning but have only limited impact when applied as backdoor 
attacks.

Most existing research on federated energy systems focuses on 
defense-oriented techniques rather than on an in-depth analysis of 
attack mechanisms. Zhao et al. [7] incorporate differential privacy
(DP), adding calibrated noise to updates to protect individual con-
sumption profiles. Another direction involves secure aggregation, using 
cryptographic techniques or similarity-based weighting to protect in-
dividual updates and mitigate poisoning. Dong et al. [15] protect 
gradient exchanges, and Li et al. [11] filters malicious updates based on 
distance and similarity metrics. Further contributions focus on general 
robustness to adversarial clients. Manzoor et al. [20] introduce an 
anomaly-aware aggregation scheme to mitigate backdoor attacks. Other 
efforts have extended FL to cyber attack detection [12], probabilistic 
load forecasting [13], and privacy-preserving net energy prediction [9]. 



J. Sievers et al. Energy and AI 23 (2026) 100680 
Table 1
Review of attack and security research in federated learning for energy forecasting and related domains. We distinguish whether 
studies investigate adversarial threats, provide security mechanisms, or employ Generative Adversarial Network-based approaches.
 Reference Year Focus Domain Attack Security GAN 
 [7] 2021 Differential privacy for household load forecasting Energy ✓  
 [8] 2022 Byzantine-resilient FL using quantized gradients Energy ✓  
 [9] 2022 Energy forecasting with encrypted aggregation Energy ✓  
 [10] 2023 Personalized FL with differential privacy Energy ✓  
 [11] 2023 Similarity- and distance-based secure aggregation Energy ✓  
 [12] 2023 FL for cyberattack detection in smart grids Energy ✓  
 [13] 2023 Probabilistic individual load forecasting with FL Energy ✓  
 [14] 2023 Scalable architectures for secure FL-based forecasting Energy ✓  
 [15] 2024 Secure aggregation via multiparty computation Energy ✓  
 [16] 2025 Federated reinforcement learning for cost-efficient EMS Energy ✓  
 [17] 2022 Poisoning attacks on FL with clustering defense Energy ✓  
 [18] 2019 Data poisoning attacks on FL in language processing Language ✓  
 [19] 2020 Inference attacks on FL models in vision Vision ✓  
 [20] 2023 Anomaly-aware aggregation to mitigate backdoors Energy ✓ ✓  
 [21] 2024 Poisoning and backdoor attacks with stochastic noise Energy ✓ ✓  
 This paper 2025 Mitigating GAN-based poisoning and backdoor attacks Energy ✓ ✓ ✓  
Fig. 1. Clustered federated learning under adversarial attacks. Compromised 
updates spread through clustered aggregation to the global model, mitigated 
by larger clusters, weighted aggregation, local retraining, or combined de-
fenses.

Scalability and communication efficiency have also been addressed, for 
instance by Widmer et al. [14], and Husnoo et al. [8], who propose 
quantization techniques to resist Byzantine behavior.

In contrast, adversarial attacks, including model and data poison-
ing, inference-based manipulation, and backdoor insertion, have been 
extensively studied in domains such as computer vision and natural 
language processing, where they have demonstrated considerable po-
tential to compromise FL performance. In computer vision, Mayerhofer 
et al. [28] show that poisoning attacks on image classifiers can degrade 
integrity. Xiang et al. [29] demonstrate that backdoor patterns reliably 
induce misclassifications in vision models and that cluster defenses 
detect such triggers. Further, Zhang et al. [19] highlight that GAN-
based attacks can reconstruct private image distributions in federated 
learning and proposes mitigation strategies. In language processing, 
Zhai et al. [30] integrate backdoors into large text to image diffusion 
models at multiple semantic levels while retaining normal generation 
quality. Wan et al. [31] demonstrate that language models can be 
poisoned with few crafted examples such that trigger phrases consis-
tently induce failures across tasks. Zhang et al. [18] show that GAN 
based poisoning in federated learning generates malicious updates that 
compromise the global model.

An essential development in this context is the GAN, introduced by 
Goodfellow et al. [32]. By jointly training a generator and a discrim-
inator, classical GANs capture data distributions and produce pertur-
bations that remain statistically consistent with the underlying data. 
Generator-only approaches, such as those of Mopuri et al. [33] and 
3 
Wang et al. [34], remove the discriminator and instead focus on directly 
maximizing the impact of perturbations on a target model.

1.2. Paper contribution and organization

Although FL has recently been adopted in energy systems, its spe-
cific vulnerabilities under adversarial conditions remain largely unex-
plored. Existing studies from other domains involve data and temporal 
structures that differ fundamentally from those of energy time series. 
To address this gap, we conduct a comprehensive analysis of adver-
sarial threats and defense strategies in federated energy forecasting. 
Consequently, our main contributions are:

• We develop GAN-based adversarial manipulations for both data 
poisoning and backdoor attacks, enabling realistic and structured 
perturbations of local model updates. For comparison, we also 
implement stochastic perturbations as a baseline, providing a 
systematic contrast between random and generative approaches.

• We evaluate the impact of these attacks on forecasting accu-
racy using two neural network architectures. A basic Multilayer 
perceptron (MLP) provides a reference baseline, while a more 
advanced Soft-Gated Dense Neural Network (Soft-Dense) cap-
tures the effects of architectural complexity on vulnerability and 
robustness.

• We propose and analyze four defense strategies to mitigate the 
risks posed by GAN-based adversaries: secure aggregation, in-
creasing cluster sizes, local model retraining, and an integrated 
framework of these strategies.

Our results demonstrate that both attack types significantly degrade 
forecasting accuracy, particularly in small clusters. However, the im-
plementation of suitable defensive measures can mitigate these effects 
and enhance the reliability of FL-based forecasting against adversarial 
interference.

The reminder of the paper is organized as follows: Section 2 in-
troduces our methodology, while Section 3 outlines our experimental 
setup. Building on this, Section 4 presents our results, Section 5 dis-
cusses our results, limitations, and future work, and Section 6 provides 
our conclusion.

2. Methodology

This section outlines the methodological framework, including the 
federated energy forecasting setup, the design of adversarial attacks, 
and the implementation of defense strategies.
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Fig. 2. Federated learning architecture for energy forecasting. Each client 
trains a local model on private data, and only model weights are sent to the 
server. The server aggregates updates to form a global model and redistributes 
the new weights to all participants for the next training round.

2.1. Federated energy systems

FL enables the decentralized training of forecasting models across 
𝑁 distributed clients, such as buildings, each with access to a private 
dataset 𝐷𝑖 [4]. Instead of exchanging raw data, each client indepen-
dently trains a local forecasting model 𝑓𝑤𝑖

 with parameters 𝑤𝑖 using 
only its local data. The training process is coordinated by a central 
server, which initializes a global model with parameters 𝑤global and 
transmits them to all clients. Each client then updates the received 
parameters by performing local optimization on its dataset 𝐷𝑖. These 
local updates 𝑤𝑖 are returned to the server, which aggregates them 
to refine the global model (Fig.  2). A commonly used aggregation 
method is Federated Averaging, where the updated global parameters 
are computed as the mean of the client parameters (Eq.  (1)): 

𝑤𝑔𝑙𝑜𝑏𝑎𝑙 =
1
𝑁

𝑁
∑

𝑖=1
𝑤𝑖 (1)

This iterative process is repeated for 𝑇  rounds, allowing the global 
model to progressively adapt to the heterogeneous characteristics of the 
clients’ local data while preserving privacy.

2.2. Data poisoning attack in federated energy systems

While FL supports scalable collaboration, its decentralized struc-
ture introduces novel security vulnerabilities. A primary threat is data 
poisoning, where malicious clients intentionally corrupt their local 
training data 𝐷𝑖. These manipulations influence the local updates 𝑤𝑖, 
which, once aggregated, compromise the global model 𝑤global, thereby 
degrading performance across both adversarial and benign clients.

Let (𝑥, 𝑦) denote a clean and normalized training sample, where 𝑥 is 
the input sequence and 𝑦 the corresponding target. To assess adversarial 
scenarios, we implement two poisoning strategies: (i) stochastic noise 
and (ii) structured perturbations, both applied exclusively to the energy 
time series while keeping external features unchanged.

In the stochastic case, adversarial inputs are constructed by adding 
noise 𝜖 drawn from a distribution  and scaled by a factor 𝛾, as 
formalized in Eq.  (2) [21]: 
𝑥′ = 𝑥 + 𝜖, 𝜖 ∼ (𝛾), (2)

In the structured setting, adversarial perturbations are not randomly 
sampled but are learned to maximally degrade forecasting accuracy. 
To this end, a generator network 𝐺𝜙, parameterized by 𝜙, is trained to 
produce input-dependent perturbations. For each clean input sequence 
𝑥, the generator outputs a perturbation 𝜖 = 𝐺𝜙(𝑥), which is added to the 
original input to form the adversarial sample 𝑥′ = 𝑥+ 𝜖. The generator 
is optimized to increase the prediction error of a pre-trained surrogate 
forecasting model 𝑓 , which approximates the behavior of the global 
sur

4 
Fig. 3. Generative Adversarial Network-based data poisoning in federated 
learning. Adversarial noise is added to clean local data, producing poisoned 
samples used for local training. Aggregated across clients, this leads to a 
corrupted global model.

Fig. 4. Generative Adversarial Network training process. The generator per-
turbs clean data to produce adversarial samples. The GAN parameters are 
optimized to maximize the surrogate model’s prediction loss.

model. An illustration of a data poisoning attack using a GAN is shown 
in Fig.  3.

While classical GANs introduced by Goodfellow et al. [32] train 
a generator in competition with a discriminator to capture data dis-
tributions, our approach departs by omitting the discriminator. In-
stead, the generator is optimized to maximize the prediction error of a 
fixed surrogate forecasting model under bounded perturbations. Similar 
generator-only adversarial frameworks have been proposed by Mopuri 
et al. [33] and Wang et al. [34].

The resulting training objective is shown in Eq.  (3), where the first 
term maximizes the surrogate’s prediction error and the second term 
penalizes large perturbations via 𝓁2 regularization. 

𝐺(𝜙) = − 1
|𝐷|

∑

𝑥∈𝐷

‖

‖

‖

𝑦 − 𝑓sur(𝑥 + 𝜖)‖‖
‖

2

2
+ 𝜆‖𝜖‖22. (3)

To ensure comparability, both stochastic and GAN-based perturba-
tions are restricted to [−𝛾, 𝛾], with 𝛾 controlling attack intensity. An 
illustration of the GAN training process is shown in Fig.  4.

Stochastic noise is scaled directly, whereas GAN outputs are passed 
through a tanh activation and multiplied by 𝛾, as shown in Eq.  (4): 
𝜖 = 𝛾 ⋅ tanh(𝐺𝜙(𝑥)), 𝜖 ∈ [−𝛾, 𝛾]. (4)

The perturbations 𝜖 translate directly into the federated training 
process: benign clients 𝑘 ∈  continue to optimize on their clean 
datasets 𝐷𝑘 = (𝑥𝑘, 𝑦𝑘), whereas adversarial clients 𝑗 ∈  replace 𝑥𝑗
with perturbed inputs 𝑥′𝑗 = 𝑥𝑗 + 𝜖. These manipulated samples enter 
the standard local optimization step, so that in each round 𝑡 ∈ 𝑇  the 
parameter update of client 𝑖 is given by Eq.  (5): 
𝑤𝑖,𝑡+1 = 𝑤𝑖,𝑡 − 𝜂∇𝑤𝑖


(

𝑤𝑖,𝑡, 𝑥̃𝑖, 𝑦𝑖
)

, (5)

where 𝑤𝑖,𝑡 are the model parameters at round 𝑡, 𝜂 is the learning rate, 
 the local loss, and ∇𝑤𝑖

 its gradient with respect to the parameters. 
Here, 𝑥̃ = 𝑥  for benign clients and 𝑥̃ = 𝑥′  for adversaries. Because the 
𝑖 𝑘 𝑖 𝑗
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Fig. 5. Generative Adversarial Network-based backdoor injection in federated 
learning. A generator synthesizes trigger noise that is embedded into clean 
local data, producing backdoor samples used for local training. During ag-
gregation, these poisoned updates propagate through the federated network, 
implanting a hidden backdoor in the global model.

resulting updates 𝑤𝑗,𝑡+1 are incorporated into the federated aggregation 
step shown in Eq.  (1), adversarial perturbations propagate beyond 
the local model and gradually influence the global forecasting model 
shared across all participants.

2.3. Backdoor attack in federated energy systems

Unlike data poisoning, which generally degrades forecasting accu-
racy across all time steps, backdoor attacks are designed to remain 
inconspicuous by preserving overall model performance while embed-
ding targeted vulnerabilities. These vulnerabilities are activated only 
when a specific trigger condition is met, making detection particu-
larly difficult in safety- and reliability-critical settings such as energy 
forecasting. Fig.  5 demonstrates the GAN-based backdoor attack.

In our formulation, the trigger is defined by a subset of targeted 
hours 𝐻 ⊆ 0, 1,… , 23. For each training example (𝑡𝑗 , 𝑥𝑗 , 𝑦𝑗 ), the variable 
𝑡𝑗 denotes the hour of the day associated with the input 𝑥𝑗 . Adversarial 
clients perturb only those samples whose timestamp falls within the 
targeted set 𝐻 . The modified input is shown in Eq.  (6)
𝑥′𝑗 = 𝑥𝑗 + 𝛾 ⋅ 𝜖 ⋅ 𝜏(𝑡𝑗 ), (6)

where 𝜖 is the perturbation, 𝛾 a scaling factor, and 𝜏(𝑡𝑗 ) is an indi-
cator function that equals 1 if 𝑡𝑗 lies in the targeted set 𝐻 and 0
otherwise. More sophisticated triggers can extend 𝜏(𝑡𝑗 ) beyond a simple 
hour-based switch by incorporating contextual features 𝑐𝑗 , for example 
setting 𝜏(𝑡𝑗 , 𝑐𝑗 ) = 1 during holidays, under extreme weather conditions, 
or when frequency-domain patterns indicate congestion. Moreover, 
𝜏(𝑡𝑗 ) does not need to be binary: it can be defined as a smooth weighting 
function 𝜏(𝑡𝑗 ) ∈ [0, 1] to gradually activate and fade out the perturbation 
at the beginning and end of the targeted window.

As with data poisoning, 𝜖 can be drawn from a distribution
(e.g. Gaussian, Uniform, Laplace) or learned by a trainable GAN 𝐺𝜙. 
In the latter case, 𝐺𝜙 is optimized with the same adversarial loss as in 
Eq.  (3), with perturbations masked to activate solely under the trigger. 
By tuning 𝛾 and selecting 𝐻 , attackers can control the severity and 
evaluate the impact of the backdoor.

2.4. Security measures in federated energy systems

Given the vulnerability of FL to data poisoning and backdoor at-
tacks, robust defense mechanisms are essential for maintaining model 
integrity. We therefore implement four complementary strategies: clus-
tering, weighted aggregation, local retraining, and their integration 
within a unified framework.

Clustering reduces the influence of adversarial updates by restrict-
ing aggregation to subgroups of clients with similar consumption or 
5 
generation behavior. Formally, two clients 𝑖 and 𝑗 are assigned to 
the same cluster if their time series representations 𝐸𝑖 and 𝐸𝑗 satisfy 
𝑑(𝐸𝑖, 𝐸𝑗 ) ≤ 𝜉, where 𝑑(⋅, ⋅) is a distance or similarity measure and 𝜉 a 
threshold controlling cluster granularity.

The choice of 𝑑(⋅, ⋅) and 𝜉 directly affects both robustness and 
learning efficiency. Small thresholds 𝜉 increase the chance of isolating 
adversarial clients but may lead to fragmented clusters with limited 
collaboration, whereas large thresholds enhance knowledge sharing but 
risk admitting heterogeneous or malicious clients. In practice, common 
choices for 𝑑(⋅, ⋅) include Euclidean distance for simplicity, correlation-
based measures for linear dependencies, and Dynamic Time Warping
(DTW) for handling temporal misalignments.

Weighted aggregation mitigates adversarial influence by reducing 
the contribution of client updates that yield a high loss on a trusted 
validation set. The rationale is that benign models trained on clean data 
tend to generalize well, whereas adversarial manipulations typically 
degrade validation performance. Formally, let  and  denote benign 
and adversarial clients, respectively. The global model update is given 
by Eq.  (7) [21]: 

𝑤global =

∑

𝑘∈ 𝛼𝑘 ⋅𝑤𝑘 +
∑

𝑗∈ 𝛼′𝑗 ⋅𝑤
′
𝑗

∑

𝑘∈ 𝛼𝑘 +
∑

𝑗∈ 𝛼′𝑗
(7)

where 𝛼𝑘 and 𝛼′𝑗 denote the aggregation weights for benign and com-
promised clients, respectively, with typically 𝛼′𝑗 ≪ 𝛼𝑘. The defense is 
effective provided that the validation set is not corrupted, or that the 
perturbations 𝜖 used by adversaries are not learnable and therefore still 
increase validation loss.

Local Retraining enables each client to refine the received global 
model parameters 𝑤𝑔𝑙𝑜𝑏𝑎𝑙 using its private data, thus reducing the im-
pact of adversarial drift introduced during aggregation. After receiving 
potentially compromised 𝐰′

global, benign clients refine their models as 
in Eq.  (5) [21]. This personalized refinement step improves the model’s 
alignment with local data and mitigates the influence of poisoned 
updates.

In addition to our focus on mitigating adversarial influence during 
model aggregation and training, another line of research secures the 
communication layer itself. Methods such as Paillier encryption protect 
model updates during transmission and restrict unauthorized access 
or modification. Frameworks like gradient quantization improve the 
transmission efficiency by decreasing the communication load [8]. 
However, these methods do not prevent already compromised clients 
from submitting malicious updates. Therefore, our work focuses on 
ensuring robustness against adversarial behavior after an attack occurs 
rather than exclusively protecting data exchange mechanisms.

Together, these strategies form a robust defense framework, en-
hancing the security and reliability of federated learning in energy 
forecasting applications.

3. Experimental setup

Building on our methodology, we describe our experimental setup, 
including data analysis and federated energy forecasting.

3.1. Data analysis

We utilize the Ausgrid dataset [35], which provides half-hourly 
smart meter measurements of residential electricity consumption and 
gross PV generation for 300 households in New South Wales, Australia. 
The dataset spans from July 2010 to June 2013 and distinguishes 
between general consumption and controlled load. In this study, both 
load components are aggregated into a single total demand, reflecting 
the actual electricity requirement of each household. Representative 
load and PV generation profiles for Building 11 are shown in Fig.  6.

To extend the dataset, we compute prosumption as net demand 
(load minus PV), which represents the energy that must be supplied 
by the grid or a storage system at each time step.



J. Sievers et al. Energy and AI 23 (2026) 100680 
Fig. 6. Measured load and PV patterns of building 11 for a typical week.

Weather data are sourced from Meteostat [36] for the same region 
in Australia as the Ausgrid dataset. Weather conditions strongly influ-
ence PV output and indirectly affect residential consumption, which 
makes them valuable predictors for forecasting tasks. Because both the 
Ausgrid and the weather dataset share a 30-minute resolution, meteo-
rological values are temporally aligned by merging entries on identical 
timestamps. To focus on the most informative weather features, we 
calculate the absolute Pearson correlation between each available me-
teorological variable and the prosumption series and retain the four 
strongest predictors: temperature, relative humidity, wind speed, and 
wind direction.

Temporal regularities in residential energy usage are captured
through three time-based features: a binary weekday indicator and 
periodic encodings of the hour of day. Sine–cosine encoding avoids 
artificial discontinuities at midnight by representing time on a circular 
domain. For each half-hour step ℎ ∈ {0,… , 47} and a period 𝑇 = 48, 
the encodings are given by Eq.  (8): 

sin(ℎ) = sin
(

2𝜋 ℎ
𝑇

)

, cos(ℎ) = cos
(

2𝜋 ℎ
𝑇

)

. (8)

For computational efficiency, the analysis of the attacks and mit-
igation strategies is limited to a randomly selected subset of the first 
20 buildings. The data are split into 70% training, 20% validation, and 
10% testing.

3.2. Federated energy forecasting

Our FL architecture consists of 3 training rounds, as additional 
rounds did not yield further improvements. To simulate deployment 
scenarios and assess robustness, clients are grouped into fixed-size 
clusters.

Unlike our previous work [21], which used K-Means clustering 
based on DTW similarity, we adopt random clustering with a fixed 
seed to ensure reproducibility and controlled evaluation. Unless stated 
otherwise, cluster size is set to 2. We select this cluster size to expose the 
system to stronger adversarial influence, thereby enabling a stress-test 
of federated robustness in realistic heterogeneous environments. Note, 
that other clustering methods can be chosen.

To address our forecasting task, we evaluate two model archi-
tectures: a baseline MLP and a more expressive Mixture of Experts
(MoE) model implemented via a soft-gated dense layer. In a previous 
study [37] the MoE architecture has been extensively benchmarked 
against state-of-the-art LSTM, CNN, and Transformer models for both 
local and federated learning. In FL heterogeneous data distributions 
across buildings often degrade model performance and limit general-
ization. MoE architectures mitigate this issue by combining multiple 
specialized sub-models (experts) through a gating mechanism that dy-
namically selects and weights expert outputs based on the input. This 
enables the model to adaptively capture complex and nonstationary 
6 
Fig. 7. Overview of the model architectures. The baseline MLP (left) employs 
stacked dense feed-forward network (FFN) layers with dropout, followed by 
a single output FFN layer. The soft-gated Mixture-of-Experts model (right) 
integrates multiple parallel FFN experts and uses a softmax gating network 
to weight their contributions.

patterns in energy data. Earlier studies show, that incorporating an 
MoE layer into standard deep learning models substantially improves 
forecasting accuracy [37]. The MLP baseline consists of two dense feed-
forward layers with 32 units, followed by dropout with a rate of 0.2 
and a single output unit. The MoE architecture adopts the soft-gated 
structure described in [37], employing four expert models with 8 units 
each, followed by two dense layers with 16 units, dropout (rate 0.2), 
and a single output unit. Both models are trained using the Adam 
optimizer (learning rate 10−4), a batch size of 256, 50 training epochs, 
and early stopping with a patience of 10. A detailed architectural 
overview is provided in Appendix and Fig.  7.

Stochastic perturbations are sampled independently at each time 
step from a uniform distribution 𝑈 (−𝛾, 𝛾), with 𝛾 ∈ 0.0, 0.3, 0.6, 0.9
controlling the perturbation magnitude. The perturbations are then 
added to the original data of the attacked building, so that we can 
analyze the impact of increasingly noisy data. Only the energy time 
series is modified, while all auxiliary features remain unchanged to 
prevent trivial detection. For data poisoning, the perturbation is applied 
at every time step of the local training data to maximize degradation 
in model performance. For the backdoor attack, the perturbation is 
restricted to four consecutive half-hour intervals between 10:30 and 
12:30, thereby establishing a temporal trigger. As illustrated in Fig.  4, 
learned perturbations are produced using a surrogate–generator setup. 
The surrogate forecaster 𝑓sur approximates the prediction behavior of 
the target model and provides a differentiable objective for the attack. 
It is implemented as a shallow MLP with two dense layers of 32 units 
and a linear prediction layer, trained locally on clean client data using 
the Adam optimizer with a learning rate of 10−3, batch size 256, mean 
squared error loss, early stopping with patience 3, and at most 50 train-
ing epochs. Once training converges, the surrogate is frozen and solely 
used to evaluate the effect of perturbations. The generator 𝐺𝜙 is an MLP 
with two dense layers of 32 units and a tanh output, which bounds 
the generated perturbation to [−1, 1] before scaling. During training, 
clean inputs are perturbed by 𝐺𝜙, passed through the frozen surrogate, 
and the generator parameters are updated to increase the surrogate’s 
prediction error while regularizing the perturbation magnitude through 
an 𝓁2 penalty. Optimization uses Adam with learning rate 10−3, batch 
size 256, and a regularization weight 𝜆reg = 10−4.

To defend against these attacks, we implement four strategies. First, 
increasing the cluster size from 2 to 5 to reduce the relative influence 
of any single adversarial client. Second, weighted aggregation to scale 
client contributions based on local validation loss. Third, local retrain-
ing to allow benign clients to fine-tune the global model on their private 
data for up to 50 epochs with early stopping. Fourth, a combination of 
the previous three defense mechanisms. Performance is evaluated using 
Root Mean Squared Error (RMSE).
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Table 2
Performance of unmodified buildings under different poisoning intensities.
 Setup RMSE STD Diff  
 Uniform/GAN Uniform/GAN Uniform/GAN  
 Load
 FL 0.1154/0.1157 0.03/0.03 0.00%/0.00%  
 N0.3 0.1205/0.1383 0.03/0.02 4.38%/19.56%  
 N0.6 0.1312/0.1456 0.03/0.03 13.66%/25.85%  
 N0.9 0.1386/0.1685 0.03/0.03 20.13%/45.70%  
 PV
 FL 0.0673/0.0679 0.01/0.01 0.00%/0.00%  
 N0.3 0.0743/0.0958 0.01/0.01 10.37%/41.15%  
 N0.6 0.0845/0.1309 0.01/0.02 25.58%/92.79%  
 N0.9 0.0952/0.1571 0.01/0.01 41.45%/131.38% 
 Prosumption
 FL 0.1030/0.1034 0.03/0.03 0.00%/0.00%  
 N0.3 0.1101/0.1297 0.03/0.02 6.93%/25.39%  
 N0.6 0.1261/0.1543 0.04/0.04 22.43%/49.16%  
 N0.9 0.1308/0.1312 0.04/0.04 27.06%/26.83%  
Note: N0.3 indicates a noise scale of 0.3; Diff shows the change from the FL baseline 
(noise 0.0); noise is sampled from a uniform distribution or a GAN.

4. Results

This section presents experimental results for data poisoning, back-
door attacks, and the effectiveness of defense strategies. For each 
attack scenario, we distinguish between the adversarial models (trained 
on manipulated data) and the unmodified models (affected indirectly 
via federated aggregation). Unless otherwise noted, all metrics are 
computed on the test set and averaged over all buildings and clusters. 
The model architectures, attack scenarios and defense strategies are 
identical for different energy forecasting types (PV, load, prosumption).

4.1. Data poisoning attack

We start by analyzing the vulnerability of federated energy fore-
casting to data poisoning. The evaluation examines both overall and 
per-building performance, comparing the robustness of MLP and MoE 
models under uniform and GAN-based perturbations.

Table  2 shows the RMSE and standard deviation (STD) for load, PV, 
and prosumption forecasts across all unmodified clients under different 
perturbation scales. For each energy type, we compare the impact of 
uniform and GAN-generated noise, while the FL baseline corresponds 
to the clean federated model without any attack.

The results demonstrate a consistent increase in forecasting error as 
the perturbation scale rises, across both attack types and all forecasting 
tasks. GAN-based perturbations lead to significantly greater degrada-
tion than uniform noise, with the strongest effects observed in PV 
forecasting.

For the FL baseline, the performance of models under both noise 
types is nearly identical, confirming a comparable starting point for 
fair evaluation. For instance, the RMSE for load is 0.1154 (uniform) 
versus 0.1157 (GAN). Among the three forecasting tasks, PV prediction 
is the most vulnerable to adversarial manipulation. At a perturbation 
scale of 0.6, the RMSE increases by 25.58% with uniform noise and by 
92.79% with GAN-generated perturbations. At scale 0.9, these increases 
rise to 41.45% and 131.38%, respectively. In load forecasting, uniform 
noise with scale 0.9 raises the RMSE from 0.1154 to 0.1386 (+20.13%), 
whereas GAN-based perturbations result in a +45.70% increase. In-
terestingly, for prosumption forecasting the performance degradation 
converges at the highest perturbation scale to an RMSE increase of 
27.06% (uniform) and 26.83% (GAN).

Fig.  8 complements the previous analysis by comparing the per-
formance of the two model architectures, MLP and MoE, under data 
poisoning attacks. For each energy type, the figure reports the RMSE 
of unmodified clients and annotates the relative increase compared to 
the clean baseline. The results highlight that the MoE architecture is 
7 
Fig. 8. Performance of MLP vs. MoE on unmodified buildings under poisoning 
attacks.

Fig. 9. Performance parity of unmodified buildings under poisoning at noise 
scales 0.0 and 0.9.

consistently more robust than the MLP, particularly under GAN-based 
perturbations.

Specifically, the MoE demonstrates stronger resilience for both load 
and PV forecasting when facing adversarially generated noise. At a 
perturbation scale of 0.9, the RMSE for load increases by only +38%
with the MoE, compared to +62% with the MLP. Similarly, for PV, the 
MoE exhibits an increase of +109%, while the MLP reaches +152%, 
indicating a substantially higher vulnerability. Under uniform noise, 
the performance differences between the two models are less pro-
nounced. At a noise scale of 0.9, the MoE achieves slightly lower RMSE 
values for load (0.122 vs. 0.125) and PV (0.094 vs. 0.097), while the 
MLP performs marginally better for prosumption. Overall, the MoE 
architecture offers increased robustness and more reliable forecasting 
performance in the presence of data poisoning, making it the preferred 
choice in adversarial settings.

While the previous results considered mean performance across all 
unmodified buildings, we now evaluate the forecasting accuracy at 
the building-level. Fig.  9 presents parity plots comparing the RMSE of 
unmodified buildings under attack (perturbation scale 0.9) to the clean 
baseline (scale 0.0) for both uniform and GAN-based perturbations. 
Each point corresponds to a single benign building, with most lying 
above the diagonal, indicating consistent performance degradation. 
Notably, GAN-based attacks induce stronger and more variable impacts 
compared to uniform noise.

The proportion of affected clients is high across both attack types. 
Under uniform noise, RMSE increases in 93% of buildings, while GAN-
based perturbations lead to degradation in 97% of cases. Beyond this 
high prevalence, GAN-induced errors exhibit greater dispersion across 
buildings, particularly for load and PV forecasts. For instance, the 



J. Sievers et al. Energy and AI 23 (2026) 100680 
Fig. 10. Performance comparison between poisoned and unmodified buildings 
at noise scales 0.0 and 0.9 for the poisoning attack.

building-wise RMSE range for load expands from [0.0856, 0.1727] un-
der uniform noise to [0.1239, 0.2285] under GAN perturbations. For 
PV, the range shifts from [0.0759, 0.1158] to [0.1369, 0.1732], indicating 
a marked increase in both error magnitude and variability. In the 
case of prosumption, the distribution slightly narrows, shifting from 
[0.0885, 0.2294] (uniform) to [0.0702, 0.1935] (GAN), although the overall 
trend still suggests increased model instability.

To complement the building-level perspective, Fig.  10 analyzes the 
distribution of forecasting errors using violin plots. The figure contrasts 
adversarial clients, which introduce manipulated updates, with benign 
clients, which contribute only clean data. Comparisons are shown 
across energy types, attack settings, and perturbation scales (0.0 and 
0.9). This perspective highlights not only the direct degradation of 
adversarial clients but also how their influence propagates through fed-
erated aggregation to impair the performance of otherwise unmodified 
buildings.

The results show that under uniform noise at scale 0.9, RMSE 
increases are similar for both adversarial and unmodified clients, sug-
gesting that stochastic perturbations diffuse evenly across the network. 
For example, load forecasting shows increases of +23.81% (adversarial) 
and +20.13% (unmodified); PV increases are +32.77% and +41.45%, 
respectively; and prosumption increases are +21.33% and +27.06%. 
In contrast, GAN-based perturbations produce more asymmetric ef-
fects, with adversarial clients exhibiting notably higher errors. For 
load, the RMSE increases by +48.37% (adversarial) versus +45.68%
(unmodified), and for prosumption by +59.09% versus +26.83%. In 
PV forecasting, both groups are heavily affected, with increases of 
+127.86% (adversarial) and +131.48% (unmodified).

Thus, our findings underscore the vulnerability of federated en-
ergy forecasting to poisoning attacks. Across all forecasting tasks, in-
creasing perturbation intensity consistently degrades performance, with 
GAN-based manipulations causing more severe effects than uniform 
noise. While both adversarial and benign clients are negatively im-
pacted through the aggregation process, the propagation of GAN-based 
perturbations is particularly harmful, with PV forecasting being the 
most affected. Between model architectures, the MoE demonstrates 
consistently greater robustness than the MLP, offering more reliable 
performance under adversarial conditions.

4.2. Backdoor attack

While data poisoning attacks degrade model performance globally, 
backdoor attacks represent a more covert threat by targeting specific 
conditions while largely maintaining overall accuracy. In the following 
section, we assess the effectiveness of backdoor attacks by injecting 
perturbations into a single adversarial client per cluster, with activation 
limited to a fixed temporal window (10:30–12:30 am). The objective 
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Table 3
Performance of unmodified buildings under different backdoor intensities.
 Setup RMSE STD Diff  
 Noise/GAN Noise/GAN Noise/GAN  
 Load
 FL 0.0762/0.0770 0.0304/0.0307 0.00%/0.00%  
 N0.3 0.0830/0.0824 0.0319/0.0307 8.92%/7.01%  
 N0.6 0.0863/0.0833 0.0339/0.0315 13.25%/8.18%  
 N0.9 0.0867/0.0840 0.0336/0.0363 13.78%/9.09%  
 PV
 FL 0.1174/0.1170 0.0181/0.0186 0.00%/0.00%  
 N0.3 0.1245/0.1392 0.0193/0.0201 6.05%/18.97%  
 N0.6 0.1354/0.1612 0.0239/0.0282 15.33%/37.78% 
 N0.9 0.1380/0.1731 0.0216/0.0300 17.55%/47.95% 
 Prosumption
 FL 0.0714/0.0726 0.0261/0.0268 0.00%/0.00%  
 N0.3 0.0838/0.0820 0.0312/0.0228 17.37%/12.95% 
 N0.6 0.0864/0.0849 0.0299/0.0227 21.01%/16.94% 
 N0.9 0.0884/0.0918 0.0288/0.0260 23.81%/26.45% 
Note: N0.3 indicates a noise scale of 0.3; Diff shows the change from the FL baseline 
(noise 0.0); noise is sampled from a uniform distribution or a GAN.

is to impair forecast accuracy for benign clients during this interval, 
without affecting performance at other times.

Table  3 reports the RMSE and STD for load, PV, and prosumption 
forecasts during the targeted window for the unmodified buildings. 
For each energy type, we compare the effects of uniform and GAN-
based perturbations across increasing intensity levels. Results show a 
consistent degradation in forecasting performance with higher pertur-
bation scales, with GAN-based attacks causing notably larger errors, 
particularly in PV forecasting.

Backdoor effectiveness is most pronounced in PV forecasting. At a 
perturbation scale of 0.9, the RMSE for unmodified clients rises from 
0.1174 to 0.1380 under uniform noise (+17.55%), and to 0.1731 under 
GAN-based perturbations (+47.95%), the largest absolute degradation 
observed across all forecasting tasks. A similar vulnerability is evident 
in prosumption, where the RMSE increases from 0.0726 to 0.0918 
(+26.45%) under GAN-based noise. In contrast, load forecasting exhibits 
greater resilience and an inverse trend: uniform noise results in higher 
degradation (+13.78%) than GAN-based perturbations (+9.09%).

These patterns are already apparent at lower intensities. At a 
noise scale of 0.3, PV forecasting shows a modest increase of +6.05%
under uniform noise, but a substantially larger rise of +18.97% un-
der GAN-generated triggers. Prosumption follows a similar trajectory, 
with increases of +17.37% and +12.95% for uniform and GAN-based 
noise, respectively. In load forecasting, however, the difference re-
mains marginal, with uniform noise yielding +8.92% and GAN-based 
perturbations +7.01%.

Overall, these results demonstrate that localized backdoor triggers, 
introduced by a single adversarial client, can propagate through fed-
erated aggregation and significantly impair unmodified clients during 
the targeted window.

To assess whether backdoor attacks degrade forecasting accuracy 
globally or primarily within the targeted window, we compare model 
performance across all hours of the day. While Table  3 focuses on the 
impact during the triggered time slots, the following analysis evalu-
ates whether these localized perturbations also influence non-targeted 
periods. Figs.  11 to 13 present the hourly RMSE across the full 24-
hour cycle for unmodified clients, under both uniform and GAN-based 
perturbations at increasing noise scales.

Focusing first on load forecasting (Fig.  11), the impact of backdoor 
perturbations remains limited outside the targeted hours. For example, 
at a noise scale of 0.9, the RMSE during clean hours increases only 
marginally—from 0.0993 to 0.1038 under uniform noise (+4.53%) and 
from 0.1006 to 0.1025 under GAN-based noise (+1.89%). In contrast, 
during the backdoor window (10:30–12:30 am), the effect is signif-
icantly more pronounced: uniform noise increases the RMSE from 
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Fig. 11. Performance of unmodified buildings for each hour of the day under 
backdoor attacks on Load.

Fig. 12. Performance of unmodified buildings for each hour of the day under 
poisoning attacks on PV.

Fig. 13. Performance of unmodified buildings for each hour of the day under 
poisoning attacks on prosumption.

0.0762 to 0.0867 (+13.78%), while GAN-based perturbations yield a rise 
from 0.0770 to 0.0840 (+9.09%).

For PV (Fig.  12), degradation is strong both outside and inside the 
backdoor window. During clean hours, RMSE increases from 0.0361 
to 0.0422 under uniform noise (+16.90%) and from 0.0361 to 0.0450 
with the GAN-based perturbations (+24.65%). Within the backdoor 
window, the impact intensifies, with RMSE rising from 0.1174 to 
0.1380 (+17.55%) under uniform noise, and to 0.1731 (+47.95%) under 
GAN-based perturbations
9 
Fig. 14. Performance of MLP vs. MoE on unmodified buildings under back-
door attacks.

Prosumption forecasting (Fig.  13) exhibits intermediate sensitivity. 
For non-targeted hours, RMSE rises from 0.0906 to 0.0945 (+4.30%) 
under uniform noise and from 0.0902 to 0.0940 (+4.21%) with GAN-
based perturbations. Within the backdoor window, however, the impact 
is more pronounced: uniform noise results in an increase from 0.0714 to 
0.0884 (+23.81%), and GAN-based perturbations from 0.0726 to 0.0918 
(+26.45%).

In summary, backdoor effects vary across forecasting tasks. In the 
context of load and prosumption, degradation remains temporally con-
fined, thereby preserving performance outside the targeted window 
and enhancing stealth. Conversely, PV forecasting demonstrates the 
most significant increase in error, with substantial impact on non-
targeted hours, resulting in reduced temporal precision and enhanced 
detectability.

Following the temporal analysis of backdoor attacks, we evaluate 
the architectural robustness of the MLP and MoE models, focusing 
on unmodified clients during the targeted window. This complements 
the prior poisoning results (Fig.  8) and examines whether the MoE’s 
resilience extends to localized, trigger-based attacks.

Fig.  14 presents the RMSE averaged over the backdoor interval un-
der uniform and GAN-based perturbations at noise scale 0.9. Across all 
energy types and attack settings, the MoE consistently outperforms the 
MLP, confirming its enhanced robustness in adversarial environments.

For load forecasting, the MLP exhibits a 21.81% increase in RMSE 
under uniform noise (from 0.0761 to 0.0927), whereas the MoE limits 
this to 5.50% (from 0.0764 to 0.0806). Under GAN-based perturba-
tions, the respective increases are 11.05% for the MLP and 6.95% for 
the MoE.

In PV forecasting, where vulnerability is highest, the MLP degrades 
by 21.67% under uniform noise and 59.17% under GAN-based noise, 
while the MoE shows markedly lower increases of 13.41% and 36.90%, 
respectively.

Prosumption forecasting exhibits a similar pattern. The MLP RMSE 
increases by 34.92% (uniform) and 37.90% (GAN), while the MoE 
maintains lower increases of 12.48% and 15.11%.

Beyond lower relative degradation, the MoE consistently achieves 
lower absolute RMSE across all tasks and perturbation types, reinforc-
ing its suitability for federated forecasting under adversarial conditions.

While the previous analysis focused on average performance across 
unmodified clients, we now examine the client-level consistency of 
backdoor effects during the targeted hours. This complements the 
model-level results by assessing how reliably performance degradation 
manifests across individual benign buildings. Fig.  15 shows parity 
plots comparing the RMSE of each unmodified client under attack 
(perturbation scale 0.9) to the clean FL baseline, averaged over the 
backdoor interval. Points above the diagonal indicate increased error 
due to the attack.
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Fig. 15. Performance parity of unmodified buildings under backdoor attacks 
at noise scales 0.0 and 0.9.

Fig. 16. Performance comparison between poisoned and unmodified buildings 
at noise scales 0.0 and 0.9 for the backdoor attack.

Backdoor perturbations impact nearly all unmodified clients during 
the targeted window, though the severity of degradation varies. Under 
uniform noise, all clients exhibit some level of deviation from the 
clean baseline, while GAN-based perturbations affect 97% of clients. 
However, not all deviations result in substantial performance loss. 
The magnitude and variability of the impact are significantly higher 
under GAN-based attacks, particularly in load and PV forecasting. 
For load, the client-wise RMSE range broadens from [0.0856, 0.1727]
(uniform) to [0.1239, 0.2285] (GAN), and for PV from [0.0759, 0.1158] to 
[0.1369, 0.1732], indicating both higher error levels and increased dis-
persion. In contrast, prosumption forecasting shows a slightly narrower 
distribution under GAN-based noise ([0.0702, 0.1935]) compared to 
uniform noise ([0.0885, 0.2294]), though the overall RMSE remains ele-
vated. These findings demonstrate that, despite being temporally local-
ized, backdoor perturbations reliably propagate to benign clients. More-
over, GAN-based attacks introduce greater heterogeneity and model 
instability, making them especially challenging to detect and mitigate.

To complement the previous analysis of unmodified buildings, we 
now examine how backdoor attacks impact individual clients during 
the targeted time window, distinguishing between the attacker and 
unaffected participants. This enables a direct assessment of whether 
adversarial updates from a single client degrade the performance of 
others through the federated aggregation process.

Fig.  16 displays violin plots of the RMSE at noise scales 0.0 and 
0.9, contrasting adversarial and benign clients. The results confirm that 
performance degradation is not confined to the attacking client, but 
extends to unmodified buildings, with the severity depending on both 
the perturbation type and the forecasting task.

Under uniform noise, forecasting errors increase similarly across 
both groups. For load, the RMSE rises by +14.94% for adversarial clients 
10 
Fig. 17. Performance of the unmodified buildings under poisoning attack and 
selected security measures.

and +13.78% for the unmodified buildings. Prosumption follows a 
comparable trend, with increases of +18.79% and +23.81%, respectively. 
For PV, the effect is slightly stronger on unmodified buildings, with a 
+17.55% increase compared to +13.87% in the adversarial case.

In contrast, GAN-based attacks produce significantly stronger ef-
fects. For PV, the RMSE increases by +49.27% in compromised clients 
and +47.95% in the unmodified buildings, indicating substantial trans-
fer of the backdoor effect. Similar propagation is observed for prosump-
tion (+24.56% vs. +26.45%). For load, the increase is more moderate, 
with +13.06% in adversarial clients and +9.09% in the benign buildings.

In summary, backdoor attacks reliably impair forecasting perfor-
mance across other clients. The effect is strongest in PV forecasting and 
most severe under GAN-based perturbations, highlighting the ability 
of structured adversarial updates to propagate through the federated 
model. For load and prosumption, the degradation remains largely 
confined to the backdoor window, preserving overall model accuracy. 
In contrast, PV forecasting experiences broader degradation that ex-
tends beyond the targeted hours. These results highlight the need for 
defensive measures to assure a reliable deployment of federated energy 
forecasting.

4.3. Security in federated energy forecasting

While previous results show that a single adversarial client per 
cluster can significantly degrade performance for unaffected partici-
pants, this subsection evaluates the effectiveness of various mitigation 
strategies. Specifically, we assess the impact of (i) increasing cluster 
size to dilute adversarial influence, (ii) retraining local models to adapt 
to clean data, (iii) applying weighted aggregation to down-weight 
anomalous updates, and (iv) integrating all measures into a unified 
secure framework.

We begin by evaluating the effectiveness of the proposed defense 
strategies against data poisoning. Fig.  17 presents the resulting RMSE 
for unmodified buildings across all energy types and both perturbation 
types. Detailed RMSE and STD values are provided in Table  4.

For load forecasting, unprotected models exhibit substantial degra-
dation, with RMSE increasing from 0.1154 to 0.1386 under uniform 
noise (+20.13%) and to 0.1685 under GAN-based perturbations
(+45.70%). Clustering significantly mitigates this effect, reducing the 
RMSE to 0.1193 (+3.34%) for uniform noise and 0.1169 (+1.09%) 
for GAN-learned noise, recovering 83% and 97% of the added error, 
respectively. Weighted aggregation is less effective for uniform noise 
(+16.93%) but performs markedly better under GAN-based attacks, 
limiting the increase to +3.70% and eliminating 92% of the degradation. 
Local retraining further improves robustness, decreasing RMSE by 
−11.39% (uniform) and −11.20% (GAN), thereby outperforming the 
clean baseline. The Secure approach achieves the best overall results, 
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Table 4
Performance of unmodified buildings under poisoning attacks and selected 
security measures.
 Setup RMSE STD Diff vs. FL (N0.0)  
 Uniform/GAN Uniform/GAN Uniform/GAN  
 Load
 FL 0.1154/0.1157 0.03/0.03 0.00%/0.00%  
 N0.9 0.1386/0.1685 0.03/0.03 20.13%/45.70%  
 Cluster 0.1193/0.1169 0.03/0.03 3.34%/1.09%  
 Retrain 0.1023/0.1027 0.03/0.03 −11.39%/−11.20% 
 wAgg 0.1349/0.1200 0.03/0.04 16.93%/3.70%  
 Secure 0.0955/0.0961 0.03/0.03 −17.23%/−16.88% 
 PV
 FL 0.0673/0.0679 0.01/0.01 0.00%/0.00%  
 N0.9 0.0952/0.1571 0.01/0.01 41.45%/131.38%  
 Cluster 0.0803/0.0919 0.01/0.01 19.24%/35.35%  
 Retrain 0.0667/0.0666 0.01/0.01 −0.97%/−1.89%  
 wAgg 0.0789/0.0695 0.01/0.01 17.24%/2.32%  
 Secure 0.0688/0.0687 0.01/0.01 2.21%/1.21%  
 Prosumption
 FL 0.1030/0.1034 0.03/0.03 0.00%/0.00%  
 N0.9 0.1308/0.1312 0.04/0.04 27.06%/26.83%  
 Cluster 0.1094/0.1130 0.03/0.03 6.29%/9.22%  
 Retrain 0.0900/0.0900 0.02/0.02 −12.60%/−12.99% 
 wAgg 0.1262/0.1073 0.04/0.02 22.57%/3.77%  
 Secure 0.0841/0.0849 0.02/0.02 −18.34%/−17.88% 
Note: N0.9 denotes a noise scale of 0.9; Cluster increases cluster size, Retrain applies 
local retraining, wAgg uses weighted aggregation, and Secure combines all security 
measures. Diff shows the change from the FL baseline (noise 0.0). Noise is sampled 
from a uniform distribution or a GAN.

lowering RMSE up to −17.23%. Low STD ( 0.03) across clients confirm 
the consistency of all mitigation strategies.

For PV forecasting, the attack causes more severe degradation. 
Under uniform noise, the RMSE increases from 0.0673 to 0.0952 
(+41.45%), while under the GAN attack it reaches 0.1571 (+131.38%). 
Clustering reduces these errors to 0.0803 (+19.24%) and 0.0919
(+35.35%), mitigating 54% and 73% of the degradation. Weighted ag-
gregation performs especially well under the GAN-based noise, achiev-
ing an RMSE of 0.0695, which represents only a +2.32% increase over 
the clean baseline and recovers nearly 98% of the added error. Local 
retraining fully restores the model performance, yielding an RMSE of 
0.0667 (−0.97%) and 0.0666 (−1.89%) for uniform and GAN, respec-
tively. The Secure defense is similarly effective, achieving an RMSE 
of 0.0688 (+2.21%) and 0.0687 (+1.21%), corresponding to mitigation 
rates of 95% and 99%.

For prosumption, both attack types yield comparable increases in 
RMSE: from 0.1030 to 0.1308 (+27.06%) under uniform noise and to 
0.1312 (+26.83%) under learned GAN perturbations. Clustering low-
ers the RMSE to 0.1094 (+6.29%) and 0.1130 (+9.22%), recovering 
77% and 66% of the error, respectively. Weighted aggregation shows 
clear asymmetry: under GAN, it reduces RMSE to 0.1073 (+3.77%), 
reversing 86% of the attack impact, while under uniform noise it 
only reaches 0.1262 (+22.57%), achieving just 17% mitigation. Local 
retraining again offers full protection, lowering RMSE to 0.0900 in 
both cases (−12.60% and −12.99%), effectively eliminating the attack’s 
effect and improving model accuracy. The Secure strategy achieves the 
strongest overall performance, with an RMSE of 0.0841 and 0.0849, 
and outperforming even the clean baseline.

Summarizing the results for data poisoning attacks, local retraining 
and the Secure combination consistently achieve the lowest RMSE, 
closely followed by clustering. Weighted aggregation alone proves in-
sufficient in the presence of uniform noise, but shows moderate success 
under GAN.

Building on the poisoning results, Fig.  18 shows the RMSE achieved 
by each defense strategy under backdoor attacks, evaluated across all 
energy types and both perturbation methods. The results are aver-
aged over the targeted interval (10:30–12:30) and computed solely 
11 
Table 5
Performance of unmodified buildings under backdoor attacks and selected 
security measures (attacked hours only).
 Setup RMSE STD Diff vs. N0.9  
 Uniform/GAN Uniform/GAN Uniform/GAN  
 Load
 FL 0.0759/0.0764 0.03/0.03 0.00%/0.00%  
 N0.9 0.0863/0.0840 0.03/0.03 13.61%/9.85%  
 Cluster 0.0751/0.0738 0.03/0.03 −1.04%/−3.52%  
 Retrain 0.0730/0.0732 0.02/0.03 −3.93%/−4.19%  
 wAgg 0.0853/0.0862 0.03/0.03 12.32%/12.82%  
 Secure 0.0671/0.0670 0.03/0.03 −11.60%/−12.30% 
 PV
 FL 0.1191/0.1187 0.02/0.02 0.00%/0.00%  
 N0.9 0.1379/0.1716 0.02/0.03 15.76%/44.61%  
 Cluster 0.1319/0.1358 0.02/0.02 10.73%/14.45%  
 Retrain 0.1188/0.1182 0.02/0.02 −0.28%/−0.44%  
 wAgg 0.1340/0.1310 0.02/0.02 12.48%/10.37%  
 Secure 0.1201/0.1197 0.02/0.02 0.84%/0.87%  
 Prosumption
 FL 0.0713/0.0721 0.02/0.02 0.00%/0.00%  
 N0.9 0.0871/0.0914 0.03/0.02 22.20%/26.68%  
 Cluster 0.0747/0.0778 0.02/0.02 4.74%/7.88%  
 Retrain 0.0700/0.0695 0.02/0.02 −1.79%/−3.65%  
 wAgg 0.0912/0.0872 0.03/0.02 27.85%/20.91%  
 Secure 0.0645/0.0643 0.02/0.02 −9.54%/−10.83%  
Note: N0.9 denotes a noise scale of 0.9; Cluster increases cluster size, Retrain applies 
local retraining, wAgg uses weighted aggregation, and Secure combines all security 
measures. Diff shows the change from the FL baseline (noise 0.0). Noise is sampled 
from a uniform distribution or a GAN.

for unaffected clients, isolating the indirect impact and its mitiga-
tion. Complementary to this, Table  5 provides exact RMSE values, 
STD across clients, and the relative improvement compared to the 
unprotected setting at scale 0.9, enabling a detailed assessment of all 
countermeasures.

For load forecasting, the unprotected backdoor attack moderately 
increases RMSE, rising from 0.0759 to 0.0863 (+13.61%) under uniform 
noise and from 0.0764 to 0.0840 (+9.85%) with GAN-based pertur-
bations. Clustering effectively mitigates the impact, reducing RMSE 
to 0.0751 (−1.04%) and 0.0738 (−3.52%), slightly improving over the 
clean baseline. Local retraining achieves even better results with 0.0730 
(−3.93%) and 0.0732 (−4.19%), indicating full mitigation and perfor-
mance gains. In contrast, weighted aggregation offers limited protec-
tion, with RMSE values of 0.0853 (+12.32%) and 0.0862 (+12.82%), 
close to the unprotected case. The Secure approach yields the best 
results, reducing RMSE to 0.0671 (uniform) and 0.0670 (GAN), corre-
sponding to improvements of −11.60% and −12.30% relative to the clean 
baseline. Standard deviations remain low ( 0.03), confirming consistent 
effectiveness across clients.

For PV, the unprotected backdoor introduces substantial error, rais-
ing RMSE from 0.1191 to 0.1379 (+15.76%) under uniform noise and 
from 0.1187 to 0.1716 (+44.61%) under GAN-based perturbations. Clus-
tering reduces these values to 0.1319 (+10.73%) and 0.1358 (+14.45%), 
corresponding to 32% and 68% recovery, respectively. Weighted ag-
gregation performs slightly worse, achieving RMSE values of 0.1340 
(+12.48%) and 0.1310 (+10.37%), reducing the impact by only 21% 
and 77%. Local retraining effectively neutralizes the attack, lowering 
RMSE to 0.1188 (−0.28%) and 0.1182 (−0.44%), corresponding to a 
full reversal of the induced degradation. The Secure strategy performs 
similarly, reaching 0.1201 (+0.84%) and 0.1197 (+0.87%), implying 
95–98% mitigation of the original RMSE increase.

For Prosumption, the unprotected backdoor leads to the most pro-
nounced relative degradation across all three energy types, with RMSE 
rising from 0.0713 to 0.0871 (+22.20%) under uniform noise and 
from 0.0721 to 0.0914 (+26.68%) under GAN perturbations. Clustering 
provides partial mitigation, reducing the RMSE to 0.0747 (+4.74%) 
and 0.0778 (+7.88%), corresponding to 79% and 70% recovery, re-
spectively. Weighted aggregation again performs poorly under uniform 
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Fig. 18. Performance of the unmodified buildings under backdoor attack and 
selected security measures.

noise, with RMSE rising further to 0.0912 (+27.85%), indicating no 
effective mitigation. Under GAN, it performs slightly better at 0.0872 
(+20.91%), still far from neutralizing the attack. Local retraining, by 
contrast, is consistently effective, yielding RMSE of 0.0700 (−1.79%) 
and 0.0695 (−3.65%), corresponding to full mitigation and a slight 
performance gain over the clean FL baseline. The secure combination 
achieves the strongest performance, reducing RMSE to 0.0645 and 
0.0643, which translates to a complete mitigation of the backdoor effect 
and further improvement beyond baseline (−9.54% and −10.83%).

In summary, the Secure defense and local retraining again emerge 
as the most effective strategies across all energy types and perturbation 
methods. Clustering provides moderate protection, especially for Load 
and Prosumption, but fails to fully restore clean performance. Weighted 
aggregation proves largely ineffective against the backdoor attack, 
particularly under uniform noise, where RMSE remains comparable to 
or worse than the unprotected attack level. These findings reinforce the 
importance of combining multiple mitigation mechanisms, as done in 
the secure framework, to achieve reliable and generalizable backdoor 
robustness across domains and attack types.

5. Discussion and limitations

In this section, we discuss our results on data poisoning, backdoor 
attacks, and the evaluated mitigation strategies for federated energy 
forecasting. We first interpret how attack type, perturbation structure, 
energy type, and model architecture jointly shape vulnerability, and 
then assess how the proposed mitigation strategies restore or even 
improve forecasting performance. Finally, we relate these technical 
insights to their implications for operating federated forecasting in 
practical energy systems.

Our results presented in Section 4.2 demonstrate that federated 
energy forecasting is vulnerable to data poisoning attacks, even when 
only a single client is compromised. We observe consistent perfor-
mance degradation across all unaffected clients, with GAN-generated 
perturbations causing significantly more harm than uniform noise. This 
effect increases with perturbation scale and varies across energy types 
and model architectures. The pronounced difference between GAN 
and uniform noise could be attributed to the structured nature of the 
adversarial signals. While uniform noise introduces random, uncoordi-
nated deviations that may partially cancel out during aggregation, GAN 
perturbations are explicitly optimized to mislead a surrogate forecaster. 
As a result, they may learn transferable patterns that propagate more ef-
fectively through the global model and degrade performance across the 
federated buildings. The degree of degradation also differs by energy 
type. Load forecasting appears more resilient, which could be due to the 
inherent variability and stochasticity of load profiles across clients, lim-
iting the influence of a single poisoned input. In contrast, PV time series 
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are typically more homogeneous and predictable, which may enable 
structured perturbations to generalize more easily, thereby amplifying 
their impact. Model architecture further influences robustness. MoE 
models consistently exhibit lower error increases than standard MLP. 
This improvement may stem from its higher representational capacity 
and the expert gating mechanism, which could reduce sensitivity to 
localized corruptions.

Building on the poisoning results, Section 4.2 shows that even a 
temporally restricted backdoor from a single client can impair the 
performance of unaffected participants. Unlike poisoning, which im-
pacts the full day, backdoor effects are confined to the trigger window 
yet still propagate effectively through the cluster. While our trigger 
targets a fixed two-hour slot, such attacks could be aligned with critical 
periods (e.g., grid congestion), amplifying their operational impact. 
Degradation is strongest under GAN-based perturbations, highlighting 
that learned signals can manipulate the global model even when tempo-
rally constrained. Uniform noise also induces errors but is less effective, 
particularly for PV and prosumption. Load forecasting remains com-
paratively robust, likely due to its higher intrinsic variability, while 
PV is the most susceptible. Consistent with earlier findings, the MoE 
architecture provides increased robustness over the MLP, especially 
under GAN-based perturbations.

The results in Section 4.3 confirm that federated energy forecasting 
can safeguarded against both poisoning and backdoor attacks through 
targeted defenses. Most notably, local retraining and our integrated 
security framework consistently restore performance, often surpassing 
the clean FL baseline. This suggests that retraining not only mitigates 
malicious influence but also corrects residual errors in the global model. 
Clustering provides moderate protection by diluting poisoned updates 
across more clients. Its effectiveness varies, offering stronger defense 
for load and prosumption, but limited for PV, where similarity across 
clients amplifies attack transferability. Weighted aggregation performs 
inconsistently: it partially mitigates structured GAN-based attacks but 
fails against unstructured uniform noise, likely due to difficulty in 
identifying random perturbations. Across all settings, PV remains the 
most vulnerable, reflecting its predictable structure, while load is more 
resilient due to its inherent uncertainty.

Overall, these results show that FL-based forecasting in residential 
energy systems is not secure by default. Even a single compromised 
client applying moderate perturbations can propagate errors to the ag-
gregated model, distort cluster-wide predictions, and thereby influence 
downstream processes such as grid balancing, flexibility activation, and 
market clearing. At the same time, the observed benefits of MoE archi-
tectures, together with the effectiveness of local retraining and larger 
cluster sizes, demonstrate that robust and privacy-preserving forecast-
ing is feasible when adversarial behavior is explicitly considered in 
system design. For operators and regulators, this underscores the neces-
sity of complementing accuracy benchmarks with systematic robustness 
assessments and integrating security mechanisms, continuous moni-
toring, and adversarial testing into the deployment and certification 
of federated forecasting services. A combination of weighted aggre-
gation, increased cluster sizes, local retraining, advanced forecasting 
models, and anomaly detection for noisy or manipulated data emerges 
as a practical approach to achieving secure and reliable FL in energy 
systems.

5.1. Limitations and future work

While our findings highlight critical vulnerabilities and effective 
defenses, several limitations remain, motivating future research di-
rections. First, the GAN-based attacks rely on access to a white-box 
surrogate model trained on similar data. While this enables structured, 
worst-case perturbations, real-world attackers may face restricted ac-
cess or operate under black-box conditions. Future work could explore 
more these constrained threat models, including transferability from 
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unrelated domains. Second, our evaluation assumes a single compro-
mised client per cluster. Although this already causes substantial perfor-
mance degradation, coordinated attacks involving multiple malicious 
participants could further stress the system. Investigating such collusion 
scenarios and their implications on defense robustness is a promising 
next step. Third, the backdoor trigger is fixed to a static time window. 
While this design facilitates analysis, adaptive triggers, e.g., those 
aligned with high congestion hours or calendar-based events, could 
lead to more effective and harder-to-detect attacks. Future work should 
explore context-aware backdoors and methods to detect them. Fourth, 
our experiments are limited to two neural architectures (MLP and 
MoE). While these are commonly used, evaluating more complex archi-
tectures such as LSTM, convolutional neural network, or transformers 
may offer deeper insights into architectural resilience and defense com-
patibility. Fifth, the study is based on a single dataset with structurally 
similar clients. Real-world federated systems typically exhibit greater 
heterogeneity in data quality, scale, and behavior. Future evaluations 
should account for such non-iid settings, client dropout, and variable 
participation rates to assess generalizability. Beyond addressing current 
limitations, future work should aim to develop more sophisticated 
attack strategies, particularly by advancing the training of the GAN. For 
example, by including a discriminator network or diffusion-based gen-
erative models could enable the creation of smoother, more temporally 
consistent perturbations that better mimic natural energy consumption 
patterns, making the attack harder to detect.

6. Conclusion

This paper presented a comprehensive analysis of security vulner-
abilities and corresponding mitigation strategies in federated energy 
forecasting. We demonstrated that both data poisoning and backdoor 
attacks can substantially impair global model performance. Specifi-
cally, perturbations generated using a Generative Adversarial Network 
increased the RMSE by up to 131% in poisoning scenarios, while 
backdoor attacks reduced prediction accuracy by up to 48% during 
the targeted intervals. Among the forecasting tasks, photovoltaic pre-
dictions were most susceptible to adversarial manipulation, whereas 
load forecasting exhibited greater robustness. To address these vul-
nerabilities, we systematically evaluated four mitigation strategies. 
Among them, local model retraining and the proposed integrated se-
curity framework proved most effective, consistently mitigating both 
attack types and, in several cases, restoring or surpassing baseline 
performance. By contrast, clustering-based defenses and weighted ag-
gregation achieved only limited mitigation, particularly in the presence 
of unstructured or adaptive perturbations. In all evaluated scenarios, 
the Mixture of Experts architecture demonstrated superior robustness 
to adversarial interference compared to the standard Multilayer Percep-
tron, emphasizing the role of architectural choices in enhancing system 
resilience. Overall, our results highlight the critical importance of 
integrating robust security measures into federated energy forecasting 
frameworks to ensure their reliable deployment in real-world energy 
systems.
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Appendix. Hyperparameters of the Multilayer Perceptron and
Mixture of experts

In this section we briefly describe our MLP and the MoE gating 
mechanism. For more details we refer to [37]. The MLP serves as a 
compact reference architecture. The input is a sequence of length 𝑇
with 𝐹  features per time step, representing one observation window 
of the time series. By flattening the 𝑇 × 𝐹  input to a single vector, all 
temporal samples become jointly accessible to the dense layers. The 
MLP provides a baseline against which adaptive specialization of the 
MoE can be evaluated. The MoE extends this setup through a learnable 
routing mechanism. For each input 𝑥𝑡, the gating network generates 
a vector of scores, which are normalized into expert weights via a 
softmax transformation
𝐺(𝑥𝑡) = sof tmax(𝑥𝑡𝑊𝑔),

where 𝑊𝑔 is a trainable gating matrix. The output of the MoE layer is 
a convex combination of expert responses,

𝑀(𝑥𝑡) =
𝑛
∑

𝑖=1
𝑝𝑖 𝐸𝑖(𝑥𝑡),

with 𝑝𝑖 ≥ 0 and ∑𝑖 𝑝𝑖 = 1. This formulation preserves differen-
tiability and enables the model to interpolate across experts, allow-
ing each expert to specialize on different sub-tasks. During training, 
the gating network may repeatedly assign high probability to the 
same experts, which limits specialization and results in the well-known 
dying-experts phenomenon. To mitigate this, we regularize based on 
expert similarity rather than solely on routing imbalance. By discour-
aging convergence of expert parameters towards identical solutions, 
the architecture maintains complementary expert behaviors, which 
improves robustness in heterogeneous energy settings. This design 
allows the MoE to capture distinct consumption dynamics, device usage 
patterns, or context-specific temporal signals, while the gating mech-
anism adaptively selects the most informative experts for each input 
segment [37].
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