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Glossary and Notation

General Conventions

a scalar

a vector

A matrix

o set

R set of real numbers

N set of natural numbers

AT transpose of a matrix

At inverse of a matrix

|a| absolute value of a scalar

l|all Euclidean norm of a vector

a™m coordinate n of vector a

a(m®) coordinates 7, & of vector a

0, vector of n zeros

1, identity matrix of size n

la] rounding off a

% partial derivative of f with respect to a

diag(a) diagonal matrix of vector a

sign(a) sign of scalar a

atan2(y, ) 4-quadrant extension of inverse tangent for scalars x, y

erf(a) Gauss error function at scalar a

®(a) standard normal distribution cumulative distribution function at scalar a
N (p,0?) Gaussian distribution with mean g and standard deviation o
% (a,b) uniform distribution in interval [a, b]

I (a,b,c) triangular distribution with lower limit a, upper limit b, and mode ¢

State Estimation

Zp system state at time step k

Zpk—1 predicted state mean at time step k

Zy, updated state mean at time step k

Prjr—1 predicted state covariance matrix at time step k
Py updated state covariance matrix at time step k
Ypo [-th measurement at time step &

gk,l [-th predicted measurement at time step k

gk,l [-th measurement in local coordinates at time step k
2k [-th measurement source at time step k

Zy i i-th sample of state z at time step k

Say, stacked vectors ay 5, ..., qy, at time step k
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SAL stacked matrices Ay 1,..., Ay at time step k
N number of samples in the linear regression Kalman filter (LRKF)
Ty number of processed measurements in a single sequential batch update
ng number of measurements gathered at time step &
Ng dimensionality of vector a
Abbreviations
EOT extended object tracking
Lidar light detection and ranging
Radar radio detection and ranging
EKF extended Kalman filter
LRKF linear regression Kalman filter
UKF unscented Kalman filter
S2KF smart sampling Kalman filter
SDM spatial distribution model
RM random matrix
GAM greedy association model
RHM random hypersurface model
ERHM extrusion random hypersurface model
RAMN recursive artificial measurement noise
PDF probability density function
RMSE root mean square error
MC Monte Carlo
CDF cumulative distribution function
IoU intersection over union
SDFS spherical double Fourier series
FCDS Fourier-Chebyshev double series
SH spherical harmonics
GP Gaussian process
DFS double Fourier series
CAD computer-aided design
CT coordinated turn
RTK real-time kinematic
GPS global positioning system
IMU inertial measurement unit



Zusammenfassung

Bei der Verwendung von modernen und hochauflésenden Sensoren wie Lidar oder Radar,
welche zunehmend auch in der Umfelderkennung der automatisierten bis autonomen Schifffahrt
eingesetzt werden, wird eine Vielzahl von Messungen pro Zeitschritt und Objekt aufgezeichnet.
Die Anzahl der Messdaten hidngt dabei von der Auflésung des Sensors und dem Abstand
des Sensors zum aufgezeichneten Objekt ab und kann bei modernsten Sensoren mehrere
tausend Messungen pro Zeitschritt und Objekt betragen. Durch die Fusion dieser Messungen
in zeitlicher Reihenfolge und die Annahme eines Bewegungsmodells, welches dem dynamischen
zu verfolgenden Objekt unterstellt wird, kann die kinematische Zustandsverteilung des Objekts
innerhalb eines Zustandsfilters geschétzt werden.

Da die Fille an Messdaten, welche die Sensoren generieren, im Normalfall iiber die Oberflache
des gesamten Objekts verteilt sind, beinhalten diese zusétzlich zu den Informationen iiber den
kinematischen Zustand Informationen tber die Ausdehnung und Form der zu verfolgenden
Objekte. Die Schitzung dieser Ausdehnungs- und Forminformationen innerhalb des Mess-
modells eines Zustandsfilters zur Verfolgung von Objekten wird in der einschlagigen Literatur
als Extended Object Tracking (EOT) bezeichnet. Diese Dissertation beschéftigt sich mit der
Erstellung und Untersuchung von entsprechenden Messmodellen fiir Messdaten im dreidimen-
sionalen Raum, welche speziell fiir Anwendungen im maritimen Bereich geeignet sind. Der
Inhalt der Arbeit ldsst sich dabei in drei Teile untergliedern.

Im ersten Teil der Arbeit werden die theoretischen Grundlagen erarbeitet, welche fiir die
Erstellung eines EOT-Filters benétigt werden. Dazu gehoren zundchst die Herleitung géangiger
nichtlinearer Filterverfahren wie des Extended- und des Linear-Regression-Kalman-Filter an-
hand der allgemeinen Bayes-Filter-Gleichungen und die Verarbeitung mehrerer Messdaten pro
Zeitschritt innerhalb dieser Verfahren. Innerhalb der Messmodelle dieser Verfahren kénnen nun
die Systemzustéinde, welche aus einem kinematischen und einem Ausdehnungs- bzw. Formanteil
bestehen, auf die vorhergesagte Messung abgebildet werden, welche fiir die Berechnung eines
Residuums im Korrekturschritt des Filters bendtigt wird. Da die vorhergesagte Messung sich aus
einem Messrauschen mit angenommener bekannter Verteilung und einem im Allgemeinen un-
bekannten Punkt auf der Oberfliche des Objekts, der sogenannten Messquelle, zusammensetzt,
werden im Anschluss unterschiedliche Methoden aus der Literatur zur Messquellenzuordnung
hergeleitet und diskutiert. Speziell werden, ausgehend von Spatial Distribution Modellen
(SDM), das sogenannte Greedy Association Modell (GAM), welches eine greedy Zuordnung
der Messquelle verwendet, und das Random Hypersurface Modell (RHM) und Extrusion RHM
(ERHM) als Kombination eines SDM und GAM zur Losung des Zuordnungsproblems vorgestellt.

Im Anschluss werden in zwei weiteren Abschnitten praktische Probleme beim Einsatz von
EOT-Verfahren mit Realdaten behandelt. Zunéchst wird ein effektiver und einfach zu im-
plementierender Ansatz vorgestellt, um Intervallbeschrankungen anhand von beschrankten
Transformationsfunktionen bei der Zustandsschétzung einzuhalten. Speziell im EOT kénnen In-
tervallbeschrénkungen, welche eingehalten werden sollten, auftreten, sodass beispielsweise keine
negativen Léngen, Breiten oder Hohen als Ausdehnungsparameter moglich sind. Ein weiteres
praktisches Problem besteht darin, dass dreidimensionale reale Messdaten oftmals aufgrund der
physischen Struktur der zu verfolgenden Objekte sowohl von der dufleren Hiille als auch vom
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Innenbereich aufgezeichnet werden. Wird in den Messmodellen allerdings davon ausgegangen,
dass die Messdaten lediglich von der dufleren Hiille der Objekte generiert werden, so kann das
Schatzergebnis verzerrt werden. Fiir die Losung dieses Problems wird am Ende des ersten
Teils ein kiinstliches rekursiv geschétztes Messrauschen fiir Messdaten aus dem Innenbereich
eingefithrt, welches diese Verzerrungen reduziert und dabei auf kein Vorwissen angewiesen ist,
da die Korrekturgréffen anhand der aufgezeichneten Messdaten geschétzt werden. Diese beiden
Verfahren werden im Laufe der Arbeit auf alle neu vorgestellten Messmodelle angewendet.

Aufbauend auf diesen theoretischen Grundlagen werden im zweiten Teil der Arbeit drei un-
terschiedliche Kategorien von Messmodellen fiir 3D-EOT von maritimen Objekten vorgestellt,
diskutiert und zunéchst in statischen simulierten Szenarien untersucht. Dabei wird bei der
Definition dieser Messmodelle die charakteristische Eigenschaft von Messdaten im maritimen
Bereich berticksichtigt, bei der davon auszugehen ist, dass in den meisten Szenarien hauptséch-
lich Messungen der Mantelfliche der Objekte aufgezeichnet werden. Messdaten der Ober- und
Unterseite sind oftmals aufgrund von Verdeckungen durch das Wasser und die Montageposition
der Sensoren spérlich. Formreprésentationen in zylindrischen Koordinaten beriicksichtigen diese
charakteristische Eigenschaft durch die Definition der Form anhand der Mantelfliche.

Ausgehend von einer vorherigen Klassifizierung der Objekte werden daher in einem ersten Kapi-
tel zwei Messmodelle in zylindrischen Koordinaten, welche parametrische Formreprasentationen
verwenden, vorgestellt. Dabei werden unterschiedliche Messmodelle, welche die Form eines
Motorboots mit einem elliptischen Zylinder und die Form eines Segelboots mit einem elliptis-
chen Kegel approximieren, vorgestellt und untereinander verglichen. Um die Objektverfolgung
ohne vorgelagerte Klassifizierung verbessern zu konnen, werden in einem weiteren Kapitel
unterschiedliche Varianten an Messmodellen vorgestellt und untersucht, welche eine flexible
Reihenentwicklung, zusammengesetzt aus einer Fourier- und einer Chebyshevreihe, als Form-
reprasentation in zylindrischen Koordinaten verwenden. Die Schétzung der Reihenkoeffizienten
innerhalb eines EOT-Filters ermoglicht dann die Anpassung der Form an die vorliegenden
Messdaten. Aufgrund der nur schwer vorhersagbaren Anzahl an Formkoeffizienten, die fiir
diesen Ansatz benétigt werden, werden in einem letzten Kapitel unterschiedliche Varianten eines
Messmodells, welches eine flexible parametrische Formrepréasentation basierend auf Superel-
lipsen verwendet, vorgestellt und untereinander verglichen. Diese ermoglichen beispielsweise die
Unterscheidung zwischen einer elliptischen und einer rechteckigen Grundform innerhalb eines
einzelnen Modells, welches nur wenige Formparameter benétigt, was fiir viele Anwendungen
bereits ausreichend sein kann.

Der dritte Teil der Arbeit beschéftigt sich mit einer vergleichenden Untersuchung der vorgestell-
ten Messmodelle in unterschiedlichsten dynamischen Szenarien. Im maritimen Bereich werden
die Modelle, welche fiir Motorboote geeignet sind, mithilfe der Solgenia, eines Forschungsboots
der HTWG Konstanz, als Referenzobjekt getestet. In dieser Untersuchung wird ein CAD Modell
der Solgenia innerhalb einer Simulation fiir die Messdatengenerierung und in der Simulation,
sowie einem Realdatenexperiment als Formreferenz eingesetzt. Eine solche Untersuchung ist
einzigartig in der bisherigen Literatur. Die Messmodelle, welche speziell fiir Segelboote erstellt
wurden, werden in diesem Kapitel anhand von Realdaten eines Segelboots aus einer Regatta
validiert. Um die Generalisierbarkeit der Messmodelle zu untersuchen, werden diese in einem
letzten Schritt unter Verwendung des bertihmten KITTI-Datensatzes untersucht. Dabei werden
etwa 1200 Szenarien mit unterschiedlichen Objektklassen fiir die erarbeiteten Messmodelle
sowie Vergleichsmodelle der Literatur ausgewertet und verglichen. Die Ergebnisse aller Unter-
suchungen untermauern die Effektivitdt und gleichzeitige Effizienz der in dieser Dissertation
erarbeiteten Modelle. Offene Fragen, die in dieser Arbeit nicht beantwortet werden konnten,
werden am Ende der Arbeit vorgestellt und diskutiert.
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Abstract

When using modern, high-resolution sensors such as Lidar or Radar, which are increasingly
being used in environment perception for automated and autonomous shipping, a large number
of measurements are recorded per time step and object. The number of measurements then
depends on the resolution of the sensor and the distance between the sensor and the recorded
object, and can amount to several thousand measurements per time step and object with
state-of-the-art sensors. By fusing these measurements in chronological order and assuming
a motion model that is applied to the dynamic object being tracked, the kinematic state
distribution of the object can be estimated within a state filter.

Since the wealth of measurement data generated by the sensors is typically distributed over the
surface of the entire object, this data contains information about the kinematic state and the
extent and shape of the objects to be tracked. Estimating this extent and shape information
within the measurement model of a state filter for object tracking is referred to in the relevant
literature as extended object tracking (EOT). This dissertation deals with the creation and
investigation of corresponding measurement models for measurement data in three-dimensional
space, which are particularly suitable for applications in the maritime sector. The content of
the thesis can be divided into three parts.

The first part of the thesis develops the theoretical foundations required for the creation of
an EOT filter. This includes the derivation of common nonlinear filtering methods, such as
the extended and linear regression Kalman filters, based on the general Bayes filter equations,
and the processing of multiple measurement data per time step within these methods. Within
the measurement models of these methods, the system states, which consist of a kinematic
and an extent or shape component, can now be mapped to the predicted measurement, which
is required for calculating a residual in the correction step of the filter. Since the predicted
measurement consists of measurement noise with an assumed known distribution and a generally
unknown point on the surface of the object, known as the measurement source, various methods
from the literature for the so-called measurement-to-source association problem are derived
and discussed. Specifically, based on spatial distribution models (SDM), the so-called greedy
association model (GAM), which uses a greedy assignment of the measurement source, and
the random hypersurface model (RHM) and extrusion RHM (ERHM), as a combination of an
SDM and a GAM, are presented as solutions to the association problem.

Two further sections then deal with practical problems when applying EOT methods to real-
world data. First, an effective and easy-to-implement approach is presented for maintaining
interval constraints using bounded transformation functions in state estimation. In EOT in
particular, interval constraints that must be maintained can occur, so that, for example, negative
lengths, widths, or heights are not possible as extent parameters. Another practical problem is
that three-dimensional real-world measurements are often recorded both from the outer hull
and the interior of the objects being tracked due to their physical structure. However, if the
measurement models assume that the measurements are generated solely by the outer hull of
the objects, the estimation result may be biased. To solve this problem, an artificial, recursively
estimated measurement noise for measurements from the interior is introduced at the end of
the first part, which reduces these distortions and does not require any prior knowledge, as
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the correction variables are estimated based on the recorded measurement data. These two
methods are applied to all newly presented measurement models in the further course of the
thesis.

Building on these theoretical foundations, the second part of the thesis presents and discusses
three different categories of measurement models for 3D EOT of maritime objects, which are
initially investigated in static simulated scenarios. The definition of these measurement models
takes into account the characteristic property of measurements in the maritime sector, where
it can be assumed that, in most scenarios, measurements of the lateral surface of the objects
are mainly recorded. Measurements from the top and bottom surfaces are often sparse due
to occlusions by water and the mounting position of the sensors. Shape representations in
cylindrical coordinates consider this characteristic property by defining the shape based on the
lateral surface.

Based on a previous classification of the objects, two measurement models in cylindrical
coordinates that use parametric shape representations are then presented in the first chapter.
Different measurement models that approximate the shape of a motor boat with an elliptical
cylinder and the shape of a sailing boat with an elliptical cone are presented and compared. To
improve object tracking without upstream classification, a further chapter presents and examines
different variants of measurement models that use a flexible series expansion, composed of
a Fourier series and a Chebyshev series, as shape representation in cylindrical coordinates.
Estimating the series coefficients within an EOT filter then allows the shape to be adapted
to the available measurement data. Due to the difficulty of predicting the number of shape
coefficients required for this approach, a final chapter presents and compares different variants of
a measurement model that uses a flexible parametric shape representation based on superellipses.
These enable, for example, the distinction between an elliptical and a rectangular basic shape
within a single model that requires only a few shape parameters, which may already be sufficient
for many applications.

The third part of the thesis deals with a comparative investigation of the presented measurement
models in a wide variety of dynamic scenarios. In the maritime sector, the models suitable for
motor boats are tested using the Solgenia, a research boat belonging to the HTWG Konstanz,
as a reference object. In this study, a CAD model of the Solgenia is used within a simulation
for measurement data generation and in the simulation, as well as in a real-data experiment as
a shape reference. Such an investigation is unique in the literature to date. The measurement
models, which were created specifically for sailing boats, are validated in this chapter using real
data from a sailing boat from a regatta. To investigate the generalizability of the measurement
models, they are examined in a final step using the famous KITTI data set. Approximately 1200
scenarios with different object classes are evaluated and compared for the developed measurement
models and comparison models from the literature. The results of all investigations confirm the
effectiveness and efficiency of the models developed in this dissertation. Open questions that
could not be answered in this work are presented and discussed at the end of the thesis.

ix
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Context

Surface vessels represent an essential means of transportation, currently employed in transporting
goods and people, in the leisure sector, in fishing, in warfare, and in research. The main
advantage of shipping is that existing geographical conditions, such as rivers, lakes, seas, or

® & W N

oceans, can be used directly for transportation, leisure activities, or fishing without the need to
build large-scale artificial infrastructure. Mankind has relied on shipping for many millennia and
utilized it to establish the globalized and interconnected world order that prevails today. Due
to this profound importance, the development of assistance systems for the fully or partially
automated operation of surface vessels has become increasingly important in recent years. Such
systems provide multiple benefits, including:

o Increased safety: Between 2014 and 2023, 26595 marine casualties and incidents were
reported. Contributing factors related to the human element were involved in 80.1% of
these casualties and incidents [4]. The deployment of sensor technology and assistance
systems based on sensor data can significantly reduce this human factor influence.

» Improved operational efficiency: Optimized route planning can reduce energy con-
sumption and travel time, thereby improving overall shipping efficiency [12]. Increased
safety can also reduce crew requirements, enhancing cost-effectiveness [65].

« Enhanced availability: Highly automated and efficient transportation can increase the
availability of public transport in remote areas. In addition, automated public transporta-
tion can be safeguarded via remote access to the control system of the corresponding
vehicle [65, 89].

Further positive effects of automated shipping are summarized in [C6]. The main focus of
this thesis within automated shipping is environmental perception, which constitutes a key
component in the development of automated driver assistance systems.

In recent years, a considerable number of projects have been carried out to develop automated or
autonomous surface vessels across a wide range of shipping categories. In the field of autonomous



Chapter 1. Introduction

water cabs, the RoBoat project [131-133] and the Seabubble project [99] were developed to
enable individualized passenger transport, automated waste disposal, and goods delivery. At
HTWG Konstanz, the Solgenia research vessel [C6] is being developed for the investigation
of multi-sensor environment perception and energy-efficient, collision-free, and time-optimal
path-planning and control applications in maritime environments [73, 135]. A picture of the
Solgenia and its computer-aided design (CAD) model with a graphical representation of the
installed sensors and actuators can be seen in Fig. 1.1. In this thesis, the Solgenia and its sensor

Stereo Camera

/ /Lidar Solar Panel
)

Operator Panel

.....
Bow Thruster

IMU Body

Azimuth Thruster Lithium-Ton Battery

(a) Solgenia with old sensor mounting. (b) Solgenia CAD with new sensor mounting [C6].

Figure 1.1: Solgenia picture and CAD model with the old and new sensor mounting. The description of
sensors and actuators is given in the CAD model.

mounting are utilized for data acquisition [64], and the vessel is also used as an object to be
tracked for testing. As a further shipping category, autonomous ferries are, for example, being
developed in the Zeabuz [71], MS WaveLab [39], and milliAmpere [23] and milliAmpere2 [3]
projects. Further examples of recent developments and investigations in autonomous maritime
systems can be found in [C6].

Extended Object Tracking in Maritime Applications

One module in environment perception is object tracking, which is required to estimate the
dynamic state of the environment. In classical applications of object tracking [10, 11, 19], the
algorithms focused on tracking objects that generate at most a single measurement per time
step, leading to object models representing them as mathematical points with no physical extent.
Using state-of-the-art sensors such as high-resolution light detection and ranging (Lidar) or radio
detection and ranging (Radar), a vast amount of measurements per time step distributed over
the object’s surface is generated, which can be employed to extract extent or shape information
over time. These algorithms are summarized under the term extended object tracking (EOT)
[58, 59, 98].

In automated maritime applications, tracking extended objects instead of point objects is
crucial for several reasons. First, in reality, every object has a physical extent, which must be
taken into account when navigating autonomously. Especially in closely spaced scenarios, the
extent and pose of an object must be known precisely for collision-free control of the vessel. In
addition, extent or precise shape information can be applied for classification in higher-level
algorithms [123, 124].

In the past decade, studies have mainly focused on processing Radar data for environment
perception in maritime systems. Radar has the advantage that even adverse weather conditions
do not affect its performance [151]. In addition, the measurement range can be expected to be



1.3 Related Work

much greater compared to modern Lidar sensors. When tracking extended objects using Radar
data, the shape of a vessel is often approximated using ellipses [42, 43, 127, 128] since these
have proven to approximate the shape of the ship sufficiently accurately. In these approaches,
tracking of the objects is performed in 2D space. Tracking maritime objects in 3D space using
modern Radar sensors, which are often developed for the automotive sector [101, 150], remains
future work in the maritime domain.

In recent years, Lidar sensors, which are already applied extensively in automotive environments
[48], have also been deployed in the maritime sector. The RoBoat [131-133], milliAmpere [3,
23], and Solgenia [C6] test vessels, for example, are all equipped with high-resolution Lidar
sensors. An advantage of Lidar over Radar is its high resolution and low measurement noise,
which means that it can be used for localization and mapping in coastal areas where static
objects are within the range of the sensors [23, C6, 110]. In addition to localization tasks,
Lidar data is also applied for tracking dynamic and extended objects in maritime surroundings.
Compared to assuming mathematical points in the measurement models, it has been shown
that EOT can provide better performance using Lidar [7]. Due to the high resolution of modern
Lidar sensors, not only can ellipses be fitted to the measurements [22, 109], but detailed shape
information can also be extracted in 2D [8, 94] and 3D space [95].

Related Work

In EOT, two important aspects must be considered before developing the measurement model.
First, the shape class to be estimated must be defined. This shape class can consist of parametric
or non-parametric shapes that are to be adapted to the object to be tracked.

Definition 1.1 (Parametric Shape). A parametric shape is defined as a shape that can be
described by a specific geometric logic, where the parameters directly determine the size of the
object. Examples include rectangles or ellipses.

Definition 1.2 (Non-Parametric Shape). A non-parametric shape is defined as a shape for
which no direct geometric logic is encoded by the shape coefficients. Examples include splines or
radial function expansions.

Furthermore, it must be defined whether the object is to be tracked in 2D or 3D Euclidean
space. When tracking extended objects in 2D space modeled using parametric shapes, the
first choice is often to use ellipses as the shape representation. Ellipses have proven to be
flexible and low-dimensional shape representations, which provide a sufficiently accurate shape
approximation for a large number of objects. Numerous elliptical EOT measurement models
have therefore been introduced over the years.

The best known of these models is the famous random matrix (RM) method [40, 83]. The
RM method assumes that the measurements are scattered according to a normal distribution
around the center of the object. This assumption is based on the theory of spatial distribution
models (SDMs) [51, 52|, defined in Sec. 2.4.1, and leads to a robust, efficient, and easy-to-
implement algorithm. The RM approach has been applied in many scenarios and refined in
various studies [62, C5, 112, 125]. Another method for estimating an elliptical extent is the
random hypersurface model (RHM) approach, which is proposed in [15, 16] and discussed in
detail in Sec. 2.4.3. The RHM approach assumes that the measurements are generated from a
scaled version of the object’s boundary, where the scaling factor is modeled as a user-definable
random variable, ultimately providing a more flexible approach than the RM method. Further
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measurement models assuming an elliptical extent can be found in [141, 142], which are based
on modeling the measurement sources using a multiplicative noise model [14], and [25, 57]. A
comparison of the most common measurement models assuming an elliptical extent can be
found in [121].

Further common parametric shapes in 2D space, often used to represent the extent of vehicles
in automotive applications, are rectangles. Popular rectangular EOT measurement models can
be found in [26, 61, 79, 82]. These measurement models rely on different measurement source
association techniques, spanning from an SDM, described in Sec. 2.4.1, to a greedy association
model (GAM), described in Sec. 2.4.2. Furthermore, learning-based rectangular approaches
have recently been proposed that attempt to learn the spatial distribution of measurements
from real data [74, 81, 111, 139]. In doing so, assumptions often made for the measurement
source association are left to the learning process based on real-world data.

If the object’s shape class is unknown, and measurement sources are to be modeled precisely,
non-parametric shape descriptions for simultaneous shape estimation and tracking can be
utilized. In 2D space, a non-parametric shape description can be achieved by estimating
a radial function £ : R — R, # — r that maps each angle 6 € [0,27) to a radius r € [0, 00)
describing the shape of the object. Such non-parametric shapes then have the only restriction
of being star-convex. In the RHM framework, a shape estimation and tracking approach can
be defined using Fourier series [17, 94], a Gaussian process (GP) [9, 129], or lengths of radial
segments [2] for describing the radial function using a series expansion or directly estimating a
discretized function. Besides estimating radial functions, which are restricted to star-convex
shapes, non-convex and arbitrarily shaped objects can be tracked using either polygonal chains
[147], or a potential function represented as a GP [86].

In recent years, measurement models for shape estimation and tracking in 3D Euclidean space
have also been proposed. With parametric shape descriptions in 3D space, there are considerably
more options for different shapes compared to 2D space. The most common parametric shape
in 2D space is an ellipse, which can be extended to ellipsoids in 3D space. The models proposed
in [15, 16, 40, 83] can easily be extended to tracking ellipsoids instead of ellipses. Further
parametric shape measurement models in cylindrical coordinates for cylinders, cones, and tori
have been proposed in [33, 38]. These measurement models are based on the theory of extrusion
random hypersurface models (ERHMs) [148] where the scaling parameter in the RHM approach
is redefined to an extrusion parameter for unbiased height estimates. Details on the ERHM
can be found in Sec. 2.4.3.

In addition, there are also non-parametric measurement models in 3D space that can be used
if the shape class of the object to be tracked is unknown or if measurement sources are to
be modeled precisely. For example, an extension to the B-spline shape representation in [79]
has been proposed in [100]. In this approach, non-uniform rational B-spline surfaces are used
for both extent and shape estimation by estimating either the scaling parameters of a fixed
shape or the weights of the control points of the surface. Another method applying B-splines
in 3D space can be found in [67]. In this model, the positions for the control points of the
B-spline, which represent the profile of the side view, are estimated. The estimated 2D shape is
then extruded to form the 3D shape. Furthermore, radial functions £ : R? — R, [0, ¢] " + 7,
that map each angle pair [0, p]" € [0,7] x [0,27) to a radius r € [0,00), are another way of
representing flexible non-parametric shapes in 3D space. Comparable to 2D radial functions,
these shape representations have the restriction of only being able to represent star-convex
shapes. The shape function in spherical coordinates can then be represented using spherical
harmonicss (SHs) [87], or a GP [30, 84, 85]. An algorithm for shape estimation and tracking
can then be developed using the RHM approach.
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In contrast to the work mentioned so far, in real-world applications, it must be assumed that
an unknown number of dynamic objects are present in the environment of the ego vehicle. This
problem is then referred to as multiple EOT [58]. Although this thesis does not deal with the
tracking of multiple extended objects, the relationship of the contributions made herein to the
multiple EOT problem is briefly explained. In multiple EOT, the main focus is on associating
the measurements gathered in a single time step to newborn or existing objects or categorizing
them as clutter [96]. However, due to the unknown number of measurements that each object
generates at a specific time step, a highly complex data association problem arises where, in
theory, each partitioning of the measurement set must be taken into account [C1, 63]. Once
the measurement data have been associated, the models presented before, such as the RM [62]
or GP [70] approach, can be used to estimate the extent or shape of the individual objects.
Finally, so-called sets of trajectories can be used to generate an assignment of the individual
objects throughout the scenario in addition to the current estimates of the kinematic and extent
state [136].

Challenges

When dealing with 3D high-resolution Lidar measurements for EOT in maritime applications,
which are mainly employed in this thesis, several challenges arise that are summarized and
discussed in this section. Since complex challenges of this type naturally give rise to a large
number of problems, the three main issues addressed in this thesis are described below.

e Challenge 1: Missing Measurements When recording 3D point measurements in
maritime environments, dynamic objects to be tracked are partly underwater. Therefore,
no measurements are usually gathered from the bottom parts of objects on the water
surface. In addition, depending on the sensor mounting position and viewing angle,
measurements from the top part of the objects can also be rare. When tracking maritime
objects, it must therefore be assumed that measurements will mainly be available from
the lateral surface of the objects. This circumstance must be taken into account when
designing the measurement models. If the measurements are projected onto the 2D
horizontal plane and subsequently tracked, the missing measurements do not play a
significant role. However, when tracking in 3D Euclidean space, the missing measurements
must be considered. If the measurement models expect measurements in these areas, the
results may be subject to errors. This problem occurs primarily with measurement models
that are defined in spherical coordinates, such as [15, 16, 40, 83] for parametric and [30,
84, 85, 87] for non-parametric shape descriptions in 3D space. However, representations
in spherical coordinates are often the standard in 3D EOT, especially for non-parametric
shape descriptions in 3D space.

o Challenge 2: Unknown Object Class When designing an automated or autonomous
surface vessel, it must be assumed that a wide variety of objects, such as motorboats,
sailing boats, swimmers, or various leisure sports equipment, but also dredgers or other
construction vessels, can enter the surveillance area of the sensor system. If a camera
system is installed to classify the objects, as is the case with [C6], for example, the
classifications can be used to apply specialized measurement models for individual object
classes. However, these camera systems often pose a further challenge when designing a
surveillance system, as additional data has to be processed, a complex calibration of the
individual sensors to one another has to be carried out, and they are often unusable at
night or in poor weather conditions. If no classification of the objects is available, the
measurement models should have the necessary flexibility to compensate for this lack of
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knowledge. The information gained through this flexibility can subsequently be used for
an enhanced analysis of the scene. In addition, it can be assumed that a more precise
modeling of the measurement sources on a flexible surface can lead to better tracking
results [32, 145]. Although several approaches with flexible shape descriptions in 3D space,
such as [30, 84, 85, 87, 100], have already been proposed in the literature, these have
not been evaluated in the maritime domain. Moreover, in the following, it will become
clear that these approaches have weaknesses, as the characteristic measurement data
distributions that prevail when recording 3D measurements in the maritime domain have
not been taken into account in the modeling process.

o Challenge 3: Unknown Spatial Measurement Distribution Another problem with
tracking objects using 3D measurements is that measurements are not recorded exclusively
from the object’s boundary. Due to openings such as windows or loading areas in the
object’s hull, measurements can also be recorded from the interior. In addition, the
measurement data distribution in the vertical direction can also change if the shape and
perimeter of the object vary in this direction. However, measurement models such as
[33, 38], in which the object’s shape is modeled as a cylinder, for parametric and [30, 84,
85, 87] for non-parametric 3D shape descriptions, only specify the measurement source
association on the boundary of the shape. When using such measurement models for
high-resolution 3D measurements, a bias of the extent estimate towards the object’s center
can occur.

Contributions and QOutline of the Thesis

The challenges previously outlined are systematically addressed in this thesis. In this section,
the individual contributions are summarized and assigned to the respective chapters to provide
the reader with an overview.

o Proposal for Challenge 1: Measurement Models in Cylindrical Coordinates A
natural solution to the problem of missing measurements at the top and bottom parts of
objects in maritime applications is the utilization of 3D shape descriptions in cylindrical
coordinates in the measurement model. This means that the missing measurements at
the top and bottom are no longer a problem, as the contour of the cylindrical shape
representation only describes the lateral surface of the object. A formal derivation of the
measurement-to-source association for 3D measurement models in cylindrical coordinates
can be found in Ch. 2. Especially when associating the height parameter, considerable
differences exist in the two approaches presented, as an unbiased height estimate is subject
to several challenges. Based on this, the 3D measurement models in Ch. 3, 4, and 5 are all
defined in cylindrical coordinates, and different strategies for the measurement-to-source
association are presented. A comparison of these 3D measurement models in cylindrical
coordinates to measurement models in spherical coordinates in various scenarios can be
found in Ch. 6.

« Proposal for Challenge 2: Several Shape Descriptions of Varying Complexity
To address the problem of unknown object classes, several 3D measurement models with
different complexities of shape descriptions in cylindrical coordinates are presented in
this thesis. Ch. 3 presents various parametric measurement models for the most common
object classes in maritime applications. These can be used to track motor and sailing
boats, and to estimate their 3D extent. When using these measurement models, the
object class must be known from higher-level algorithms such as classification using a
camera system [C6]. However, if the object’s class is unknown, more flexible measurement



1.5 Contributions and Outline of the Thesis

models should be applied to be able to achieve more accurate estimation results. Ch. 4
therefore introduces a non-parametric shape description using a Fourier-Chebyshev series
expansion for representing flexible radial functions in cylindrical coordinates. This approach
is comparable to series expansions in spherical coordinates as presented in [O7, 87].
Since the system state to be estimated can be very high-dimensional with this shape
representation, and the application of the previously mentioned measurement-to-source
association procedures is not directly applicable in parts, a further measurement model is
presented in Ch. 5, which uses extruded superellipses [29, 105] as a flexible parametric
shape representation. Each measurement model presented is examined in the respective
chapters and compared in Ch. 6.

e Proposal for Challenge 3: Recursive Artificial Measurement Noise Estimation
The challenge of the unknown spatial measurement distribution is handled by a recursively
estimated artificial measurement noise in this thesis. With this artificial measurement
noise, it is assumed that measurements near the boundary and outside the object can be
associated with the boundary, while measurements inside the object must be associated
with the interior. For these measurements associated with the interior, the parameters
of a Gaussian distributed artificial measurement noise are calculated using a recursive
maximum likelihood estimator and the distances of the measurements to the associated
measurement sources, which are located on the boundary of the object. The formal
derivation of the recursive artificial measurement noise (RAMN) estimation procedure is
presented in Ch. 2. The RAMN is then applied to every measurement model in Ch. 3, 4,
and 5 to be able to process measurement sets consisting of mixed boundary and interior
measurements with each presented measurement model. A comparison of the measurement
models with and without applying the RAMN estimation procedure can be found in the
respective chapters where the measurement models are derived and in Ch. 6.

+ Extensive Examination in Simulated and Real-World Scenarios The previously
developed measurement models with different approaches for the measurement-to-source
association and the RAMN estimation procedure are examined in Ch. 6 in simulative and
real-world scenarios and additionally compared with each other. For the measurement
models that can be used to track motor boats, a simulated and real-world scenario is
presented with the Solgenia as the tracking object. Using a CAD model that is available
for the Solgenia, a precise shape reference can be used to evaluate the tracking, extent,
and shape estimation performances of the individual approaches. The measurement
model for tracking a sailing boat is only evaluated using a real-world scenario in Ch. 6.
In addition to evaluating the measurement models in a maritime domain, an extensive
evaluation in an automotive environment is presented using the KITTI raw data set [48].
In this evaluation, 1237 scenarios with different object classes are examined. As a final
contribution made in this thesis, pseudo-code for every presented measurement model is
provided, and implementations in Matlab are published in [R1-R3, R5].

Further details on the contributions made in this thesis are given at the beginning of the
respective chapters.

Remark 1.1. This thesis assumes that the measurement-to-object association problem is handled
by a higher-level track management algorithm. Only measurements belonging to the object to be
tracked are processed. The treatment of the multiple EOT problem and clutter measurements is
beyond the scope of this work.
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Publications

The approaches, investigations, and results presented in this thesis are essentially based on the
following publications, which have been developed in recent years.

« Publication [O4]: In this paper, the idea of the elliptic cylinder 3D measurement model
for tracking motor boats is published. In Ch. 3, this measurement model is derived in
more detail and developed further. In addition to [O4], several measurement-to-source
association procedures and the RAMN estimation procedure are investigated for the
elliptic cylinder shape representation.

« Publication [O5]: In this paper, the idea of the elliptic cone 3D measurement model for
tracking sailing boats is published. In Ch. 3, this measurement model is also derived in
more detail and developed further. For the elliptic conical shape representation, the same
extensions are made as for the elliptic cylinder.

 Publication [O8]: This paper presents the idea of expanding a radial function in cylindrical
coordinates using a Fourier-Chebyshev double series (FCDS) as a 3D shape representation.
In Ch. 4, this idea is described in detail, and an additional measurement-to-source
association procedure is presented for the FCDS shape representation.

« Publications [02, O3]: In these papers, the idea of representing the shape of an extended
object using extruded superellipses is presented. In addition, the RAMN estimation
procedure, which is also applied to every other previously mentioned measurement model,
is developed in this work.

The publications [O1, O6, O7] are only applied as references, and the approach presented in
[O7] is additionally used as a comparison method in the investigation in Ch. 4 and 6. In [O6],
the initial idea that shape representations for tracking objects in maritime applications should
be defined in cylindrical coordinates is published. The publications [C1-C6] are also only used
as references in this thesis.
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Motivation and Contributions

This chapter aims to develop a general Bayesian framework for tracking extended objects using
3D range data captured from dynamic objects. In contrast to classical object tracking [10, 19,
27], where objects are assumed to generate at most a single measurement per time step, modern
sensors such as light detection and ranging (Lidar) or radio detection and ranging (Radar), as
well as depth cameras, potentially generate a vast amount of measurements per object and time
step. The number of measurements depends on the sensor resolution and the distance between
the sensor and the detected object. Out of this measurement set, the goal of extended object
tracking (EOT) [58, 59, 98] is to estimate the extent or shape of the object jointly with the
kinematic state, potentially comprising the pose and velocity.

Definition 2.1 (Extent). In this thesis, the extent is defined as the measurements of the spatial
dimensions of an object. In 3D space, these are defined by the length, width, and height of
an object. Within this definition, different bodies with different shapes can still have the same
extent. For example, a cuboid and an elliptical cylinder can have the same extent but still have
a different shape.

Definition 2.2 (Shape). The shape of an object defines the visual appearance of a body. For
example, clear visual differences can be seen between a cuboid and an elliptical cylinder, as the
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two bodies have different shapes with possibly identical extents. In EOT, the shape information
can be implicitly contained in the measurement model, for example, if the extent parameters of
a cuboid are to be estimated, or explicitly represented by corresponding shape coefficients.

When recording 3D range measurements, the processing in an EOT filter can be carried out in
two ways. First, the measurements can be projected to the 2D horizontal plane and processed
in a 2D EOT measurement model. On the other hand, the 3D measurements can be processed
directly in a 3D EOT measurement model. Both approaches can be advantageous in specific
applications:

o Processing measurements in a 2D measurement model is often sufficient for collision
avoidance applications when objects are moving on the water surface [24, 31]. In maritime
planning and control approaches, for example, 2D processing is also suitable for carrying
out automated maneuvers on the water [73, 135]. Furthermore, the computation time of
2D processing algorithms can be significantly lower due to the fewer system states that
need to be estimated and the lower modeling complexity.

o On the other hand, processing measurements directly in a 3D measurement model can be
advantageous for several reasons. First of all, extracting as much information as possible
from the provided measurements can be beneficial in handling unexpected situations, such
as accidents or situations with closely spaced objects. Furthermore, there can also be
situations in the maritime domain where 3D information is indispensable, for example, if
aerial vehicles are added or when ships need to pass under a bridge. Finally, 3D extent or
shape information can be of great use when classifying objects from 3D point cloud data.

However, further research is required in the future regarding the processing of 3D measurements
directly in a 3D measurement model and the resulting advantages over processing these
measurements in a 2D measurement model.

Contributions The first main contribution of this chapter is the derivation of a formal
procedure for tracking extended objects using 3D measurements in a recursive Bayesian fashion
in Sec. 2.3. Although this is mainly based on studies from the literature, individual aspects
have not yet been examined in detail. This includes a discussion on

e processing measurements from a single time step in a batch update, a sequential update,
or a mixture of both procedures,

e and a detailed discussion on solving the so-called measurement-to-source association
problem for 3D measurements.

The following two further contributions are also presented in this chapter. First, an efficient and
easy-to-use procedure for considering interval constraints in the filtering procedure is presented
in Sec. 2.5. Especially in EOT, the extent parameters to be estimated are often subject to
interval constraints due to physical reasons that need to be considered. The approach is based
on applying monotonically increasing transformation functions with an unbounded domain and
a bounded codomain to the state variables subject to interval constraints. In doing so, the
filter remains untouched while being able to incorporate interval constraints into the estimation
procedure.

The final contribution of this chapter deals with the spatial distribution of measurements
often present when recording 3D data. In the 2D case, depending on the applied sensor,
measurements from either the boundary or the interior of the object are mostly gathered. In
the 3D case, a mixture of boundary and interior measurements is often present. However, many
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state-of-the-art EOT methods, such as [16, 40, 79], assume either that measurements originate
from the boundary or are uniformly distributed over the extent of the object. In this chapter,
an approach is presented in which all measurements are generally associated with a point on
the object’s boundary initially. However, for measurements inside the predicted boundary, a
recursive artificial measurement noise (RAMN) distribution, based on results published [80], is
estimated to represent and estimate the distribution of the offset of interior measurements to
the boundary. The approach is presented and investigated in Sec. 2.6.

Remark 2.1. The state constraining procedure and the derivation of the RAMN distribution
are presented in [02, O3].

Problem Formulation

With EOT, the task is to estimate the extent or shape of the object jointly with the kinematic
state at each time step k using the measurement set

Nk

%={u. ), - (2.1)

The measurements Yy, € R™ with n, € {2,3} are spatially distributed and provide information
about the location, extent, and shape of the object. The number of measurements n; > 1
potentially varies over time. If 3D measurements are to be processed in 2D measurement
models, they can be projected to the 2D horizontal plane.

Using these measurements, the goal of EOT is to estimate the system state x;, € R™ with n,
being the dimension of the system state. In general, the system state can be given as

), = [@Lnk@l{tkr (2.2)

with z,;, being the kinematic state and z.,, being the extent state at time step k. The
kinematic state typically comprises the position, orientation, and dynamics of the object, while
the extent state comprises the parameters defining the extent or shape of the object. This
thesis mainly focuses on estimating and defining proper extent states for tracking extended

maritime objects using 3D measurements.

Since measurements and object dynamics are generally uncertain, the goal is to estimate a
probability distribution of the system state p(z;) rather than a discrete vector. Given the
observable measurements %}, in each time step k, the hidden variables z;, can be estimated
recursively by assuming a hidden Markov process for the state evolution over time and the
modeled measurement generation process.

Recursive Bayesian Extended Object Tracking

Assuming a hidden Markov process for the state evolution over time, a recursive procedure
for predicting the system state and updating it given a set of measurements in each time step,
known as the Bayes filter, can be derived. Typically, the Bayes filter is derived assuming a
single measurement in each time step. For EOT, however, a set of measurements, as described
before, is assumed. A clear derivation of the Bayes filter formulas can be found in [27]. Besides
[58, 59, 98], a good introduction and clear overview of EOT can also be found in [32, 145].

11
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Prediction Step The prediction step describes how the distribution p(x;) evolves over time,
given that the object’s behavior can be described as a hidden Markov process. Therefore, an
initial distribution p(z,) has to be specified in an initialization step. The general Bayesian
prediction step can then be given as the Chapman-Kolmogorov [11] equation

p(§k|k71) = /p@mkq@kq) p(Zp—y) gy (2.3)

where p(zy;_1) denotes the predicted state distribution. Moreover, p(zyx_1|2zx_1) is known
as the transition density, which describes the dynamic behavior of the object. For tracking
algorithms, several motion models for describing the dynamics of the tracked object, such as the
constant velocity or constant acceleration models, are known [66]. The extent state is modeled
as constant over time in this thesis, as rigid objects are assumed to be tracked. To prevent
local minima in the extent or shape estimate and to cope with random and unpredictable
disturbances, a random walk model is always applied for the evolution of the extent state over
time [32, 145].

Update Step In the update step, the information from the gathered measurements % is
integrated into the hidden system state z;. According to the recursive Bayes filter formulation,
the new system state at time step k£ can be given as

p(ap) =v-p (%c@k\kq) 'p@k\kq) (2.4)

using the normalization factor v. In this equation, the distribution p (%g@,d k_1> is denoted
as the likelihood that describes how well the predicted system state fits the measurements.
In time step k + 1, the updated system state p(z;,) can then again be used to calculate the
predicted system state p(zjoj;41) to close the recursion.

For the likelihood, independent and identically distributed measurements are assumed, meaning
that the likelihood can be rewritten as

p (%@k\kq) = ﬁp (yk,l@k\kq) : (2.5)
=1

In the derivation of the measurement models presented in the following chapters, it is, therefore,
sufficient to define the models for a single measurement and to incorporate the information of
each measurement according to this model individually.

Nonlinear Kalman Filter Preliminaries When assuming linear models for the state transition
and measurement model, both corrupted by additive Gaussian noise and a Gaussian distributed
system state within the recursive Bayes filter, the famous and well-known linear Kalman filter
[10, 27, 78] is obtained. However, in this thesis, only nonlinear measurement models are derived
and investigated, where state inference needs to be carried out using nonlinear filters, for which
nonlinear Kalman filters are applied. In general, the state transition can be given as

Lglk—1 = £ (Zh—1, wy) (2.6)

using the nonlinear transition function £ that propagates the system state x;_; from time step
k — 1 to time step k using the process noise term w;. In Kalman filtering, the process noise is
often assumed to be additive, zero-mean, and Gaussian distributed, which can be expressed by
wy ~ N (0,,,Xy) using the process noise covariance matrix 3,,. In this case, the transition
density p(g,d w—1lzr_1) reduces to a Gaussian distribution since the process noise is the only

12
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remaining probabilistic part besides the deterministic transition function. Similar to the state
transition, the measurement model can, in general, be given as

Y1 = ﬁ(@qk—hgk,l) (2.7)

using the nonlinear measurement function % that calculates the measurement Yy using the
system state zj;,_, and the measurement noise term v;. Again, in Kalman filtering, the
measurement noise is often assumed to be additive, zero-mean, and Gaussian distributed, which
can be expressed by vy ; ~ N (Qny, 3,) using the measurement noise covariance matrix X,.
However, for the likelihood, several approaches exist where the distribution does not reduce
to a simple Gaussian distribution, as will be seen later in Sec. 2.4. The final ingredient for

nonlinear Kalman filters is that the initial state density is given as a Gaussian distribution
p(zo) = N (Lo, Po) (2.8)

with Py being the initial state covariance matrix. In general, the state distribution to be
estimated in each time step k can be given as p(z,) = 4 (2, Px). In the following section, two
approaches for nonlinear Kalman filters are presented.

231 Extended Kalman Filter

The first approach developed for estimating a Gaussian distributed hidden system state under
nonlinear transition and measurement models corrupted by additive Gaussian noise is the
extended Kalman filter (EKF). The main idea of this algorithm is to approximate the nonlinear
models using a first-order Taylor approximation [27].

Algorithm 2.1 Extended Kalman Filter

1: Predicted mean and covariance matrix of the system state distribution:

Zpp—1 = £ (@x—1) (2.92)
of (z

P, = 710 (2.90)

Py 1=F, Py -F| +5, (2.9¢)

2: Predicted measurement, measurement matrix, and innovation covariance matrix:

9, = #(Zypp—1) (2.10a)
0% (z)
Hj, = = 2.10b
b= on | (2.10b)
T=Zp | k—1
Sk=Hy Py, -H, +3, (2.10¢c)

3: Updated mean and covariance matrix of the system state distribution:

K; =Py, -H] - S;! (2.11a)
By = Zppor + K (y, — 3,) (2.11b)
Py =Prp—1 — Ki - Hg - Prpy (2.11c)

13
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Assuming the preliminaries presented before, the equations of the EKF are given in Alg. 2.1.
This algorithm describes the processing of a single measurement in each time step. Extensions
for multiple measurements in each time step are presented in Sec. 2.3.3. In the state prediction
step, Fy, is the Jacobian matrix of the transition function evaluated at the previous system state,
termed the transition matrix. In the measurement prediction step, Hy is the Jacobian matrix
of the measurement function evaluated at the predicted system state, termed the measurement
matrix, and Sy, is the innovation covariance matrix. Finally, the matrix Ky is the Kalman gain
that reflects the confidence in the recorded measurement and how much the state distribution
is corrected according to the measurement.

Due to the first-order linearization in the EKF, the filter can diverge for highly nonlinear
systems or poor initializations. Therefore, several improvements, such as a second-order model
approximation [5, 107] or an iterated implementation [69, 114], have been proposed. However,
the second-order implementation is highly complex due to the Hessian matrix that needs to be
derived, and the iterated implementation does not guarantee the convergence of the algorithm.
Therefore, linear regression Kalman filters (LRKFs), presented in the next section, have been
developed to solve these problems.

PICWA  |inear Regression Kalman Filters

A main disadvantage of the EKF is the need for linearizations and the derivation of Jacobian
matrices, which can be very demanding for complex models. In addition, the EKF can diverge.
As an alternative, LRKFs [118] have been developed to overcome these drawbacks. The
basic idea of these filters is to approximate the Gaussian distribution using deterministic
samples of the distribution, often called sigma points, rather than linearizing the nonlinear
models. These samples can then be propagated through the nonlinear models to calculate the
moments of the transformed Gaussian using the transformed samples. The various LRKFs
often differ mainly in how the sigma points are calculated, also referred to as the Dirac mixture
approximation of Gaussian distributions [53]. An overview of different approaches for Dirac
mixture approximations of Gaussian distributions can be found in [44, 45]. In this thesis,
the famous unscented Kalman filter (UKF) [76, 77, 130] and the smart sampling Kalman
filter (S2KF) [118, 119] are used for state inference using LRKFs.

In Alg. 2.2, the equations for processing a single measurement in each time step are given. Most
importantly, this algorithm does not need the process and measurement noise to be additive. By
exploiting the fact that the system state and the process or measurement noise are statistically
independent, the joint densities in (2.12) and (2.14) can be sampled to process non-additive
Gaussian noise distributions using the sampled noise distributions. This can be achieved by
extending the system state by the respective noise parameters and sampling the extended
system state distribution rather than sampling only the system state distribution. Proper
derivations of the respective sampling techniques can be found in [118, 130]. A toolbox for the
S2KF can be found at [116]. As will be seen later, especially for advanced EOT likelihoods, an
efficient state inference implementation can be given using sampling-based LRKF's.

In the LRKF algorithm Alg. 2.2, the probability distribution «; - 6(x — 2;) represents the
weighted Dirac delta distribution with weight «; which peaks at the point z;. The peaks x; are
called samples throughout this thesis and represented using calligraphic variables. The weights
a; sum up to one for each Dirac mixture approximation. The number of samples n, calculated
in each filter cycle depends on the chosen LRKF. By transforming the sampled probability
distributions through the nonlinear transition and measurement functions, the transformed
state distribution parameters can be calculated in the prediction and update steps of the LRKEF.
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2.3 Recursive Bayesian Extended Object Tracking

Compared to the EKF, LRKF's tend to be more accurate in the state estimate with a lower risk
of divergence. For example, for the UKF, it is known that the filter provides a second-order
approximation of the propagated Gaussian state distribution [77]. Since the S2KF can be
implemented with a variable number of samples, which are optimally placed according to an
optimization based on a local distance measure between the true density and the Dirac mixture
approximation, its accuracy can be assumed to be even higher. However, the higher accuracy
generally comes with a higher computational cost.

Algorithm 2.2 Linear Regression Kalman Filter

1: Dirac mixture approximation of extended system state distribution:

pzp1 wi) = iak X (F’“‘ll — [x’““D (2.12)

Wi Wi

2: Predicted mean and covariance matrix of system state:

Zyp—1 = F (&kq,i’wm) yi=1...n (2.13a)
Ns
@k\k—1 = Z%,z’ “Zklk—1, (2.13b)
i=1
Ns . A T
Pk|k71 = Z Qs - (ﬁklk—l,i - §k|k71) : (ﬁklk—l,i — ﬁk\kfl) (2.13¢)
i=1

3: Dirac mixture approximation of the extended predicted system state distribution:

Ns 4 - Ll
p (£k|k7179k) ~Y agi-d <[kk 1] - [ Flk=1, D (2.14)
i=1

Vg, Yk

4: Predicted measurement and innovation covariance matrix:

Y, =" <£k|k—1,z‘>2k,z‘) yi=1...n (2.15a)

g, = Zak Yy (2.15b)
sz §

Sk = Zak,i ’ (%k,z - gk) ’ (%k,l - gk> (215C)
i=1

5: Updated mean and covariance matrix of system state:

Ns T
vy = Zak,z‘ : (gldkfl,i - @k|k—1) : (gkﬂ. - Qk> (2.16a)
=1
Ty = Eppr + Wi St (yk - yk) (2.16b)
Py=Pp— ¥ -S; ' ¥/ (2.16¢)

PCIRE  Extended Object Measurement Update

In the EKF and LRKF presented before, a single measurement is processed. However, a key
feature in EOT is that n; measurements are to be processed in each time step k. So, the
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Chapter 2. Bayesian Extended Object Tracking

question that directly arises is how to process a set of measurements within the nonlinear
Kalman filter. In the literature, two approaches can be found to solve this problem:

« Batch update: In batch measurement processing, as applied in [33], a single measurement
update is performed for all measurements at once. The main advantage of this method
is that the final state estimate is reproducible and does not depend on the order of the
measurements. A disadvantage is that the size of the innovation covariance matrix and
the resulting computation time depend on the number of measurements recorded in a
single time step. In general, the inversion of a n x n matrix is of complexity @(n?) [55].

« Sequential update: In sequential measurement processing, as applied in [142], an individual
measurement update is performed for each measurement until all measurements have been
processed. Of course, a single prediction step is executed before. The main advantage
of this method is the lower computational cost resulting from the inversion of a small
innovation covariance matrix in the nonlinear Kalman filter update. A disadvantage is
that the final state estimate is highly dependent on the order in which the measurements
are processed due to the inherent approximations in the nonlinear Kalman filter update.

To combine the merits and mitigate the drawbacks of both approaches, measurements are
processed in a sequential batch update in this thesis. Thus, a fixed number of measurements
n, is processed in each cycle until all measurements are handled. If fewer measurements are
available in a final cycle, the remaining measurements are processed, and n, needs to be
lowered for that cycle. In doing so, the computation time can be reduced drastically, and the
reproducibility of the estimate is increased.

Extended Object EKF Measurement Update In the EKF, the state prediction step is
kept unchanged according to (2.9). In the measurement prediction step (2.10), the predicted
measurement and the measurement matrix need to be calculated for each of the n, measurements
and stacked according to

*9, = Mlygn ! (2.17)
H .

H,=| : |. (2.18)
Hy .,

Since multiple measurements are processed in a single measurement update, a stacked mea-
surement noise covariance matrix, which can be given as

¥, 0 0
o=10 . 0] (2.19)
0 0 X,

with n,, measurement noise covariance matrices, arranged in a block diagonal matrix, also needs
to be generated. The innovation covariance matrix in (2.10) and the measurement update
equations in (2.11) can then be calculated using the stacked variables described before. The
single steps are then repeated until all measurements are processed. The pseudo-code and
further insights for the extended object EKF sequential batch measurement update can be
found in Alg. 4.1 and Sec. 4.4.

Remark 2.2. In (2.10), the predicted measurement and the measurement matriz only depend on
the predicted system state Zy_i. For different measurements, these variables would, therefore,
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2.4 Measurement-to-Source Association

not change in the same time step based on this calculation. However, in EOT, the likelithood
and measurement equation depend on additional inputs that vary for each measurement in a
single time step. Details are given in Sec. 2.4.

Extended Object LRKF Measurement Update In the Dirac mixture approximation step
(2.14) of the extended object LRKF for a sequential batch update, the noise samples need to
be drawn for each of the n, measurements individually according to

Lk|k—1 Zkk—1,i
s v Uy
“k,1 Ekyi,1
D (Qﬂk—laﬁk,l, e &k,nu) ~ Z Qi+ 0 , - ) : (2.20)
i=1 : :
Qkynu 2k7i7nu

In the measurement prediction step, the predicted measurement samples and predicted measure-
ments need to be calculated individually for each measurement and sample. For the update step,
the stacked predicted measurements are given according to (2.17), and the stacked predicted
measurement samples can be given as

.
s _ T T s
L= Ly th | vi= 1 (2.21)

The innovation covariance matrix and the equations for the update step can then be calculated
using these stacked variables. The Dirac mixture approximation (2.14), the measurement
prediction (2.15), and the update step (2.16) are then also repeated until all measurements
are processed. The pseudo-code and further insights for the extended object LRKF sequential
batch measurement update can be found in Alg. 3.1 and Sec. 3.5.

Remark 2.3. In (2.15), the predicted measurement depends on the predicted system state
and the measurement noise. Again, in EOT, the likelihood and also the measurement function
depend on additional inputs that vary for each measurement in a single time step. These can
then also be subject to sampling in the LRKF. Please refer to [118] and Sec. 2.4 for details.

Remark 2.4. In both the extended object EKF and LRKF, after each batch update, the updated
state distribution is set as the new predicted state distribution for the next sequential update
cycle. This procedure completes the sequential batch update recursion for EOT.

Measurement-to-Source Association

In classical tracking applications, the objects are modeled as mathematical points. Thus, the
origin of the measurement is clear, as it was generated from the point that represents the object.
However, when dealing with extended objects that give rise to ny measurements each time step,
the origin of the measurement is no longer clear, as it can potentially stem from any point on
the object. This unknown point is denoted as the measurement source zj; of the measurement
Yprr Consequently, the association problem of a measurement to the unknown measurement
source is denoted as the measurement-to-source association problem, which is well-known in
the literature [32, 58, 59, 145].

Once the association problem is solved, a measurement function that can be applied in the
update step of the Kalman filter must be defined. In EOT, often the so-called measurement
source model

Yo = 2k1 T Uny (2.22)
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Chapter 2. Bayesian Extended Object Tracking

is applied as soon as a measurement source is specified. In this model, the measurement is a
noisy record of the measurement source. Since the measurement source is naturally unknown,
particular attention must be paid to the measurement-to-source association problem based on
the sensors used, their resolution, and measurement noise. This section gives an overview of
established approaches found in the literature for solving this association problem. In particular,
the application of the association procedures not only to measurements in 2D space but also in
3D space is discussed.

Spatial Distribution Model

One of the first approaches developed for solving the measurement-to-source association problem
is the spatial distribution model (SDM) [51, 52]. In the SDM, the likelihood can be given as

p (yk75|§k|k71) = /p (yk71|§k,l) p (ék,z@kwq) dzy (2.23)

sensor model source model

comprising a sensor and a source model that must be defined a priori [58, 59]. The sensor
model can typically be specified using the sensor data sheet describing the noise distribution of
a measurement. The source model needs to be specified, describing a probability for each point
located on the object being a measurement source, given the extent or shape of the object. Then,
by integrating over all possible measurement sources zj;, no direct measurement-to-source
association is needed in the SDM. In reality, the source model is typically unknown, which
makes using an SDM challenging. In addition, the source model can change drastically in the
case of partial occlusions or varying object types. In case of wrong assumptions for the source
model, an estimation bias can be introduced [35].

The most popular SDM, assuming a Gaussian spatial distribution for the measurement sources,
is the random matrix (RM) model [83]. It has been extended in [40] to also assume uniform
distributions for the measurement sources and is directly capable of processing 2D and 3D
measurements. In the case of source distributions that do not match a Gaussian or uniform
distribution, a virtual measurement model can be applied that can compensate for the mismatch
between the filtered extent and the present measurement distribution [C4, 72, C5]. Recent
extensions of the RM approach can be found in [90, 91, 149]. Further popular spatial distribution
models can, for example, be found in [61, 142].

(a) Source distribution covering the full ellipse. (b) Source distribution covering half the ellipse.

Figure 2.1: Visualization of the spatial distribution model. Measurement noise distribution in blue and

measurement source distribution in red. Measurements as white crosses.
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2.4 Measurement-to-Source Association

An illustration of the SDM in 2D space can be seen in Fig. 2.1. In the figure, an ellipse
is assumed as the reference shape, and three measurements are gathered from the ellipse.
The noise and source distributions are color-coded with darker colors representing a higher
probability density. It is assumed that the measurements mostly originate from the area close
to the boundary of the ellipse in this illustration, which is often the case with sensors such as
Lidar. In Fig. 2.1a, it is assumed that the object can be detected from each side. Thus, the
source distribution covers the full ellipse. However, in reality, typically only the side of the
object facing the sensor can be detected, which must be taken into account in the design of the
source distribution, illustrated in Fig. 2.1b. In the case of partial occlusions caused by other
static or dynamic objects, the source distribution would then also have to be adjusted.

Remark 2.5. In this thesis, the SDM is not applied as a measurement-to-source association
procedure. However, the likelihood (2.23) serves as a basis for the following approaches to solve

the assoctation problem.

Greedy Association Model

In the greedy association model (GAM), the measurement source is greedily associated based
on a predefined rule to lower the computational and modeling burden compared to the SDM.
Given a predicted state, a measurement source zy,; is calculated as the point on the object that
most likely generated the measurement [32, 145]. A key component of this calculation is that
the measurement y, , itself, in addition to the predicted system state Zy,_;, is used to calculate
a predicted measurement source. Starting with the likelihood (2.23) of the SDM, the likelihood
of the GAM can be given as

p (Qk,z@lclk—l) = /p (yk,ﬂék,l) P (ék,l@km_l) dzp (2.24a)
= /p (v11200) 0 (2= 2 (2up-1,) ) dzi (2.24b)
=p (Qkﬂ% (im_l,yk,l)) (2.24c)

with & (g —z (ikl k15 gk’l)) being the Dirac d-distribution that peaks at the predicted measure-

ment source z @k\ k—1>Yp ;) Given the predicted measurement source, a measurement equation
can be defined as

gk,l =z (ik\k—l’ykyl) + Uk (2.25)

using the measurement source model (2.22). In this model, measurements are then often
assumed to be generated exclusively from the object’s boundary. Two approaches are known in
the literature for calculating the predicted measurement source, which are visualized in Fig. 2.2.
In the following examples, these approaches are discussed in 2D space. A generalization for
measurements in 3D space is discussed later in this section.

In general, the point on the object’s boundary closest to the measurement can be assumed as
the most probable point that generated the measurement [37]. This procedure is visualized
in Fig. 2.2a. The measurement noise that can be seen in the illustration is assumed to be an
additive disturbance in the measurement equation (2.25). This association procedure is referred
to in this thesis as the projected association. Although the projected association yields the
optimal prediction of a measurement source, an explicit closed-form calculation is often not
possible. When using implicit measurement equations such as [18, 147], the estimator implicitly
assumes the projected point as the measurement source.
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Chapter 2. Bayesian Extended Object Tracking

(a) Projected association. (b) Radial association.

Figure 2.2: Visualization of the greedy association model. Measurement noise distribution in blue and
measurement sources as red balls. Measurements as white crosses.

Another possibility for approximating the unknown measurement source is to use a radial
association, visualized in Fig. 2.2b. In this procedure, the intersection of the connection
line between the center and the measurement with the boundary is chosen as the predicted
measurement source. An advantage of the radial association is that, in most cases, a closed-form
analytical expression can be found for calculating the approximated measurement source [O1,
79]. In this thesis, both association procedures are applied in the models presented in the
following sections.

Example 2.1 (Circular greedy association). Given a predicted state of a circular extended

object Tyj—1 = Tgk—1 comprising the radius, centered at the origin, and a measurement, given
€)

&
as y, = [ N ,y,gl)} , a greedy association can be calculated using the angular parameter

ék,l = atan2 (y,(fl), y,(fl)) The predicted measurement source can then be calculated as

. . AT
z (fk\k—lv 9k,l> = {Tk\k—l - coS(Or), Thfk—1 - Sin(%,l)}

using the parametric representation of the circle. For the circle, this association simultaneously
represents the projected and the radial associated measurement source.

Approximated Projected Association In the case where no closed-form expression of the
projected association in the GAM exists, a solution to calculate the closest point on the
boundary can be found by approximating the boundary as a closed polygonal chain, as was
proposed in [146, 147]. Given the closed polygonal chain as an approximation of the boundary,
the closest point to the measurement on that boundary can then be calculated in closed form.

Definition 2.3 (Closed polygonal chain). Given a set of n, points {pl, D, }, a polygonal
- —'p
chain is formed by connecting consecutive points P, and Piy with j € {1,...,np}. For a closed
polygonal chain, the last point r, and the first one p, are connected as well, closing the curve.
P, p

Example 2.2 (Ellipse polygonal chain). When approzimating an ellipse as a closed polygonal
chain, the parametric shape representation p(f) = [a - cos(6),b - sin(0)]" with a,b > 0 being the
major and minor semi-azes, can be applied for calculating the shape points on the boundary.
The parameters {01, ...0,,} can be chosen equidistantly in the interval [0, 27) to finally calculate
the set of points {p(61),...p(0n,)} to form the closed polygonal chain.
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2.4 Measurement-to-Source Association

To calculate the closest point z;; on a closed polygonal chain to a measurement y, ,, the closest
point on each line segment connecting consecutive points is calculated. Afterwards the closest
point overall is selected as the one with the smallest distance to the measurement. First, the
n, shape points {Bk,l’ ce ’Bk,np} need to be generated using the predicted system state Zy,_;.
The line segment connecting consecutive points can be given as

Qk(u) =P, tu- (Bk’j+1 - Qk,j) (2.26)

in parametric form using the parameter u € R. Using the dot product, the parameter u; of
the closest point on the infinite line containing the segment j to the measurement Y, can be
calculated as 7

0= (yk,l - Qk(uﬂ'))T ' (Qk,jﬂ - Bk,j) (2:27a)
0= (Qk,l YA (Bk,jﬂ - QkJ))T ' (Bk,jﬂ - Bk,j) (2.27D)
T T
= (50~ 21) T (Pegir — 2iy) _ (2~ 22) - (p,w.H? ~ ) (2.27¢)
(Bk,m - Blw') ' (Bk,m - Blw‘) HBMH _Qk,jH

However, to ensure that the closest point is on the line segment itself within the closed polygonal
chain and not on the extension of the line connecting two consecutive points, the parameter u;
is constrained to the interval [0, 1] by applying the transformation @; = max(min(u;,1),0). In
doing so, the point Py OT Pyt itself is chosen as the closest point on the segment instead of
a point on the extenuon of the segment. Using the parameter i;, the closest point on each
segment to the measurement Yy, can then be calculated as

2j = Py T (Qk,jﬂ - Qk,j) ' (2:28)

Given the closest points z; for each segment, the approximated projected measurement source
association can finally be calculated as

Z(Zgp-1,Y,,) = argmin Hy - zH : (2.29)
( | fk:,l> Pty

The closest point on the closed polygonal chain is then the point on the segment that has the
smallest distance to the measurement.

3D Greedy Association Models In this paragraph, GAMs for shape representations in 3D
space are discussed. These can be described with the same likelihood derived in (2.24). Thus,
a procedure for calculating a predicted measurement source must be defined in 3D space as
well. Theoretically, both association procedures, the projected and the radial approach, can
be applied. However, in 3D space, the projected association (i.e., finding the closest point on
the boundary to the measurement) can be even harder to calculate analytically than in 2D
space. Furthermore, an approximation of the boundary similar to the closed polygonal chain
approximation can be highly computationally demanding in 3D space.

Therefore, radial associations are primarily presented in this paragraph for calculating a
predicted measurement source. A specialized projected association can be given for shape
representations in cylindrical coordinates. The procedures for calculating a radial association
can differ depending on the shape representation. For shape representations in spherical
coordinates, the radial association can be computed as the intersection of the line connecting
the center and the measurement with the shape. This procedure is visualized in Fig. 2.3a.
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(a) Spherical 3D GAM. (b) Cylindrical 3D GAM.

Figure 2.3: Visualization of 3D greedy association models for shape representations in spherical and cylindrical
coordinates. Measurements as blue crosses, and measurement sources as red balls. Center as black cross, and
shape as grey surface. Measurement sources are located on the surface.

Due to difficulties with the visualization, the measurement uncertainty is not shown in either
illustration of Fig. 2.3. In the likelihood of the 3D GAM, however, the measurement uncertainty
is still included. Let’s consider the following example for a spherical 3D GAM.

Example 2.3 (Spherical greedy association). Given a predicted state of a spherical ex-

tended object Typ—1 = TR—1 comprising the radius, centered at the origin, and a measurement

_ { @) ) ()

-
Ynt s Y vyk,l} , a greedy association can be calculated using the angular parameters

), and Py, = atan2 (ylg’),y,g?). The predicted measurement source can then

Ly

(2)
Ykl

9,1
be calculated as

Or1 = arccos(

A Thlk—1 sin(ékl) - cos(Pr1)
z (fk\kq, Oy Pra) = |Thjp—1 - sin(Ory) - sin(Pry)
Tklk—1 -COS(ékvl)
using the parametric representation of the sphere. Also, for the sphere, this association

simultaneously represents the projected and the radial association.

For shape representations in cylindrical coordinates, the radial association that is applied in
spherical coordinates cannot be used directly, as the measurement sources would then all appear
on the same height section. Therefore, the radial association of a measurement source for shape
representations in cylindrical coordinates is chosen as the intersection of the line connecting
the center point and the measurement with the 2D shape at the same height section as the
measurement. This procedure is visualized in Fig. 2.3b. For cylindrical shape representations, a
projected association can also be performed using a polygonal chain approximation at a specific
height section and the procedure described before, instead of a radial association. Let’s consider
the following example for a cylindrical 3D GAM.

Example 2.4 (Cylindrical greedy association). Given a predicted state of a cylindrical extended
object Ty = {Tklkfl’ hk|k,1} comprising the radius ryp_1 and the height hyp_1, centered at

-
the origin at the bottom of the cylinder, and a measurement y, , = {yéﬁ),y&’l),ygﬂ , a greedy

(=)
. . A y
association can be calculated using the angular parameter 0y ; = arccos(ﬁ) and y,(jl) The
Lkl )
predicted measurement source can then be given as

N N N T
z (ik\kfhek,l;yl(jl)) = {?‘k\kq - c08(0r.1), Tk|k—1 'Sin(9k,l)>§;(jz)}
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2.4 Measurement-to-Source Association

(2)

using the parametric representation of the cylinder and g7 = min(max(y,fl), 0), hk|k_1), which
guarantees that the measurement source is on the cylinder’s surface. Also, for the cylinder, this
association simultaneously represents the projected as well as the radial association at a specific
height section.

Both the 2D and 3D GAMSs can easily be implemented using an extended object EKF or
LRKF measurement update as presented before in Sec. 2.3.3. Although shape descriptions in
spherical coordinates are not employed in the measurement models presented in this thesis, the
comparison methods in the evaluation rely on spherical 3D GAMs, which is why the spherical
case is also presented in this paragraph.

Random Hypersurface Model

A measurement-to-source association model that combines the advantages of the SDM and
the GAM is the random hypersurface model (RHM) [13, 15, 16, 18]. In the first half of this
section, the RHM is generally derived in 2D space. Following this, extensions for processing
measurements in 3D space for EOT and further details are discussed. In the 2D RHM,
measurements are assumed to be drawn from a scaled version of the object’s boundary. In doing
so, measurement sources from the object’s full surface can be modeled. This can be important
both for Radar [137-139, 143] and Lidar [O3, 80] data, as for both sensor devices, measurements
distributed over the full surface can occur. For the derivation of the RHM, it is assumed that
every point on the boundary and the interior of a specific shape can be represented using two
parameters. Let’s consider the following example as an illustration of such a representation.

Example 2.5 (Parametric circle representation). Given the parameters 6 € [0,2m) and s € [0, 1],
each point on a unit circle disk can be represented using the parametric equation

2(6,5) = s - [cos(h),sin(B)] .

Given that a point on the full surface of a specific shape can be represented using two parameters,
the likelihood of the SDM (2.23) can be adjusted as [32]

p (ﬂ/ﬁl@k\kfl) = /p (ykﬂ&k,z) p (ék,z@kwq) dzpy (2.30a)
= //p (Ek,z‘é(ek,z,szc,l)) p (ek,z,Sk,l|£k|k_1) d0y; dsk, (2.30b)

using the joint distribution of 0y ;, and sy ;. Subsequently, the parameters are modeled differently.
To achieve this, it is assumed that the parameters are independent of each other. Then the
association of the parameter 6y, is modeled as a GAM and the association of the parameter
sk, as an SDM. The final likelihood of the RHM can then be given as

P (gk7l|§k|k—1) = //P (gkﬂ&(@k,l, Sk,l)) P (ek,z|£k|k_175k,l)

- (skalzrger) O dsig (2.31a)
-] ol n) 50—t )

- (skalzip-r) Ak dse (2.31b)
= /P (ykﬂé (9&1@1@\1@—1&&)’Sk,z)) P <5k,l|£k|k_1) s, (2.31c)
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with ék,l @klk*hgk l) being the greedy association for the parameter ¢;; depending on the
predicted system state Zj,_;, and the measurement y, , [32, 145]. Given the predicted
measurement source parametrization, a measurement equation can be defined as

gk,l =z (ék,l (@k‘k—l7 gk‘,l)7 Sk,l) + QkJ (232)

using the measurement source model (2.22). The principle of the RHM that was derived in the
likelihood (2.31) is also visualized in the following figure. In Fig. 2.4a, the measurement-to-
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(a) Random hypersurface model illustration. (b) Scaling factor distribution.

Figure 2.4: Visualization of the random hypersurface model and the scaling factor distribution. Measurement
noise distribution in blue, measurement sources as red balls, and scaled ellipse boundaries as elliptic curves.
Measurements as white crosses.

source association as a combination of a GAM and an SDM is visualized. The measurements
are greedily associated with scaled versions of the object’s boundary. The scaled versions of the
object’s boundary are color-coded, representing the probability distribution of the scaling factor
with higher probabilities for darker colors. The distribution of the scaling factor is visualized in
Fig. 2.4b. In the figure, explicit measurement-to-source associations using a radial association
for the angle are visualized. The scaling factors for the boundary are drawn with a predefined
probability. If no prior knowledge about the distribution of the scaling factor is available, it
can be chosen to resemble a uniform distribution of the measurement sources over the whole
extent. In this case, the probability density function of the scaling factor linearly scales with the
perimeter of the object and can be chosen as a triangular distribution [15], which is visualized
in Fig. 2.4b.

Inference using LRKFs In comparison to the GAM, an integral must be solved for the
likelihood of the RHM in the update step of the filter. In most cases, this integral cannot be
solved analytically. An efficient solution to the inference problem when implementing an RHM
is to apply LRKF's and sample the scaling factor in the update step [117]. In the Dirac mixture
step (2.14) of the extended object LRKF for a sequential batch update, the noise samples and
the scaling samples need to be drawn for every measurement individually according to

Lk|k—1 LE|k—1,i
V1 kil
Ns
p (@k“@—layk;,lv s an,nuv Sk1y- -+ SkJLu) ~ Z Ak - 0 Qk)nu - Qk,i,nu . (233)
i=1 Sk1 Ik,
L Sk | L Fkjina |
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2.4 Measurement-to-Source Association

In the measurement prediction step, the predicted samples and the predicted measurements
again need to be calculated individually for each measurement and sample. Afterwards, stacked
predicted measurements and stacked predicted measurement samples can be generated to
perform the measurement update.

Remark 2.6. For measurements in 2D space, RHMs are not applied in this thesis since
measurements from the interior are modeled using the RAMN estimation discussed in Sec. 2.6.
Howewver, a redefinition of the RHM to apply the approach to 3D measurements, described in
the following section, is used.

3D Random Hypersurface Models When processing measurements in 3D space, a shape in
cylindrical coordinates can be defined by applying extrusions [33, 145]. Thus, the 3D shape is
constructed by extruding a base shape to a specific height. These extrusions can be defined
using fixed or varying base shapes in the vertical direction [38, 148]. Let’s consider the following
example for a shape definition with a fixed base shape.

Example 2.6 (Parametric cylinder representation). Given the parameters 6 € [0,2m) and
s € [0,1], each point on the boundary of a unit cylinder with height h can be represented using

the parametric equation
2(6,s) = [cos(#),sin(h),s -] .

The center is then located at the bottom of the cylinder.

A measurement-to-source association can then be defined using a 3D GAM for cylindrical
shapes as described in Sec. 2.4.2. However, it has been shown that a GAM can produce biased
height estimates due to a missing penalization mechanism for overestimated heights [32, 34].
To solve this issue, the RHM method can be used to estimate the extrusion in an extrusion
random hypersurface model (ERHM). For the ERHM, the likelihood is identical to the 2D
RHM likelihood (2.31). In the measurement equation of the ERHM, the measurement source
on a plane curve at a fixed height is associated using a GAM. The extrusion is modeled using
the multiplicative extrusion factor s. The measurement equation is then given as

[@gfzy)l _ [z(my) (%,z@mmlayéﬁy))) +Qi(§fzy) (2.34)

Ql(:z) Sk hijk—1 + U/(jz)

with (zy) representing zy coordinates of the measurement, the measurement source, and the
measurement noise, and (z) the z coordinates respectively. The variable hy;_; represents the
predicted height at time step k. The measurement-to-source association on a 2D height section
can be solved using a 2D GAM presented in Sec. 2.4.2. However, it was shown in [14] that
the nonlinear Kalman filter is not able to estimate the position in the z direction and the
height simultaneously when the height section is modeled using a multiplicative factor [49] as in
Ex. 2.6. In this case, the height is not observable by the nonlinear Kalman filter. As a solution,
a quadratic extension of the measurement equation, given as

Q;(fzy) 2= <9k,l (Zp -1, yk,l)() )+ Q’(jly )
gl(:l)Q _ Skt M1 UL ) . (2.35)
1?1(:1) (sk,l < g1 + U/E;Zz))

can be introduced [14]. Using this extension, the height is again observable in the Kalman
filter. However, due to the low sampling rate coverage of the UKF, an S2KF must be applied
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Chapter 2. Bayesian Extended Object Tracking

for inference using the quadratic extension. Besides that, the same procedure for sampling
the multiplicative extrusion factor in the LRKF compared to the RHM in the 2D case can be
applied.
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(a) 3D random hypersurface model illustration. (b) Scaling factor distribution.

Figure 2.5: Visualization of the 3D random hypersurface model and the scaling factor distribution. Measure-
ments as blue crosses, measurement sources as red balls, height sections as red curves, and cylinder surface in
grey.

The principle of the ERHM is visualized in Fig. 2.5a. The measurements are associated with
sampled height sections instead of scaled versions of the boundary of a 2D shape. If no prior
knowledge of the distribution of the extrusion factor is available, a uniform distribution can
be applied, which is visualized in Fig. 2.5b. Due to the applied uniform distribution of the
extrusion factor, sampled height sections are represented using the same color. In the LRKF,
this uniform distribution can then be approximated by a Gaussian distribution.

Symmetric 3D Random Hypersurface Models When assuming a uniformly distributed
multiplicative extrusion factor in the ERHM and thus a planar symmetry to the xy plane in the
z direction, these symmetry features can be included in the shape estimation procedure. In [32,
36], the likelihoods of the RHM and the ERHM are generally derived for rotoreflections, with
planar symmetry as a special case. Using planar symmetry in the z direction, a symmetrical
3D shape in cylindrical coordinates can be defined using a non-redundant part and a redundant
part constructed by reflection. Let’s consider the following example for a shape definition with
planar symmetry.

Example 2.7 (Parametric symmetric cylinder representation). Given the parameters§ € [0, 27),
and s € [0,1], each point on the boundary of a unit cylinder with height h can be represented
using the parametric equation
T A
6,5) = [06), 2] = [cos(o).sim(®).s- 5|

. (2.36)

The center is then located in the middle of the cylinder.

The integration of symmetry assumptions in the estimation procedure has several advantages.
First of all, the complexity of the estimator can be reduced since measurements are only
associated with a portion of the shape. However, much more importantly, the height and the
position in the z direction are again observable by the Kalman filter [32]. Thus, the quadratic
extension that was introduced before in the estimation procedure of the ERHM can be dropped
when introducing a planar symmetry in the shape definition.
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2.5 Interval Constraints in Extended Object Tracking

The likelihood of the symmetrical ERHM is identical to the 2D RHM (2.31) when defining the
likelihood only in the non-redundant part of the shape [36]. Overestimated heights are still
penalized in the symmetrical ERHM. The height estimate will be unbiased when assuming
a distribution for the extrusion factor s that is actually present in the measurements. In the
measurement equation, measurement sources on a 2D height section are still associated using a
GAM. The extrusion is modeled using the extrusion factor s in the non-redundant part. The
measurement equation is then given as

ggjly) _ é(xy) (ék,l (‘%k|k—1’yk,l)2 + ngzg,cly)
A@ T
|yk,l |

) (2.37)
Sk - hk‘;l + vk,l)

with the absolute value in the z direction, transforming the measurements to the non-redundant
part in the positive direction. In this equation, the origin of the local coordinate system is
positioned at the shape’s center. Due to the planar symmetry assumption, the effective sample
resolution is increased when sampling the extrusion factors in the LRKF. Samples are only
drawn within the non-redundant part of the object, so the entire shape can be represented
by sampling the extrusion factor for only half of the shape, effectively doubling the resolution
of the samples for the given computational effort. As a result, an UKF can be applied for
inference instead of requiring an S2KF.
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Figure 2.6: Visualization of the 3D symmetrical random hypersurface model. Measurements as blue crosses,
measurement sources as red balls, and height sections as red curves. The non-redundant part is the green
surface, and the redundant part is the blue surface.

The principle of the symmetrical ERHM is visualized in Fig. 2.6. The measurements are only
associated with sampled height sections on the non-redundant part. The distribution of the
extrusion factor must be symmetrical as well. If no prior knowledge of the distribution of the
extrusion factor is available, again, a uniform distribution can be applied.

Interval Constraints in Extended Object Tracking

In EOT, one issue is often the fact that extent or shape parameters are subject to interval
constraints. When estimating extent parameters such as length, width, and height, for example,
the estimates should always be positive. In standard nonlinear Kalman filtering, interval
constraints cannot be considered, since a Gaussian distribution, used to represent the state
distribution, has an unbounded domain. In the literature, several approaches can be found
to modify nonlinear Kalman filtering to handle state interval constraints. In [113] and [140],
general procedures for applying linear and nonlinear constraints, respectively, to the Kalman
filter are presented. In [120], several algorithms to incorporate interval constraints in the UKF
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Chapter 2. Bayesian Extended Object Tracking

can be found. In this thesis, a simple approach that allows the nonlinear Kalman filter to
estimate mixed constrained and unconstrained variables is used.

The key idea is to define monotonically increasing state transformation functions that have an
unbounded domain and a bounded codomain. The filter then operates on the unconstrained
state variables, which are transformed back through these functions before using the parameters
in the physical model or before using the filter estimate in an evaluation. Thus, within the
Kalman filter, unconstrained variables are estimated, while they are embedded in a constrained
environment outside the filter. By applying monotonically increasing transformation functions,
a unique assignment between constrained and unconstrained variables is ensured. This approach
leads to a very efficient and effective method for handling state interval constraints without
changing the Kalman filtering procedure. Moreover, the approach is independent of the chosen
nonlinear Kalman filter, such as the EKF, LRKFs, or others that can be found in the literature.

To extract the uncertainties of the constrained state variables after the update step of the
nonlinear Kalman filter, sampling methods such as the unscented transform can be applied
[130]. The samples can be drawn from the estimated state distribution and propagated through
the corresponding transformation functions. The constrained mean vector can be determined
directly using the transformation functions. The covariance matrix of the constrained state
estimate can then be calculated using (2.13¢c). Since the transformation functions are smooth,
the accuracy of these propagated covariance estimates is expected to be consistent with the
general accuracy achieved by the UKF [77] when using the unscented transform.

As transformation functions, activation functions that are often used in classical neural network
design can be applied [92]. In this thesis, two different interval constraints are considered, for
which two different transformation functions ¢; and ¢y are needed to transform the respective
parameters to a bounded codomain.

One-sided Constraints The first class of interval constraints that can occur in state estimation
are constraints that have only a lower or an upper bound. Thus, the state estimates ) are
intended to be within the interval &) € [a, 00| for constraints with a lower bound or within the
interval &, € [—00, a] for constraints with an upper bound. A transformation function that can
map to these bounds is the softplus function [28], often applied as an activation function in
neural networks. The transformation function that can be defined using the softplus function
for these constraints is termed the one-sided transformation function in the further course of
this thesis. It can be given as

log(1 + exp(2y)) +a if a is lower bound

fk = Cl<.fk7 a) = (2.38)

—log(1 + exp(%x)) + a if a is upper bound

with the distinction of whether a is an upper or lower bound. This transformation function
generates constrained values I from unconstrained values Iy with either a lower or an upper
bound.

Two-sided Constraints The second class of interval constraints that can occur in state
estimation are constraints that have a lower and an upper bound. Thus, the state estimates
are intended to be within the interval Zj € [a,b]. A transformation function that can map to
these bounds is the logistic function [92], also often applied as an activation function in neural
networks. The transformation function that can be defined using the logistic function for these
constraints is termed the two-sided transformation function in the further course of this thesis.

It can be given as
b—a
Tk = co(Tg,a,0) = —— 4+ a 2.39
b= 2 a.) 1 + exp(—2k) (2:39)
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2.6 Recursive Artificial Measurement Noise Estimation

with a being the lower bound and b the upper bound. The transformation function generates
constrained values Zj from unconstrained values Z; with both a lower and an upper bound.

Recursive Artificial Measurement Noise Estimation

In the previous sections, techniques were presented to process measurements from the boundary
of an object. In real-world applications, however, measurements often occur as a mixture
of boundary and interior points. In [80], the spatial distribution of LiDAR measurements is
investigated by calculating the distribution of an RHM scaling parameter under an assumed
radial measurement source association for multiple instances of real-world objects. It is seen
that many measurements stem from the boundary of the object, but also that the assumption
of a uniformly distributed squared scaling factor, which is frequently made in RHMs, is often
not valid for real-world measurements. In the literature, a mixture of boundary and interior
measurement source distributions is often not considered explicitly. For comparison, in studies
such as [40, 142] and also in the RHM approach [17, 18], measurement sources are assumed to
be distributed uniformly over the object’s extent. Furthermore, in models such as [O1, 79], it is
assumed that measurements originate exclusively from the object’s boundary. In [137, 138], the
measurement source distribution is modeled as a truncated Gaussian, processing measurements
either gathered from the boundary or the interior of the object. In [72], measurements are
assumed to be generated either from the boundary or uniformly distributed over the whole
extent. The RM estimate is then corrected using an adaptation loop and virtual measurements
generated from both the boundary and the interior.

Reference — = 30 border
® DBoundary measurement @ Interior measurement

Figure 2.7: Visualization of the measurement separation for the RAMN estimation.

The solution proposed in [80] is to use a measurement equation for boundary measurements
and heuristically calculate an asymmetric measurement noise variance for measurements inside
the predicted object boundary. In this thesis, the approach presented in [80] is adopted, but the
distribution of an artificial measurement noise for measurements that lie within the boundary
is recursively estimated, rather than heuristically setting a specific value only for the variance.
Furthermore, the association of measurements to the boundary is extended by assigning
measurements in a 3o, surrounding of the boundary to the set of boundary measurements,
which takes into account the additive measurement noise with standard deviation o,. An
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Chapter 2. Bayesian Extended Object Tracking

illustration of the separation of the measurement set for a circular extended object can be seen
in Fig. 2.7. In this simulation, measurements are either drawn from the boundary or uniformly
distributed from the interior of the circle. The artificial measurement noise estimation approach
can be applied to measurement models in 2D and 3D space, as will be seen in this thesis.
Determining whether a measurement lies within a predicted boundary can often be calculated
efficiently using implicit shape functions. Let’s consider the following example as an illustration.

Example 2.8 (“Inside-outside” circle function). Given a predicted extent state describing a
circle centered at the origin and Tyg_1 = Tgp—1 with radius ry_1, a measurement Y and the
measurement noise standard deviation o, the function

>0: outside
j@m’iklkfla Ug) = HQMH - (Tk\kfl -3 Ug) =4=0: 30, boundary (2.40)
< 0: 1nside

determines whether the measurement y, | lies inside the predicted circle but outside the 3oy

border, on the 30, border, or outside the 7boundary,

For measurements inside the boundary and outside the 30, border, the artificial measurement
noise parameters are then calculated. The “inside-outside” information can be calculated using
each shape description applied in this thesis and is added to each measurement model after
presenting a measurement equation for measurement sources located on the boundary of the
shape.

Derivation

For the calculation of the RAMN, an anisotropic behavior is expected, and measurements in each
coordinate axis are assumed to be generated from the same measurement-generating process
rather than using a heuristic variance for each measurement. Therefore, the full Gaussian
distribution for each coordinate direction is calculated below. The RAMN is calculated using

the Euclidean distance between each predicted measurement source 2,(5)[ and the respective

measurement y() for each time step up to k. In this notation, the superscript ¢ represents

measurements and measurement sources inside the shape and outside the 3o, surrounding.

Due to the expected anisotropic behavior of the artificial measurement noise, its parameters are

calculated for each coordinate direction separately. Therefore, the shortcut d,(;’ln) is used for the
(i)

Euclidean distance in coordinate direction 1 between measurement source £, ; and measurement
y,(;)l. Using the standard maximum likelihood estimator, the estimated mean of the artificial
measurement noise can be given as

ﬂ](;m) — 777 (241>
k m=1[=1
using measurements up to time step k. The notation E =3, n ) indicates the number

of measurements inside the boundary and outside the 302 surroundlng from time step 1 to k
summed up. In each time step k, n,(;)

outside the 30, surrounding. Following this, the respective variance can be calculated as

measurements are assumed to be inside the shape and
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2.6 Recursive Artificial Measurement Noise Estimation

also using the standard maximum likelihood estimator. In this calculation, however, distances
from time step 1 up to k£ need to be saved. As a solution, recursive estimators for the mean
and the variance can be calculated as

. n(i)
" = :gﬂ.ﬂﬁ?+ >y (2.43a)
Zl(;) 1 nl(cZ) 21(;) =
(i) 2, e, 1 g%(< ) a6 02
~(im — ~ (i, in ~(i,n
G = kel _glim) 5 (gl _ e (2.43b)
=, +nd) 9/ Ll

In these recursive estimators, measurements from the first and the last time step equally
contribute to the noise estimation. This is, however, not preferable as the distribution can
vary over time, e.g., when the viewing angle of the object changes. Therefore, a forgetting
factor 7 similar to [C2, C3] is introduced that can be interpreted as the effective memory length
in terms of the number of measurements from the past that still contribute to the recursive
noise distribution estimation. The final recursive estimators of the artificial measurement noise
distribution are then given as

(1)

A i, T A2y 1 1,
Ml(g "= (2) N( U @ dl(c ;7)7 (2.44a)
T + + nk l:1
n(
S _ T gl 1 @n)  ~(im))2
¢ _— + M —p . (2.44b)
A= e L)

The following sections and chapters provide details on the application of the recursively estimated
artificial measurement noise.

2.6.2 Experiments

This section investigates the RAMN estimation in more detail before applying it to the
measurement models for maritime object tracking. First, the approach is applied to a circular
extended object where measurements are generated from the boundary and the interior. Then,
the forgetting factor 7 is examined in a simulation study to spot a trade-off value that balances
the adaptability of the RAMN over time and the consistency of the estimate.

Circular Extended Object In this paragraph, the estimation of the state of a static circular
extended object is investigated. Therefore, a set of ny = 50 measurements of the circle with
a standard deviation of o, = 0.1m for the additive measurement noise is simulated over 100
time steps. In this simulation, measurements are drawn from the boundary of the circle with a
probability of 0.7 and uniformly distributed over the whole extent with a probability of 0.3. The
system state to be estimated comprises the 2D position m;, and the radius r, which together
completely define the state of the static circle.

In the investigation, three different filters are compared to get an overview of the performance
Myt = [2,1]"'m and
a reference radius of 7, = 2m. The system state is initialized using the mean of the first
measurement set for the position, while the radius is initialized to be 1m. The filters to be
compared are the following:

of the RAMN estimation. The target circle has a reference position of m

Circular GAM with RAMN estimation: For this filter, the measurement equation presented in
Ex. 2.1 together with an UKF presented in Sec. 2.3 with n,, = ny is applied. The “inside-outside”
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Chapter 2. Bayesian Extended Object Tracking

information for circle measurements can be calculated using the implicit equation presented in
Ex. 2.8. Therefore, the measurements must be transformed to a local coordinate system. After
calculating the RAMN parameters using a forgetting factor of 7 = 200, the measurement noise
mean and covariance matrix can be generated as

,x) A (%, T
- [ﬂ,(q ),,u,g y)] if inside (2.450)
Doy [0,0] else
s, -0 (7w it imside (2.45b)
- diag(o?, 07) else

for each measurement individually. The stacked measurement noise covariance matrix for the
sequential batch update is given by (2.19). The artificial measurement noise mean is added to
the predicted measurement. In this implementation, the measurement noise is not sampled but
rather directly processed as an additive noise in the LRKF.

Circular RHM: For comparison, a circular RHM is implemented where the scaling factor
resembles a uniform distribution over the circular extent. The parameters of the approximated
Gaussian distribution for the scaling factor are then given as us = % for the mean value and

2

o = %8 for the variance. As a measurement equation, the implicit equation of Ex. 2.8 can be

modified as

0= ||§k:,z - mk|k—1|| — S Tklk—1

=19, = 2 — mug—all = - o1 (2.46)

using the measurement source model (2.22). The measurement model can also be implemented
using an extended object LRKF presented in Sec. 2.3. In this implementation, the measurement
noise vy ; and the scaling parameter s must be sampled.

Clircular GAM using only boundary measurements: For this filter, the “inside-outside” informa-
tion and the distance to the circle are used to discard measurements that are not associated
with the boundary of the circle. The remaining measurements are assumed to fit the circular
GAM presented in Ex. 2.1. The filter is also implemented using an UKF. For comparison, two
versions of the filter are implemented. The first implementation applies the same initialization
that is used for the other two filters. The second implementation assumes that a perfect
initialization (PI) is given as prior knowledge using the reference values of the circle.

The results of the simulation study can be seen in Fig. 2.8 with the root mean square errors
(RMSEs) of a Monte Carlo (MC) simulation with 100 runs in Fig. 2.8a and a qualitative
estimation result at the end of the first MC run in Fig. 2.8b. In both figures, it can be seen that
the RHM fails to estimate the correct radius of the circle due to the mismatch of the assumed
distribution of the scaling factor with the actual spatial distribution of the measurements. The
GAM only using boundary measurements fails to estimate the correct position and the radius of
the circle. The incorrect initialization of the filter leads to discarding the wrong measurements,
and the filter converges to the wrong values. On the other hand, with a perfect initialization
using the reference, the GAM only using boundary measurements converges to the true circular
values. However, it is very unlikely that the reference values are given when initializing the
filter.

In this simulation, only the GAM with RAMN estimation converges to the true value without
prior knowledge of the initialization of the filter. This result is remarkable since it must be
assumed that measurements can potentially be associated wrongly with either the boundary
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Figure 2.8: Qualitative and quantitative results of circular EOT investigating the RAMN estimation procedure.

or the interior of the object. In [80], it is stated that if measurements are wrongly associated
with the boundary, they must be outside the too-small estimated predicted object state, and
the lower measurement noise due to the boundary association results in a stronger correction
of the boundary towards the measurement. On the other hand, if measurements are wrongly
associated with the interior, they must be inside the too-large estimated predicted object state.
The measurement noise is then set too high due to the interior association, and the state
converges more slowly to the true state. However, the state can converge to the true state,
which is not the case for an RHM when assuming the wrong distribution of the scaling factor.
In contrast to [80], measurements in a 3¢, surrounding of the boundary are also associated
with the boundary in this thesis, which further expedites the convergence to the true state.

Forgetting Factor Investigation In this paragraph, the forgetting factor 7 that is applied
in the derivation of the RAMN is investigated in more detail. Especially, the impact of the
forgetting factor on the adaptability of the measurement noise is investigated. Therefore, a
simulation study is performed where Gaussian-distributed random samples are generated from
a distribution that suddenly alters in a single time step. Therefore, 500 measurements per time
step are generated. In the first 150 time steps, the samples are generated from a Gaussian
distribution with mean p; = 0.1 and standard deviation o; = 0.1. After 150 time steps, the
distribution suddenly changes to a Gaussian distribution with mean pus = 0.2 and g9 = 0.2.
This drastic change is an unrealistic event in real-world scenarios since the distribution would
likely change more smoothly with a certain type of transition. However, this example illustrates
the behavior of the RAMN estimation for altering distributions.

The mean values of a MC simulation with 100 runs are shown in Fig. 2.9. The same scenario
is investigated for different forgetting factors 7 € {10,50, 100,200, 500, 100, 2000} using the
estimator of (2.44) and for the recursive estimator of (2.43) that does not apply any forgetting
factor. The figure shows that the estimator that does not apply a forgetting factor very slowly
adapts to the new distribution. When introducing a forgetting factor, the mean value almost
immediately adapts to the new value for lower values of 7. The adaptability slightly decreases
for higher values of 7 but is still present. When estimating the standard deviation of an altered
Gaussian distribution, the estimator that does not apply any forgetting factor shows a similar
behavior compared to the estimator for the mean value. When introducing a forgetting factor,
the standard deviation only adapts directly for very low values such as 7 € {10,50}. For higher
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Figure 2.9: Investigation on the adaptability of the forgetting factor 7.

values such as 7 € {100,200}, the standard deviation adapts to the new value. However, it
requires a few time steps. For 7 € {500, 1000,2000}, the standard deviation does not adapt
completely to the new value anymore. To summarize, the choice of the forgetting factor 7 is a
trade-off between responsiveness to changes in the artificial measurement noise and stability. If
the value is too low, the noise estimate reacts to every small change, which could also be caused
by random, volatile effects. If the value is too high, the noise estimate may no longer adapt
adequately to changes. In the following chapters, a forgetting factor of 7 = 200 is applied for
each experiment.

Conclusions

This chapter established the essential methodological foundations for the 3D EOT algorithms
that will be developed in the following chapters. Key insights were gained concerning the
measurement-to-source association problem, handling of state interval constraints in Kalman
filtering, and processing measurements with varying unpredictable spatial distributions. The
review of the SDM, GAM, and RHM measurement-to-source association methods highlighted
the inherent trade-offs: SDMs require potentially unknown prior source distributions, GAMs
offer efficiency but can suffer from biases, while RHMs and ERHMs provide flexibility in
modeling measurement sources at the cost of increased complexity, often necessitating sampling-
based filters such as LRKFs. The suitability of specific association techniques, such as radial
or projected associations within the GAM or ERHM frameworks, especially for cylindrical
coordinate systems relevant to later chapters, was established as a crucial design choice
influencing both accuracy and computational load.

Furthermore, two significant practical challenges were addressed. Firstly, the presented trans-
formation technique enabling state interval constraints in the estimation procedure offers a
computationally efficient and easy-to-implement method to enforce constraints on estimated
parameters. For example, positive extent estimates ensuring physically plausible results without
altering the core Kalman filtering equations can be guaranteed with this method. Secondly, and
perhaps most critically for handling realistic 3D sensor data, the proposed RAMN estimation
procedure provides a novel solution for dealing with mixed sets of boundary and interior
measurements. Initial experiments demonstrated that the RAMN approach allows simpler
boundary-focused models such as the GAM and simultaneously achieves a robust performance
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2.7 Conclusions

by adaptively compensating for interior measurements, mitigating the estimation bias towards
the object’s center often observed when such measurements are ignored or incorrectly modeled.
This approach avoids strong assumptions about the spatial distribution of interior measurements
required by some alternative methods. In summary, these findings on measurement-to-source
association techniques, constraint handling, and particularly the RAMN approach, provide a
robust and adaptable toolkit for developing the specific 3D EOT measurement models developed
and investigated in the remainder of this thesis.
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Motivation and Contributions

In this chapter, two measurement models are presented that utilize parametric shapes for the
representation of motor and sailing boats. As a shape representation for motor boats, an elliptic
cylinder is used. For sailing boats, elliptic cones are applied in the measurement model. Fig. 3.1
shows why these shape approximations are a valid choice as a first approximation. The elliptic
cylinder and the elliptic cone represent the characteristic shape features of both object classes
sufficiently well. The light detection and ranging (Lidar) measurements, which can be seen as
red dots in both figures, were calibrated to the images so that the measurements and figures
could be superimposed. Both measurement sets and figures were recorded on Lake Constance
by the Solgenia, shown in Fig. 1.1.

Object-specific extended object tracking (EOT) measurement models can be used, for example,
when a camera system is employed in combination with a point cloud sensor such as a Lidar,
which is used to classify the individual dynamic objects in the surveillance area. The detected
object classes can then be used to select the appropriate measurement model. Since motor
and sailing boats represent the most common object classes in the maritime sector, several
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Major semi-axis Minor semi-axis

——Shape Height

Figure 3.1: Parametric object-specific shapes for maritime traffic participants.

possibilities for measurement processing for the shape approximations of these two classes are
presented in this chapter. As an extension of an ellipse, an ellipsoid would also be suitable as a
shape approximation for a motorboat. An ellipsoidal measurement model can, for example,
be found in [C4]. However, although the results in [C4] were promising, it was shown in [O6]
that measurement models that employ shape representations in spherical coordinates can have
difficulties in estimating the object’s extent in the maritime sector. If measurements from the
top and bottom surfaces are missing, which is often the case in maritime object tracking, extent
estimates can be error-prone. Since parts of the objects are usually underwater, measurements
are mainly taken from an object’s lateral surface, which provides insufficient information for
estimating the extent in spherical coordinates. Shape representations in cylindrical coordinates
naturally solve this problem.

Contributions In this chapter, several contributions are made. First of all, several approaches
applying a 3D greedy association model (GAM) and an extrusion random hypersurface model
(ERHM) are presented for estimating the extent of motor and sailing boats using elliptic
cylinders in Sec. 3.3 and elliptic cones in Sec. 3.4, respectively. Also, radial and projected
measurement source associations at specific height sections are presented for both shapes.
Furthermore, the recursive artificial measurement noise (RAMN) estimation procedure is added
to each measurement model to be able to process measurement sets containing both boundary
and interior measurements. In addition to the procedure presented in Sec. 2.6, implicit functions
generating the "inside-outside” information for the elliptic cylinder and cone are needed, which
are presented in this chapter. In addition to the derivation of the measurement models, pseudo-
code that can be used to implement the presented approaches is given in Sec. 3.5. Following
this, the different versions of each measurement model are compared using a simulated static
scenario in Sec. 3.6. A static simulated scenario can be considered the most basic scenario for
3D EQOT. It can therefore be applied to investigate the viability of the presented approaches in
a first step before deploying the measurement models to Lidar measurements in Ch. 6.

Related Work

EOT in 3D space using parametric shapes in maritime domains is still rare in the literature.
Nevertheless, an example of further approaches for tracking maritime objects in 3D space using
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Chapter 3. Parametric Shapes: Object-Specific Shapes

parametric shape representations can be found in [C4]. In this paper, virtual measurement
models and an adaptation loop are applied for generating artificial measurements of the assumed
shape and adapting the estimate of the random matrix (RM) approach [40, 83] until it fits
the statistics of the measurement set. Further 3D parametric shape models, which were used
as inspiration for the measurement models in this chapter, can be found in [33, 38]. These
papers propose a cylindrical and a conical model with circular base shapes, which are extended
to elliptical versions in this chapter. Furthermore, in both papers, the concept of ERHMs is
applied for the measurement-to-source association problem [148], which is based on the random
hypersurface model (RHM) [15, 16] and can be implemented using an smart sampling Kalman
filter (S2KF) [116, 118, 119]. Further information on the GAM, which is also applied for solving
the measurement-to-source association problem for each shape description, can be found in [32,
35]. If applicable, the measurement models applying the ERHM are extended using symmetry
assumptions [36] in this chapter. The EOT filter can then be implemented using an unscented
Kalman filter (UKF) [76, 77, 130]. Symmetry assumptions can be used to increase the efficiency
of the measurement model. Furthermore, the quadratic extension [14] is no longer needed in
the measurement model. The RAMN estimation procedure is inspired by [80] and extended in
this work for adaptively estimating an artificial measurement noise for the elliptic cylinder and
elliptic cone measurement models.

Elliptic Cylinders for Motor Boats

As mentioned in Sec. 1.2, ellipses provide an appropriate shape approximation for motor
boats using 2D measurements. However, shape approximations in spherical coordinates are
error-prone for objects in maritime environments since measurements from the bottom side of
the object are normally missing. Thus, this section presents an elliptic cylinder as a 3D shape
approximation for motor boats as the first measurement model for maritime traffic participants.
A parametric representation for an elliptic cylinder in local coordinates can be given as

2(0,s) = [a - cos(8),b-sin(f),s-h]". (3.1)

using the semi-axes a,b > 0, the height A > 0, and the parameters 6 € [0,27), and s € [0, 1].
Then, the system state required to estimate an elliptic cylinder out of a recorded measurement
set can be given as

T
Lkin, — [ml;rv ¢k7 l\—/relk} ) (32&)

Tety, = [, by, ] " (3.2b)

The kinematic system state comprises the 3D position m;, the yaw angle ¢, and the dynamics
Ty, Tepresenting variables such as the velocity, yaw rate, or acceleration of the object. The
yaw angle ¢y is modeled to be aligned with the direction of movement. Furthermore, roll and
pitch angles are assumed to be negligible. However, the model can easily be extended to include
these using quaternions [85] or a 3D orientation represented by Euler angles. The position my,
and the yaw angle ¢, describe a local coordinate system in which the shape is defined.

In the following, two measurement models are presented and later on compared in a simulation
study in Sec. 3.6.1. The first measurement model to be presented is a 3D GAM, as it is the most
efficient model that can be implemented among the considered options. However, the GAM
is known to possibly produce biased height estimates [34] due to a missing penalization for
overestimated heights. Thus, to generate an unbiased height estimate, an ERHM for the elliptic
cylinder is presented as a measurement model afterwards. Additionally, symmetry assumptions
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3.3 Elliptic Cylinders for Motor Boats

as given in Sec. 2.4.3 can be included as a further simplification in the measurement model to
be able to estimate the system state using an UKF without quadratic extension instead of using
an S2KF with quadratic extension. In the ERHM, the shape is assumed to be represented using
two parameters, as is the case for the elliptic cylinder. The measurement source association is
then constructed using an spatial distribution model (SDM) for the extrusion factor si; that
defines the height section of the shape, and a 2D GAM for the angular parameter ék,l. This 2D
GAM association problem can be solved using a radial or a projected association.

A radial association for solving the 2D GAM in the ERHM and the 3D GAM is presented in
this section. The projected association for solving the 2D GAM can be implemented using the
description in Sec. 2.4.3. Both association procedures are interchangeable in the elliptic cylinder
measurement models and are compared in Sec. 3.6.1. Additionally, a procedure for estimating a
RAMN for the elliptic cylinder, as proposed in Sec. 2.6, is presented. The measurement models,
therefore, initially assume the measurements to be generated exclusively from the object’s
boundary.

Remark 3.1. The initial idea for the elliptic cylinder measurement model for 8D EOT of
motor boats is published in [O4]. In this chapter, further improvements to this measurement

model are made and compared.

CCBE  Elliptic Cylinder 3D GAM

For the 3D GAM, both parameters of the elliptic cylinder are greedily associated with the
boundary. Therefore, the measurement must first be transformed to a local coordinate system

given as
U, =R <¢k|’<¢—1>71 : (yk,l - mk:|k:—1) ; (3.3a)
cos(¢) —sin(¢) 0
R(¢) = | sin(¢) cos(¢) 0O (3.3b)
0 0 1

using the rotation matrix R(¢). Afterwards, the greedy parameter estimates for each mea-
surement can be calculated. For the extrusion factor sy, it is assumed that the measurement
sources are located on the same height section as the measurement. Therefore, the extrusion

8k = min [ max [ = 0] .1 (3.4)
Pj—1

limiting the estimated values to the interval [0, 1]. The greedy association of a point on a specific
height section defined by §;; can be generated using either a radial or a projected association.
For the radial association, the estimate of the angular parameter 6;; can be generated as

factor can be calculated as

brjk—1 sin(fy,) ?31(51,]1)

T ) (3.5a)
g1 - €08(Or1) gl(g’l)
~(y)
A Aglk—1 Y
tan(0y,) = ‘7% (3.5b)
brjk—1 - Yi,i
O = atan2 (ak|k—1 . ?];(f,ll), bkjk—1 - ?J;(fl)) (3.5¢)
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considering the eccentricity of the ellipse. Given the greedy estimates for the elliptic cylinder
parameters and the parametric equation for the cylinder (3.1), a measurement source in local
coordinates with a radial association can be calculated as

z A ~ T T
Zrad (ikwc—l?gk’l) = |:2£ag) <£k|k—17yk7l) 1 Skl - hk|k—1:| (363“)

= [ak|k—1 - cos <ék,l) , bgjp—1 - sin (ék,l) e hk|k—1r- (3.6b)

A projected association )

Zpro] (@d k15 gkl) in local coordinates computing the closest point on
the approximated boundary on a specific height section can be calculated using the procedure
presented in Sec. 2.4.3, the predicted ellipse semi-axes agx—1, and, bgx—1, and the measurement
in local coordinates (3.3). The different measurement source association techniques at a specific
height section are visualized in a 2D top-down view in Fig. 3.2. Finally, a measurement equation

in local coordinates for the elliptic cylinder 3D GAM can be formulated as

5(@y) (4 0
. z Thik—1-Y _
Yy = [ ( k‘: i) ~ Uyt Uk (3.7a)
Sk, Nk|k—1
= ZGAM (ikucfpgk’l) + Uk (3.7b)

where both the radial and the projected measurement source association procedure can be
applied for the greedy association at a specific height section. In the measurement update of
the nonlinear Kalman filter, the predicted measurement 9, can then be associated with the
pseudo-measurement 05 in (2.16b). Implementation details for the elliptic cylinder 3D GAM
are given in Sec. 3.5.1.

(a) Radial measurement source association. (b) Projected measurement source association.

Figure 3.2: Elliptical measurement source association. Measurements as balls, and measurement sources as
crosses. Related items are displayed in the same color.

CWA  Elliptic Cylinder ERHM

When implementing an elliptic cylinder ERHM, the greedy association on a specific height
section can be calculated using the radial or projected association and the measurement in local
coordinates (3.3) as presented before in Sec. 3.3.1 for the elliptic cylinder 3D GAM. However,
in contrast to the 3D GAM, the extrusion factor sj; is modeled as an SDM in the ERHM. The
distribution of the extrusion factor should then resemble a uniform distribution on the surface
of the elliptic cylinder due to the lack of prior knowledge of the actual distribution. In the z
direction, the probability density function (PDF) of measurements associated with the surface
then scales linearly with the shape’s perimeter at each height section. For the elliptic cylinder,
the perimeter is constant in the z direction. Therefore, a uniform distribution s;; ~ %(0, 1) in
the interval [0, 1] is assumed for the extrusion factor for the elliptic cylinder ERHM.
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3.3 Elliptic Cylinders for Motor Boats

Due to the uniform distribution of the extrusion factor, symmetry assumptions for the ERHM
as presented in Sec. 2.4.3 can be included in the measurement equation. The measurement
equation for the symmetrical elliptic cylinder ERHM can finally be given as

s(@y) (4 1 ~(zy)
~ _ zZ l/ﬂk—l?g Qk,l
gk,l - ( s k,l> — [ N(z)| +yk,l (38a)
Skl 2 k.l
= ZERHM (@\H,gki) + Uiy (3.8b)

where the extrusion factor s is subject to sampling. In this measurement equation, the origin
of the local coordinate system is located in the middle of the shape, in contrast to the 3D GAM
where the origin is located in the base ellipse. Due to the factor %
measurement function, the full height is still estimated in this approach. In the measurement

update step of the nonlinear Kalman filter, the predicted measurement gkl can then again be

in the 2z coordinate of the

associated with the pseudo-measurement 05 in (2.16b). Implementation details for the elliptic
cylinder ERHM are given in Sec. 3.5.1.

Recursive Artificial Measurement Noise for the Elliptic Cylinder

In both the elliptic cylinder 3D GAM and the elliptic cylinder ERHM, measurements are
initially assumed to be generated from the object’s boundary. However, due to several reasons,
measurements may also be generated from the object’s interior. For the elliptic cylinder
measurement models, measurements from the interior of the object could be processed with an
additional RHM for each height section as was presented in [15, 16]. However, it was seen in
Sec. 2.6 that the estimate of the extent using an RHM can be biased if the wrong distribution
of the scaling factor is assumed. Also, in addition to the extrusion factor that is needed for
the ERHM, an additional factor would be needed and would also be subject to sampling if an
additional RHM were used to process measurements from the interior of the object.

Therefore, a RAMN estimation procedure for processing measurements from the interior of the
elliptic cylinder is presented in this section. The basic equations for the recursive parameter
estimation of the artificial measurement noise are given in Sec. 2.6. Since the elliptic cylinder
is defined in cylindrical coordinates, an estimation of the artificial measurement noise only
in x and y coordinates is sufficient. Also, the extent of the ellipses does not change in the z
direction, so the problem of calculating the ”inside-outside“ information for each measurement
can be reduced to calculating the value for the 2D ellipse defined by the extent parameters
Aflk—1 and bk|k:—1-

In addition to calculating whether measurements are inside the boundary, the information

about measurements being outside the 30, border must be calculated. An implicit equation for
the ellipse that can be used to calculate this information is given by

()2 _(y)? > 0: outside

Yi,1 Yi,1
d : —14=0: 30, boundar 3.9
k-1 — 3 0y)? (b1 — 3+ 0y)? . y (9
< 0: inside

j(gkla ik“@—l) = (

using the predicted system state Ly, and the measurement in local coordinates g, ,, which
can be calculated using (3.3). A visualization of the measurement separation for the RAMN
estimation can be seen in Fig. 3.3. The blue measurements in the figure are then applied for the
recursive estimation of the artificial measurement noise parameters. The Euclidean distances
needed for the calculation are directly given by the measurement sources as

d,(;;’ln) = ’2(”') (ikm—lvgk’l)’ : (3.10)
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Reference — = 30 border
® Boundary measurement @ Interior measurement

Figure 3.3: Visualization of the measurement separation for the RAMN estimation of an ellipse.

Both the radial and the projected associations can be applied to calculate the artificial measure-
ment noise. Also, both the measurement sources of the elliptic cylinder 3D GAM and ERHM
can be directly applied for calculating the Euclidean distances. After calculating the RAMN
parameters using a forgetting factor of 7 = 200, the measurement noise parameters can be
generated as

~im) ~y) o] T e
Av _ [  fy, ,O} if inside (3.11a)
R [0,0,0]" else
(w) A(Z,y) e
s, - diag ( U) if inside (3.11b)
o diag(o?, o5 02) else

for each measurement individually. The stacked measurement noise covariance matrix *3,
can then be generated using (2.19). The artificial measurement noise mean is added to each
predicted measurement. Details on the implementation can also be found in Sec. 3.5.1.

Elliptic Cones for Sailing Boats

The last section presented an elliptic cylinder as a shape approximation for motor boats in 3D
EOT. However, although an elliptic base shape is also an appropriate shape approximation for
sailing boats in 2D, the elliptic cylinder assumption can be further improved for 3D EOT of
sailing boats. Therefore, this section presents an elliptic cone 3D shape approximation as a
further measurement model for a second class of maritime traffic participants. A parametric
representation for an elliptic cone in local coordinates can be given as

2(0,8) =[(1—s)-a-cos(d),(1—s)-b-sin(d),s-h]". (3.12)

using the semi-axes a,b > 0, the height A > 0, and the parameters 6 € [0,27), and s € [0, 1].
Then, the system state required to estimate an elliptic cone is the same as for the elliptic
cylinder and is given as

-
gkink = |:m]—<:r? (z)k? l\—;e]k:| 9 (313&)
gextk = [Clk, bk?v hk]T . (313b)
Again, the yaw angle ¢y is modeled to be aligned with the direction of movement, and roll and
pitch angles are assumed to be negligible.
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In the following sections, again two measurement models for estimating an elliptic cone, a 3D
GAM and an ERHM, are presented and compared in a simulation study in Sec. 3.6.2. However,
as will be seen, symmetry assumptions as given in Sec. 2.4.3 cannot be included in the elliptic
cone ERHM. Thus, a quadratic extension in combination with an S2KF must be applied for
estimating the parameters of the elliptic cone when using an ERHM. Furthermore, for the
2D association of the measurement source on a specific height section, again, a radial and a
projected association can be applied. Finally, also for the elliptic cone measurement models, a
procedure for estimating a RAMN for processing measurements from the interior of the shape
is presented and investigated in Sec. 3.6.2.

Remark 3.2. The initial idea for the elliptic cone measurement model for 3D EOT of sailing
boats is published in [O5]. In this chapter, further improvements to this measurement model are
made and compared.

CEMN Elliptic Cone 3D GAM

For the elliptic cone 3D GAM, both parameters are greedily associated with the boundary.
When using a radial association, the equations for greedy associations are given by (3.4) for the
extrusion factor §x;, and by (3.5) for the angular parameter ék,l using the measurement in local
coordinates given by (3.3). Given the greedy estimates for the elliptic cone parameters, and the
parametric equation for the elliptic cone (3.12), a measurement source in local coordinates with
a radial association can be calculated as

_Z(xg) (fﬁkk 1Y )
Zrad (ﬂk\kfl’yki) = " Pk ;kJ (3.142)
(1= 8k1) - Qgjg—1 - cos (ék,l)
= | (1= 8k1) - b1 - sin <9k,z) : (3.14b)
i Sk k-1
A projected association gg’ﬁg} (ikl k-1, l) in local coordinates computing the closest point on

the approximated boundary on a specific height section can be calculated using the procedure
presented in Sec. 2.4.3. Therefore, the semi-axes must be scaled using the predicted extrusion
factor 5x; as (1 — 8x1) - agk—1 for the major semi-axis and (1 — 8x) - byjp—1 for the minor
semi-axis. Using this scaled ellipse at a specific height section and the measurement in local
coordinates (3.3), a projected association can be calculated. Finally, a measurement equation
in local coordinates for the elliptic cone 3D GAM can be formulated as

@) (5
0 Z Lglk—1>Y ~
Y = [ a ( kl;; ' 7]?71) Yk + Uk (3.15a)
Skl Ngek—1

where both the radial and the projected measurement source association procedure can be
applied for the greedy association at a specific height section. In the measurement update
of the nonlinear Kalman filter, the predicted measurement gk’l can be associated with the
pseudo-measurement 05 in (2.16b). Implementation details for the elliptic cone 3D GAM are
given in Sec. 3.5.2.
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KWWY Elliptic Cone ERHM

When implementing an elliptic cone ERHM, the greedy association on a specific height section
can be calculated using the radial or projected association presented in the sections before. In
contrast to the elliptic cylinder ERHM presented in Sec. 3.3.2, measurements are not assumed to
be uniformly distributed in the z direction for the elliptic cone. Since the PDF of measurements
in the z direction scales linearly with the perimeter of the shape at each height section, if the
extrusion factor is chosen to resemble a uniform distribution of measurements on the surface of
the elliptic cone, the extrusion factor can be modeled using a triangular distribution. It is then
distributed as si; ~ 7(0,1,0) where I (a, b, c) describes a triangular distribution with lower
limit a, upper limit b, and mode ¢ [38].

Due to the triangular distribution, symmetry assumptions in the z direction cannot be included
in the elliptic cone ERHM. Thus, a quadratic extension in combination with an S2KF must
be applied to estimate the height. The measurement equation in global coordinates without
applying the quadratic extension is then given as

5(xy) (4 7
s R £ Lrlk—1->Y
Ypoa = ki1 (¢k|k—1) ' [ Sk(l k}fklli 1k7l)] T Yy T Uk (3.16a)

= ZERHM (immuﬁhl) + Vg - (3.16b)

The quadratic extension can then be added for an unbiased height estimation using the
measurement equation for the z direction as

[yk,z] _ ZERHM (ﬂk\k—layk’l) + Q2k,z
Ykt (mk\k—l + Sk - hgjr—1 + ”k,l) Yk

When using the quadratic extension for estimating the height of the shape, the measurement
equation must be formulated in global coordinates rather than in local coordinates as compared
to the elliptic cylinder ERHM. Also, due to the quadratic extension, not only is the extrusion
factor subject to sampling, but also the measurement noise of the z coordinate. After the

27T
quadratic extension, the extended predicted measurement {g;w @1(:1) } can be associated with

the pseudo-measurement 0, in (2.16b) in the update step of the nonlinear Kalman filter.
Implementation details can be found in Sec. 3.5.2.

Recursive Artificial Measurement Noise for the Elliptic Cone

Also, in the measurement models of the elliptic cone, measurements are initially assumed to
be generated from the object’s boundary. Therefore, a RAMN can again be added to the
measurement model for processing measurements from the object’s interior. The basic equations
for the parameter estimation of the artificial measurement noise are given in Sec. 2.6. For the
elliptic cone, the artificial parameters can again be calculated for x and y coordinates to be
able to process measurements from the interior of the object.

However, in contrast to the elliptic cylinder, the extent parameters at each height section vary
for the elliptic cone, which needs to be considered in the "inside-outside“ equation. Hence, first,
a greedy estimate for the extrusion factor of each measurement must be calculated using (3.4)
and the measurement in local coordinates (3.3). Then, the information for each measurement
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being inside the boundary of the elliptic cone and outside the 30, border can be calculated
using the implicit equation

~(z)? ~(y)?
Y, yk}fl

5 +
((1 — §k,l) . (ak‘k_l —-3- Ug)) ((1 — §k,l) . (bk|k—1 —-3- UL’))

> (0: outside

I Gy, Trpe—1) = > —1 (3.18)

=0: 30, boundary .
< 0: inside

Using this ”inside-outside” function, the procedure described in Sec. 3.3.3 can be applied for
calculating the parameters of the artificial recursive measurement noise. Implementation details
can be found in Sec. 3.5.2.

Implementation Details

In this section, details on implementing the presented algorithms are given. In particular,
pseudo-code for the elliptic cylinder and the elliptic cone EOT algorithms is presented. Also,
details on implementing the calculation to estimate the artificial measurement noise parameters
for processing interior measurements are given. However, the theoretical sections exclusively
focus on the measurement update step in the Kalman filter. Thus, the procedures given in this
section also only constitute the measurement updates using the respective nonlinear Kalman
filters. Details on the prediction steps can be found in the respective literature, such as [19, 27,
66]. The implementation details of the algorithms described in the following chapters can then
be built based on the information provided in this section.

Remark 3.3. In addition to the pseudo-code given in this section, an implementation of the
elliptic cylinder measurement models can be found at [R2] and for the elliptic cone at [R1].

CIGRE  Elliptic Cylinder Implementation Details

This section presents the details of the implementation of the elliptic cylinder measurement
models. Although the elliptic cylinder GAM could be implemented using an extended Kalman
filter (EKF), every elliptic cylinder 3D EOT filter is implemented using an UKF to ensure
better comparability among all the presented versions. Due to the symmetry assumptions in the
elliptic cylinder ERHM, an UKF is the least complex algorithm among the ones applied in this
thesis that can be used for state estimation in the elliptic cylinder ERHM. The algorithm for
a sequential batch linear regression Kalman filter (LRKF) measurement update, which is the
same procedure for the UKF and the S2KF, can be found in Alg. 3.1. The deterministic sample
calculation in line 3 can then either be solved using the sigma point generation of the UKF or the
sample generation of the S2KF. The artificial measurement noise mean and covariance matrix
in line 11 for the elliptic cylinder can be generated using the ”inside-outside® function (3.9) and
the procedure described in Sec. 3.3.3. The main difference among the filters presented in this
thesis, which are implemented using an LRKF, can be traced back to lines 3-5 in Alg. 3.1, which
differ for each shape description and measurement source association procedure. The following
lines in the loop from lines 6-15 are the same for every EOT filter, which is implemented using
an LRKF. For the elliptic cylinder measurement model, the pseudo-code for implementing
lines 3-5 in Alg. 3.1 can be found in Alg. 3.2. In this algorithm, implementations of the elliptic
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Algorithm 3.1 Sequential batch LRKF measurement update

Require:
predicted state Z;,_;, predicted state covariance Py, 1, measurements %, single update

measurement number n,,

1: set il = ik\kflv Pl = Pk|k71
2: for n + 1 to |ng/n,] do

Ns
3: Gaussian samples gnj,wmj} . using [130] or [116, 118]
9 j:

Uz
4: get {in}l ) from %} using next n, measurements

- Lz Ns
5: predicted measurements {{Qw l}l 1} for each measurement and sample

=0t ) 1=1J j=1
6: for [ + 1 to n, do
Ns

7 predicted measurements G = ng Wnyj Y,
8: end for

- s A T SO A
9: stack predicted measurement samples { 4,; = [gn,j,l’ ceey gw’nu} -
10: RAMN parameters ﬂﬁf’"), f/ﬁf’m using Sec. 2.6.1 and "inside-outside® function
11: measurement noise parameters i, 3,  using (3.11a) and (3.11b)

Y, -n,
T 17
. : sa |~ N N N
12: stack predicted measurements g,= l(yml + M“m) e <yn7nu + ,uvnm) ]
13: stack measurement noise covariance matrices *%, using (2.19)
Ns T

14: innovation covariance matrix S,, = ]21 Wn,j (Sgw - Sgn) : (Sgn’j - Syn) + 53,

. . Ns " R . T
15: cross covariance matrix ¥,, = ng Wn,j* (ﬁn,j - Lz) : <sgn’j - sgn>
16: updated state mean vector 2,,,, = &, + ¥,, - S,;! - (Q — sgn)
17: updated state covariance matrix P,y; =P, — ¥, - Sgl . \III

18: end for

19: set ik = in+17 Pk = Pn_;,_l

cylinder measurement model where the measurement source association is solved using a 3D
GAM or an ERHM are described in detail. A main difference in both association procedures
can be found in lines 1-5, where the sigma point generation of the predicted system state
distribution can be found. For the 3D GAM, only samples from the system state parameters
must be generated. On the other hand, when implementing an elliptic cylinder ERHM, the
extrusion factors must be sampled for each of the n, measurements individually. Since the
extrusion factor is assumed to be distributed uniformly as s, ; ~ %(0, 1), one possibility would
be to approximate the uniform distribution as a Gaussian distribution with ps = % and 02 = %
and sample the extrusion factors from this approximated distribution. However, when doing
S0, an approximation error can be introduced as extrusion factors will also be sampled outside
the interval [0, 1]. Therefore, an idea presented in [117] can be applied if uniformly distributed
samples are to be generated. When generating samples from the standard Gaussian distribution
with ys = 0 and 02 = 1 and transforming the samples through the cumulative distribution

function (CDF)

B(sp) = Gy = % (1 +erf (%)) (3.19)
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of the standard Gaussian distribution, the transformed samples §;; will be uniformly distributed
as S ~ %(0,1) [102]. Therefore, the system state distribution can be extended with the
parameters of a standard Gaussian distribution for each of the n, measurements in line 4 to be
able to sample uniformly distributed sigma points in lines 6 and 18. Another difference between
the 3D GAM and the ERHM is in the calculation of the predicted measurement, which can
be found in lines 16 and 19. For the ERHM, the symmetry assumption in the z direction is
applied to compensate for the missing quadratic extension and enable the application of an
UKF instead of requiring an S2KF'. Finally, for the elliptic cylinder, the extent state is subject
to constraints. Therefore, the transformation function (2.38) with a lower bound of 0 to prevent
negative values is applied for the full extent state in line 10.

Algorithm 3.2 Elliptic cylinder UKF measurement prediction

1: if 3D GAM measurement source association then

2 distribution parameters z, = 2,,, P, =P,

3: else if ERHM measurement source association then

4: extended distribution parameters z, = { n,Q;Lr }T, P, = blkdiag (P, 1,,)
5. end if

6

. sigma points {gn’j, wn]}711 using [130] and z,,, P,

o

Uz
get { nl}l from % using next n, measurements
8: fory(—ltonsdo

9: extract Zy,, . from z,, ;
10: extract constralned Zext,,; = C1(Zexy, ,» 0) with lower bound from z,, ; using (2.38)
11: for [+ 1ton, do
12: measurement in local coordinates 7 . using (3.3), and Zyin,,
13: measurement source ”57(1 ;’)l (xextw,y using (3.6) or projected association
14: if 3D GAM measurement source assoclation then
15: extrusion factor 3, ;; using (3.4), yT(Lj)l, and constrained height sample ﬁ:n,j
@) 5 oz 1T
16: predicted measurement y il = {En,]l s Ingl ﬁiw} ~ 4
17: else if ERHM measurement source association then
18: extract extrusion factor sample 3, ;; = 5 <1 + erf ("ffj’)) from z,, ;
19: redicted measurement g [z( )" }T [ j@n’ 1z ) ”
: p gw- = |ZEn,gl 0 2ngil” n]l ’ yngl
20: end if
21: end for

22: end for

3.5.2 Elliptic Cone Implementation Details

This section presents the details of the implementation of the elliptic cone measurement models.
Also, for the elliptic cone, an EKF could be applied for the 3D GAM. However, due to the
quadratic extension in the ERHM, an S2KF [116, 118] must be used for this filter and is then
also used for the 3D GAM for better comparability among the elliptic cone measurement models.
The implementation of the elliptic cone measurement models is again built on the sequential
batch LRKF measurement update in Alg. 3.1. In this algorithm, the measurement noise
covariance matrix in line 12 for the elliptic cone can be calculated using the "inside-outside“
function (3.18) and the procedure described in Sec. 3.4.3. The implementation of lines 3-5 in
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Alg. 3.1 can be found in Alg. 3.3. In this algorithm, the implementation of the elliptic cone
measurement model with the measurement source association solved using a 3D GAM or an
ERHM can be found. For the 3D GAM, the implementation is similar to the elliptic cylinder,
with the difference that the measurement source model (3.14) is used in line 13.

Algorithm 3.3 Elliptic cone S2KF measurement prediction

1: if 3D GAM measurement source association then

2 distribution parameters z,, = z,,, P, = P,
3: else if ERHM measurement source association thenT
4: extended distribution parameters z,, = [@,TL , Q;rnu} , P, = blkdiag (Pn, L., ai . Inu>
5. end if
Ns
6: Gaussian samples { n]7wn]} ) using [116, 118] and z,,, P,
j=

Uz
7. get {gnl}l_l from %} using next n, measurements
8. for j < 1 to n, do

9: extract Zyy, ; from z,, ;
10: extract Constralned Zext,, = C1(Zexy, ,» 0) with lower bound from z,, ; using (2.38)
11: for [+ 1 to n, do
12: measurement sample in local coordinates gnj , using (3.3), and @y,
13: measurement source z( ;’)l (gextw,y > using (3.14) or projected association
14: if 3D GAM measurement source assomation then
15: extrusion factor 3, ;; using (3.4), yfl ]) ;» and constrained height sample %,, ;
_ 4T
16: predicted measurement 4, il = {zg ;’3 s gl fin,j] _gn,j,l
17: else if ERHM measurement source association then
18: extract extrusion factor sample J,, ;; =1 — /1 — ®(,,51)
19: extract noise sample v, ;; from z,, 4
T ~ T
20: measurement source x,, ;; = 722, i + R (¢n,;) - [ n% Inl ﬁ/n,j]
21: predicted measurement
-

S CO RO 5 (%) )2 T ()2

gn,jJ - E'rL,j,l ) n]l + njis ( n,j,l + U”a]yl) — Y A Yn,i
22: end if
23: end for
24: end for

When implementing an elliptic cone ERHM, the sample generation in line 4 is already different
from that in the elliptic cylinder ERHM. The extrusion factors must again be sampled
for each of the n, measurements individually. However, for the elliptic cone, the extrusion
factors are assumed to be sampled from the triangular distribution sz; ~ 77(0,1,0). As
the sampling procedure in the S2KF only samples Gaussian distributed samples, again, a
transformation based on the inverse transform sampling [104] can be performed to generate
samples that are distributed according to the triangular distribution. In inverse transform
sampling, uniformly distributed samples si; ~ %(0,1) are transformed using the inverse CDF
of the target distribution. Thus, in line 4, standard Gaussian distributed samples are generated,
which can be transformed using the Gaussian CDF to result in uniformly distributed samples,
which then can be transformed using the inverse of the triangular CDF. The full transformation
of the samples can then be given as

gk,l =1- 1-— (I)(SkJ) (320)
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where ®(sy,;) is the CDF of the standard Gaussian distribution. The samples 3 ; will then be
distributed as 3; ~ 7 (0,1, 0). The extrusion factor sample transformation can be found in line
18 of Alg. 3.3. Concerning interval constraints, for the elliptic cone, the same transformation
function as in the elliptic cylinder measurement models is used to prevent negative values in
the extent state in line 10.

In addition to the extrusion factor, the measurement noise in the z direction must also be
sampled for the elliptic cone ERHM due to the quadratic extension, where the additive noise is
transformed as well. The noise v(*) ~ (0, 02) can perfectly be sampled using the S2KF by
also extending the state distribution parameters for each of the n, measurements individually.
The measurement function that applies the quadratic extension using the transformed extrusion
factor samples and the noise samples can then be found in lines 20-21 of Alg. 3.3. Since the
noise in the z direction is also sampled in the elliptic cone ERHM, and the quadratic extension
must be applied in the update step, the measurement noise mean and covariance matrix differ
from the ones given in (3.11a) and (3.11b). After the calculation of the RAMN parameters, the
individual measurement noise means and covariance matrices can be calculated as

[ A9 ) g 0] if inside

= (3.21)
Tk [0,0,0 O] else

diag (917,91 0,0)  if inside
P (v ) (3.22)
o diag(oz,07,0,0) else

After the calculation of the individual measurement noise covariance matrices, the stacked
measurement noise covariance matrix *3, can then again be generated using (2.19).

Experiments

In this section, the elliptic cylinder and elliptic cone measurement models are investigated and
compared in a simulated static scenario. In these simulated scenarios with 100 time steps,
measurements are generated from both the boundary of the reference shape and the interior of
the object. With a probability of 0.7, measurement sources are generated from the boundary of
the objects using the shape functions (3.1) for the elliptic cylinder and (3.12) for the elliptic
cone. Uniformly distributed boundary measurement sources can be generated by sampling the
shape parameters from the respective distributions. The angular parameter is sampled from
the uniform distribution 6 ~ %(0, 27) for both shapes. The extrusion parameter is sampled
from the uniform distribution s ~ %(0,1) for the elliptic cylinder and from the triangular
distribution s ~ 7 (0, 1,0) for the elliptic cone. In addition, with a probability of 0.3, a scaling
factor t ~ 7(0,1,1) is sampled to also generate measurement sources from the object’s interior.
An interior measurement source can then be generated by scaling the measurement source in the
zy plane as 2™ (,s) =t - 2(*¥)(#, 5). Finally, to generate a measurement, the measurement
noise v ~ /4 (0,0.1%) is sampled for each dimension and added to the measurement source.

In the simulation, the elliptic cylinder and elliptic cone 3D EOT filters are implemented using a
3D GAM, an ERHM, with a radial and projected measurement source association at a specific
height section, and with and without the RAMN estimation. If no RAMN estimation is applied,
a standard measurement noise covariance matrix is used, assuming measurements are exclusively
generated from the object’s boundary. Each filter is initialized using the first measurement
set. Details can be found at [R1, R2]. In each time step, 50 measurements are generated, and
for the sequential batch update, n,, = 20 measurements are used for a single update in each
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filter. In the following sections, the quantitative results are presented using the mean root mean
square errors (RMSEs) of each system state parameter in a Monte Carlo (MC) simulation with
100 runs.

Elliptic Cylinder Experiments

In this section, the simulation results for the elliptic cylinder 3D EOT filters are presented.
The quantitative MC simulation results are depicted in Fig. 3.4. In this figure, the mean values
of the RMSEs of the full system state, comprising the position m;,, the yaw angle ¢, the major
semi-axis ag, the minor semi-axis by, and the height Ay, are depicted for the full scenario.

Position RMSE Orientation RMSE
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—&6— GAM radial RAMN ———GAM radial no RAMN —g— GAM projected RAMN ———GAM projected no RAMN

Figure 3.4: MC simulation RMSE estimation results of the static elliptic cylinder simulation experiment.

In the simulation, eight implementations, which were discussed in the previous sections, of the
elliptic cylinder 3D EQOT filter are compared. In the figure, it can be seen that the ERHM
implementations of the elliptic cylinder yield an unbiased height estimate. The 3D GAM
implementations typically overestimate the height due to the missing penalization mechanism
for overestimated heights in the GAM. In the figure, it can also be seen that the implementations
applying the RAMN estimation in the update procedure yield precise estimates of the semi-axes
a and b except for the minor semi-axis b when a projected measurement-to-source association at
a specific height section is used. Therefore, the implementations exhibiting the best performance
are the ERHM implementations applying the RAMN estimation when measurements from the
boundary and the interior of the object are present. Due to the overestimated minor semi-axis
b when using a projected measurement-to-source association, a radial association already seems
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Table 3.1: Mean computation times per measurement for the elliptic cylinder.

Algorithm Computation time

ERHM radial RAMN 29.06 ps
ERHM radial no RAMN 29.42 s

ERHM projected RAMN 136.13 ps
ERHM projected no RAMN 148 s
GAM radial RAMN 14.94 ps
GAM radial no RAMN 15.06 118
GAM projected RAMN 25.3 118
GAM projected no RAMN 25.2 118

beneficial for the elliptic cylinder measurement models after this simulation. The following
investigations in Ch. 6 will further confirm this result. The estimates of the yaw angle reveal
huge errors, which can be ascribed to the fact that the shapes are symmetric and the angle is a
periodic variable, which is why ambiguities in the estimates can occur. However, the orientation
RMSE converges in each implementation, which indicates a reliable angle estimation.

In addition to the quantitative estimation results, the mean calculation times per measurement
are given in Tab. 3.1. Each calculation is conducted using MATLAB R2023b on an Intel(R)
Xeon(R) X5680 CPU with 3.33 GHz. It can be seen that the 3D GAM implementations are
the most efficient. However, the ERHM implementations with radial measurement source
association at a specific height section are almost as efficient. In comparison, the projected
association is distinctly slower in this comparison. However, for the ERHM applying a RAMN
estimation with a projected association at a specific height section and n, < ng, problems with
the positive definiteness of the system state covariance matrix P,, in the UKF were encountered.
In future work, therefore, a square root implementation of the UKF [126] should be applied if
this combination is to be used.

Finally, in Fig. 3.5, the qualitative estimation results after 50 time steps and 2500 processed
measurements for two filter implementations of the elliptic cylinder are depicted. In the left
column, the elliptic cylinder is depicted in a 2D top view, and in the right column, in a 3D
view. In each figure, the ERHM implementation with a radial measurement source association
at a specific height section is applied. In Fig. 3.5a, no RAMN estimation is applied, while in
Fig. 3.5b, the RAMN estimation is used in the update step. In the second row of the figure,
it can be seen that the extent of the elliptic cylinder can be perfectly estimated, while the
shapes in the first row showcase a bias of the extent parameters towards the center of the
shape. Furthermore, these results were also obtained for different spatial distributions of interior
measurements. Thus, the RAMN estimation is independent of the spatial distribution of interior
measurements, and no assumptions need to be made. In contrast to the RHM approach, where
the spatial distribution needs to be specified beforehand, this fact represents a major advantage.

CAWA Elliptic Cone Experiments

In this section, the simulation results for the elliptic cone 3D EQOT filters are presented. The
quantitative MC simulation results are depicted in Fig. 3.6. In this figure, again, the mean
values of the RMSEs of the full system state for the simulated scenario can be seen. Also, again,
the eight filters that were discussed in the sections before are implemented and investigated.
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(a) Estimation results of the elliptic cylinder ERHM applying a radial measurement source association without artificial
noise estimation.
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(b) Estimation results of the elliptic cylinder ERHM applying a radial measurement source association with artificial
noise estimation.

Figure 3.5: Estimation results of the elliptic cylinder ERHM applying a radial measurement source association
with and without artificial noise estimation in 2D and 3D views. Estimates are at the same time step with the
same random seed for the measurement generation.

In contrast to the elliptic cylinder, an S2KF is applied for the elliptic cone for each filter
instead of an UKF. For the ERHM implementations, the quadratic extension must also be
applied. In the figure, it can again be seen that the ERHM implementations yield an unbiased
height estimate for the elliptic cone. When using a 3D GAM, the height estimate is biased
and overestimated in this scenario. When using the RAMN estimation for the elliptic cone,
again, precise estimates of the semi-axes can be obtained. The estimates of the yaw angle again
reveal huge errors, however, they converged in each implementation, which indicates a reliable
angle estimation. In summary, again, the implementations exhibiting the best performance are
the ERHM implementations applying the RAMN estimation for measurements concurrently
gathered from the boundary and the interior of the object. A clear difference when using either
a radial or a projected association at a specific height section can not be detected.

The mean computation times per measurement for each implementation are given in Tab. 3.2.
It can be seen that the computation times for the 3D GAM applying a radial association
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Figure 3.6: MC simulation RMSE estimation results of the static elliptic cone simulation experiment.

at a specific height section are the lowest. For the ERHM implementation applying a radial
association, the computation times are comparable to the times of the 3D GAM applying
a projected association. The computation times for the ERHM implementation applying a
projected association are by far the highest. In contrast to the elliptic cylinder, no problems
with the positive definiteness of the system state covariance matrix were encountered for the
ERHM applying a RAMN with a projected association and n, < ng.

Table 3.2: Mean computation times per measurement for the elliptic cone.

Algorithm Computation time
ERHM radial RAMN 79.39 s
ERHM radial no RAMN 84.71 s
ERHM projected RAMN 412.16 ps
ERHM projected no RAMN 411.86 pis
GAM radial RAMN 14.21 s
GAM radial no RAMN 14.14ps
GAM projected RAMN 67.55 ps
GAM projected no RAMN 67.32 s
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Qualitative estimation results for the elliptic cone 3D EOT filters after 50 time steps, and 2500
processed measurements for two implementations are finally again depicted in Fig. 3.7. In each
figure, an ERHM implementation with a radial measurement source association at a specific
height section is applied. In Fig. 3.7a, no RAMN estimation is applied, while in Fig. 3.7b, the
RAMN estimation is used in the update step. Also, for the elliptic cone, it can be seen that the
application of the RAMN estimation yields precise estimates of the extent parameters of the
elliptic cone in this static scenario, while the estimates of the extent parameters when not using
the RAMN estimation are biased towards the center of the object. Finally, for the elliptic cone,
these results could also be obtained for different spatial distributions of interior measurements,
showcasing the independence of the RAMN estimation approach from the present spatial
distribution of interior measurements.

x/m

Reference Estimate ® Measurement Reference === Estimate

® Measurement

(a) Estimation results of the elliptic cone ERHM applying a radial measurement source association without artificial
noise estimation.

Reference === Estimate

Reference Estimate ® Measurement

® Measurement

(b) Estimation results of the elliptic cone ERHM applying a radial measurement source association with artificial noise
estimation.

Figure 3.7: Estimation results of the elliptic cone ERHM applying a radial measurement source association
with and without artificial noise estimation in 2D and 3D views. Estimates are at the same time step with the
same random seed for the measurement generation.
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3.7 Conclusions

In this chapter, both the elliptic cylinder and the elliptic cone measurement models were applied
only to static artificial scenarios in a simulation environment. To showcase the effectiveness of
the approaches on real-world data in maritime environments, both parametric shape descriptions
are applied to real-world Lidar data in Sec. 6.1 with data of a motor boat for the elliptic cylinder
and data of a sailing boat for the elliptic cone measurement models. In addition, to examine
the generalizability to further environments, the elliptic cylinder measurement models are also
applied to real-world automotive data in Sec . 6.2.

Conclusions

This chapter transitioned from the general EOT framework established previously to the
development and initial evaluation of specific 3D parametric measurement models tailored
for common maritime object classes, namely motor boats and sailing boats. Recognizing the
limitations of spherical coordinate representations in maritime scenarios due to typically missing
measurements from top and bottom surfaces, this work focused on shape representations defined
in cylindrical coordinates: the elliptic cylinder for motor boats and the elliptic cone for sailing
boats. These shapes were motivated by their ability to capture the essential visual characteristics
of the respective vessel types while inherently addressing the missing measurement challenge.

Comparative simulation experiments provided important insights into the performance of
different strategies for the measurement-to-source association for these parametric shapes. As
expected, the ERHM consistently provided unbiased height estimates, overcoming the tendency
of the simpler 3D GAM to overestimate the object height due to its missing penalization
mechanism. This result favors ERHM-based approaches when accurate 3D extent estimation is
critical, even if more complex filters such as the UKF or the S2KF may be required. Furthermore,
the experiments demonstrated the successful integration and significant benefits of the RAMN
estimation procedure. The RAMN approach significantly improved the accuracy of horizontal
extent parameters for both cylinder and cone models by effectively compensating for distortions
caused by simulated interior measurements. This confirms the RAMN approach as a promising
component for improving the robustness of parametric 3D EOT measurement models when
processing mixed boundary and interior measurements. While the differences between radial
and projected association techniques were less pronounced in these static tests, the radial
measurement-to-source association generally offered higher computational efficiency. These
initial results confirmed the suitability of the developed object-specific models, in particular
the ERHM variants applying the RAMN procedure, and paved the way for their evaluation in
more complex dynamic and real-world scenarios.
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Motivation and Contributions

In this chapter, various 3D extended object tracking (EOT) measurement models, which can
be applied for maritime object tracking by deploying non-parametric shape descriptions, are
presented. Non-parametric shape descriptions are beneficial for two different reasons. First,
when using flexible non-parametric shape descriptions within the measurement model, no
classification of the object to be tracked is needed. The shape description can be chosen with
sufficient flexibility to adapt to the shape of common objects that may appear in the surveillance
area. This can be advantageous if there is no camera system available that can be used to
classify objects and select a suitable measurement model. Furthermore, the performance of
the EOT algorithm can be increased by choosing a flexible non-parametric shape description.
The flexible shape description not only allows the shape to be adapted to the object, but the
measurement source on the object’s surface can also be described more generally. As a result,
the remaining system state can also be estimated with greater accuracy [32, 145].

For the shape representation of the flexible non-parametric 3D EOT measurement model, a
radial function is used. Similar to [17, 129] in 2D space, this radial function then maps a given
input to a radial distance, which ultimately defines the shape of the object. For the definition of
this radial function, the known properties of the expected measurement data are to be included.
In the maritime domain, for example, it can be assumed that measurements will primarily be
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recorded from the lateral surface of the objects and that measurements of the top and bottom
surfaces will be rare. Since parts of the object will always be underwater, and a light detection
and ranging (Lidar) sensor, for example, cannot see through water, it can be assumed that
measurements from the object’s bottom surface will never occur. Furthermore, depending on
the mounting position and the opening angle of the sensor, only a few measurements can be
taken from the top surface of the object, if any. If measurements are missing in these two
areas, radial functions defined in spherical coordinates can lead to error-prone estimates in
these areas, since no information is available that would enable the shape estimate to converge.
In [O6], it was shown that shape representations in cylindrical coordinates can be advantageous
in this case. Therefore, a shape representation in cylindrical coordinates will be developed in
this chapter.

Contributions The contributions made in this chapter are manifold. First, a double series
radial function expansion, using Fourier and Chebyshev series [97], which is then applied as a
shape representation in the measurement model, is presented and discussed in Sec. 4.3. In this
section, the Fourier-Chebyshev double series (FCDS), which can be applied for expanding a
radial function in cylindrical coordinates, is presented at the beginning. A combination of these
two basis functions is currently unique in the EOT tracking community. Following this, the
FCDS is integrated in two different measurement-to-source association approaches to enable
3D shape estimation and tracking. First, a 3D greedy association model (GAM) is presented
in Sec. 4.3.2. Due to known problems of biased height estimates with 3D GAMs, the Fourier-
Chebyshev shape representation is then integrated into an extrusion random hypersurface
model (ERHM). However, since the ERHM is not suitable for nonlinear mappings of the
extrusion parameter, an approach is described in Sec. 4.3.3 which assumes that the height and
position in the z direction are statistically independent of the remaining system state. The
implications of this assumption are discussed. Since the system states in both approaches can be
relatively high-dimensional, an extended Kalman filter (EKF') [27] is used for implementation, as
it is the least computationally intensive nonlinear Kalman filter considered suitable. As before,
an "inside-outside® function is presented for the FCDS shape representation, which makes it
possible to use the recursive artificial measurement noise (RAMN) estimation procedure. As a
further contribution of this chapter, details on the implementation, including pseudo-code, can
be found in Sec. 4.4. The final contribution of this chapter is the investigation and comparison
of the different approaches in static simulated scenarios in Sec. 4.5. In addition to investigating
the proposed methods, a comparison to 3D shape estimation and tracking measurement models
applying shape representations in spherical coordinates is presented in this section.

Related Work

The relevant literature on 3D shape estimation and tracking in maritime applications using
non-parametric shape models is also limited. In [95], an approach can be found that is based
on the FCDS shape representation approach described in this chapter and [O8]. In this paper,
a principal component analysis is performed on the horizontal shape representation to reduce
the number of shape components while maintaining accuracy. Further 3D non-parametric
shape models applying 3D radial functions, which were used as inspiration for the measurement
models in this chapter, can be found in [O7, 85, 87]. In these papers, the shape is represented
using radial functions in spherical coordinates. In addition to the radial function approach,
3D EOT measurement models deploying flexible non-parametric shape representations using
splines can be found in [67, 100]. In both papers, the spline control points are estimated for
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flexible shape estimation and tracking in 3D space. The measurement-to-source association of
the FCDS shape representation measurement models is solved using a 3D GAM [32, 35] and
an ERHM approach. In the ERHM approach, the state of a line object is estimated, which is
based on [34] and symmetry assumptions regarding the extrusion factor distribution, proposed
in [36]. Information on the EKF, which is applied for inference of the shape state, can be
found in common literature such as [10, 11, 19, 27]. The line state in the ERHM approach
is estimated using an unscented Kalman filter (UKF) [76, 77, 130]. The RAMN estimation
procedure is again inspired by [80].

Shape Estimation and Tracking in Cylindrical Coordinates

As discussed in the sections before, the shape estimation and tracking problem can be solved
using shape representations in spherical coordinates expanded using spherical double Fourier
series (SDFS) [O7], spherical harmonics (SH) [87], or a 3D Gaussian process (GP) [30, 84, 85].
When representing the shape to be estimated as a radial function in spherical coordinates, a
function f(6,¢) with 6 € [0,7] and ¢ € [0,27), mapping each angle pair [#, ¢]7 to a specific
radius, must be estimated. This can be achieved by directly estimating the coefficients of the
chosen expansion or the radii when applying a 3D GP. However, if measurements from an
object’s lateral surface can mainly be expected, as is often the case in maritime scenarios,
shape representations in cylindrical coordinates are preferable, as these provide a more natural
modeling approach for shape estimation and tracking. If measurements from the top and
bottom surfaces are rare or even missing, EOT filters with shape representations in spherical
coordinates can be error-prone in these areas, leading to unpredictable estimation results.
Therefore, a shape estimation and tracking approach in cylindrical coordinates is presented in
this section. When representing the shape to be estimated as a radial function in cylindrical
coordinates, a function f(6,z) with 6 € [0,27) and z € [0, h], mapping each angle and height
section pair [0, 2]7 to a specific radius, must be estimated. The variable h again represents
the height of the object. While such a representation better depicts the expected data, it
also has another practical property. A shape representation in spherical coordinates has the
property that only star-convex shapes can be displayed. This means that every connecting
line drawn from the center to the object’s edge is itself completely inside the object. A shape
representation in cylindrical coordinates, on the other hand, can represent shapes that only
have to be star-convex for each plane curve on a fixed height section. A shape representation in
cylindrical coordinates can, therefore, represent a wider range of different shapes.

USCBE  Fourier-Chebyshev Double Series as Shape Representation

To be able to estimate such a shape f(0, z) in cylindrical coordinates, a suitable shape rep-
resentation must first be defined. The shape should be representable by a series expansion,
comparable to [O7] or [87]. The series expansion should be periodic in § and non-periodic
in z. A first approach was presented in [O6] as a solution to a boundary value problem
for Laplace’s equation in cylindrical coordinates [134]. The solution to this boundary value
problem was then a specialized double Fourier series (DFS) for expanding radial functions in
cylindrical coordinates. However, when expanding a cylindrical radial function using a DF'S,
both parameters 6 and z of the function are modeled to be periodic. In the definition of the
boundary value problem for Laplace’s equation in cylindrical coordinates, a boundary condition
needed is that the function (and therefore also the radius) is 0 at the top and bottom. This
boundary condition then ensured that the shape was periodic in the parameter z. However,
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4.3 Shape Estimation and Tracking in Cylindrical Coordinates

since the shape should be non-periodic in the parameter z to be able to display any general 3D
shapes, a non-periodic basis in z is used below.

Chebyshev Polynomials According to [20], either Legendre or Chebyshev polynomials can be
applied when expanding non-periodic functions in a specified interval. Both sets of polynomials
form an orthogonal basis on the closed interval [—1,1]. Due to the latter one having a slightly
better convergence behavior and their close relationship to the well-known Fourier basis [20],
Chebyshev polynomials are applied as a basis for the cylindrical shape expansion in the
parameter z in this thesis. Chebyshev polynomials of the first kind can be defined by

T, (s) = cos(n - 0), (4.1)

with n € N, 0 € [0, 7], and s = cos(#) [97], forming a series of orthogonal polynomials on the
interval [—1,1]. These polynomials can then be calculated using the recursion

To(s)=2-s-Th1(s) — Th—2(s) (4.2)

with initial conditions Tp(s) = 1 and T1(s) = s. Instead of using the recursive formula for the
Chebyshev polynomials, explicit formulas also exist for calculating the respective polynomials,
which can also be differentiated [20, 97]. However, due to numerical issues when implementing the
Chebyshev polynomials using an explicit formula, a hard-coded list is used in the implementation
in the further course of this thesis. The first nine polynomials with their respective derivatives
are then given as

To(s) =1, Ty (s) =0, (4.3a)
Ti(s) = s, Ti(s) =1, (4.3b)
Tr(s) = 25* — 1, Ty(s) = 4s, (4.3¢)
Ts(s) = 4s® — 3s, Ti(s) = 125* — 3, (4.3d)
Ty(s) = 8s* — 8s? +1, Ty(s) = 32s% — 16, (4.3¢)
Ts(s) = 16s° — 20s® + 5s, Ti(s) = 80s* — 60s* + 5, (4.3f)
Ts(s) = 32s% — 485" 4 1852 Ti(s) = 192s° — 1925 + 36, (4.3g)
Tr(s) = 64s7 — 1125 + 5653 — 7s Th(s) = 44855 — 5605 + 16852 — 7, (4.3h)
Ty(s) = 1285° — 25656 + 16057 — 3252 + 1, TY(s) = 102457 — 15365° + 640s® — 64s. (4.30)

These nine Chebyshev polynomials are also visualized in Fig. 4.1. Using the Chebyshev
polynomials, any non-periodic, piecewise smooth, and continuous function g(s) in the interval
s € [=1,1] can be expanded using the possibly infinite sum

s) = i an - Th(s) (4.4)

with appropriate coefficients a,,. Now, given a non-periodic basis together with the well-known
Fourier basis, the final shape representation can be defined in the next paragraph.

Radial Function in Cylindrical Coordinates Using the Chebyshev polynomials and the Fourier
basis, a radial function in cylindrical coordinates with a non-periodic behavior in the z direction
can now be defined by combining both bases in a single double series. The radial function can
be given as

Ns

Z Z an - Ty (8) - (ap, - cos(mB) + by, - sin(mh)) (4.5)

n=0m=0
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(a) First five Chebyshev polynomials. (b) Next four Chebyshev polynomials.

Figure 4.1: Visualization of the first nine Chebyshev polynomials.

using the normalized height parameter s € [—1, 1] and the angular parameter 6 € [0, 27). When
the Chebyshev and Fourier series are multiplied out, the coefficients a,, @, b can be redefined
as the new coefficients @y, bym. After some rearrangements, the new double series can be
expressed as

F(6,5) =" 1 % S o - Tals) + % S U@+ 33 Tols)  am(8). (46)
n=1 m=1 n=1m=1

The factors 411 and % in front of the first three summands are often used to simplify the definition
of the coefficients apm, bpm [122], but are not strictly necessary. Mapping the height parameter
s to the respective height section z will be discussed in the measurement models in the following
sections. The Fourier series [68, 122] used in the double series (4.6) can be given as

VU (0) = apg, - cos(mb) + by, - sin(m8). (4.7)

This shape representation will be termed Fourier-Chebyshev double series (FCDS) in the further
course of this thesis and requires 1 +ngs + 2 - ng + 2 - ng - ng coefficients. The respective basis
functions that are superimposed in the FCDS are visualized in Fig. 4.2. Since an infinite sum

m m=4

n=>0

Figure 4.2: Visualization of the FCDS basis functions.

cannot be implemented, both the Fourier and Chebyshev polynomials are truncated at the
final summands defined by ng and ng. In the implementation, these values serve as parameters,
defining the level of detail that can be reached using the respective shape definition. The higher
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4.3 Shape Estimation and Tracking in Cylindrical Coordinates

ng and ng, the more detailed shapes can be estimated using the FCDS shape representation.
However, the higher ng and ng, the more information and thus measurements are needed for
the convergence of the filter for shape estimation and tracking defined in the following sections.
By choosing different values for ng and ng, different levels of detail can be reached in the shape
representation for both parameters. Approximation errors for truncated Fourier and Chebyshev
series can be found in [20].

When using the FCDS shape representation in a tracking scenario, mainly measurements
from the object’s side facing the sensor can be expected. Therefore, modeling the object’s
unseen backside can be beneficial in many scenarios. An obvious approach that can easily be
implemented using the FCDS shape representation is to model the backside using symmetry
assumptions. By assuming a vertical plane of symmetry aligned with the orientation of the
shape, the backside can be modeled as being identical to the front side. In Fig. 4.3, this
modeling approach is visualized using a boat shape, which is only seen from the front side. By
modeling the unseen backside using the visualized plane of symmetry, it can be modeled as
being symmetrical to the front side. In the FCDS shape representation, this vertical plane of

’
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~ 3 AFGRENERN \\\\\ wiatlhhng, '/,’, A
S NIRRT L LR N PR R O R
SO 1 1,00, 7
9 Soae AW 11y 1,50, 2 <
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Boat Shape Plane of Symmetry @ Sensor
- — =Sensor Ray O Measurement Source

Figure 4.3: Visualization of the vertical plane of symmetry of a boat object in top-down view modeled in the
FCDS shape representation.

symmetry can be integrated by forcing the function f(6,s) to be even in the angle 6. In the
shape function, this can be achieved by discarding the sinusoidal components in the Fourier
series [68, 122]. The Fourier series terms ¥,,,(6) can then be given as

U0 (0) = apm - cos(m). (4.8)

When using this Fourier series, the number of coefficients for the shape representation reduces
to a total of 1 4+ ng + ng + ns - ng. In the further course of this thesis, only the FCDS shape
representation containing a vertical plane of symmetry is applied in the measurement models.
Finally, a non-parametric 3D shape in cylindrical coordinates can then be given as
T

z(0,s) = | f(0,s)-cos(8), f(0,s) - sin(h), s - 5 (4.9)
using the height A > 0 and the FCDS f(6,s) with proper coefficients. Here, s € [—1,1] is
the normalized height parameter, and the shape’s origin is located at z = 0. In the following
sections, the measurement models for shape estimation and tracking using the FCDS shape
representation can now be defined. Two measurement models associating the measurement with
a measurement source located on the boundary of the FCDS shape are presented. Measurements

61



Chapter 4. Non-Parametric Shapes: Series Expansions

located in the interior of the shape can again be processed using a RAMN, presented in Sec. 4.3.4.
Due to a projected association being overly computationally expensive to calculate, only a radial
association on each height section is presented and investigated for the FCDS measurement
models.

Remark 4.1. The 3D shape definition applying an FCDS and a first measurement model using
this shape representation was originally published in [O8]. In this thesis, a further measurement

model based on the FCDS as shape representation is presented and investigated.

432 FCDS 3D GAM Measurement Model

The first measurement model to be defined using the FCDS shape representation, which was
presented in [O8], is a 3D GAM. The system state for shape estimation and tracking to be
estimated can then be given as

T
Lxing, — [mga ¢k7l\j—elk} ) (410&)
£extk = [hka A0y > A1045 - - - 7ansn9k]T (410]3)

comprising the 3D position my, the yaw angle ¢, and the dynamics x.,, in the kinematic
state xy;,, . The extent state z.,;, comprises the height hj and the FCDS shape coefficients
Gnm- In this extent state definition, the FCDS shape description comprising a vertical plane
of symmetry is used. If the symmetry assumption is to be omitted, the coefficients b,,,,, must
also be included in the extent state. The yaw angle ¢y is again modeled to be aligned with
the velocity, and roll and pitch angles are assumed to be negligible. Due to the Chebyshev
polynomials being defined in the interval s € [—1, 1], the position m,, is located in the center
of the FCDS shape rather than at the base shape as was the case for the elliptic cylinder 3D
GAM.

For the 3D GAM, both parameters are greedily associated with the boundary of the FCDS
shape. Therefore, the measurement in local coordinates g, , must first be calculated using (3.3).
Then, a greedy estimate for the extrusion factor can be calculated as

2. ~(2)
5k, = min | max L ,—1),1]. (4.11)
P—1

For the greedy association of the angular parameter ék,l, only a radial association is implemented

and investigated for the FCDS shape representation. A projected association could also be
implemented using the details given in section 2.4.2. However, the shape approximation would
have to be calculated individually for each height section, resulting in an overly computationally
intensive procedure. The radial association of the angular parameter can be given as

Oy = atan2 (g,ﬁ{’}, g,ﬁf}) . (4.12)

Given the greedy estimates for the FCDS shape parameters and the parametric equation for
the FCDS shape (4.9), a measurement source in local coordinates using a radial association can
be calculated as

Rt T
’“"“} (4.13a)

Zrad (ik\kflagk,l) - {ZEZ;;’) (ik\kflagk,l)T 1 8k0 9
= {f (ék,h §k,l> - COS (ék,l) ,f (é]“l, §k,l) - sin (ék,l) ,§k71 : hk;l] ! . (4.13b)
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4.3 Shape Estimation and Tracking in Cylindrical Coordinates

Figure 4.4: FCDS radial measurement source association. Measurements as balls, and measurement sources
as crosses. Related items are displayed in the same color.

The FCDS radial measurement source association is visualized in Fig. 4.4. A measurement
equation in global coordinates can then finally be formulated as

~(zy) [ A ~
érad £k|k—17yk7l
hyk—1

Uy = mgpp—1 + R(Prp—1) - =Ygy T Uk (4.14a)

5k

B

= Zaam (ik\k—pgm) + Vg (4.14b)

using the 3D rotation matrix R(g|;—1) defined in (3.3). In the measurement update of the
nonlinear Kalman filter, the predicted measurement g, , can then again be associated with
the pseudo-measurement 05 in (2.11b). Please note that the measurement equation could also
be defined in local coordinates instead of global coordinates, which would not result in any
difference in the estimation quality. Implementation details for the FCDS 3D GAM can be
found in Sec. 4.4.1.

FCDS quasi-ERHM Measurement Model

Due to the missing penalization for overestimated heights in the 3D GAM [34], an ERHM
comparable to the elliptic cylinder model is also desirable for the FCDS measurement model.
However, due to the nonlinear nature of the extrusion parameter s in the FCDS shape, which
can be interpreted as multiplicative noise [142], the quadratic estimator [49], which was also
applied in [14], and also the symmetry assumptions from Sec. 2.4.3 are no longer valid for the
ERHM in a straightforward manner. Therefore, it is assumed that the position in z and the
height h are statistically independent of the rest of the system state and can be estimated in a
separate filter. Both estimates are then used in a second filter for estimating the remainder
of the full system state. This procedure enables an unbiased height estimate in combination
with a proper shape estimate. However, an estimation error can potentially be introduced by
assuming that the position in z and height h are statistically independent of the rest of the
system state. A discussion of this can be found in the results in the following sections and
Ch. 6. Following this, the full procedure is referred to as quasi-ERHM.

In the first step, the position in z and the height i need to be estimated, as the results are

needed in the second filter. The system state for estimating a line segment in the z direction is
then given as

e = | R 4.15

Lliney, My, "5 1k ( : )

(2)
k

comprising the position m;’ in z and the height hy. A parametric equation representing each

point on the line segment can be given as

2(s)=s-h (4.16)
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using the parameter s € [0, 1]. To be able to apply symmetry assumptions in the measurement
update of the line estimator, the extrusion factor is assumed to be uniformly distributed as
sk ~ %(0,1) for each measurement. In the measurement update, the z coordinates of the
measurements can then be mapped to the non-redundant part of the line object. Details can
be found in Sec. 2.4.3. The measurement equation for the line estimator can be given as

9 = s L )|+ ol @17)
where the extrusion factor sj; is subject to sampling for each measurement individually. Please
note that for the line estimator, the origin of the local coordinate system is also positioned in the
middle of the line due to the symmetry assumptions applied in the measurement equation. The
line estimator, however, still estimates the full height of the object. In the measurement update
of the nonlinear Kalman filter, the predicted measurement can then be associated with the
pseudo-measurement 0 in (2.16b), however, using a scalar instead of a vector-valued residual.

Given an unbiased height estimate, the remainder of the full system state can be estimated
using a 3D GAM without estimating the height and position in z. The system state to be
estimated for this second filter in the quasi-ERHM can then be given as

T T
Qkink = {m;(fy) 7¢k7£\—/relk.:| ) (418&)
gextk = {aooka Q1045 - -+ 5 ansngk]—r (418]))

comprising the 2D position m,(fy), the yaw angle ¢, and the dynamics z,

state xy;,, . The extent state 2., only comprises the FCDS shape coefficients ay,,,. In this extent

in the kinematic

state definition again, the FCDS shape description comprising a vertical plane of symmetry is
used. If the symmetry assumption is to be omitted, the coefficients b,,,, must also be included
in the extent state. The yaw angle ¢ is again modeled to be aligned with the velocity, and
roll and pitch angles are assumed to be negligible. Using the estimated line state, the shape
parameters f and s can now greedily be associated with the boundary of the FCDS shape.
Therefore, the measurement in local coordinates gk,l must be calculated using (3.3). Please
note that for calculating the measurement in local coordinates, the estimated position m,(f)
from the line filter must be used in addition to the predicted 2D position m,(fy)
estimate for the normalized height parameter §;; can then be calculated using (4.11). Please

. The greedy

note that for calculating the greedy estimate of the extrusion factor, the estimated height hy of
the line estimator must be used. The greedy estimate for the angular parameter ék,l can then
finally be calculated using (4.12). Given both estimates for the FCDS shape parameters and
the parametric equation for the FCDS shape (4.9), a measurement source projected onto the
xy plane in local coordinates using a radial association can be calculated as

Zrad (imk—ugk,,) = zEjﬁ{) (@mk—lvgk,l)T (4.19a)
= [f (ékJ, §k,l> - COS (ék,l) ,f (ék‘,lv §k,l> - sin (ékJ)} ! . (4.19b)

Please note that the measurement source is only calculated in xy coordinates, as this is sufficient
for estimating the desired system state in this second filter. A measurement equation in global
coordinates can then finally be formulated as

Y1 = mz(ch)_1 + Rap(Grje1) - Zead) (ik\k—lagk’l) - y,(fy) + Uk (4.20a)
= ZERHM (@:m-u@k’l) + Uk (4.20b)
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using the 2D rotation matrix

sin(¢)  cos(¢)

In the measurement update of the nonlinear Kalman filter, the predicted measurement can
then be associated with the pseudo-measurement 0, in (2.11b). Implementation details for the
full quasi-ERHM can be found in Sec. 4.4.2. Fig. 4.5 shows a flowchart of the quasi-ERHM

process to illustrate the procedure once again.

Rop (6) = (Cf)s("” ‘Sm("”) | (4.21)

yl(czl) —1 1. Filter [—{ Lliney, :I-‘ 2. Filter | Lkiny > Lexty

9

yY

Figure 4.5: Flowchart of the quasi-ERHM estimation procedure.

Extrusion Factor Distribution In the quasi-ERHM presented before, the extrusion factor in
the line estimator is assumed to be uniformly distributed. However, as was also discussed for
the elliptic cone in Sec. 3.4.2; the probability density function (PDF) of the extrusion factor
should ideally scale linearly with the perimeter of the shape at each height section if it is to
resemble a uniform distribution of measurements on the full 3D surface of the object. Given
the estimated FCDS shape parameters, the perimeters of the shape on each height section can
be calculated using the FCDS (4.6). This perimeter function can then be transformed into a
distribution for the extrusion factor s, which can be used for sampling in the nonlinear Kalman
filter update step of the line estimator. The perimeter of the shape at each height section can
be calculated as

o(s) = /0 7 F0,5)d0 (4.22a)

(aoo n Z o - ) (4.22D)

Please note that the perimeter p(s) is only dependent on the shape coefficients agg and a,g. To
transform the perimeter function into a distribution, a normalization factor is needed so that
the distribution integrates to 1. This normalization factor can be calculated as

&—/si_lp(s)ds (4.23a)
—r. /7 o0 | Z o - (4.23D)

=7- (aoo + Z Ano * ) + 1) . (423(})

neven

Given the perimeter function p(s) and the normalization factor £, an extrusion factor distribu-
tion, given an estimated shape, can be calculated as

P(S|Text) = p(;) (4.24a)

1
= E (; + Z ano - Th(s )) (4.24D)

n=1
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In the quasi-ERHM, this extrusion factor distribution could now be used for sampling the
extrusion factor for each measurement in the line estimator. However, neither the UKF nor the
smart sampling Kalman filter (S2KF) sampling procedures are capable of sampling from an
arbitrary distribution directly. Also, the inverse transform sampling technique [104] applied
for the elliptic cone ERHM cannot be applied for sampling since no closed-form expression for
the inverse of the extrusion factor cumulative distribution function (CDF) is available. Thus,
the extrusion factor distribution would need to be approximated as a Gaussian distribution
to sample from the approximated distribution. Calculating the mean and variance of the
approximated Gaussian distribution is possible in closed form and can be performed using a
symbolic math toolbox.

However, using the approximated Gaussian extrusion factor distribution for sampling in the
measurement update of the nonlinear Kalman filter has some disadvantages. Due to the
extrusion factor not being uniformly distributed anymore, symmetry assumptions as applied
in the measurement equation of the line estimator (4.17) cannot be included anymore. As
a consequence, a quadratic extension as described in Sec. 2.4.3 must be introduced to the
measurement equation (4.17), and an S2KF rather than an UKF must be applied for inference.
Furthermore, initial experiments have shown that the influence of an incorrectly assumed
distribution for the extrusion factor might be low. Therefore, in the further course of this
thesis, a uniformly distributed extrusion factor is applied in the FCDS quasi-ERHM, and
the investigation on applying the calculated extrusion factor distribution p(s|Tex) in the
measurement update is left for future work.

Recursive Artificial Measurement Noise for FCDS

Also in the measurement models applying an FCDS shape description, measurements are
initially assumed to be generated from the object’s boundary. However, if measurements are
also gathered from the object’s interior, an estimation bias towards the object’s center can
be introduced. Therefore, a RAMN can be added to the measurement update for processing
measurements from the interior of the object. The equations for the parameter estimation of
the RAMN can be found in Sec. 2.6.1. For the FCDS shape representation, it is sufficient to
calculate the RAMN parameters only for xy coordinates and to use the measurement noise
induced by the sensor for the z coordinate.

Since the shape of the FCDS varies at each height section, a greedy estimate for the extrusion
factor §;; must be calculated using (4.11), the measurement in local coordinates (3.3), and the
predicted system state, to be able to calculate the "inside-outside® information. Furthermore, a
greedy estimate for the angular parameter ék,l must be calculated for each measurement using
(4.12). The information for each measurement being inside the boundary of the FCDS shape
and outside the 30, surrounding of the boundary can then be calculated using the implicit
equation

> 0: outside
j@k,pikmq) = HQMH — (f(Orp,8%0) —3-0,) = ¢=0: 30, boundary (4.25)
< 0: inside
using the predicted system state L, and the measurement in local coordinates g, ,. A
visualization of the measurement separation needed for calculating the RAMN parameters for

the FCDS measurement models can be seen in Fig. 4.6. The Euclidean distances needed for the
calculation are then directly given using the respective measurement source and (3.10). The final
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measurement noise covariance can be generated using (3.11b). The artificial measurement noise
mean (3.11a) can be added to the predicted measurement. Further details on the implementation
can be found in Sec. 4.4.

Reference = = 30 border
® DBoundary measurement @ Interior measurement

Figure 4.6: Visualization of the measurement separation for the RAMN estimation of the FCDS shape
representation at a single height section.

m Implementation Details

After presenting the FCDS measurement models, implementation details on both procedures
are given in this section. In particular, pseudo-code for the FCDS 3D GAM and the FCDS
quasi-ERHM EQOT algorithms is given. The implementation details again focus only on the
update step in the respective Kalman filters. Further details on the prediction step can be
found in the respective literature, such as [19, 27, 66]. For both measurement association
procedures applying an FCDS shape representation, the measurement update can be performed
using an EKF, as this filter is the least complex one applicable to both measurement models.
Furthermore, the EKF can be considered the most efficient filter among the nonlinear Kalman
filters applied in this thesis. The line estimator in the quasi-ERHM is instead implemented
using an UKF since the extrusion factor in the respective measurement model is subject to
sampling for an update. Details are given in the following sections.

Remark 4.2. In addition to the pseudo-code given in this section, an implementation of the
FCDS measurement models can be found at [R3].

FCDS 3D GAM Implementation Details

In this section, the implementation details for the FCDS 3D GAM are given. In the first step,
details for the sequential batch EKF measurement update are discussed. The pseudo-code can
be found in Alg. 4.1. The difference between both filters for the FCDS measurement models
in the sequential batch EKF update can then only be found in line 4, where the predicted
measurements and measurement matrices are calculated. The following lines 5-13 in the loop are
the same for both measurement models. The artificial measurement noise mean and covariance
matrix in line 6 for the FCDS shape description can be generated using the ”inside-outside“
function (4.25) and the procedure described in Sec. 4.3.4.
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Algorithm 4.1 Sequential batch EKF measurement update

Require:
predicted state Z;,_;, predicted state covariance Py, 1, measurements %, single update
measurement number 1,

1: set il = ik\kflv Pl = Pk|k71
2: for n + 1 to |ng/n,] do

Ny
3: get {gn l}l ) from %} using next n, measurements

= zn
4: predicted measurements {gjn l} ~and measurement matrices {H,,;},"*,
5: RAMN parameters u(z ) f/ﬁf’n) using Sec. 2.6.1 and "inside-outside* function
6: measurement noise parameters i, 3,  using (3.11a) and (3.11b)

Uy -n,
T 17
. : sa | (A N N N

7: stack predicted measurements g, = l(yml =+ M“m) ey <yn7nu + ,uku> ]
8: stack measurement noise covariance matrices *%, using (2.19)
9: stack measurement matrices *H,, using (2.17)
10: innovation covariance matrix S,, = *H,, - P,, - *H,, " + %,
11: Kalman Gain K,, =P, -*H,," - St
12: updated state mean vector Z,,., = %, + K, ( g )
13: updated state covariance matrix P, =P, — K, -*‘H,, - P,

14: end for

15: set ik = in+17 Pk = Pn_;,_l

The pseudo-code for implementing line 4 in Alg. 4.1 for the FCDS 3D GAM can be found
in Alg. 4.2. Within this algorithm, the measurement prediction is completely described in
Sec. 4.3.2 and can be directly used for the implementation. A transformation function for
one-sided constraints (2.38) is only applied to the height in this algorithm, to prevent the height
from becoming negative.

The equations still missing are the ones for the Jacobi matrix needed for the measurement
update in the EKF [27] and are given in this section. In the following derivation, the Jacobi
matrix for a single measurement is presented. The stacked full measurement matrix can then
be generated using the structure shown in (2.17). The final Jacobi matrix can be given as

= Yy, B Oy, Y, Oy Yy, 9y, € R3*me (4.26)
’ ai 3m 7 8¢ 78£ve1’ ah’ 78Qnm ’ .
L=Tp k-1
dy
where 83: =0 and a L represents the derivative with respect to every shape coefficient in

the FCDS. In the followmg derivation, the time index k£ and measurement index [ are omitted.

Position Derivatives: In the first step, the derivatives with respect to the position m can be
calculated. The full derivative is given as

9y a](;(;g) 'cos(é) + f(é, 3) acaosm(@)

—d | or6,s - A A A Osin( 3x3

T~ BT RO) s -sm(ezj f;@,s) L omn@) | e RYY, (4.27)
om 2
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Algorithm 4.2 FCDS 3D GAM measurement prediction

1: extract zy;, from Z,

2: extract shape parameters x. from 2,

3: extract constrained height h, = ¢;(hy,0) with lower bound from Zeyy, Using (2.38)
4: for [ + 1 to n, do
5

measurement in local coordinates § , using (3.3), and z, ,

6: measurement source 2, (gextn, P, g, Z) using (4.13)
7: measurement matrix Hy (@n,yn l) using (4.26)
8: predicted measurement § = myp—1 + R(dpp—1) - Z1 — ¥, |
9: end for
with the expressions
A A A 1T
af(978): af( 78) 8f(67s) 80 as (428)
om 06 = 03 om Om| ’ '
0f(0,8) 1 &8 0Won(d) | & wn . 0Wn(0)
— = — — 4+ T(5)  ————=, 4.29
0i 2 ai 2T (4.29)
Vo (6 -
u = —M - Ay, - Sin(mO), (4.30)
a0
9f(0,8) 1 & R N 5
) Y o 6+ X D T (D), (4.31)
n=1 n=1m=1

for the radial function f(6,s). Please note that the derivatives for the first nine Chebyshev

polynomials are given in (4.3). Also, for the derivative of the Fourier series a\pgig(a)’ the series
comprising a vertical plane of symmetry is assumed. The derivative of the full Fourier series
can be calculated straightforwardly. Furthermore, the derivatives

90 90 0F 08 95 0F 97 L
— = . —= _— = —— s — _— = —R 4. 2
) W) (@) ; 0 ks ) s b
A P L . ) SRl IRCE)
8y y(:v) + y(y) y(x) + y(y) ag % else
d cos(0) B ~ 00 8 sin(0) B A 0
am — Sln(@) %’ am = COS(@) . aim (434)

are needed for the position derivatives with § being the measurement in local coordinates,
which can be calculated using (3.3).

Orientation Derivatives: In the next step, the derivatives with respect to the orientation ¢
can be calculated. The full derivative is given as

f(é, 3) cos(é) a’;(ff) 'COS(A) + f(év 8) - i Cg;);(e)
Oy _ IR(9) 0.3) - sin(f R Af6.8) i (h j ay  9sin(d) R3. (4.35
using the expressions
070,5 [970.5 056,9] [08 as] (4.36)
26 060 = 03 Do’ | )
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00 00 95  9s 095 9y 9§ OR(¢)"!
7 _Z7 . ZZ 2 _Z2 .= = =" . (y— 4.37
d¢ 0y 0¢ 99 0§ 09 ¢ d¢ ¥ -m) (437
d cos(h) B Y d sin(f) A 00

90 — sin(h) —¢, 96 = cos(f) - 87<;5 (4.38)

The differentiation of the inverse rotation matrix

%@?_1 can be performed element-wise.

Height Derivatives: Now, the derivatives with respect to the height i can be calculated. The
full derivative can be given as

9y 8’;(71’§) cos(é)
g 0.5 . oA 3
an - R(¢) - 8{3(% ). sin(A) € R, (4.39)

05 hy s 0a(h0)
oh 2 2 Oh

where ¢q(h,0) is the constraining function (2.38) with a lower bound 0. Furthermore, the
equations

(0,8 0f(6,5 03 dci(h,0) exp(h)

_ 98 _ 4.40
dh d3§ h’ Oh exp(h) + 1 (4.40)
a 0 _ﬁ > =(2) > ﬁ
95 _ - 27V 7 (4.41)
oh . exp(h)-g else
(exp(h)+1)-log” (exp(h)+1)

are needed for the height derivatives.

Shape Derivatives: Finally, the derivatives with respect to the shape parameters g,,,, can be
calculated. The full derivative can be given as

9 788f(1(é’§) . cos(é)
aay =R(¢) %fa(éf’g) -sin(d) | € R (s tnotnsmo), (4.42)
Ynm Znm 0

using the derivatives of the radial function with respect to the shape coefficients

af@6,5 111 1 R R
—— 2 ==, = Ty(8),...,= -cos(f),..., T1(8) - cos(f),...|. 4.43
agnm 4’9 1( )7 9 ()7 ) 1() ()7 ( )
Please note that the derivatives with respect to the shape coefficients also represent the
derivatives assuming a Fourier series comprising a vertical plane of symmetry. The derivatives
of the full Fourier series can again be calculated straightforwardly.

442 FCDS quasi-ERHM Implementation Details

In this section, implementation details for the FCDS quasi-ERHM are given. As described in
Sec. 4.3.3, the state estimation is split into two filters for the FCDS quasi-ERHM. In the first
step, the line state x;;,, must be updated. Due to the line estimator being implemented as
a symmetrical ERHM, according to Sec. 2.4.3, an UKF can be applied for state estimation.
The pseudo-code for the sequential batch linear regression Kalman filter (LRKF'), which is a
generalization of the UKF, can be found in Alg. 3.1. In this algorithm, lines 3-5 must now
only be specified for the line estimator applied in the FCDS quasi-ERHM. The pseudo-code for
implementing these three lines can be found in Alg. 4.3. For the line estimator, measurement
sources are assumed to be uniformly distributed in normalized height s ~ %(0,1) to associate
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the measurements to the non-redundant part of the line object. To sample from this uniform
distribution in the UKF, the same procedure as described for the elliptic cylinder ERHM
in Sec. 3.5.1 is also applied for the line estimator. By extending the system state with the
parameters of a standard Gaussian distribution s = 0 and 02 = 1 and transforming the
samples through the CDF of the standard Gaussian distribution ®(s), as depicted in line 8,
uniformly distributed extrusion factor samples in the interval [0, 1] can be generated. For the
line estimator, the transformation function for one-sided constraints (2.38) is applied to the
height to prevent the height from becoming negative.

Algorithm 4.3 Line UKF measurement prediction

-
1: extended distribution parameters z, = [m 0! } , P, = blkdiag (P, 1,,)

M) =Ty

2: sigma points { Z, wn,j}és ) using [130] and z,,, P,
J:

Ny
3: get {yn 1}1—1 from % using next n, measurements
4: forj<—1t0n3do
5: extract m from x

“n,j

6 extract constralned Yo j = c1(fin;,0) with lower bound from z,,; using (2.38)
7: for [ <+ 1 to n, do

8 extract extrusion factor sample 3, gl =3 ( + erf ( :}”)) from Ly

9: predicted measurement gn] =Jdnl |y(z) (Z)\

10: end for

11: end for

After having updated the line state, the remaining system state for shape estimation and
tracking using an FCDS shape representation can be updated. The remaining system state can
then again be updated using an EKF as before for the FCDS 3D GAM. The pseudo-code for
the sequential batch EKF can be found in Alg. 4.1. In this filter, the measurement prediction
and the generation of the measurement noise parameters are left to be specified for the FCDS
quasi-ERHM. The pseudo-code for the measurement prediction can be found in Alg. 4.4. Please
note that the constraints for the height are already ensured in the line estimator, and no further
constraints are needed in this second filter stage. Within this algorithm, again, the procedure
is adequately described using the pseudo-code and Sec. 4.3.3 except for the Jacobian of the
measurement equation needed as the measurement matrix in the EKF.

Algorithm 4.4 FCDS quasi-ERHM measurement prediction

1: extract zy, from Z,

2: extract shape parameters z.,, from 2,

3: extract height hy = ¢;(hy, 0) with lower bound from Ziine, Using (2.38)
4: for [ + 1 to n, do

5 measurement in local coordinates g, using (3.3), Zyin, » and Ty,

6: measurement source 2, ( Text, » hk7yjn7l> using (4.19)

T: measurement matrix H, ( T,y l) using (4.44)

8: predicted measurement gn,l = m,(g‘kzl + Rop(@pjp—1) - £ ygfly)
9: end for
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The derivation of the Jacobian for the FCDS quasi-ERHM is given in this section. The final
Jacobi matrix can be given as

) (a:y) 9 wy) ) (wy) o (Iy) 9 (wy
H,, — Yk, Yr Yk, Yk, Yr, € R¥™ (4.44)
’ ozx 0 m(“’ 0 ¢ e Evel e, Qnm
T=Tp -1
3y(wy) (zw
where =+~ =0 and again represents the derivative with respect to every shape coefficient

in the FCS. In the followmg derivation, the time index k and measurement index [/ are omitted.
Please note that the full measurement matrix has lower dimensionality in the FCDS quasi-
ERHM compared to the 3D GAM since the measurement equation is only defined in the zy
plane. In the following derivation, only the derivatives that vary from the measurement matrix
derivatives of the 3D GAM are given. Missing equations can be found in Sec. 4.4.1.

Position Derivatives: In the first step, the derivatives with respect to the 2D position m(*¥)
can be calculated. The full derivative is given as

9 y() 0705) . cos(d) + f (4, 5) - 2220)
oy =+ Ran(@)- | JRGL T Jm | €RPC (445)
m omEy) Sln(e) + f(9> S) " OmEY)

using the expression
af@.35 of@,5 00
om@ 5 om@v)’
for the radial function f(6,s). Please note that the derivative of the FCDS with respect to the
2D position is not dependent on the extrusion factor § anymore, as it was for the FCDS 3D
GAM. Also, again, for the derivative of the Fourier series, the series comprising a vertical plane

(4.46)

of symmetry is assumed. Furthermore, the derivatives

o0 06  agwy d =) »
8@(90?;) - ag(aty) ' 8m(xy)7 8m(9”y) = _R2D(¢7) ) (4.47)

00 | g(y) g(w) i)
gl §@? + g @ 4 w2 :

are needed for the position derivatives with g(zy) being the xy coordinates of the measurement
in local coordinates, which can be calculated using (3.3).

Orientation Derivatives: In the next step, the derivatives with respect to the orientation ¢
can be calculated. The full derivative is given as

oy _ ORap(9) f(8,3) - cos(0)
26 090 92 sin(0)
af( 3) é)+f(é, §) . d cos(f)
+ R2D(¢) : 3f(9 %) A AN B S?f(é) c RQ, (449)
ST Sln(9)+f(9; 8) %o
using the expressions
af0.8) 0f(@6,5 00
= — - —, 4.50
9 00 00 (4.50)
00 _ 96 o3 9™ _ 0Raw(@) | Gy
%_ag(xy) Y o 9o (Y = m). (4.51)
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ORap(¢) !
d¢

Shape Derivatives: Finally, the derivatives with respect to the shape parameters g,,,, can be
calculated. The full derivative can be given as

The differentiation of the inverse 2D rotation matrix can be performed element-wise.

9 y(@Y) 9568) . cos(f
L —Rin(9) | 2 sm(é) € REx(H4nrtnotnem), (452)

Please note that the derivatives with respect to the shape coefficients also represent the
derivatives assuming a Fourier series comprising a vertical plane of symmetry.

For the measurement noise parameters in the FCDS quasi-ERHM, the RAMN parameters can
be calculated using the measurement source (4.19), the "inside-outside” function (4.25), and the
procedure described in Sec. 2.6.1. The measurement noise parameters can then be generated as

ix) ~Gy)] T e
N [/2,(6 il y)} if inside (4.53)
Bo (0,07 else
dia A(i,m)7 ~(4,y) if inside
s, = |G (0767 ifns (4.53b)
o diag(o?, 07) else

since the measurement equation of the FCDS quasi-ERHM is only defined in the zy plane.
Having provided the implementation details for both FCDS measurement models, the algorithms
can be evaluated and compared in the following section.

m Experiments

In this section, the FCDS measurement models are evaluated and compared in a simulation
study. In the first scenario, the FCDS measurement models are compared to shape estimation
and tracking approaches where the shape is represented as a radial function in spherical
coordinates. In the second simulation study, the RAMN for the FCDS shape estimation
procedure is investigated in a simulated scenario. Both investigations are conducted for a
static scenario, as the most basic challenge for shape estimation and tracking. Also, in both
investigations, measurements are gathered from a static cuboid. Details on the simulation
environments are given in the respective sections.

In every scenario, the estimation results are evaluated using the orientation and height root
mean square errors (RMSEs) as was done in Sec. 3.6. However, for the FCDS shape description,
no shape parameters can be applied for an evaluation of the shape estimation quality in an
RMSE. Therefore, the shape estimation performance of the FCDS measurement models is
measured using the intersection over union (IoU) [93]. The IoU can be calculated as

area(S, N Se)

IoU =
oU area(S, U Se)

(4.54)
with S, being the reference shape and S, the estimated one. However, a general IoU in 3D
space is not easy to calculate since the intersection and union of two arbitrary shapes need to
be calculated. Therefore, when calculating the IoU in 3D space in this thesis, the reference
and estimated shapes are discretized in 20 height sections from bottom to top. For each
height section, the 2D IoU is calculated. Using shape approximations as a polygonal chain,
the intersection and union of both shapes can easily be calculated. The final 3D IoU is then
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taken as the mean value over all 2D IoUs. The IoU is a measure that incorporates the position,
orientation, height, and shape estimate into a single value. The orientation and height RMSEs
are reported as well due to their specific interest.

In addition to the RMSE and IoU measures, the calculation time divided by the number of
measurements at each time step is reported for each method evaluated in the following sections.
Each calculation is conducted using MATLAB R2023b on an Intel(R) Xeon(R) X5680 CPU
with 3.33 GHz. For a better comparability regarding the computation time, the sequential
batch measurement update procedure presented in Sec. 2.3.3 is applied for each measurement
model used in the following investigation.

Comparison to Shape Representations in Spherical Coordinates

In the first experiment, the FCDS shape measurement models are compared to shape estimation
and tracking approaches applying shape representations in spherical coordinates. For the
comparison, three different shape representations in spherical coordinates are applied:

« spherical double Fourier series (SDFS): The SDFS shape representation [21] is a specialized
DFS for shape representations in spherical coordinates applied for 3D EOT in [O7]. Since
shape representations in cylindrical coordinates have proven to be superior in maritime
applications, the SDFS shape representation is only used as a comparison method and
not further described in this thesis. The filter is implemented using an UKF as proposed
in [O7], but can also be implemented using an EKF. For the SDFS shape representation,
13 shape coefficients are estimated by the filter in this investigation.

« spherical harmonics (SH): The SH basis functions are specialized functions on a sphere
that result from solving Laplace’s equation in the spherical domain [6]. In [87], the SH
basis is applied for expanding radial functions in the spherical domain. The resulting filter
can be implemented using an UKF. For the SH shape representation, 49 shape coefficients
are estimated by the filter in this investigation.

« 3D Gaussian process (GP): The 3D GP shape representation presented in [30, 84, 85] can
be seen as a generalization of [129] where a GP is applied for representing a 2D radial
function. For the 3D generalization, azimuth and elevation angle pairs are mapped to
the respective radius in the 3D GP for representing the 3D shape. The filter can be
implemented using an EKF as proposed by [85]. For the 3D GP shape representation, the
radii of 401 equidistantly placed angle pairs on the unit sphere are estimated by the filter
in this investigation. An arbitrary number of equidistantly placed points on a unit sphere
can be generated using Fibonacci lattices [56].

A different number of coefficients is used in the estimation for each shape representation. These
are chosen so that the methods examined can estimate a similar level of detail in the shape
representation. For the FCDS shape representation, 24 shape coefficients are estimated by the
respective filter in this investigation.

In the first experiment presented in this section, the shape representations in spherical coor-
dinates are compared to the FCDS 3D GAM and quasi-ERHM algorithms presented before.
Therefore, a simulated scenario with 100 time steps is generated where measurements are only
taken from the lateral surface of a static cuboid. This experiment is intended to illustrate the
effects on shape representations in spherical coordinates compared to a shape representation
in cylindrical coordinates when measurements from the top and bottom surfaces are missing.
The measurement source generation process is similar to the simulated scenarios presented
before. The z coordinates of the measurements are sampled uniformly distributed using the
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Figure 4.7: Monte Carlo (MC) simulation RMSE and IoU estimation results of the static simulation experiment
comparing the FCDS shape representation to spherical shape representations.

Table 4.1: Mean computation times per measurement for the FCDS measurement model and the comparison
methods.

Algorithm Computation time
FCDS ERHM with RAMN 23.44 18
FCDS ERHM without RAMN 19.22 s
FCDS 3D GAM with RAMN 16.77 ps
FCDS 3D GAM without RAMN 14.34 s
SDFS 58.43 pis
SH 298.45 11s
3D GP 2.98 ms

normalized height parameter s ~ (0, 1) and then multiplied by the reference height of the
simulated cuboid. Sampling the angular parameter at a specific height section can also be
realized by sampling from the uniform distribution § ~ %(0,27) and passing the sampled
parameter through a rectangular radial function, which can be defined as a piecewise function.
An implementation can be found at [R3]. The measurement noise, sampled from the Gaussian
distribution v ~ (0, 0.12) for each dimension, can then be added to the measurement source.
In each time step, 50 measurements are generated and processed in a sequential batch update
with n, = 20 measurements for each method. The filters are initialized using the first mea-
surement set. Details can be found at [R3]. Due to no measurements being generated from
the interior of the object, the RAMN estimation procedure for the FCDS shape measurement
models is omitted in this scenario.

The mean values of the orientation and height RMSEs and the mean IoUs after an MC
simulation with 100 runs are depicted in Fig. 4.7. Especially for the height RMSE and the
IoU, it can be seen that the FCDS shape representation is superior to the spherical shape
representations in this scenario. Due to the missing measurements and, therefore, the missing
information at the top and bottom surfaces of the cuboid, the spherical shapes are estimated
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to be much higher than the reference. In the spherical shape representations, the height is
not estimated explicitly but can be extracted using the estimated shape parameters. The
IoU of each shape representation in spherical coordinates is worse than that of the FCDS
shape representation due to the overestimated heights. On the other hand, in the FCDS shape
representation, the height is estimated explicitly. In addition, the shape representation itself is
a more natural representation of the present measurement distribution.
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(b) Estimation results of the first experiment for the FCDS shape representations. A 3D GAM on the left and a
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Figure 4.8: Estimation results of the first experiment comparing the FCDS shape representation measurement
model to spherical shape representation measurement models. Estimates are at the same time step with the
same random seed for the measurement generation.

Comparing the 3D GAM and quasi-ERHM FCDS algorithms, it can be seen that the 3D GAM
has problems with height estimation, which is why the IoU also drops within the scenario. Due
to the missing penalization for overestimated heights, as was also seen for the elliptic cylinder
3D GAM in Sec. 3.6.1, the height estimates keep growing within the entire scenario. On the
other hand, the height estimates of the FCDS quasi-ERHM converge to a static unbiased value
and exhibit the highest IoU measure among all compared algorithms. Handling the line state
and the remaining system state statistically independent in two different filters for the FCDS
quasi-ERHM generates promising results in this scenario. However, since the scenario shows
no dynamics in the reference object, further investigations must be carried out. These can
be found in Ch. 6. The estimates of the yaw angle reveal huge errors, which can be ascribed
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to the fact that the shapes are symmetric and the angle is a periodic variable, which is why
ambiguities in the estimates can occur. However, the orientation RMSEs converge in each
implementation, which indicates a reliable angle estimation. In future work, either a specialized
transformation function comparable to the procedure presented in Sec. 2.5 or results based on
directional statistics [54, 88] could be applied to resolve these ambiguities.

In addition to the quantitative estimation results, the mean computation times per measurement
for each method are depicted in Tab. 4.1. For a better comparability among all methods, the
FCDS measurement models with the RAMN estimation procedure, investigated in the following
experiment, are also contained in this table. It can be seen that the FCDS measurement models
exhibit the lowest computation time among all methods compared in this section. Furthermore,
no drastic difference in the computation time between the 3D GAM and the quasi-ERHM
without RAMN can be seen. The computation times of the FCDS measurement models with
the RAMN estimation procedure are discussed in the following scenario.

Finally, the qualitative estimation results for each method after 50 time steps and 2500 processed
measurements are visualized in Fig. 4.8. In the figure, the estimated shapes of the comparison
methods in spherical coordinates are depicted in the first row in Fig. 4.8a. The estimation
results of the FCDS measurement models can be seen in the second row in Fig. 4.8b. For the
shape estimates in spherical coordinates, it can be seen that each shape is estimated to be higher
than the actual reference due to the missing measurements at the top and bottom surfaces.
In the areas where measurements are present, the methods in spherical coordinates converge.
These results again illustrate the disadvantages of spherical shape EOT methods if mainly
measurements from the lateral surface of an object can be expected. On the other hand, both
FCDS measurement models exhibit a better performance than the spherical methods. However,
the 3D GAM overestimates the height of the object as expected, whereas the quasi-ERHM
provides an unbiased height estimate and produces the best overall results in this scenario.

UMW Investigation of the FCDS Models with Artificial Measurement Noise

In the second scenario, the FCDS measurement models in combination with the RAMN
estimation procedure are investigated in another simulated static scenario. Therefore, the
simulation environment applied in the first scenario is modified so that measurements are
sampled from the boundary with a probability of 0.7 and from the interior with a probability
of 0.3, as was presented in the previous chapter in Sec. 3.6. The measurement set in each
time step is then given as a mixture of boundary and interior measurements. The remaining
simulation environment and the initialization process of the FCDS methods are left unchanged.
This scenario is intended to investigate the RAMN estimation procedure presented in Sec. 4.3.4
in combination with both FCDS measurement models.

The mean orientation and height RMSEs and the mean IoUs of a MC simulation with 100
runs for this scenario are depicted in Fig. 4.9. Also, in this scenario, it can be seen that
the height estimates of the 3D GAM increase over the whole scenario. At the same time,
the IoU measurement drops over the entire scenario. Due to the missing penalization for
overestimated heights within the 3D GAM, the filter has no chance to converge. On the other
hand, both FCDS quasi-ERHM methods converge for the height and IoU measures. Comparing
the implementations with and without applying the RAMN estimation procedure, it can be
seen that the artificial noise can provide a clear advantage in the FCDS measurement models if
a mixture of boundary and interior measurements is present in the measurement set. For both
methods, the IoU is higher when the RAMN is applied than when only boundary measurements
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Figure 4.9: MC simulation RMSE and IoU estimation results of the static simulation experiment investigating
the RAMN estimation procedure for the FCDS shape representation.

are assumed in the measurement model. The orientation estimates again show ambiguities that
the filter cannot resolve in this static scenario. However, the estimates converge for each FCDS
measurement model. The calculation times per measurement for each FCDS measurement
source association procedure with and without applying the RAMN are given in Tab. 4.1. It
can be seen that while the 3D GAM methods are the most efficient, the quasi-ERHM methods
are not significantly less efficient. It is also clear that the RAMN estimation method is hardly
significant in terms of computation time.

Finally, in addition to the quantitative results, the qualitative results after 50 time steps and
2500 processed measurements for this scenario are visualized in Fig. 4.10. The estimation
results applying the 3D GAM are depicted in the first row in Fig. 4.10a, while the quasi-ERHM
results can be seen in the second row in Fig. 4.10b. In the first column, the RAMN estimation
procedure is omitted and utilized in the second column. These figures clearly show how the
FCDS 3D GAM can overestimate the reference height. For both implemented versions, the
shape is estimated well in the areas where measurements are simulated, however, it is highly
error-prone in the height estimate and also in the shape estimates where no measurements are
gathered. On the other hand, the FCDS quasi-ERHM results both exhibit an unbiased height
estimate in combination with well-estimated shape information. For both measurement source
association procedures, the shape estimates are biased towards the center of the object when
the RAMN is omitted. The best overall performance is provided by the FCDS quasi-ERHM
applying the RAMN estimation procedure.

m Conclusions

This chapter addressed the need for flexible shape representations within the 3D EOT framework
presented in Ch. 2, especially for scenarios where object classes are unknown a priori or
parametric models do not provide sufficient accuracy. Building on the proven advantages
of shape representations in cylindrical coordinates for maritime environment perception, a
novel non-parametric shape representation based on an FCDS has been introduced. This
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Figure 4.10: Estimation results of the second experiment investigating the RAMN estimation procedure
for the FCDS shape representation. Estimates are at the same time step with the same random seed for the
measurement generation.

representation uniquely combines periodic Fourier series for the angular dimension with non-
periodic Chebyshev polynomials for the height dimension, allowing for flexible modeling of
shapes that are star-convex only within horizontal slices, a potentially less restrictive constraint
than global star-convexity required by shape representations in spherical coordinates. The most
important finding from the comparative experiments is the clear advantage of the FCDS shape
representation in cylindrical coordinates over established shape representations in spherical
coordinates when processing measurement data characteristic of maritime scenarios where
lateral surface measurements are predominant and measurements from the top and bottom
surfaces are often missing.

In addition, the comparison between the two proposed FCDS measurement models revealed
important findings. The developed quasi-ERHM FCDS approach, which decouples the estima-
tion of the height and z position using a line estimator from the remaining system state, proved
effective in overcoming the height estimation errors inherent in the simpler 3D GAM approach.
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This confirms the system state decoupling strategy as a practical method for achieving unbiased
height estimates using the FCDS shape representation in a 3D EOT measurement model.
Finally, the integration of the RAMN estimation approach also proved beneficial for this non-
parametric shape representation integrated into a 3D EOT measurement model. In simulations
with mixed boundary and interior measurements, the RAMN approach improved the shape
estimation accuracy for both the 3D GAM and the quasi-ERHM FCDS measurement models
compared to the assumption of pure boundary measurements. Combining the quasi-ERHM
FCDS and RAMN approach provided the most accurate and robust results in these initial
static tests. Therefore, this chapter’s findings validate the FCDS shape representation as a
promising approach for flexible 3D EOT. The quasi-ERHM method enhanced by the RAMN
approach proved particularly effective in these initial tests and warrants further evaluation in
dynamic and real-world scenarios.
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Motivation and Contributions

In the previous chapter, a non-parametric shape description applying a Fourier-Chebyshev
double series (FCDS) expansion of a radial function in cylindrical coordinates was presented
as a flexible shape representation in cases where no information about the object class to
be tracked is available. However, the double series shape representation also has drawbacks
compared to applying parametric shape representations in the extended object tracking (EOT)
measurement model. The shape coefficients in the FCDS shape representation have no direct
relation to the physical shape or extent, which makes it difficult to decide how many shape
coefficients to use. Furthermore, the number of measurements gathered from the object can
determine the level of detail in the shape that can be estimated. This level of detail ultimately
also determines the maximum number of shape coefficients that should be chosen. However,
this information is either unknown, can change for each object, or over time for a single object,
since the number of measurements depends on the distance of the object to the sensor. If the
number of shape coefficients is chosen too high, the shape estimate can diverge since the level
of information gathered in the measurements is too low. In summary, choosing the appropriate
number of shape coefficients in the FCDS shape representation can be challenging.

In addition to the problem of choosing an appropriate number of shape coefficients for a shape
function expansion, parametric shapes such as ellipses or rectangles are often sufficient for a
multitude of different objects. Choosing parametric shapes in the EOT measurement model
can have advantages such as low-dimensionality and efficiency if the state estimates do not
need to be highly accurate. However, if the class of the object to be tracked is unknown, a
multiple measurement model approach such as [60, 72] might be required to ensure proper
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extent estimates. These multiple measurement model approaches can, however, be more
computationally expensive than employing a single measurement model approach. To overcome
the issues mentioned above, extruded deformable superellipses [29, 105] are chosen as a 3D
shape representation in this chapter. These provide a flexible and compact representation of a
wide range of parametric shapes, which can then be estimated in a single measurement model.
By using superellipses as the shape representation, choosing an appropriate number of shape
coefficients is no longer needed, and various parametric shapes can be estimated using a single
measurement model rather than relying on a multiple measurement model approach.

Contributions Also in this chapter, several contributions are made. First, the superellipse,
which is a compact representation of deformations of the elliptical shape, is presented and
discussed as a possibility for shape representations in EOT in Sec. 5.3. In addition to shape
deformations related to the ellipse, a tapering deformation is also introduced [115], to be able
to taper the superellipse in each coordinate direction. These deformations allow a compact
representation of parametric 2D shapes such as ellipses, rectangles, triangles, rhombuses,
trapezoids, and various shapes in between, using only up to 5 parameters. Subsequently, the
superellipse shape is used to derive several measurement models for EOT in Sec. 5.4. First, a 2D
measurement model using the superellipse shape with a radial and projected measurement-to-
source association is presented. This measurement model is then extended to a 3D measurement
model using an extrusion random hypersurface model (ERHM) approach with a superellipse
base shape. To be able to apply the recursive artificial measurement noise (RAMN) estimation
procedure for the superellipse measurement models, an implicit function generating the "inside-
outside* information is finally presented in this section. Further contributions of this chapter are
the presentation of pseudo-code for the implementation in Sec. 5.5 and an evaluation of the 3D
measurement models in a static simulated scenario in Sec. 5.6. In the evaluation, two different
reference shapes are used to generate the measurements to examine the shape adaptability of
the extruded superellipse measurement models.

Related Work

In the context of 3D EOT in a maritime area using flexible parametric shapes, no other reference
could be found in the literature so far. However, applying superellipses as shape representation
in 2D EOT is also proposed in [46, 50, 144]. In [50], an optimization-based geometric curve
fitting algorithm for 2D EOT applying bent superellipses is proposed. The papers [46, 144]
both deploy a particle filter for state estimation. In [46], an explicit measurement equation is
presented, whereas [144] uses an implicit measurement equation. In comparison, the following
chapter proposes an explicit measurement equation using deformable extruded superellipses,
which can be implemented with an unscented Kalman filter (UKF) [76, 77]. An extruded
superellipse measurement model, instead of using superquadratics, which are the natural 3D
extension of superellipses, is used since measurement models in cylindrical coordinates have
proven to be superior to measurement models in spherical coordinates in maritime domains
[06]. A 3D EOT measurement model using superquadratics as shape representation has been
proposed in [47]. The measurement-to-source association problem for the extruded superellipse
measurement models is again solved using a 3D greedy association model (GAM) [32, 35] and an
ERHM [36]. In the ERHM, symmetry assumptions [36] can again be applied since the extrusion
factor can be assumed to be uniformly distributed. By using symmetry assumptions in the
extrusion, the quadratic extension proposed in [14] can be omitted again, and the inference can
be performed using an UKF. The RAMN estimation procedure is again inspired by [80].

82



5.3 Superellipses as Shape Representation

Superellipses as Shape Representation

Superellipses, also known as Lamé curves, are a special class of 2D curves that give a compact
representation of basic parametric 2D shapes [29, 105]. Implicitly, a superellipse can be given

as the set
£

@)
A g

p(y)

oS’(p,a,b,E)—{pERQ‘F(na,b,E)— 5 —1—0} (5.1)

with p = [p(g”), p(y)}T, and a,b > 0 being the major and minor semi-axes defining the extent of
the superellipse, and the squareness parameter ¢ defining the shape. This implicit representation
(5.1) describes the closed curve centered at the origin and aligned with the coordinate axes.
The squareness parameter € > 0 defines the shape of the curve. With e € (0, 1), the superellipse
describes concave, star-like shapes with a cross at the limit case of ¢ — 0. At € = 1, the
shape results in a rhombus. At ¢ = 2, an ellipse can be represented using the superellipse
shape representation. With € € (2, 00), the superellipse shape gives shapes between an ellipse
and a rectangle, approaching a rectangle as ¢ — co. An illustration of the superellipse shape
concerning the squareness parameter € can be seen in Fig. 5.1a.

= ~
- )

c=05 e=1 e=2 £=3 —t, =-03,t, =0 ——1t, =-0.7,, =0 t, =0,t, =0
e=5 =10 £ =100 —t, =0,y = 0.3 ——1¢, =0,t, = -0.7
(a) Illustration of superellipses with different (b) Illustration of superellipses with different tapering
squareness parameters. parameters.

Figure 5.1: Visualization of superelliptical shape representations.

Another representation of the superellipse shape can be given explicitly using the parameter
0 € [0,27) as

z(0) = [a sign( cos(6)) ]cos(9)|§ ,bsign(sin(0)) ]sin(&)\%}T (5.2)

where sign() represents the sign function [29]. The explicit representation can be used to plot
the superellipse.

In addition to the squareness transformation, a tapering transformation [115] for each axis
can be introduced to be able to taper the shape in each direction. In doing so, shapes such as
triangles and trapezoids can also be represented using superellipses. A tapering transformation

T'(p) can be given as
) (@) i
T(p) = l(t(w)pb + 1> p® (t(y)p + 1) p(y)] (5.3)
= a

using the tapering coefficients t(*) W) ¢ [—1,1]. An inverse tapering transformation will be
denoted as T~ ! in the following. An illustration of tapered superellipses can be seen in Fig. 5.1b.
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m Superellipse measurement models

In this section, different measurement models for tracking objects with a superellipse shape are
presented. Since the superellipse shape is less common in the EOT literature compared to ellipses
or rectangles, a measurement model processing measurements in 2D space is presented first. In
the next step, this measurement model is then extended as an ERHM to be able to process
measurements in 3D space in an extruded superellipse shape EOT filter. The measurement
models assume measurements originate from the object boundary, as measurements from the
interior are processed using the RAMN estimation, which is presented in Sec. 5.4.3.

Preliminary considerations Before deriving the measurement models for the superellipse
EOQOT filters, the system state to be estimated must be defined. The first measurement model
to be derived is the model for processing 2D measurements. Thus, the system state is defined
in 2D space at first. Changes to the system state for processing measurements in 3D space are
given in Sec. 5.4.2. The kinematic state to be estimated is modeled as

-
Tign,, = mﬁy”,m,g@k] (5.4)
comprising the 2D position m,(fy), the orientation ¢y, and the dynamics z,,, representing
variables such as the velocity, yaw rate, or acceleration of the object. The orientation ¢
is modeled to be aligned with the direction of movement. The extent state can be defined
individually depending on the desired flexibility of the model. More and more parameters can
be added to achieve an increasingly flexible model. In the following, three possibilities for
defining the extent state are given:
o Text, = |k bk]T: The least flexible model in 2D space estimates only the extent of a
specific superellipse with a fixed squareness parameter ¢. However, it must be highlighted
that this option can be very powerful as well if prior knowledge of the class of the object
shape is available. With ¢(*) = ¢®) = 0, which is equal to no tapering transformation, and
e = 10 for example, a rectangle with rounded corners similar to [O1, 79] can be described.
o Ty, = Ak, ks ek]T: By adding the squareness parameter €5 to the extent state, scaled
versions of the shapes from Fig. 5.1a can be estimated.

=
¢ Lexi, = [ak,bk,amtg),tg) . By also adding the tapering coefficients t,(ez),tlgy) to the
extent state, tapering deformations, as can be seen in Fig. 5.1b, of the superellipse shape

can be estimated.

In the following investigations of this thesis, the extent state comprises the semi-axes ay, by > 0
and the squareness coefficient e together with the tapering coefficient t,iy) € [—1,1] to allow
tapering deformations in the y-axis. The tapering coefficient t,(f) is omitted to integrate the
prior knowledge that many shapes in various tracking scenarios entail a line of symmetry in the
x direction. The squareness parameter ¢ produces concave shapes for € < 1 and convex shapes
for the opposite interval. Concave shapes are generally not preferable for EOT. Therefore, the

squareness parameter will be restricted as e > 1.

In this thesis, the boundary of the superellipse shape in local coordinates is described by the set
(5.1). Ideally, this implicit representation could be used in a measurement equation similar to
[147]. However, investigations have already shown that the nonlinear nature of the squareness
parameter £ makes parameter estimation very difficult [105]. Therefore, radial and projected
measurement source association techniques are presented and investigated in the following
sections.
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5.4.1 2D Measurement Model

To derive an explicit measurement equation, the measurement source model (2.22) can be
applied. However, the unknown measurement source has to be approximated. This section
presents a radial measurement source association in 2D space, which can also be used for
the 3D measurement model afterwards. A projected measurement source association can be
calculated using the procedure presented in Sec. 2.4.2 and the explicit superellipse equation
(5.2). In the following, the calculations are explicitly presented using xy coordinates, since
measurements in 3D space could also be projected onto the 2D horizontal plane to apply the
following measurement model.

The radial measurement source association approximates the measurement source as the
intersection of the boundary and the connecting line between the center of the superellipse and
the inverse tapered measurement. This approach enables an efficient analytical calculation of
the measurement source. To be able to predict the measurement source, the first step is to
transform the measurement to local coordinates

5 = Rop (duee) - (4 —m3)) (5.5)

using the rotation matrix Rop(¢) (4.21). If a tapering transformation is applied, the next step is
to inversely taper the measurement in local coordinates Yo The inverse tapered measurement
in local coordinates can then be given as 7

T
~(z) ~(y)

1
t?ji(fzy) =T (gl(cxly)) = ykllw) , e : (5.6)
o Y t(l’) o Yk +1 t(y) oYk
klk—1 bk\k—l klk—1 Ag|k—1

If no tapering transformation is applied, the measurement in local coordinates (5.5) can be
directly used in the following calculations. Given the inverse tapered measurement in local
coordinates tg,(f;’ )7 the intersection point for the radial association in local coordinates Z,ixly ) can

analytically be calculated using

x) Eklk—1 T ~ €klk—1
Zl(c,l Zl(c,l) 'tyi(c%/l) 1 57
t(@) o (5.7)
Aklk—1 bjk—1 'Yk,

by plugging in the intersection line equation into the implicit superellipse representation (5.1)
[106]. Then, the equation can be reshaped as

s [ N
’ Of|k—1 bk|k—1 : t?/m
(@) tgl(cyl) Eklk—1 Cklk—1
24| = { Jawpa |7 + L (5.8b)
7 bk|k71 : t?jk,l

The absolute value of the measurement source z,(gq}) in the x coordinate can finally be resolved by

knowing that the x coordinate of the inverse tapered measurement in local coordinates tgj,(fl) has
the same sign in the radial association scheme. The measurement source in local coordinates
can then finally be calculated as

1
t~(y) Cklk—1 €klk—1

Yi,i
(x)

B - (5.90)
brjk—1 - tykyz

25221 (ik\k—latggzly)) = sign (tglgfl)) . |ak|k_1|_5k\k—1 4
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t= )
. Ykl

Ea()i (xk\k 17ty](f;/)> - Zﬁa()i (xk\k 15 y](fl )> ¢ ~() (59b)
k,l

and will be abbreviated as zfad) (f%k\ k15 tg],(fly )> for the radial measurement source association.

A projected measurement source association z;rgj) (@klk_l, tg,(ff )> can be calculated using the

procedure presented in Sec. 2.4.2, the inverse tapered measurement in local coordinates tygz ly),

the predicted system state Zy,_;, and the explicit superellipse equations (5.2). An illustration
of the radial and projected measurement source association, including the inverse tapering trans-
formation, can be found in Fig. 5.2. Given a predicted measurement source, the measurement
equation can be stated as

:(Iy) =z (xk\k 1 (xy)) — 1) oy (5.10a)
= ZE;A%\/[ (l'k|k 1aty,(C ly)) + Vg (5.10b)

In the nonlinear Kalman filter update step, the predicted measurement y(ry) can then be

associated with the pseudo-measurement 0y in (2.16b). In the measurement equation (5.10),
both association procedures, the radial and the projected, can be included.

[ ]
I
1
| u

\ /
/ f
=3/ I
I

(a) Radial measurement source association. (b) Projected measurement source association.

Figure 5.2: Tapered superellipse and measurement source association. Squareness parameter € = 4. Tapering
parameter t) = —0.5. Measurements as circles, inverse tapered measurements as squares, and measurement
sources on non-tapered shapes as crosses. Related items are displayed in the same color.

Remark 5.1. The 2D measurement equation applying superellipses as shape representation
was originally published in [O3].

5.4.2 3D Measurement Models

As was seen in Ch. 4, a shape representation in cylindrical coordinates can be beneficial
compared to spherical representations if measurements from the top and bottom surfaces of the
object are missing. Thus, extruded superellipse shape representations are applied for deriving
the 3D measurement models in this section instead of applying superquadratics [47] as a 3D
shape representation and extension of the superellipse measurement model presented before. A
parametric representation for the extruded superellipse shape in local coordinates can be given
as

2(0,s) = [a sign( cos(f)) ]cos(@)|% ,bsign(sin(f)) \sin(&)\% .8 h}—r (5.11)
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using the parameter s € [0, 1] in addition and the height ~ > 0. As before in Sec. 3.3, a 3D
GAM and an ERHM are presented as measurement models for the 3D extruded superellipse
shape representation. For both measurement models, the kinematic state is modeled as

T
Lxin, = {mgvd)kal\—/re]k} (512)

representing variables
such as the velocity, yaw rate, or acceleration of the object. The yaw angle ¢y, is modeled to

comprising the 3D position my, the yaw angle ¢, and the dynamics z,
be aligned with the direction of movement. Roll and pitch angles are again assumed to be
negligible, but can easily be integrated into the estimation procedure if required. The extent
state can again be defined individually depending on the desired flexibility. However, the height
h, must be added to the extent state and will be estimated in both measurement models. The
extent state, which is applied in the following investigations, can then be given as

%th -

.
akvbkyhkaégk»t)(gy)] (5.13)

comprising the semi-axes ay, by > 0, the squareness parameter ¢ > 1, the tapering coefficient
t,(gy) € [—1,1], and the height hy > 0. The tapering coefficient t,(f) is omitted to integrate the
prior knowledge that many shapes in various tracking scenarios entail a line of symmetry in the

z-direction.

Extruded Superellipse 3D GAM For the extruded superellipse 3D GAM, the extrusion
parameter s in (5.11) and the 2D source point corresponding to the angular parameter 6 are
greedily associated with the boundary of the explicit extruded superellipse shape. The angular
parameter 0 in (5.11) is not directly calculated. The z coordinate of the measurement in local
coordinates ﬂl(jl) can be calculated using an inverse translation. The greedy association of the
extrusion parameter §;; can then be solved using (3.4), while the greedy association of the
measurement source at a specific height section can be solved using the procedures presented
in Sec. 5.4.1. The measurement equation for the extruded superellipse 3D GAM can then be

given as

s(zy) [ 4 t~@y)\ _ t~(2y)
z Trle—_1,
Y= | (Jclk bk ) (2) Bt + Uk (5.14a)
o Sk hik—1— 9 ’
i ; k.l
[ () (4 t~(zy)
2GAM \Lkk—1> Yk
= ~ (h | _(2) ) + Ky (5.14b)
| Skl elk—1 — Yg
= ZgAM (ikuc—h tgk,l) + Vg - (5.14c)

The predicted measurement gk’l can then be associated with the pseudo-measurement 05 in
(2.16b) in the nonlinear Kalman filter update. In this measurement equation, the center of the
extruded superellipse local coordinate system is located at the bottom surface. Details on the
implementation of the extruded superellipse 3D GAM can be found in Sec. 5.5.

Extruded Superellipse ERHM For the extruded superellipse ERHM, a uniformly distributed
extrusion factor s;; ~ %(0,1) can be applied since the perimeter of the extruded superellipse
does not change in the z direction, and a uniformly distributed scaling factor, therefore, resembles
a uniform distribution of measurements on the entire surface of the extruded superellipse.
Due to the uniform distribution of the extrusion factor, symmetry assumptions for the ERHM
as presented in Sec. 2.4.3 can be applied for the extruded superellipse ERHM measurement
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equation. The greedy association of the measurement source at a specific height section can be
solved using the procedures presented for the 2D superellipse measurement model of Sec. 5.4.1.
The measurement equation for the extruded superellipse ERHM can then be given as

[5(z) (4 t~(xy)\ _ t~(zy)
- 277\ Lklk—15 Yk, Uiy
gk,l - ( hgj—1 >~(z) +Qk,l (515&)
L Skl 3 kL
[s@y) (4 t ~(zy)
Z2aAM \Zklk—1> Y
- glkkl _|s® + gy (5.15b)
| Skl T2 k,l
= ZERHM (ik\k—h tgk’l> + Uy (5.15¢)

where the predicted measurement g, , can then be associated with the pseudo-measurement 03
in (2.16b) in the nonlinear Kalman filter update. In this measurement equation, the center of
the extruded superellipse local coordinate system is located in the middle of the shape, and the
full height is estimated in the extent state. Also, in this measurement equation, inverse tapering
and rotation transformations are only applied to x and y coordinates. For the z coordinate of
the measurement in local coordinates g],(:l), only an inverse translation transformation must be
performed. Details on the implementation of the extruded superellipse ERHM can be found in
Sec. 5.5.

Remark 5.2. The 3D measurement equation applying extruded superellipses in an ERHM as
shape representation and an extension of the 2D measurement equation was originally proposed

in [02].

Recursive Artificial Measurement Noise for the Superellipse Shape

Also, in the measurement models for the extruded superellipse shape, measurements are initially
assumed to be generated from the object’s boundary. Therefore, a RAMN estimation procedure
using the equations given in Sec. 2.6.1 is presented in this section. Since the perimeter of
the extruded superellipse shape does not change in the z direction, estimating the RAMN
parameters in the z,y plane is sufficient for this shape. Furthermore, the ”inside-outside“
information can also be calculated using the measurements projected to the horizontal z,y
plane.

Reference = = 30 border
® Boundary measurement @ Interior measurement

Figure 5.3: Visualization of the measurement separation for the RAMN estimation of a superellipse.

As was seen in Sec. 2.6.1, the 30, border must also be taken into account for a better convergence
behavior, as measurements inside this region might also originate from the boundary of the
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object. Due to the additive measurement noise, measurements can also be located inside the
boundary of the object, which is attempted to be regulated by adding the 30, border to the
“inside-outside“ information generation. An implicit equation for the superellipse to calculate
this information is given by (5.1) and can be modified as
tg(w) Cklk—1 tg(y) Eklk—1
I (G Bpgpr) = |——— | —1 (5.16)
=kl k=1 ak‘k,l -3 U2 bk|k71 -3 UQ

> 0: outside
=<{=0: 3o,boundary (5.17)
< 0: inside

using the inverse tapered measurement in local coordinates tgk:,l as input. A visualization of
the measurement separation for the RAMN estimation of the superellipse shape can be seen
in Fig. 5.3. The blue measurements in the figure are used for the parameter estimation of
the RAMN. The measurement sources associated with these interior points directly give the
Euclidean distances needed for the calculation as

di = |25 (&g, 5| (5.18)

where the superscript ¢+ again indicates measurements inside the boundary and outside the
3o, border. After calculating the parameters of the RAMN, the measurement noise mean and
covariance matrix are given by (3.11a) and (3.11b). The artificial measurement noise mean
value can again be added to the predicted measurements gl(fly) before they are used in the
update equations of the Kalman filter.

m Implementation Details

In this section, details on the implementation of the presented extruded superellipse EOT filters
are given. In particular, pseudo-code is given for the 3D extruded superellipse measurement
models. The 2D superellipse measurement model can be implemented by omitting the extrusion
part of the 3D models. Details are not given in this thesis but can be found in [02, O3]. The
extruded superellipse 3D GAM and ERHM, including symmetry assumptions in the z direction,
can be implemented using an UKF. The pseudo-code for the sequential batch linear regression
Kalman filter (LRKF') can be found in Alg. 3.1, and the UKF is one version of the LRKF. In
this algorithm, lines 3-5 must be specified for the extruded superellipse measurement models.
The RAMN estimation and the artificial measurement noise mean and covariance matrix for
the extruded superellipse in line 11 can be generated using the "inside-outside® function (5.16)
and the procedure described in Sec. 5.4.3.

The pseudo-code for implementing the extruded superellipse 3D GAM and ERHM replacing
lines 3-5 in Alg. 3.1 can be found in Alg. 5.1. In the first six lines of this algorithm, the sigma
point calculation of the UKF is depicted. Comparable to the elliptic cylinder ERHM, and
also for the extruded superellipse ERHM, the extrusion factors must be sampled for each of
the n, measurements individually. As these extrusion factors for the extruded superellipse
ERHM are also assumed to be uniformly distributed as s; ~ %(0, 1), the procedure presented
in Sec. 3.5.1 for generating these samples can be applied. In lines 4 and 6, the extrusion
samples are generated being distributed as sx; ~ #(0,1) and then transformed in line 22
using the cumulative distribution function (CDF) ®(sy ;) of the standard Gaussian distribution.
Afterwards, these transformed extrusion samples are uniformly distributed as required. The
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extruded superellipse 3D GAM can be implemented straightforwardly, similar to the elliptic
cylinder 3D GAM implementation in Sec. 3.5.1.

Algorithm 5.1 Extruded superellipse UKF measurement prediction

1: if 3D GAM measurement source association then

2 distribution parameters z, = z,,, P, = P,

3: else if ERHM measurement source association ther%

4: extended distribution parameters z, = [a:n NS } , P, = blkdiag (P,,IL,,)
5. end if

6

. sigma, points { Z, wnj}n . using [130] and z,,, P,
=

Ny
7. get {gn,l}gﬂ from %} using next n, measurements
8: for j < 1 to ny do

9: extract @y, , from z,, ;

10: extract constralned [Gn,j, ﬁnyj, /gnyj]T = ci([@n,j, bny, ﬁn,j]T7 0) with lower bound
from z,, ; using (2.38)

11: extract constrained &, ; = c(g,,5,1) with lower bound from z,, ; using (2.38)

12: extract constrained Z SJ; 14 sz, —1,1) from z,, ; using (2.39)

13: for [+ 1 ton, do

14: measurement in local coordinates gg’”% using (5.5), and Zyin,,

15: inverse tapered measurement in local coordinates tgg”;’% using (5.6), and 7 flyz

16: measurement source z( ;’)l (gextm, y( y)) using (5.9) or projected association

17: measurement in local coordinates yr(”)l = y( 2) mff;

18: if 3D GAM measurement source assomatlon then

19: extrusion factor 3, j; using (3.4), yy(u)l, and constrained height sample /%, ;

20: predicted measurement y gl = {z,(z Jy% ,Sn,jl )%W}T _gn,j,l

21: else if ERHM measurement source association then

22: extract extrusion factor sample J,, j; = ( + erf (J:Lf”)) from z,,

23: predicted measurement an = {éﬁf;jg TR i;"}T - [t 7 ’”y%T, |y7(lzj)l|]

4, Js 4, ,
24: end if
25: end for

26: end for

Another specialty of the extruded superellipse measurement models can be found in lines 10-12.
In these lines, the constrained state samples are extracted from the state samples z,, ;. The
semi-axes and the height of the extruded superellipse are prevented from becoming negative
by transforming them through the transformation function (2.38) with 0 as a lower bound.
Furthermore, the squareness parameter is prevented from becoming smaller than 1 by also
transforming it through the transformation function (2.38), however, with 1 as a lower bound.
Finally, the tapering coefficient is forced to be in the interval [—1, 1] by transforming it through
the transformation function (2.39) with respective bounds to prevent the tapering coefficient
from being higher or lower, as these values would produce loops in the shape which are not
preferable. The final details of the extruded superellipse measurement models can be found in
lines 20 and 23, where the measurement equations are depicted, including contained symmetry
assumptions in the z direction for the extruded superellipse ERHM.
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Remark 5.3. In addition to the pseudo-code given in this section, an implementation of the
2D and 3D superellipse measurement models can be found at [R5].

m Experiments

In this section, the extruded superellipse measurement models are investigated and compared in
two simulated static scenarios. In these scenarios with 100 time steps, measurements are again
generated from the boundary of the reference shape and the object’s interior to investigate
the RAMN estimation in the extruded superellipse measurement models. To also investigate
the basic parametric shape estimation capabilities of the superellipse, two scenarios with a
cuboid and an elliptic cylinder reference shape are simulated, described, and evaluated in
this section. The measurement generation process is comparable to the simulated scenarios
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Figure 5.4: Monte Carlo (MC) simulation root mean square error (RMSE) and intersection over union (IoU)
estimation results of the static superellipse simulation experiment.

presented before. The z coordinates of the measurements are sampled uniformly distributed
using the normalized height parameter s ~ ?%(0,1) and then multiplied by the reference height
of the simulated shape. This procedure can be applied to both reference shapes. Sampling
the angular parameter of the elliptic cylinder for the measurement generation is described in
Sec. 3.6.1. The measurement source generation of the cuboid at a specific height section can
also be realized by sampling an angular parameter from the uniform distribution § ~ (0, 27)
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and passing the sampled parameter through a rectangular radial function, which can be defined
as a piecewise function. An implementation can be found at [R5]. With a probability of 0.3,
after calculating the measurement sources from the boundary, a scaling factor t ~ 7 (0,1,1)
is selected to multiply the measurement source in the xy plane and generate measurements
from the object’s interior. With a probability of 0.7, measurements are sampled from the
object’s boundary. The measurement set is then given as a mixture of boundary and interior
measurements. Finally, the measurement noise is sampled from the Gaussian distribution
v ~ A (0,0.1%) for each dimension and added to the measurement source.

In the simulation, the extruded superellipse 3D EOT filters are implemented using a 3D GAM
and an ERHM, with a radial and a projected measurement source association at a specific height
section, and with and without the RAMN estimation procedure. The filter is initialized using
the first measurement set. Details can be found at [R5]. In each time step, 50 measurements
are generated and processed in a sequential batch update with n, = 20 measurements for a
single update. The quantitative results are presented using the mean IoUs for evaluating the
shape estimation capabilities of the extruded superellipse shape measurement models. The IoU
is specified in Sec. 4.5. However, for the extruded superellipse shape, only the 2D top-down
view IoU is calculated at each time step, as this is sufficient for the evaluation of the shape
estimation performance in this scenario. For the 2D top-down view IoU, the convex hulls of the
estimated and reference shapes in top-down view are utilized for calculating the intersection
and union areas throughout this thesis. In addition, the mean RMSEs for the yaw angle and
height estimates are calculated. Results are presented as mean values of a MC simulation with
100 runs.

Table 5.1: Mean computation times per measurement for the superellipse.

Algorithm Computation time
ERHM radial RAMN 43.66 s
ERHM radial no RAMN 41.92 s
ERHM projected RAMN 155.55 118
ERHM projected no RAMN 73.91 ps
GAM radial RAMN 27.411s
GAM radial no RAMN 26.81 s
GAM projected RAMN 36.96 s
GAM projected no RAMN 36.99 ps

The mean values after the MC simulation are depicted in Fig. 5.4. In the first half of the figure,
the results with a cuboid as a reference shape can be seen. In the second half, the results
with an elliptic cylinder as a reference shape are depicted. The measurement models applied
to estimate the parameters of the extended object are the same for both reference shapes.
For both simulations, it can be seen that the 2D IoU for the measurement models applying
the RAMN estimation converges to a static value close to 1, meaning that the 2D reference
shape in the top-down view is almost perfectly estimated. When not applying the RAMN
estimation procedure in the measurement update, the 2D IoU is substantially lower since the
shape estimate is biased towards the interior of the object. Also, in the results, no major
difference between using a radial or projected measurement source association at a specific
height section can be detected. Only the IoU of the ERHM with projected measurement source
association applying the RAMN estimation procedure is slightly lower than the remaining
implementations applying the RAMN procedure. The radial association can, therefore, be
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assumed to be the more reliable measurement source association for the extruded superellipse
shape in this scenario. Also, for the superellipse measurement models, the estimates of the
yaw angle reveal huge errors, which can again be ascribed to the fact that the shapes are
symmetric and the angle is a periodic variable, which is why ambiguities in the estimates can
occur. However, the orientation RMSEs also converge in this scenario in each implementation,
which indicates a reliable angle estimation. In contrast to the ERHM implementations, the
height estimates of the 3D GAM implementations diverge in this scenario due to the lack of a
penalty for overestimated heights in the 3D GAM.
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Figure 5.5: Estimation results of the superellipse ERHM applying a radial measurement source association
with and without RAMN estimation in 2D and 3D view for the cuboid reference. Estimates are at the same
time step with the same random seed for the measurement generation.

In addition to the quantitative estimation results, the mean computation times per measurement
for each version of the superellipse measurement models are reported in Tab. 5.1. Each
calculation is conducted using MATLAB R2023b on an Intel(R) Xeon(R) X5680 CPU with
3.33 GHz. In the table, it can be seen that the implementations applying a radial measurement
source association at a specific height section are slightly faster than the projected measurement
source association. It can also be seen that the RAMN estimation procedure can be calculated
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very efficiently in this implementation and has only a little impact on the computation time.
In combination with the quantitative estimation results from Fig. 5.4, the RAMN estimation
procedure can be considered a promising approach for processing a mixture of boundary and
interior measurements in EOT.

Finally, qualitative estimation results of the extruded superellipse ERHM are visualized in
Fig. 5.5. In each figure, estimation results after 50 time steps and 2500 processed measurements
for the cuboid reference, applying a radial measurement source association at a specific height
section, are depicted. In the top row, results without applying the RAMN estimation procedure
in 2D top-view and 3D view can be seen. In the bottom row, the same figures are shown,
however, when applying the RAMN estimation procedure. The qualitative results for the elliptic
cylinder reference are not included as they are comparable to the visualization in Fig. 3.5. It
can be seen that when applying the RAMN estimation procedure, the extent and also the shape
can almost perfectly be estimated. Also, the shape of the elliptic cylinder is very well matched
using the extruded superellipse shape representation. These results make the superellipse shape
representation a very competitive alternative to flexible non-parametric shape representations
and also a multiple model approach, as discussed in Sec. 5.1. The application of the superellipse
shape representation to real-world measurements is presented and discussed in Ch. 6.

Conclusions

This chapter introduced and investigated extruded superellipses as a novel shape representation
for 3D EOT, aiming to provide a balance between the simplicity of basic parametric shapes
presented in Ch. 3 and the high flexibility of non-parametric series expansions presented in Ch. 4.
The motivation stemmed from the need for a single, compact model capable of representing a
variety of common parametric object shapes, such as ellipses or rectangles, without requiring
prior classification or facing the complexities of high-dimensional shape coefficient spaces.
Superellipses, defined by semi-axes and the squareness and optional tapering shape parameters,
offer this flexibility. The extruded variant was chosen over 3D superquadrics to maintain
the advantages of shape representations in cylindrical coordinates for maritime environment
perception. An important finding from the initial static simulation experiments is the successful
demonstration of the adaptability of the extruded superellipse model. Using its squareness
and optional tapering shape parameters, it accurately captured the geometries of both cuboid
and elliptic cylinder reference objects within a single measurement model. This validates the
potential of extruded superellipses to handle common object shapes without requiring multiple
specialized models.

Consistent with the results for simpler parametric shapes, the comparative evaluation in this
chapter confirmed the superiority of the ERHM approach over the 3D GAM in achieving
unbiased height estimates. Furthermore, the experiments highlight the importance of the
RAMN approach for this measurement model. The integration of the RAMN significantly
improved the accuracy of the horizontal shape and extent estimates for both reference objects
by effectively mitigating estimation errors caused by interior measurements. Combining the
ERHM with the RAMN approach delivered the most robust and accurate results in these static
tests. These results validate the extruded superellipse, in particular the ERHM with the RAMN
approach, as a promising approach for 3D EOT that offers an effective mix of shape flexibility
and efficiency.
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In this chapter, the measurement models presented before are further investigated and evaluated
in simulated and real-world dynamic scenarios. In the first part of this chapter, simulated
and real-world maritime scenarios are applied to each presented measurement model from the
previous chapters. In doing so, further insights are gained on the complexity needed in the
measurement models for a proper 3D extended object tracking (EOT) filter. Furthermore,
the recursive artificial measurement noise (RAMN) estimation procedure is investigated in
real-world scenarios and compared to state-of-the-art EOT methods, which can be found
in the literature, and not using the approach at all. In the second half of the chapter, the
developed 3D EOT measurement models are investigated in an automotive domain. In doing
so, the generalization capabilities of the approaches are examined. The dataset applied for the
investigation in the second half of the chapter is the famous KITTI data set [48]. The raw data
set contains roughly 1200 objects annotated in consecutive time steps, which can be used for
the study. By using a well-known and extensive automotive dataset to evaluate the developed
3D EOT measurement models, a versatile result can be achieved that helps to further evaluate
and classify the approaches. Comparable data sets in the maritime sector with high-resolution
light detection and ranging (Lidar) sensors and corresponding evaluation options do not yet
exist.

Evaluation in a Maritime Environment

In this section, the developed 3D EOT measurement models are examined in a maritime
environment. Therefore, three different scenarios are presented and investigated. First, a
simulated scenario using a computer-aided design (CAD) model of the Solgenia research vessel
[C6] from HTWG Konstanz as the tracking object is presented in Sec. 6.1.1. When using the
CAD model of the Solgenia in the simulation environment, realistic 3D Lidar measurements
can be generated for an in-depth investigation. In the second scenario, a real-world maritime
scenario, also with the Solgenia as a tracking object, is presented in Sec. 6.1.2. In this scenario,
the CAD model can be applied as a detailed 3D shape reference, which is unique in the maritime
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tracking community. In the simulated and real-world scenarios using the Solgenia as a tracking
object, every measurement model except for the elliptic cone measurement models, presented
in Sec. 3.4, is applied for 3D EOT. The elliptical cone measurement models are examined in
a separate real-world scenario in section 6.1.3, in which measurements were recorded from a
sailing boat participating in a regatta on Lake Constance.

Simulated Motor Boat Scenario Results

In this section, the simulated scenario with Solgenia as a tracking object is presented and
evaluated for the elliptical cylinder, Fourier-Chebyshev double series (FCDS), and extruded
superellipse measurement models. For the evaluation, a single reference trajectory with 300
time steps and a sampling rate of 0.1 seconds is generated using a coordinated turn (CT) model
in polar coordinates [108] with standard deviations o}, = 3ms~2 in the linear acceleration and
0w = 5°s72 in the rotational acceleration. The CT model with the same parameters is then
also employed in the prediction step for each implemented method in the following. The extent
and shape parameters are modeled as constant in the prediction step. To prevent the estimation
of local minima in the extent state and to allow small changes in the extent and shape estimates
over time, a random walk prediction with a standard deviation of gey = le—5 is used for each
extent and shape parameter. The Solgenia CAD is then simulated to move along this reference
trajectory. Using the point cloud generator [75] in Matlab, simulated Lidar measurements
can be generated from the Solgenia. The simulated Lidar sensor has a resolution of 0.5° in
the azimuth and 1.25° in the elevation. In the first step, the measurements are generated
without any measurement noise. For the following Monte Carlo (MC) simulation, however, the
measurement noise is resampled with a standard deviation of v ~ #7(0,0.12) in each direction
for each run. This means that the scenario and the measurement sources in the MC simulation
remain unchanged, and only the additive measurement noise varies. The initialization for each
EOT filter is carried out with the first measurement data set, as was done in the simulation
studies in the previous chapters. The simulated scenario with the Solgenia and the respective
measurement set at specific time steps is visualized in Fig. 6.1.
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Figure 6.1: Simulated scenario with Solgenia CAD in black as tracking object.

The number of simulated measurements during the entire scenario is visualized in Fig. 6.2. Due
to the low resolution of the simulated Lidar sensor, the number of simulated measurements for
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the entire scenario is also rather low compared to high-resolution sensors available on the market
[1]. By using such a low resolution for the sensor, the ability of the 3D EOT measurement
models to track the extent and shape of an object using a sparse point cloud is examined.
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Figure 6.2: Number of simulated measurements per scan during the entire scenario.

To be able to compare the estimation results between the individual 3D EOT measurement
models applied, the same evaluation measures are used for each model. First, the orientation
and height root mean square errors (RMSEs) are calculated for each time step and averaged
after the MC simulation. In addition, the 2D top-down view intersection over union (IoU),
described in Sec. 4.5 and Sec. 5.6, is calculated for each model and averaged after the MC
simulation. As a reference shape for the calculation, the convex hull of the Solgenia CAD
model in 2D top-down view is applied. The 2D IoU can then be calculated by approximating
the estimated and reference shapes using a polygonal chain. In combination with the height
RMSE, the 2D top-down view IoU gives a good overall measure of the shape fitting and
estimation ability of the different approaches. Especially for the elliptic cylinder and extruded
superellipse measurement models, a 3D IoU measure would not be meaningful, as the presented
approaches are not able to fit the varying reference shape at different height sections. On the
other hand, for the FCDS measurement models, the approximated 3D IoU as described in
Sec. 4.5 can be calculated and averaged after the MC simulation. The 2D top-down view loU of
the FCDS measurement models serves as a comparison measure to the remaining approaches.
Finally, the results are compared to the spherical double Fourier series (SDFS) [O7], spherical
harmonics (SH) [87], and 3D Gaussian process (GP) [30, 84, 85] approaches. The authors of the
3D GP EOT algorithm [85] have published an implementation. For the comparison methods,
also the 2D top-down view and 3D IoUs are calculated and averaged after the MC simulation.

Remark 6.1. The simulated scenario with Solgenia as the tracking object has previously
been applied to evaluate the approaches presented in [02-04, O8]. In this section, additional

evaluations of each measurement model developed in this thesis are presented in detail.

Elliptical Cylinder Results This paragraph presents and discusses the simulation results
using the elliptic cylinder measurement models presented in Ch. 3 in the simulated Solgenia
scenario. The mean values for the orientation and height RMSEs and the 2D top-down view loU
measures after the MC simulation are visualized in Fig. 6.3. In the simulated scenario, the elliptic
cylinder measurement model is implemented using a 3D greedy association model (GAM) and an
extrusion random hypersurface model (ERHM), each with a radial and projected measurement
source association at a specific height section, and with and without applying the RAMN
estimation procedure. The evaluation of each combination results in eight different approaches.

In the figure, it can be seen that the 3D GAM and the ERHM with radial measurement source
association and applying the RAMN estimation procedure exhibit the best performance. Both
approaches show the highest and similar 2D top-down view IoU measures with a slightly better
performance of the ERHM approach. Interestingly, the height RMSE of both approaches is
also similar, however, again with a slightly better performance of the ERHM approach. These
results suggest that the 3D GAM approach can also be a promising approach if guarantees can

97



Chapter 6. Evaluation

Elliptic Cylinder Dynamic Simulation Results
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Figure 6.3: MC simulation RMSE and IoU estimation results of the dynamic Solgenia scenario for the elliptic
cylinder measurement models.

be implemented that the height estimate converges. This could be achieved by regularization,
as was done in [147], for example. As seen in Sec. 3.6.1, the approach can also diverge in the
height estimation. In the orientation estimates, both approaches have an offset to the reference.
However, they converge, in contrast to the 3D GAM with projected measurement source
association and RAMN estimation procedure. In summary, applying the RAMN estimation
approach in the measurement model improves the performance in the 2D top-down view loU
of each approach in this scenario. Interestingly, the RAMN estimation approach also has a
significant impact on the height estimation in the 3D GAM implementations in this scenario,
although the approach does not affect the measurement source in the z direction. A deeper
investigation is left for future work. Regarding the measurement source association at a specific
height section, the radial association exhibits the best performance in the 2D top-down view
IoU.
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(a) Time step k = 50. (b) Time step k = 200.

Figure 6.4: Estimation results of the simulated dynamic Solgenia scenario for the elliptic cylinder ERHM
with a radial measurement source association applying the RAMN approach at time steps k& = 50,200. The
Solgenia shape reference is depicted as the black surface.

In addition to the quantitative results, qualitative estimation results of the elliptic cylinder
measurement model are visualized in Fig. 6.4. In the figure, the estimation results in the
simulated Solgenia scenario for the ERHM with radial measurement source association applying
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the RAMN estimation procedure are depicted at time steps 50 and 200. The variant of the
elliptical cylinder measurement model was chosen as it provided the most promising results in
the quantitative investigation. At time step 50, considerably more measurements are gathered
from the object, leading to a better estimation result than in time step 200. However, even with
a low number of measurements at time step 200, the approach can track the object reliably.

FCDS Results This paragraph presents and discusses the simulation results using the FCDS
measurement models presented in Ch. 4 in the simulated Solgenia scenario. In this investigation,
the FCDS measurement models are implemented using 48 shape coefficients. The mean values
for the orientation and height RMSEs and the 2D top-down view IoU measures after the
MC simulation are visualized in Fig. 6.5. In addition to the 2D top-down view IoU, the
approximated 3D IoU as described in Sec. 4.5 is also reported for the FCDS measurement
models in this figure. The approximated 3D IoU gives a good overall measure of the shape
estimation capabilities of the FCDS measurement models. For the FCDS shape description, only
the 3D GAM and quasi-ERHM with radial measurement source association with and without
applying the RAMN estimation procedure are implemented since the projected association
would result in an unnecessarily high computational effort for the FCDS shape. The evaluation
of each combination then results in four different implemented approaches.

FCDS Dynamic Simulation Results
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Figure 6.5: MC simulation RMSE and IoU estimation results of the dynamic Solgenia scenario for the FCDS
measurement models.

In Fig. 6.5, it can be seen that the quasi-ERHM with and without applying the RAMN
estimation procedure exhibits a better performance in terms of the 2D top-down view and
3D IoUs compared to the 3D GAM implementations in this scenario. On the other hand,
the height RMSE reveals a slightly better performance of the 3D GAM approaches compared
to the quasi-ERHM implementations. The orientation estimates converge for each of the
implemented methods. In the 2D top-down view IoU, it can be seen that both approaches
take some time at the beginning of the scenario to converge. After convergence, most of the
implemented approaches show a similar performance, except for the 3D GAM without applying
the RAMN estimation procedure, which is slightly worse. Interestingly, the RAMN estimation
procedure has no crucial impact on the performance of the FCDS measurement models. Only
in certain time steps does the application of RAMN bring a few advantages. The flexibility
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of the FCDS approach as a shape representation seems to be sufficient to compensate for the
incorrect assumption in the measurement data distribution. The 3D IoU finally reveals the
performance of the quasi-ERHM being slightly better than the 3D GAM. In summary, this
dynamic scenario also shows that the assumption of the line state and the remaining system
state being statistically independent in the FCDS quasi-ERHM, as presented in Sec. 4.3.3, leads
to promising estimation results in this scenario. The following experiments further investigate

this approach.
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Figure 6.6: Estimation results of the simulated dynamic Solgenia scenario for the FCDS quasi-ERHM with
a radial measurement source association and applying the RAMN approach at time steps & = 50,200. The
Solgenia shape reference is depicted as the black surface.

In addition to the quantitative results before, qualitative estimation results for the FCDS
measurement models are given in Fig. 6.6 for the same time steps and random seed as before
for the elliptic cylinder qualitative results in Fig. 6.3. The figure shows the estimation results
of the quasi-ERHM using the RAMN estimation method, as this approach showed the best
overall performance in the previous quantitative study. At time step 50, it can be seen that
the estimate fits the shape of the Solgenia precisely. With fewer measurements at time step
200, the shape estimate gets worse, but still reliably approximates the shape of the Solgenia.
Also, even with fewer measurements, the approach can track the object throughout the entire
scenario.

Extruded Superellipse Results This paragraph presents and discusses the simulation results
for the extruded superellipse measurement models presented in Ch. 5 in the simulated Solgenia
scenario. Like before, the mean values for the orientation and height RMSEs and the 2D
top-down view IoU measures after the MC simulation are reported in Fig. 6.8. For the extruded
superellipse measurement models, the 3D IoU is not calculated since the approach is not
able to fit the reference shape at different height sections. In this examination, the eight
different approaches comprising the 3D GAM and ERHM approaches, each with a radial and
projected measurement source association and with and without applying the RAMN estimation
procedure, are evaluated.

In Fig. 6.7, it can be seen that the 3D GAM and ERHM with radial measurement source
association applying the RAMN estimation procedure have the highest 2D top-down view IoU
in this scenario. The implementations with radial measurement source association without
applying the RAMN estimation procedure exhibit worse results. Since some measurements are
also taken from the interior of the object, the estimates show a bias towards the center of the
object if these measurements are not explicitly processed. A closer look at the 2D top-down view
IoU also reveals that the models with projected measurement source association all perform
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Extruded Superellipse Dynamic Simulation Results
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Figure 6.7: MC simulation RMSE and IoU estimation results of the dynamic Solgenia scenario for the
superellipse measurement models.

worse. In the RMSE of the height estimate, every ERHM implementation exhibits the same
performance and attains a better outcome than the 3D GAM implementations. The orientation
RMSEs converges with an exception for the 3D GAM with projected measurement source
association and applying the RAMN estimate. To summarize, the ERHM implementation
with radial measurement source association and RAMN estimation procedure exhibits the best
performance in this scenario.

Measurement E= Estimate +  Measurement === Estimate

(a) Time step k = 50. (b) Time step k = 200.

Figure 6.8: Estimation results of the simulated dynamic Solgenia scenario for the superellipse ERHM with
RAMN at time steps k = 50,200. The Solgenia shape reference is depicted as the black surface.

In addition to the quantitative results shown before, some qualitative estimation results at the
same time steps and with the same random seed as before in the elliptic cylinder and FCDS
paragraphs are visualized in Fig. 6.8. It can be seen that the extruded superellipse ERHM with
radial measurement source association applying the RAMN estimation procedure can track
the extent and position of the Solgenia CAD properly in the entire scenario. Furthermore,
especially at time step k£ = 200 in Fig. 6.8b, it can be seen that the tapering deformation for
the extruded superellipse shape is a promising shape deformation parameter for adapting to
different shapes with few state parameters and a low computational effort.
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Comparison This section compares the results presented before. Since the 3D GAM and
the ERHM implementations with radial measurement source association applying the RAMN
estimation procedure exhibited the best results among the presented shape descriptions, these
implementations are compared in the following investigation. In addition to comparing the
methods that have been developed in this thesis, a comparison to state-of-the-art measurement
models from the literature is also performed in this paragraph. As before in Sec. 4.5.1, the
results are compared with the measurement models applying SDFSs [O7], SHs [87], and a 3D GP
[85] as shape representation in spherical coordinates. In the investigation, 31 shape coefficients
for the SDF'S shape representation, 121 shape coefficients for the SH shape representation, and
401 equidistantly distributed angle pairs for the 3D GP shape representation are estimated.
Equidistantly distributed angle pairs on the unit sphere can be sampled using Fibonacci lattices
[56]. The different number of shape coefficients results from the aim of achieving a similar
approximation quality among the different approaches.

Dynamic Simulation Comparison Results
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Figure 6.9: Comparison of MC simulation RMSE and IoU estimation results of the dynamic simulated
Solgenia scenario.

The results of the comparison are visualized in Fig. 6.9. In the figure, the orientation and
height RMSEs, as well as the 2D top-down view IoU, are given for each measurement model
to provide a comparison among all the investigated methods. In addition, the approximated
3D IoU as presented in Sec. 4.5 is given for the state-of-the-art comparison methods and
the FCDS measurement models. For these four shape descriptions, a 3D IoU measure is
appropriate as these approaches can provide varying shape estimates at different height sections.
Unfortunately, the figure directly reveals that the 3D GP approach [85] as implemented by
the authors diverges in this scenario. The orientation estimate of the 3D GP measurement
model is the only orientation estimate that does not converge to a static value. The remaining
measurement models converge in the orientation estimates with an offset of 27, which can be
explained by the periodicity of the orientation angle. In the height RMSEs, the 3D GP and the
SH models diverge. The SDFS shape description exhibits a better performance, however, it
also diverges in the height estimate in the second half of the scenario. In the 2D top-down view
IoU, the state-of-the-art comparison methods, except for the 3D GP model, show a comparable
performance to the methods developed in this thesis. In combination with the poorer height
estimates, it becomes clear that the state-of-the-art comparison methods converge in the area
of the lateral surfaces, where a sufficient number of measurements are available, however, they
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diverge in the area of the top and bottom surfaces, where measurements are missing. The
approximated 3D ToUs also confirms this result since the FCDS results are considerably higher,
and the FCDS shape description naturally solves the problem of missing measurements in the
area of the top and bottom surfaces.

Comparing the height estimates of the approaches developed in this thesis, it can be seen that
every approach except for the extruded superellipse 3D GAM converges to a low value. In this
investigation, also the elliptic cylinder and FCDS 3D GAMs converge to a low value, although
the 3D GAM is naturally missing a penalization for overestimated heights. The extruded
superellipse 3D GAM demonstrates this problem in this MC simulation. The 2D top-down
view IoU reveals a slight superiority of the more flexible shape descriptions when comparing
the elliptic cylinder measurement models to the extruded superellipse and FCDS measurement
models. However, an elliptic cylinder as the shape description with the lowest dimensionality
is already appropriate for approximating the boat’s shape in this scenario. Comparing the
extruded superellipse and FCDS measurement models, it becomes clear that the flexibility of
the FCDS measurement models is not superior in approximating the top-down view convex
hull reference of the boat compared to the squareness and tapering parameters in the extruded
superellipse measurement models, which can deform the ellipse shape.

Real-World Motor Boat Scenario Results

In this section, a real-world scenario, also with the Solgenia as a tracking object, is presented
and evaluated again for the elliptical cylinder, FCDS, and extruded superellipse measurement
models. For the evaluation, a single scenario with 300 time steps and a sampling rate of 0.1
seconds has been recorded with a 3D Lidar sensor [1]. The Lidar sensor has a vertical resolution
of 0.11° with 128 stacked channels and a measurement range of 245 meters, producing up to
4.8 million measurements per second. The measurement noise is set to v ~ /(0,0.025%) in
each Cartesian coordinate direction for each measurement model. In the recorded scenario, the
Solgenia drives on the Rhine River through the field of view of the Lidar sensor. A picture of
the Solgenia taken during the scenario can be seen in Fig. 6.10. The sensor is statically placed

Figure 6.10: Picture of the Solgenia tracking object at a single time step in the real-world scenario.

on the shore of the Rhine River, recording the Solgenia. Attached to the sensor assembly at
the shore is also an real-time kinematic (RTK) global positioning system (GPS) and an inertial
measurement unit (IMU) for a global position and orientation reference of the measurement
setup. On the roof of the Solgenia, also two GPS antennas with RTK positioning solution
are attached. By using two antennas, which provide a high-precision position measurement,
the orientation of the boat can be measured with the GPS system in addition to the position.
In combination with the CAD model of the Solgenia, the sensor setup on the roof of the
Solgenia, and the static setup at the shore, a high-precision reference in position, orientation,
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and shape of the tracking object is enabled. So far, this combination is unique in the maritime
tracking community. The reference trajectory, in addition to the CAD reference and gathered
measurements at specific time steps of the Solgenia, is visualized in Fig. 6.11.
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Figure 6.11: Measurements and reference of the real-world scenario with the Solgenia as tracking object.

In contrast to the number of measurements processed in the simulated scenario in the previous
section, the number of measurements in this scenario is distinctly higher. The number of
measurements throughout the entire scenario is visualized in Fig. 6.12. It can be seen that
the number of measurements starts at a lower number of 500 measurements and then rises to
almost 2000 measurements at the end of the scenario.
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Figure 6.12: Number of measurements per scan in the entire real-world scenario.

Remark 6.2. The real-world scenario with Solgenia as a tracking object has previously already
been applied for the evaluation of the approaches presented in [O2-04, O8]. In this section,
additional evaluations are presented for each measurement model developed in this thesis.

Remark 6.3. The real-world data set with Solgenia as a tracking object and the complete

evaluation presented in this section can be found at [R4].

Due to the results in the previous sections, a separate investigation of the different variants
for each of the shape descriptions presented in this thesis is omitted for the evaluation in the
real-world motor boat scenario. Instead, the comparative study that was also carried out for
the simulated scenario is presented directly in this section. In this comparison, the 3D GAM
and ERHM implementations for each shape description with a radial measurement source
association applying the RAMN estimation procedure are applied for tracking the Solgenia
in the real-world scenario. In addition, again, the SDFS [O7], SH [87], and 3D GP [85] shape
descriptions in spherical coordinates are applied as state-of-the-art comparison methods from
the literature. The number of shape coefficients for each state-of-the-art comparison method
is identical to the settings used before in the simulated Solgenia scenario. For the FCDS
measurement models, again, 48 shape coefficients are employed. In the prediction step, the CT
model [108] with standard deviations o}, = 3ms~2 in the linear acceleration and oy, = 5°s™2
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in the rotational acceleration is employed. For the extent parameters, again, a random walk
prediction with a standard deviation of ey = le—5 is used to prevent local minima and to
allow minor changes in the extent and shape estimates over time. The initialization step is
again carried out using the first measurement set. As a position and orientation reference,
the measurements from the GPS with RTK positioning solution can be taken. The height
and shape reference can be calculated from the CAD model of the Solgenia as before in the
simulated scenario in Sec. 6.1.1. For the evaluation, again, the orientation and height RMSEs
as well as the 2D top-view IoU are calculated for each method throughout the entire scenario to
be able to compare the different shape descriptions and measurement models. Furthermore, the
approximated 3D IoU is calculated for the FCDS measurement models and the state-of-the-art
comparison methods since these can estimate varying shapes at different height sections.

The quantitative results of the real-world motor boat scenario are visualized in Fig. 6.20.
Unfortunately, also in the real-world motor boat scenario, it can be directly recognized that the
3D GP measurement model, as implemented by the authors of [85], diverges in this scenario.
The orientation RMSE of the 3D GP approach is the only measurement model that cannot
converge in this scenario. The remaining approaches converge with an offset of 7, which can be
explained by the periodicity of the orientation. In the height RMSE, the 2D top-down view, and
approximated 3D IoU, the 3D GP approach completely diverges in this scenario. Comparing
the SDFS and SH approaches, it becomes clear that the shape representations in spherical
coordinates have major drawbacks in maritime scenarios. Although the 2D top-down view
IoU of both approaches is comparable to the approaches developed in this thesis, the height
estimates are distinctly worse. Both shape representations in spherical coordinates produce
large errors, caused by missing measurements from the top and bottom surfaces. The worse
performance is also depicted in the approximated 3D IoU, where the FCDS approaches exhibit
a distinctly better performance compared to the shape representations in spherical coordinates.

Dynamic Real-World Comparison Results
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Figure 6.13: Comparison of RMSE and IoU estimation results of the dynamic real-world Solgenia scenario.

Comparing the approaches presented in this thesis, it can be seen that each method converges
in the height and orientation RMSEs. In the 2D top-down view IoU, the approaches exhibit
a comparable performance, except for the FCDS 3D GAM that shows a slightly worse result
than the remaining approaches. These results illustrate again that the elliptic cylinder shape
representation, with its low dimensionality, is already a decent shape approximation for the
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boat’s shape. The FCDS and extruded superellipse shape representation cannot provide major
advantages in the shape approximation capabilities as measured by 2D top-down view loU
in this scenario. Comparing the 3D GAM and quasi-ERHM FCDS measurement models in
this scenario, once again, the assumption that the line and remaining system state can be
assumed to be statistically independent in the quasi-ERHM implementation is supported. The
quasi-ERHM results, both in the 2D top-down view and approximated 3D IoU, exhibit a better
performance than the 3D GAM results.

Measurement EF= Estimate +  Measurement EH== Estimate

(a) Time step k = 50. (b) Time step k = 200.

Figure 6.14: Estimation results of the real-world dynamic Solgenia scenario for the ERHMs with a radial
measurement source association and applying the RAMN approach at time steps k = 50, 200. The Solgenia
shape reference is depicted as the black surface. The elliptic cylinder in the first, FCDS in the second, and
extruded superellipse results in the third row.

In addition to the quantitative results of the real-world scenario, qualitative estimation results
for each shape description at the same time step are visualized in Fig. 6.14. For each method,
estimates at time steps £ = 50 and k£ = 200 are depicted. In the first row of Fig. 6.14, the
elliptic cylinder results, in the second row the FCDS results, and in the third row the extruded
superellipse results are depicted. In comparison to the FCDS estimates of the simulated Solgenia
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scenario in Fig. 6.6, the FCDS shape estimate of the real-world scenario shows a bulge in the
upper rear part of the ship. This can be attributed to the flagpole, which can be seen in
Fig. 6.10, but is not included in the CAD model, however, it still generates a significant number
of measurements. The shape estimate then naturally also processes the measurements of the
flagpole. Comparing the elliptic cylinder and the extruded superellipse estimation results, it
becomes clear that the elliptical shape is already a suitable shape description for a motor boat.
However, the tapering parameter still offers an advantage to the extruded superellipse. This
makes it possible to extract the flatter rear side compared to the more pointed front side in
the shape of the boat. The height estimates and tracking performance are decent for every
measurement model in this scenario.

Real-World Sailing Boat Scenario Results

In this section, the specialized elliptical cone measurement model, presented in Sec. 3.4, is
evaluated in a real-world scenario with measurements from a sailing boat. For the evaluation, a
single scenario with 200 time steps and a sampling rate of 0.1 seconds has been recorded with
the same Lidar sensor [1] as before in Sec. 6.1.2. The measurement noise is therefore again set
to v ~ A(0,0.025%) in each Cartesian coordinate direction for each investigated measurement
model. The sailing boat scenario was recorded with the catamaran ferry as a test vehicle, which
commutes between Constance and Friedrichshafen on Lake Constance. This catamaran was
equipped with the same sensor setup that previously recorded the Solgenia in Sec. 6.1.2. An

illustration of the sensor setup on the catamaran can be seen in Fig. 6.15a.

(a) Sensor mounting on the catamaran. (b) Camera image of the sailing boats [C4].

Figure 6.15: Figure of the sensor setup on the catamaran and the sailing boats in a regatta, which were
recorded by the sensor setup.

For the evaluation, a scenario is used in which the catamaran has to pass through a regatta of
folk boats. An image of this trip, taken by the camera system on the sensor setup, can be seen
in Fig. 6.15b. Within this scenario, the measurements of a single sailing boat are extracted and
utilized for the evaluation. Since the regatta was contested by standardized sailing boats of
the folk boat class [103], a reference is available for the object’s extent parameters. Hence, the
reference used for the major semi-axis is 3.84 meters, for the minor semi-axis 1.10 meters, and
the height, subtracting the draft, is 9.80 meters. However, there is no absolute certainty about
the correctness of this reference, since the boats could not be measured. They therefore serve
as a rough guideline in the following analysis.

The number of measurements processed in this scenario is visualized in Fig. 6.16. The figure
shows that the number of measurements at the beginning of the scenario, when the sailing boat
enters the sensor’s surveillance area, is rather low. Subsequently, the number of measurements
increases permanently the closer the sailing boat gets to the sensor. At the end of the scenario,
a large part of the sailing boat is partially occluded by the catamaran. Due to the mounting

107



Chapter 6. Evaluation

"
(=3
(=%
(=}

Measurements
ot
(=]
(=]

f=}

(=]

50 100 150 200
Time step

Figure 6.16: Number of measurements per scan in the entire real-world sailing boat scenario.

position of the sensor, a blind angle occurs in which the sensor can only record the catamaran
itself. The number of measurements, therefore, drops very quickly towards the end of the
scenario before the sailing boat leaves the sensor’s surveillance area.
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Figure 6.17: RMSE estimation results of the dynamic real-world sailing boat scenario.

The real-world sailing boat scenario is now analyzed using the algorithms described in Sec. 3.4.
This involves evaluating both the 3D GAM and the ERHM, each with the radial and projected
measurement-to-source association and with and without the RAMN estimation procedure.
Each combination results in an analysis of eight different algorithms. The only difference
between the evaluation and the algorithms described in Sec. 3.4 lies in the assumed distribution
of the extrusion parameter s;;. In the measurements, it was seen that the distribution does not
entirely follow a triangular distribution. Also, the extent estimates were extremely sensitive to
variations in the extrusion parameter distribution. Therefore, the statistically determined mean
and variance of the measurements in the z direction are determined and used in the evaluation.
The extrusion parameter is then sampled using an approximated Gaussian distribution derived
from the measurements, specifically s,; ~ 4/(0.2902,0.0434). The RMSEs using the folk boat
extent parameters as a reference for each of the eight algorithms can be seen in Fig. 6.17. In
the figure, it can be seen directly that the algorithms perform very differently in this scenario.
The 3D GAM approaches all diverge in the height estimate due to the missing penalization for
overestimated heights. Unfortunately, the ERHM with radial association applying the RAMN
estimation procedure also had problems converging in this scenario. The remaining ERHMs,
however, converged to mostly static values in the RMSEs.

In addition to the quantitative results, qualitative results of the real-world sailing boat scenario
are visualized in Fig. 6.18 and 6.19. In Fig. 6.18, 3D estimation results are depicted at the
time steps given in the captions of the figures. Fig. 6.19 gives the respective 2D top-down view
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Figure 6.18: 3D estimation results of the real-world sailing boat scenario.
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Figure 6.19: 2D estimation results of the real-world sailing boat scenario.

estimation results. Due to the quantitative results discussed before, the estimation results for
the ERHM with radial measurement source association without applying the RAMN estimation
procedure are shown. In both figures, it can be seen that the elliptic cone measurement model is
capable of tracking a sailing boat and estimating its extent. Particularly, the estimates at time
step k = 200 are interesting due to the partial occlusion of the sailing boat by the catamaran.
Due to the convergence in the estimates of the previous time steps, the approach can still
estimate a decent extent of the sailing boat. In total, however, the elliptic cone measurement
models can be significantly improved in future work. First, a rolling motion should be included
in the kinematic system state and the motion model, since this is characteristic of sailing boats,
depending on their orientation to the wind and its speed. Furthermore, a shear mapping [41]
could be incorporated to model the displacement of the mast towards the center of the sailing
boat. Preliminary investigations have already shown promising results, but are left to future
work.

Generalization to an Automotive Environment

In the previous section, the developed algorithms were applied to tracking maritime objects.
In this section, a generalization of the presented algorithms to the automotive domain is
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investigated. Therefore, the famous KITTI data set [48] is applied. Depending on the sensor
position on the ego-vehicle, measurements can often mainly be expected from the lateral surface
of an object in the automotive environment, where shape descriptions defined in cylindrical
coordinates can be superior to shape descriptions defined in spherical coordinates. In the
KITTI data set, measurements are taken with 2 grayscale cameras, 2 color cameras, an IMU,
a GPS, and a Lidar sensor. The Lidar sensor generates measurements with a sampling rate
of 0.1 seconds, an angular resolution of 0.09° with 64 stacked channels, and a measurement
range of 120 meters, producing up to 1.3 million measurements per second. In the following
investigation, the Lidar measurements for specific objects are extracted to evaluate the developed
algorithms on a large-scale data set. The measurement noise for the Lidar measurements is set
to v ~ #(0,0.025%) in each Cartesian coordinate direction for each measurement model. In
the data set, scenarios were recorded and annotated in city and residential areas and on the
roadside. In the raw data set [48], a varying number of objects are annotated over consecutive
time steps in each scenario. These annotated objects are called tracklets in the following.
In total, 932 cars, 98 vans, 22 trucks, 84 pedestrians, 16 sitters, 43 cyclists, 9 trams, and 33
remaining categories, such as trailers or segways, resulting in 1237 tracklets, are annotated in
the raw data set. The annotations are directly given in the Lidar frame. Using the annotated
bounding boxes, measurements inside the bounding box can be extracted and directly employed
for the developed EOT algorithms. To take into account incorrect annotations and minor
inaccuracies in the calibration between the sensors, the dimensions of the bounding boxes are
artificially enlarged by 10 centimeters for the extraction of the measurements.

For the evaluation, the elliptic cylinder, the FCDS, and the extruded superellipse shape
descriptions are employed. Due to the elliptic cone measurement models being defined specifically
for sailing boats, these are omitted in this investigation. As state-of-the-art comparison methods,
again the SDFS [O7], the SH [87], and the 3D GP [85] are used. As shape references, the
bounding boxes are taken for the cars, vans, trucks, sitters, trams, and the remaining categories.
For the pedestrians and cyclists, an elliptic cylinder is employed as a shape reference. Since
these shape references have a lower level of detail compared to the Solgenia reference CAD
model in the scenarios before, the measurement models utilized to process the measurements are
also adapted to estimate fewer details in the shape estimates. The elliptic cylinder measurement
models are left unchanged, as they already produce low-dimensional extent estimates. The
number of shape coefficients for the FCDS measurement models is reduced to 24. For the
extruded superellipse measurement models, the tapering deformation is completely omitted.
In doing so, the shape deformation using the squareness parameter of the superellipse shape
can be examined in more detail. In the high number of scenarios in the KITTI data set,
extruded ellipse and extruded rectangle reference shapes are present, where the squareness
deformation can provide an advantage over the pure elliptic cylinder measurement model. For
the state-of-the-art comparison methods, the dimensionality is also reduced. For the SDFS
measurement model, 21 shape coefficients, for the SH measurement model, 49 shape coefficients,
and for the 3D GP measurement model, 201 equidistantly distributed angle pairs on the unit
sphere are applied.

In the prediction steps, the CT model [108] with standard deviations o}, = 3ms™2 in the
linear acceleration and o,, = Srads~2 in the rotational acceleration is employed. Each filter
is initialized using the first measurement set for each tracklet. As before in the real-world
motor boat scenario, a comparison of the eight different versions for the elliptic cylinder
and extruded superellipse, and four different versions of the FCDS measurement models is
omitted for the investigation in the automotive environment. Instead, the 3D GAM and ERHM
implementations with radial measurement source association both with and without applying
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the RAMN estimation procedures are directly compared to the state-of-the-art comparison
methods, as the radial measurement source association exhibited the best performances in
the investigations before. For the evaluation, the orientation and height RMSEs and the 2D
top-down view loUs are calculated for each time step and tracklet. Afterwards, the mean values
for each evaluation measure and tracklet are calculated for the consecutive time steps. By
evaluating the RAMN estimation procedure on the large-scale KITTI raw data set, the approach
is extensively tested again for each measurement model. Since visualizing the mean values
directly in a single figure would produce highly confusing illustrations, the mean values are used
to generate a box plot for each implemented algorithm. These box plots then visualize the main
statistical parameters for each method. However, outliers are cropped in the y direction since
these are often far apart from the whiskers, which would greatly compress the box representing
the important statistical parameters.

The box plots for the orientation and height RMSEs and 2D top-down view IoUs can be seen
in Fig. 6.20. In this figure, the statistical values of the mean orientation estimate RMSEs
calculated from each of the 1237 tracklets can be seen in the first row. For this evaluation,
the orientation estimates and references are mapped to the interval [0, 27] to handle potential
ambiguities and improve comparability among the measurement models. It can be seen that
the whiskers of the mean orientation RMSEs for each model, except the 3D GP, span from
0 to almost 27, meaning that the orientation estimates differ obviously from the reference in
some cases. However, they also often converge reasonably well. For most of the models, the
median is around 2 degrees, while for the 3D GP it is slightly lower. The orientation estimates
of the 3D GP differ from the remaining models since the authors of [85] used a different motion
model in their implementation than the CT model [108].

In the mean values of the height estimates in the second row of Fig. 6.20, it can be seen
directly that the elliptical cylinder and extruded superellipse ERHM, as well as the FCDS
quasi-ERHM, exhibit the best performance. Although a lot of outliers can also be seen for
these models, the median, mean values, and the whiskers are close to 0, which illustrates
the persuasive performances. Interestingly, the mean height estimates of the FCDS 3D GAM
show a similar performance compared to the FCDS quasi-ERHM implementation. The elliptic
cylinder and extruded superellipse 3D GAMs often overestimate the height of the objects.
The state-of-the-art comparison methods also often overestimated the height of the objects.
These results again illustrate the improvement of describing the shape representation in the
measurement model in cylindrical rather than in spherical coordinates. Also in the automotive
domain, measurements are often mainly gathered from the lateral surface, leading to error-prone
estimates at the top and bottom surfaces if measurements are missing in these regions.

In the mean values of the 2D top-down view IoUs in the third row of Fig. 6.20, it can be seen
that the estimates for most of the models applying the RAMN estimation procedure are higher
compared to the respective models not applying the RAMN. Only for the FCDS measurement
models, applying the RAMN approach exhibits similar or worse results compared to the FCDS
models not applying the RAMN. The FCDS shape representation seems to be flexible enough
to overcome the mismatch in the modeling of the measurement source association to the actual
measurement source distribution. For the remaining measurement models, the RAMN approach
shows a clear advantage compared to not applying the RAMN estimation. Overall, the extruded
superellipse ERHM with the RAMN estimation procedure exhibits the best performance in the
2D top-down view IoU. In combination with the low height RMSEs of the approach, the results
seem very promising. The extruded superellipse shape representation gives a good compromise
between flexibility and efficiency. The state-of-the-art comparison methods also exhibit high
2D top-down view IoUs. However, in combination with the worse height estimates compared to

111



Chapter 6. Evaluation

Orientation RMSE

RMSE /rad
S

[\V]

Height RMSE

. " }.' v
5| s Sor v ¥, |
o4 N T . . :
3 L L 2 : :
g : LN A I
o 10 : 5 ¥ 3 § 1
2 B [ § ¥ § =
= Pl g 3o I
~ PRA A : .
{
1 oy 1

IoU

S o
o o¢

[ IWith RAMN [ |Without RAMN Comparison Method

Figure 6.20: Box plot of the RMSEs and IoU mean estimation results for each tracklet in the KITTI raw
data set. The radial measurement source association is applied for the elliptic cylinder, FCDS, and extruded
superellipse measurement models. Outliers are scattered and cropped in the vertical direction. Mean values for
the height RMSEs and IoUs are visualized as curves in the respective color.

the shape representations in cylindrical coordinates, the approaches show a worse performance
compared to the methods proposed in this thesis. In many cases, the shape representations in
spherical coordinates converge at the lateral surface where enough measurements are present,
however, they have large outbursts at the top and bottom surfaces where measurements are
often missing.

In addition to the quantitative results presented and discussed before, qualitative results for

various methods and objects are visualized in Fig. 6.21. In this figure, estimation results using
the ERHMs with radial measurement source association applying the RAMN approach are
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visualized. In the first row, results for the elliptic cylinder, in the second row for the FCDS,
and in the third row for the extruded superellipse measurement models can be seen. In the first
column, a car, in the second column a cyclist, and in the third column a pedestrian tracklet are
depicted at a single time step. In the figure, it can be seen that the elliptic cylinder is perfectly
capable of estimating the extent of the cyclist and pedestrian, however, it is not directly suitable
for the car. The extruded superellipse shape representation, on the other hand, is capable of
adapting its shape to better fit the rectangular shape of the car and can also represent the
shapes of the cyclist and pedestrian. The FCDS shape estimates are also suitable and show
promising results.

z/m

z/m
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y/m 22 x/m y/m z/m
Measurement - Tracklet Measurement - Measurement - Tracklet Measurement - Measurement - Tracklet Measurement

Reference B Estimate Reference = Estimate Reference == Estimate

(a) EOT estimates of a car. (b) EOT estimates of a cyclist. (¢) EOT estimates of a pedestrian.

Figure 6.21: Estimation results of the KITTI raw data set for different object categories and the ERHMs
with a radial measurement source association applying the RAMN approach. The elliptic cylinder in the first,
FCDS in the second, and extruded superellipse results in the third row.

Discussion

The experimental evaluation based on simulated, real-world maritime, and automotive data
sets provides important insights into the performance of the proposed 3D EOT measurement
models. While the results were presented in detail in the previous sections, a more in-depth
discussion is necessary to interpret some of the underlying reasons for the observed performance
differences.
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Chapter 6. Evaluation

One striking finding is the poor performance in height estimation using state-of-the-art methods
such as the SH, SDFS, and 3D GP. As already mentioned, this can be attributed to the fact
that these models expect measurements on the top and bottom surfaces of the object, which are
often sparse or completely missing. When using shape descriptions in cylindrical coordinates,
no measurements are expected in the areas of the top and bottom surfaces. Only the lateral
surface is described in the measurement model, which explains the better performance in
height estimation. A particularly interesting observation is the significantly poorer performance
of the 3D GP model compared to the SDFS and SH approaches. This is likely due to the
implementation of the 3D GP model used, which estimates the roll and pitch angles in addition
to the yaw angle. While the SDFS and SH models and all models developed in this work only
estimate the yaw angle, the additional degrees of freedom in the state space of the 3D-GP model
can potentially lead to filter divergence. If there is an insufficient number of measurements to
estimate the additional angles, the filter may converge to an incorrect state that cannot be
corrected later in the tracking process, leading to a complete divergence of the tracking results.

Furthermore, the difference in performance between the radial and projected measurement-
to-source association deserves a more detailed discussion. In all models tested, the radial
association consistently performed better than the projected association. The main reason for
this superiority may lie in the calculation of the projected measurement-to-source association.
The radial association can be described by a closed-form analytical solution, making it both
highly efficient and numerically stable. Conversely, the projected association lacks a closed-form
solution for the shape representations shown. To perform the association, the boundary of the
shape must be approximated by a polygonal chain. This approximation leads to a change in the
actual shape, which in turn might harm the performance of the filter. Preliminary studies have
confirmed that increasing the number of control points in the polygonal chain can improve the
performance again, but this requires a significant amount of computing power per measurement,
making it less suitable for real-time applications.

Finally, the impact of the RAMN estimation method deserves closer consideration. The
evaluation confirmed its considerable usefulness for elliptical cylinder and extruded superellipse
models, particularly in improving the 2D top-down view IoU. The RAMN approach explicitly
models the measurements inside the shape, which is crucial for these less flexible shape
descriptions. In contrast, the highly flexible FCDS with RAMN model showed little or no
improvement over the FCDS without RAMN method in the automotive scenarios. This
suggests that the FCDS shape representation is flexible enough to implicitly compensate
for the measurements from the interior by simply adjusting its shape coefficients, making
explicit modeling by RAMN less necessary. Interestingly, the RAMN approach also led to an
improvement in height estimates for some of the measurement models. This is a surprising
result, as the RAMN method was developed specifically for handling measurement data in the
horizontal plane and, in theory, should have no direct influence on height estimation. To fully
understand this phenomenon, more detailed investigations are needed in future work.

m Conclusions

This chapter contains a comprehensive experimental evaluation of the 3D EOT measurement
models developed in this thesis, assessing their performance both in the targeted maritime
environments and in a generalization to the automotive domain. The evaluations were based on
a combination of simulated scenarios, unique real-world maritime data sets with high-precision
reference data, and the extensive public KITTI data set. The results provide several important
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6.4 Conclusions

insights. First, the advantage of using shape representations in cylindrical coordinates over
spherical coordinates was consistently confirmed across different data sets and sensor types.
Models based on cylindrical coordinates, such as the elliptic cylinder and cone, the FCDS, and
the extruded superellipse, demonstrated superior robustness and accuracy in height estimation,
especially for sparse measurements at the object’s top and bottom surfaces, which is typical for
Lidar sensors in the maritime and automotive sectors.

In addition, the evaluations confirmed the results previously achieved in regard of the measurement-
to-source association. The ERHM and quasi-ERHM approaches consistently outperformed
their 3D GAM counterparts in providing unbiased 3D extent estimates, especially for height
estimates. Furthermore, the practical value of the RAMN estimation approach was confirmed.
Its application significantly improved the extent and shape estimation accuracy for parametric
elliptic cylinder and cone, and flexible parametric extruded superellipse models when processing
real-world data with mixed boundary and interior measurements. The results also pointed to
an interaction between the flexibility of the model and the influence of the RAMN approach,
as its advantage was less pronounced in the highly flexible FCDS models in the automotive
tests. Finally, the comparative analysis across models and domains showed that the extruded
superellipse ERHM with RAMN is a particularly promising approach that offers a good balance
between shape adaptability and low-dimensionality, while also demonstrating robust perfor-
mance and generalizability. Overall, the comprehensive evaluations presented in this chapter
confirmed the effectiveness and practical relevance of the proposed 3D EOT measurement
models for further developments of future environment perception systems.
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Summary

Within this dissertation, the need for robust 3D extended object tracking (EOT) techniques
capable of handling the complexity of maritime environment perception for automated surface
vessels is addressed. The central challenge in this research field is to accurately estimate both
the kinematic state and the detailed physical extent and shape of surrounding objects using
modern high-resolution sensors such as light detection and ranging (Lidar). These often provide
incomplete data in maritime environments due to water occlusions and sensor limitations in
the field of view and capture measurements from different, potentially unknown object classes
with complex shapes. Motivated by the increasing importance of automation in shipping for
enhancing safety, efficiency, and availability, conventional point-based tracking approaches have
proven insufficient, leading to the necessity of developing advanced EOT methods.

A key finding of this work is the distinct advantage of using shape representations in cylindrical
coordinates over shape representations in spherical coordinates for maritime EOT. Extensive
evaluations using simulated and real-world measurements consistently showed that shape
representations in cylindrical coordinates naturally solve the problem of sparse measurements
at the top and bottom surfaces, which is common in maritime sensing but also in other domains
such as the automotive environment. By only representing the lateral surface in the cylindrical
shape representation, missing measurements do not lead to error-prone estimates in these areas.
This was particularly evident in the comparative experiments on height estimation in all studies,
in which cylindrical representations achieved significantly better results than the currently
most advanced spherical shape representations. This confirms the fundamental choice of shape
representations in cylindrical coordinates for the models developed here.

Furthermore, this work has demonstrated the importance of suitable measurement-to-source
association techniques for accurate 3D extent estimation. While simpler 3D greedy association
models (GAMs) have shown to be computationally more efficient, the extrusion random
hypersurface model (ERHM) and the quasi-ERHM, which has been proposed related to the
novel non-parametric Fourier-Chebyshev double series (FCDS) model, consistently proved
superior in delivering unbiased height estimates. This finding underscores the need to use
such advanced association techniques, which may take symmetry assumptions into account to
increase efficiency, when reliable 3D extent estimates are required.
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7.2 Future Work

Perhaps the most significant practical contribution is the development and investigation of the
recursive artificial measurement noise (RAMN) estimation method. This technique provides an
effective and computationally feasible solution to the widespread problem of mixed boundary
and interior sensor measurements, often prevalent in real-world data. Experiments with all
developed parametric, non-parametric, and flexible parametric measurement models confirmed
that the RAMN approach improves the accuracy and robustness of extent and shape estimates
by reducing distortions caused by interior points. The biggest advantage of this approach is its
flexibility, as it does not require the spatial distribution of the measurements to be defined in
advance. Instead, this distribution is estimated by a recursive calculation within the approach
based on the recorded measurements.

Finally, this dissertation has successfully developed and validated a series of 3D EOT models
with varying requirements and degrees of flexibility. While specialized parametric elliptic
cylinder and cone measurement models are efficient for known object classes, the novel non-
parametric FCDS shape representation offers high accuracy for complex or unknown shapes.
Particularly, the extruded superellipse measurement model has proven to be an effective
compromise, demonstrating adaptability in representing different object geometries such as
boats, cars, and pedestrians within a compact parametric framework and achieving highly
accurate performance, especially in an ERHM implementation applying the RAMN estimation
procedure. The successful application of these methods not only to unique real-world maritime
measurements with high-precision reference data, but also their generalization to the automotive
KITTI benchmark, underscores the relevance and effectiveness of the algorithms developed in
this dissertation for advancing the state-of-the-art in 3D EOT.

Future Work

Although this work has made progress in the field of 3D EOT, particularly for maritime
applications using shape representations in cylindrical coordinates and robust handling of
varying spatial measurement distributions, several possibilities for future research remain open.
First, further refinements for the developed measurement models are possible. The elliptical cone
measurement model for sailing boats could be improved by integrating roll dynamics into the
kinematic state and motion model and possibly by adding shear mappings to the shape to better
model the mast position. For the non-parametric FCDS measurement model, investigating
alternative basis functions in the vertical direction or adaptive methods for selecting the optimal
number of shape coefficients based on the measurement density or object complexity could
improve the performance of the approach. The quasi-ERHM approach developed in conjunction
with the FCDS shape representation is based on an independence assumption and a fixed
extrusion factor distribution for the line estimator. Future work could investigate methods
to relax the independence assumption or to estimate the extrusion factor distribution online
recursively based on the estimated shape coefficients, which could further improve the accuracy
of the approach.

Furthermore, algorithmic improvements could be investigated. The observed ambiguities in
orientation estimation, especially for symmetrical shapes, could be addressed using techniques
from directional statistics or by developing specialized transformation functions, as was done for
state interval constraints in this thesis. In addition, optimizing the computational performance
of the developed algorithms, possibly through parallelization strategies or advanced numerical
techniques, remains important for real-time applications.
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Chapter 7. Final Conclusions and Future Work

From a system perspective, integrating the developed 3D EOT measurement models for single
object tracking into a multiple EOT framework is an important research direction. This involves
addressing the complex data association problem in the context of multiple extended objects,
possibly generating a vast amount of measurements per time step. Also, the separation of
measurements gathered from static objects from dynamic object measurements is an important
step in developing a full 3D multiple EOT framework. Fusion with other sensor modalities, such
as cameras for classification, is another important area. Object classification could influence the
selection of the EOT measurement model, which would lead to a more adaptable perception
system.

Finally, the application of the detailed extent and shape estimates generated by these 3D EOT
methods to downstream tasks such as collision avoidance, path planning, and risk assessment
could be investigated. Quantifying the benefits of using accurate extent and shape information
compared to point-based tracking in these applications would demonstrate the practical value
of this research. In addition, testing and validation with increasingly diverse and challenging
real-world data sets, from the maritime domain and other domains such as an automotive
environment, is crucial for further investigation of the developed algorithms’ robustness.
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