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G R A P H I C A L A B S T R A C TH I G H L I G H T S

• Seven statistical post-processing meth­

ods are compared for ensemble PV 

power forecasts.

• Ensemble weather forecasts are con­

verted to PV power using physical model 

chains.

• All methods significantly improve the 

reliability of the ensemble forecasts.

• Statistical calibration reduces CRPS by 

11.1–14.7% compared to the raw ensem­

ble.

• Quantile regression neural networks out­

perform distributional regression meth­

ods.
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A B S T R A C T

Accurate and reliable forecasting of photovoltaic (PV) power production is crucial for grid operations, electricity 

markets, and energy planning, as solar systems now contribute a significant share of the electricity supply in many 

countries. PV power forecasts are often generated by converting forecasts of relevant weather variables to power 

forecasts via a model chain. The use of ensemble simulations from numerical weather prediction models results in 

probabilistic PV forecasts in the form of a forecast ensemble. However, weather forecasts often exhibit systematic 

errors that propagate through the model chain, leading to biased and/or uncalibrated PV power forecasts. These 

deficiencies can be mitigated by statistical post-processing. Using PV production data and corresponding short-

term PV power ensemble forecasts at seven utility-scale PV plants in Hungary, we systematically evaluate and 

compare seven state-of-the-art methods for post-processing PV power forecasts. These include both parametric 

and non-parametric techniques, as well as statistical and machine learning-based approaches. Our results show 

that compared to the raw PV power ensemble, any form of statistical post-processing significantly improves 
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the predictive performance reducing the mean continuous ranked probability score (CRPS) by 11.1–14.7%. Non-

parametric methods outperform parametric models, with advanced nonlinear quantile regression models showing 

the best results. Furthermore, machine learning-based approaches surpass their traditional statistical counterparts 

by around 2 percentage points in terms of the improvement in mean CRPS over the raw forecasts.

1 . Introduction

The global shift toward low-carbon energy systems has brought re­

newable energy sources to the forefront of electricity production [1,2]. 

Among these, solar photovoltaic (PV) power has emerged as a key pil­

lar of sustainable energy strategies due to its scalability, declining costs, 

and widespread deployment, with PV systems now contributing a sig­

nificant share of electricity supply in many countries [3]. However, the 

inherently intermittent nature of solar energy presents substantial diffi­

culties, particularly for maintaining the stability and efficiency of power 

systems. Accurate and reliable forecasting of PV electricity production 

thus plays a critical role in grid operations, electricity markets, and en­

ergy planning. In recent years, a growing emphasis has been placed on 

probabilistic forecasting approaches [4,5]. These methods move beyond 

single-valued point forecasts by providing comprehensive predictive 

information via prediction intervals, quantiles, or full probability dis­

tributions, and thus enabling the quantification of forecast uncertainty 

[6,7].

PV power forecasts are often generated following a three-stage 

framework, where weather forecasts of global horizontal irradiance 

(GHI) and other variables from a weather forecasting model are con­

verted to PV power forecasts via a model chain [8–10]. The weather 

forecasts, which serve as key inputs, are nowadays usually based on 

numerical weather prediction (NWP) models, which describe physi­

cal processes in the atmosphere via systems of differential equations. 

Ensemble simulations from NWP systems with varying initial condi­

tions or model physics enable the quantification of forecast uncertainties 

and serve as a straightforward baseline method for generating proba­

bilistic PV power forecasts by applying the PV model chain conversion 

individually to all ensemble members.

Although this approach allows for propagating forecast uncertainty 

through the model chain, there is broad evidence that NWP ensemble 

predictions often show systematic errors [11]. In particular, they are 

often subject to systematic biases and fail to reliably quantify forecast 

uncertainty for many variables. Consequently, corrections are achieved 

through post-processing methods, which rely on statistical or machine 

learning (ML)-based distributional regression models. These models pro­

vide probabilistic forecasts in the form of probability distributions, 

quantiles, or adjusted ensemble predictions; see [12] for a compre­

hensive overview of recent developments. A particular focus of recent 

research has been on the development of modern ML methods. including 

random forests [13] or neural networks (NNs) [14]. By allowing for the 

incorporation of multiple meteorological variables as inputs and flex­

ibly modeling nonlinear relationships, they have been found to yield 

substantial improvements in predictive performance over classical ap­

proaches based on statistical methods in various applications, see, e.g., 

[12,15–17] for overviews and comparisons.

Over the last few years, post-processing methods have also been ap­

plied to solar energy prediction, particularly for post-processing NWP 

forecasts of solar irradiance [4,18–22]. The review by [4] categorized 

post-processing methods into four groups based on the deterministic or 

probabilistic nature of the inputs and outputs, namely D2D, D2P, P2D, 

and P2P. While the paper noted that P2P post-processing was, at that 

time, the least developed category among the four, and although there 

has been notable progress in the last four years, P2P post-processing 

is still less established compared to the deterministic post-processing 

methods.

In the context of model chain approaches to PV power prediction, 

P2P post-processing can be applied at different stages, following one 

of four possible strategies: propagating the raw, unprocessed ensemble 

weather predictions through the model chain without applying any post-

processing; applying post-processing only to the weather inputs before 

the conversion to PV power; applying post-processing only to the PV 

power forecasts obtained through the model chain conversion; or apply­

ing post-processing both before and after the conversion. [23] compared 

these strategies using statistical and ML-based post-processing meth­

ods based on a benchmark dataset [24] and found that post-processing 

the PV power predictions is the most promising strategy, which is in 

line with results from related research on deterministic solar energy 

prediction [25,26] and on probabilistic wind power forecasting [27]. 

Furthermore, [23] noted that ML-based post-processing methods out­

perform their statistical counterparts for solar energy forecasting, albeit 

by a relatively small margin.

Our overarching aim is to systematically evaluate and compare sta­

tistical and ML-based P2P post-processing approaches for the calibration 

and conditional bias correction of PV power forecasts. Motivated by the 

findings of [23], we focus on comparing methods for post-processing 

ensemble forecasts of PV power obtained as the output of the model 

chain conversion when using raw NWP ensemble predictions as inputs. 

The main novelty of our work lies in the systematic comparison of a 

broad set of seven post-processing methods with a particular focus on 

assessing differences in the predictive performance of parametric dis­

tributional regression approaches, which assume a parametric family 

of probability distributions for the target variable, and non-parametric 

quantile regression methods, which yield a set of quantiles as their

output.

The investigated parametric distributional regression methods in­

clude the ensemble model output statistics (EMOS) [28] approach, 

which is also referred to as non-homogeneous regression and was origi­

nally proposed with the assumption of a Gaussian forecast distribution, 

and has been extended towards solar energy forecasting [20,23]. [29] 

proposed a gradient boost-based extension of EMOS, which enables 

the incorporation of additional predictor variables and which we will 

refer to as EMOS-B or boosted EMOS. A neural network-based dis­

tributional regression approach to post-processing was proposed by 

[14] and will be referred to as the distributional regression network

(DRN).

A key drawback of parametric distributional regression approaches 

is the need to select a suitable parametric family for the conditional 

distribution of the variable of interest, given the ensemble predictions, 

which can be a challenge in applications [16]. Non-parametric methods 

circumvent this disadvantage, with quantile-regression based methods 

constituting the most popular approach. We here compare standard lin­

ear quantile regression to quantile regression neural networks (QRNNs) 

[30], where neural networks are used to learn non-linear mappings from 

the input predictors to target quantiles. We further consider Bernstein 

quantile networks (BQNs) [31], which model the quantile function as 

a weighted mixture of Bernstein polynomials, as well as the recent 

non-crossing quantile regression neural network (NCQRNN) approach 

proposed by [22], which modifies the QRNN architecture to avoid 

quantile crossing.

Our comparisons are based on a five-year dataset of PV production 

at seven utility-scale PV plants in Hungary and corresponding ensemble 

weather forecasts, and thus notably extend the scale of the comparisons 

conducted in [23] both in terms of the amount of data, as well as the 

breadth of post-processing methods. Specifically, the novel comparison 

of parametric and non-parametric approaches allows for assessing the 
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challenges of choosing a suitable parametric family for PV power pro­

duction, while considering both classical statistical as well as modern 

ML-based methods enables insights into the benefits of the potential to 

flexibly learn non-linear relationships via NNs.

The remainder of this article is organized as follows. Section 2 pro­

vides a comprehensive description of the PV power plant and weather 

forecast data used in this study, as well as the specifics of the model chain 

that is used for the conversion from weather to PV power forecasts. In 

Section 3, we introduce the post-processing approaches, provide details 

of their implementation, and describe the forecast evaluation methods. 

Section 4 presents the main results, Section 5 summarizes our findings, 

followed by our conclusions in Section 6. Additional results can be found 

in the Appendix.

2 . Photovoltaic power production and forecast data

The post-processing models are tested for the operational day-ahead 

power forecasting at seven PV plants in Hungary. The input is a 51-

member PV power forecast ensemble, created by converting all members 

of an ensemble NWP weather forecast into PV power using a physical 

model chain. The description of the PV plant data, the ensemble NWP, 

and the model chain are provided in the following subsections.

2.1 . Photovoltaic power plant data

The PV power forecasting is performed for seven ground-mounted 

utility-scale PV plants in Hungary. The locations of the PV plants to­

gether with their Köppen–Geier climate classes [32] are shown on the 

map of Hungary in Fig. 1, and their geographical coordinates and main 

design parameters are summarized in Table 1. The measured power pro­

duction data of the PV plants are available for the five full calendar years 

from 2019 to 2023 with a temporal resolution of 15 min, which fits 

the operational requirements for scheduling PV plants in Hungary. Only 

daytime data are considered in this study, selected by a zenith angle 

Θ𝑧 < 90◦ filter, and the daytime data samples with 0 power produc­

tion are removed from the dataset as they indicate the malfunction or 

maintenance of the PV plants. The number of valid daytime data sam­

ples that are used in the analysis is presented for each year and PV plant 

in Table 1. Furthermore, to handle the capacity differences of the in­

vestigated power plants, both the measured output PV power at a given 

location and the corresponding PV power forecast are normalized by the 

nominal AC power of the plant at hand as provided in Table 1.

Fig. 1. Locations of the seven utility-scale PV plants considered in this study. 

The codes refer to the following Köppen–Geier climate classes: BSk – cold 

semi-arid climate, Cfa – humid subtropical climate, Cfb – subtropical high­

land climate, Dfa – hot-summer humid continental climate, Dfb – warm-summer 

humid continental climate.

2.2 . Ensemble numerical weather predictions

The weather input data for the PV power forecasts are retrieved from 

the ensemble (ENS) NWP product of the Integrated Forecasting System 

(IFS) of the European Centre for Medium-Range Weather Forecasts 

(ECMWF). The ECMWF ENS is an ensemble of 51 members, includ­

ing a control forecast and 50 perturbed members. The initial conditions 

of the NWP, reflecting the current state of the Earth system, are de­

termined by a four-dimensional variational data assimilation (4D-Var) 

method combining the observations and the latest short-range weather 

forecasts. The control forecast is created from the best available data 

using the unperturbed models, whereas the perturbed members are cal­

culated from slightly changed initial conditions with slightly modified 

model parameterizations. The forecasts of all 51 members for the 24–48-

h time horizon are taken from the 00 UTC model run, which is the 

latest model run that fits the operational requirements of day-ahead fore­

casting in Hungary. In June 2025, the forecasts of the 00 UTC run are 

made available at 06:44 UTC for the next day,1 leaving enough time to 

prepare the PV power forecasts before the gate closure time of the day-

ahead market (DAM) of the Hungarian power exchange (HUPX) at 12:00

CET/CEST.

The forecast weather variables include the GHI (ssrd, surface solar 

radiation downwards), the ambient temperature at 2 meters (t2m), and 

the wind speed at 10 meters (norm of the v10 and u10 components). 

The ECMWF ENS had an 18 km spatial resolution until the Cycle 48r1 

model upgrade2 on 27 June 2023 and 9 km afterwards, and the data 

from the nearest grid point to the plant location are used for each PV 

plant. The forecasts are available with a 1-h temporal resolution, which 

were downscaled to a 15-min resolution to fit the requirements of the 

Hungarian Transmission System Operator for day-ahead scheduling. The 

ambient temperature and wind speed are downscaled by linear interpo­

lation, whereas clear-sky interpolation is used for the GHI to better retain 

the natural daily trend of solar radiation. Thereby, the linear interpola­

tion is performed on the clear sky index, calculated as the ratio of the 

GHI and its clear-sky counterpart, which is obtained from the McClear 

service [33].

2.3 . Physical photovoltaic model chain

The weather forecasts of all ensemble members are converted to PV 

power forecasts using a physical model chain of the PV plants. The model 

chain is a series of physical models, each describing an individual phe­

nomenon [34]. The conversion of weather data to PV power is also called 

solar power curve modeling; more details on the variety of the existing 

methods can be found in a recent tutorial review [10]. Model chains can 

be constructed with different accuracy and complexity depending on the 

number of steps and the component models selected in each step [35]. 

In this study, we opt for a detailed model chain in order to account for 

most of the nonlinearities of the energy conversion to provide the most 

accurate inputs for the post-processing.

A schematic of the model chain implemented in this study, including 

the considered modeling steps along with their main inputs and out­

puts, is shown in Fig. 2. A summary of the models and parameters used 

in the model chain is provided below, while the detailed description 

of the models can be found in the original publications of the models. 

The model chain starts with the calculation of the solar zenith and so­

lar azimuth angles using the solar positioning algorithm of [36]. It is 

followed by separation modeling, where the GHI is decomposed into its 

beam and diffuse horizontal components using the temporal-resolution 

cascade Yang model [37], which emerged as one of the best separation 

models in a recent worldwide review [38]. The model is used with the 

parameters proposed for cluster 5 in [39], since all locations at hand 

1 https://confluence.ecmwf.int/display/DAC/Dissemination+schedule
2 https://www.ecmwf.int/en/about/media-centre/news/2023/model-

upgrade-increases-skill-and-unifies-medium-range-resolutions
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Table 1 

Description of the PV plants considered in this study.

Name Geographical location Module orientation Nominal power (kW) Number of valid 15-min daytime data samples

Lat. Lon. Tilt Azim. DC AC 2019 2020 2021 2022 2023

Bodajk 47.33◦ 18.22◦ 35◦ 180◦ 590 498 17,530 17,547 17,579 17,541 17,533

Cegléd 47.19◦ 19.80◦ 35◦ 180◦ 590 498 17,067 17,015 17,158 17,090 17,058

Felsőzsolca 48.12◦ 20.89◦ 35◦ 180◦ 20,038 18,640 17,331 17,337 17,432 17,341 16,934

Fertőszéplak 47.61◦ 16.84◦ 35◦ 180◦ 590 498 17,533 17,583 17,572 17,506 17,505

Magyarsarlós 46.04◦ 18.37◦ 25◦ 160◦ 601 502 17,616 17,561 17,568 17,550 17,510

Paks 46.57◦ 18.82◦ 35◦ 180◦ 20,680 19,160 17,213 17,188 17,273 17,052 17,163

Újkígyós 46.60◦ 20.99◦ 35◦ 180◦ 590 498 17,095 16,924 17,045 17,027 17,066

Modeling steps OutputsInputs

Transposition

Separation

Reflection

Temperature

PV module

Inverter

Sun position
Time

Location
, 

Orientation

, 

Module data

Inverter data

Electrical losses

Fig. 2. Schematic of the physical model chain used for converting weather data 

to PV power.

fall into this one out of the five clusters identified based on cloud cover 

frequency, aerosol optical depth, and surface albedo climatology.

The next step is to transpose the horizontal irradiance components 

to the tilted plane of PV arrays. The Perez model [40] is selected for 

this task, which has been widely regarded as the most accurate transpo­

sition model for the last more than three decades [41]. The reflection 

and absorption losses of the PV module cover are accounted for using 

the angular loss factors proposed by [42]. In addition to the angular loss 

factor of the beam irradiance that depends on its incidence angle, this 

model also provides formulae for the sky-diffuse and ground-reflected 

components. The PV plants at hand feature a mounting structure layout 

of multiple parallel rows; therefore, the shading losses are estimated by 

assuming a 2D shading geometry, considering the nonlinear response of 

the PV power production to the shaded area, as described in [34]. The 

diffuse irradiance masking caused by the adjacent rows is also taken into 

account by a reduced sky view factor [43].

The temperature of the solar cells is calculated using the Mattei

model, which includes both the heating of the modules due to the 

absorbed radiation and the effect of wind speed on the heat transfer 

coefficient [44]. The power production of the PV modules is modeled 

using the 5-parameter single-diode equivalent circuits of the modules, 

as described by [45]. First, the parameter values at nominal conditions 

are determined based on the datasheet of the PV modules, then they are 

corrected for the actual irradiance and cell temperature and used to plot 

the whole I-V characteristic curve of the modules for each timestep. The 

current, voltage, and power production of the PV modules are obtained 

from the maximum power point of the characteristic curve. The degra­

dation of the module is accounted for by an initial 2% light-induced loss 

and a 0.5%/a annual loss factor.

The input power and voltage of the inverter are calculated consider­

ing the string layout of the modules and the DC cable losses. The inverter 

efficiency is estimated using the Driesse model [46] as a function of the 

input power and voltage with parameters fitted to the efficiency values 

obtained from the datasheet of the inverters. The clipping losses are 

also accounted for by maximizing the power production at the nominal 

AC power of the inverter. Finally, the power is summarized for all in­

verters, and electrical losses on the AC cables, transformers, and other 

components are deducted to find the power fed into the grid by the PV 

plant.

3 . Post-processing methods and forecast evaluation

In the following sections let 𝑓1, 𝑓2,… , 𝑓51 ∈ [0, 1]  denote the 51-

member normalized PV energy ensemble forecast of a given lead time 

for a given time point and PV power plant, where 𝑓1 = 𝑓CTRL  represents 

the control forecast, while the 50 statistically indistinguishable, there­

fore exchangeable ensemble members, 𝑓2, 𝑓3,… , 𝑓51  are also referred 

to as 𝑓ENS,1, 𝑓ENS,2,… , 𝑓ENS,50. Furthermore, denote by 𝑓ENS and 𝑆2
ENS

the mean and variance of these 50 exchangeable ensemble members, 

respectively, that is,

𝑓ENS ∶= 1
50

50
∑

𝑘=1
𝑓ENS,𝑘 and 𝑆2

ENS ∶= 1
49

50
∑

𝑘=1

(

𝑓ENS,𝑘 − 𝑓ENS
)2
.

The general descriptions of the considered parametric and non-

parametric models are provided in Sections 3.1 and 3.2, respectively, 

whereas further implementation details that are common to multiple 

models are specified in Section 3.4.

3.1 . Parametric methods

As mentioned in the Introduction, parametric post-processing meth­

ods result in full predictive distributions, and in the EMOS and DRN 

approaches building on a single parametric law, the chosen distribution 

family strongly depends on the properties of the predictable quantity. 

Temperature is mainly considered Gaussian (see, e.g., [14,28]), wind 

speed follows a skewed distribution with non-negative support, such as 

truncated normal [47] or log-normal [48], while the positive probabil­

ity of observing zero precipitation can be handled by left-censoring a 

skewed distribution, such as generalized extreme value [49] or shifted 

gamma [50] from below at zero. The same idea led to parametric post-

processing models for solar irradiance based on left-censored logistic or 

Gaussian (see, e.g., [20,21]) laws. However, in the case of PV power, 

the support of the predictive distribution has a natural upper bound 

induced by the maximum capacity of the given solar plant. Following 

[23], the predictive distribution in the EMOS and DRN models detailed 

in Sections 3.1.1 and 3.1.2, respectively, follows a doubly censored 
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Gaussian assigning point masses to zero and one, i.e., to both ends of 

the interval of possible (normalized) PV power values.

3.1.1 . Ensemble model output statistics

Consider a Gaussian distribution  1
0
(

𝜇, 𝜎2
)

 with location 𝜇  and 

scale 𝜎  left-censored at zero and right-censored at one, characterized 

by the cumulative distribution function (CDF)

𝐺
(

𝑥|𝜇, 𝜎
)

∶=

⎧

⎪

⎨

⎪

⎩

0, 𝑥 < 0,

Φ
(

𝑥−𝜇
𝜎

)

, 0 ≤ 𝑥 ≤ 1,

1, 𝑥 > 1,

(1)

where Φ  denotes the CDF of the standard Gaussian law. This distri­

bution assigns masses 𝑝LB ∶= 𝐺
(

0|𝜇, 𝜎
)

= Φ
(

−𝜇∕𝜎
)

 to the origin 

and 𝑝UB ∶= 1 − 𝐺
(

1|𝜇, 𝜎
)

= Φ
(

(𝜇 − 1)∕𝜎
)

 to one, while the 𝑝-quantile 

𝑞𝑝, (0 < 𝑝 < 1)  of (1) equals 0,  if 𝑝 ≤ 𝑝LB,  the solution of 𝐺
(

𝑞𝑝|𝜇, 𝜎
)

= 𝑝, 
if 𝑝LB < 𝑝 < 1 − 𝑝UB,  and 1,  if 𝑝 ≥ 1 − 𝑝UB. 

The parameters of our censored normal (CN) EMOS predictive distri­

bution for (normed) PV power are expressed as the following functions 

of the (normed) ensemble members

𝜇 = 𝛼0 + 𝛼1𝑓CTRL + 𝛼2𝑓ENS and 𝜎 = exp
(

𝛽0 + 𝛽1 log𝑆2
ENS

)

. (2)

Following the optimum score approach suggested by [51], model pa­

rameters 𝛼0, 𝛼1, 𝛼2, 𝛽0, 𝛽1 ∈ R  are estimated by optimizing the mean 

value of a proper verification score over training data comprising past 

forecast-observation pairs. The most popular choices are the ignorance 

score, which is the negative logarithm of the predictive probability 

density function (PDF) evaluated at the verifying observation (see, 

e.g., [Section 9.5.3][52]), which leads to the maximum likelihood es­

timates, and the continuous ranked probability score (CRPS), defined in 

Section 3.3. In the case study of Section 4, we utilize the latter.

While EMOS models provide a computationally simple yet power­

ful tool for statistical post-processing, the rigid functional form of the 

link functions connecting the ensemble forecasts to the distributional 

parameters generally does not offer a straightforward way of includ­

ing additional covariates such as forecasts of related weather quantities 

or location-specific data like geographical coordinates, altitude, or land 

use. Moreover, too many predictors can easily lead to overfitting, 

thereby deteriorating the forecast performance. To circumvent this prob­

lem, [29] introduced a boosting algorithm that automatically selects the 

most important predictors in a nonhomogeneous regression model and 

provides the maximum likelihood estimates of the corresponding pa­

rameters. An implementation of the proposed approach for censored 

Gaussian predictive distribution can be found in the R package crch 
[53]. In the case study of Section 4, as possible predictors, we consider 

𝑓CTRL, 𝑓ENS,  and 𝑆ENS;  however, in contrast to the CN EMOS model

(2), these covariates might appear both in the location and the scale 

parameter of the predictive distribution.

3.1.2 . Distributional regression network

Distributional regression networks (DRN), introduced by [14], pro­

vide an estimation of the parameters of the doubly censored normal 

predictive distribution by optimizing the mean of the corresponding 

CRPS over the training data as the loss function of a feedforward neural 

network. In contrast to EMOS models, considering an extended set of 

input variables with additional features is straightforward. Further, the 

large variability of the possible network structures and hyperparameters 

enables a more flexible post-processing method where non-linear rela­

tions are learned in an automated, data-driven manner. A drawback of 

the DRN models is that, due to the large number of weights, the train­

ing typically requires a larger amount of training data. However, in the 

present case study, the training period is long enough to use the same 

data as in the case of the EMOS models; for details, see Section 3.4.

3.2 . Non-parametric approaches

The non-parametric post-processing methods considered here repre­

sent the predictive CDF 𝐹  by its 𝜏-quantiles, 𝑞𝜏 (𝐹 ) ∶= 𝐹−1(𝜏) ∶=
inf{𝑦 ∶ 𝐹 (𝑦) ≥ 𝜏},  which are estimated by quantile regression (QR). The 

most widely used loss function for quantile regression is an asymmetric 

linear loss called the pinball or quantile loss, which is defined as

𝜌𝜏 (𝑢) ∶=

{

𝑢𝜏, if 𝑢 ≥ 0,
𝑢(𝜏 − 1), if 𝑢 < 0,

(3)

and minimized by 𝑞𝜏 (𝐹 ).  The quantile loss is not differentiable at 𝑢 = 0, 

which may cause issues with convergence in the gradient-based opti­

mization methods used for training neural networks. A remedy is to use 

the quantile Huber loss [54], where the 𝑢  in (3) is replaced by the Huber 

norm ℎ(𝑢),  calculated as

ℎ(𝑢) ∶=

{

𝑢2

2𝜖 , if |𝑢| ≤ 𝜖,
|𝑢| − 𝜖

2 , if |𝑢| > 𝜖.
(4)

If a small value is selected for the 𝜖  threshold, e.g., 𝜖 = 10−8,  the 

quantile Huber loss function closely approximates the quantile loss while 

being differentiable everywhere.

3.2.1 . Linear quantile regression

Linear quantile regression (LQR) [55] approximates the quantile 𝑞𝜏
as a linear combination of the predictors. For the calibration of the en­

semble forecasts at hand, the predictors are the raw ensemble members, 

and the calibrated quantile is calculated as

𝑞𝜏 = 𝛽0 +
51
∑

𝑘=1
𝛽𝑘𝑓𝑘 (5)

where 𝛽0, 𝛽1,… , 𝛽51 ∈ R  are the regression coefficients, fitted to 

minimize the quantile loss.

While LQR offers a simple solution for approximating the quantiles 

of the predictive distribution, on the one hand, it requires a separate 

regression model for each investigated quantile; on the other hand, the 

predicted quantiles do not necessarily form a nondecreasing sequence 

(quantile crossing).

3.2.2 . Quantile regression neural network

Quantile regression neural networks (QRNN) use a neural network 

to provide a nonlinear mapping between the predictors and the output 

quantiles [30]. The QRNN implemented in this study is a feed-forward 

multilayer perceptron neural network with 51 output neurons, each as­

signed a quantile loss function with different 𝜏  values. In this way, a 

single QRNN model can estimate all required quantiles simultaneously, 

eliminating the need for training separate models for each quantile, in 

contrast to the LQR.

To ensure the optimal fit of the model, an early stopping routine 

is applied. In this, a validation set is separated from the training data, 

which is not used directly to adjust the parameters of the model, but 

the loss function is evaluated for the validation set after each epoch. 

The training terminates when the validation loss stops improving for a 

pre-defined number of epochs called the early stopping patience. The 

convergence and accuracy of the QRNN highly depend on the selection 

of the hyperparameters, of which the most important are the number 

of hidden layers and the number of neurons in each hidden layer, the 

activation function, the learning rate, the early stopping patience, and 

the batch size.

Note that the problem of quantile crossing can still appear with this 

approach as well. Moreover, compared to the LQR, QRNN has a much 

larger number of neuron weights to be estimated, thus requiring far more 

training data, which is a common drawback of the two other quantile 

regression methods introduced below.
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3.2.3 . Bernstein quantile network

Bernstein quantile networks (BQN), proposed by [31], estimate the 

whole quantile function as a Bernstein polynomial instead of individual 

quantiles. A Bernstein polynomial of degree 𝑛  is a linear combina­

tion of 𝑛 + 1  Bernstein basis polynomials, and the coefficients of the 

basis polynomials are calculated as the outputs for a neural network. 

The loss function of the training is the average quantile loss for a set of 

equidistant quantile levels. The degree of the Bernstein polynomial is a 

additional hyperparameter of this method, in addition to those listed for 

the QRNN.

The method is further adjusted by constraining the coefficients to 

be nondecreasing, which implies that the quantile function is monotoni­

cally increasing [16]. Technically, this is implemented by estimating the 

differences between the coefficients as non-negative values by using a 

softplus activation function in the output layer of the neural network. 

A monotonically increasing quantile function ensures that the forecasts 

for a higher quantile are always equal to or higher than those of a lower 

quantile, i.e., 𝑞𝜏1 ≥ 𝑞𝜏2  for 𝜏1 > 𝜏2,  in line with the fact that by 

definition, a CDF must be monotonically increasing.

3.2.4 . Non-crossing quantile regression neural network

Non-crossing quantile regression neural networks (NCQRNN), devel­

oped by [22], provide an alternative targeted solution to directly enforce 

the monotonicity of the CDF. QRNN is extended with an additional hid­

den layer before the output layer that ensures a non-decreasing mapping 

between the outputs of the previous layer and the nodes of the output 

layer. The main advantage of this approach is that it has no require­

ments on the network structure before the non-crossing layer, and thus 

it can be integrated into any type of neural network. However, NCQRNN 

has shown a decent performance even with a multilayer perceptron be­

fore the non-crossing layer in [22], therefore, this structure is used in 

the present study. An additional hyperparameter of NCQRNN over the 

QRNN is the number of neurons in the non-crossing layer, which must 

be equal to or higher than the number of output neurons.

3.3 . Forecast evaluation

The performance of both probabilistic predictions (a forecast en­

semble, a full predictive distribution, or predictive quantiles) and point 

forecasts (median or mean of the forecast ensemble or predictive dis­

tribution) can be evaluated with the help of scoring rules, which are 

loss functions assigning numerical values to forecast-observation pairs. 

In the case of the predictive median, we consider the mean absolute er­

ror (MAE), while the mean forecasts are evaluated with the help of the 

root mean squared error (RMSE) and the mean bias error (MBE), also 

known as the mean error (see, e.g., [Section 9.3.1][52]). Since the MAE 

is minimized by the median and the mean squared error is minimized by 

the mean [56], the aforementioned pairing of the point forecast with the 

error metrics ensures the consistency of the verification, i.e., the deter­

ministic forecasts are only evaluated with metrics that they are optimal 

for [57,58].

In the case of probabilistic forecasts, one of the most popu­

lar scoring rules is the continuous ranked probability score (CRPS) 

[Section 9.5.1][52], as it is strictly proper and simultaneously addresses 

the calibration and the sharpness of the forecasts [51]. Calibration indi­

cates a statistical consistency between the probabilistic forecast and the 

corresponding observation, while sharpness addresses the concentration 

of the forecasts. When a probabilistic forecast corresponding to an ob­

servation 𝑥 ∈ R  materializes in the form of a predictive CDF 𝐹 ,  the 

CRPS is defined as

CRPS(𝐹 , 𝑥) ∶= ∫

∞

−∞

[

𝐹 (𝑦) − I{𝑦≥𝑥}
]2
d𝑦 = 𝖤|𝑋 − 𝑥| − 1

2
𝖤|𝑋 −𝑋′

|, (6)

where I𝐴  denotes the indicator function of a set 𝐴,  while 𝑋  and 𝑋′  are 

independent random variables distributed according to 𝐹  and having 

a finite first moment. Note that for the doubly censored Gaussian distri­

bution, the CRPS has a closed form [59] that allows efficient estimation 

of the parameters of the EMOS model presented in Section 3.1.1.

In the case of a forecast ensemble 𝑓1, 𝑓2,… , 𝑓𝐾 ,  in (6) the predictive 

CDF 𝐹  should be replaced by the empirical CDF 𝐹𝐾 ,  resulting in the 

expression

CRPS(𝐹𝐾 , 𝑥) =
1
𝐾

𝐾
∑

𝑘=1

|

|

|

𝑓𝑘 − 𝑥||
|

− 1
2𝐾2

𝐾
∑

𝑘=1

𝐾
∑

𝓁=1

|

|

|

𝑓𝑘 − 𝑓𝓁
|

|

|

, (7)

see, e.g., [60]. This version of the empirical CRPS is implemented in the 

scoringRules package of R [59] and slightly differs from the ensem­

ble CRPS defined in [Section 9.7.3] [52]. The same formula (7) for the 

CRPS also applies when the predictive distribution is represented by its 

quantiles.

Furthermore, similar to other strictly proper scoring rules, the CRPS 

has an algebraic decomposition into a reliability (REL), resolution (RES) 

and uncertainty (UNC) term

CRPS = REL − RES + UNC,

where reliability summarizes the calibration of the probabilistic forecast, 

resolution is closely related to its sharpness, while uncertainty represents 

the climatological variability and thus depends only on observations 

[61,62].

In Section 4, the predictive performance of a forecast 𝐹  for a given 

time of the day is quantified, among others, with the help of the mean 

CRPS and the MAE over all forecast cases used for verification. For 

ranking the different forecasts, we also consider the continuous ranked 

probability skill score (CRPSS; see, e.g., [51]) and the mean absolute 

error skill score (MAES), which provide the improvement in mean CRPS 

and MAE of a forecast 𝐹  over a reference forecast 𝐹ref,  and are defined 

as

CRPSS ∶= 1 −
CRPS𝐹
CRPS𝐹ref

and MAES ∶= 1 −
MAE𝐹
MAE𝐹ref

,

where CRPS𝐹 , MAE𝐹  and CRPS𝐹ref
, MAE𝐹ref

 denote mean score values 

corresponding to forecasts 𝐹  and 𝐹ref,  respectively.

Furthermore, to gain insight into the forecast skill of the quantile 

forecasts, we make use of the quantile score (QS) [Section 9.6.1] [52], 

defined via the pinball loss (3) as

QS𝜏 (𝐹 , 𝑥) ∶= 𝜌𝜏
(

𝑥 − 𝑞𝜏 (𝐹 )
)

. (8)

Note that the QS is proper and its integral over all quantiles results in 

half of the CRPS [63].

Calibration and sharpness of predictive distributions can also be 

assessed with the help of the coverage and average width of (1 −
𝛼)100%, 𝛼 ∈ (0, 1),  central prediction intervals (intervals between the 

lower and upper 𝛼∕2  quantiles of the predictive CDF), respectively. In 

this context, prediction interval coverage probability (PICP) is the pro­

portion of verifying observations located in the corresponding central 

prediction interval, which for a calibrated forecast should be around 

(1−𝛼)100%,  while the prediction interval average width (PIAW) quanti­

fies the concentration of the predictive law. Note that when a 𝐾-member 

ensemble forecast is also involved in the study, to ensure fair compara­

bility in the detailed analysis, level 𝛼  is chosen to match its nominal 

coverage of (𝐾 − 1)∕(𝐾 + 1)100%  meaning 96.15%  for the 51-member 

PV forecasts at hand. Moreover, since the prediction interval of inter­

est depends on the application of the forecasts, PIAW is also presented 

for all possible central prediction intervals defined by the 51-member 

ensemble as a function of the nominal and empirical coverage rates.

However, PICP alone is not sufficient to evaluate the reliability of 

probabilistic forecasts, since it may suggest perfect reliability even if 

both quantiles defining the prediction interval are biased in the same di­

rection [6]. A better approach is to evaluate the reliability at all quantile 
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levels individually using a reliability diagram that plots the proportion 

of the observations that are actually smaller than the forecasts for each 

quantile at hand as a function of the quantile level. The reliability curve 

of a perfectly calibrated forecast lies close to the diagonal.

Another simple graphical tool for visual assessment of the calibra­

tion of probabilistic forecasts given either as a forecast ensemble or as a 

sample drawn from a predictive distribution is the verification rank his­

togram [Section 9.7.1] [52]. The verification rank is defined as the rank 

of the observation with respect to the corresponding forecast, which for 

a calibrated 𝐾-member ensemble should be uniformly distributed on the 

set {1, 2,… , 𝐾 + 1}.  Bias results in triangular shapes, while ∪- and ∩-

shaped rank histograms suggest under- and overdispersion. Moreover, 

one can also quantify the deviation from the uniform distribution with 

the help of the reliability index (RI) [64], defined as

RI ∶=
𝐾+1
∑

𝑟=1

|

|

|

𝜌𝑟 −
1

𝐾 + 1
|

|

|

,

where 𝜌𝑟  is the relative frequency of rank 𝑟  over all forecast cases in 

the verification period.

3.4 . Implementation details

All 51 members of the ECMWF ensemble forecasts contain GHI, ambi­

ent temperature, and wind speed data, which are converted to PV power 

using a physical model chain. All perturbed NWP ensemble members are 

generated from randomly issued initial conditions; therefore, there is 

no continuity between the same-numbered members of different model 

runs. To that end, the 50 perturbed PV power forecast members are 

sorted at ascending order in each timestep, which can be seen as con­

verting them to equidistant quantile forecasts, and the sorted ensemble 

is used as the input for the post-processing models.

In the case of EMOS modeling, all lead times are considered sep­

arately, leading to at most 65 distinct models per PV power plant. 

We consider a fixed training period of 1460 calendar days between 

1 January 2019 and 30 December 2022. Note that a rolling training 

window of the same length has also been tested without providing sig­

nificantly different results, whereas shorter training periods (365-, 730-, 

1096-day have been tested) decrease the forecast skill. As mentioned 

in Section 3.1.1, the parameters of the doubly censored normal EMOS 

(CN EMOS) model are estimated by optimizing the mean CRPS over the 

training data, while in the boosted version of EMOS, referred to as CN 

EMOS-B, the control member 𝑓CTRL  and the mean 𝑓ENS  and stan­

dard deviation 𝑆ENS  of the exchangeable ensemble members are used 

as covariates.

For CN EMOS-B and all the other post-processing methods, we use 

the same training period as for the EMOS model, but all the lead times 

are pooled, resulting in a single trained model for each method and PV 

plant.

For the doubly censored DRN (CN DRN) model, the neural network 

is a multilayer perceptron with three hidden layers consisting of 15, 

10, and 10 neurons, respectively, all of which use a ReLU activation 

function. In the output layer, there are two neurons, corresponding to 

the number of estimated parameters. To ensure the non-negativity of the 

scale parameter, one of the neurons applies a softplus activation, while 

the other activation function is linear. The input features are simply 

the 51-member ensemble for the PV power forecast. To optimize the 

loss, we apply the Adam optimizer with a learning rate value of 0.001 

and use a batch size of 256. An early stopping criterion terminates the 

training if the loss function value computed on a validation set does 

not decrease over six consecutive epochs. Following common practice in 

DRN-based post-processing, we train an ensemble of ten neural networks 

and average the output parameters [65].

The QRNN, BQN, and NCQRNN models include a similar multilayer 

perceptron with up to two hidden layers with 5 to 200 neurons each. The 

considered activation functions are the ReLU, softplus, logistic, and tanh 

functions, the learning rate is selected from the 0.0005 to 0.05 interval, 

the early stopping patience may range from 5 to 50 epochs, and the 

batch size is between 200 and 20,000. The degree of the Bernstein poly­

nomial in BQG ranges from 6 to 15, whereas the number of non-crossing 

neurons in NCQRNN is between 51 and 60. The optimal hyperparame­

ters for each model and PV plant are selected from the aforementioned 

intervals/options using the Optuna framework [66]. For this, the train­

ing data of four years is divided into five-day-long blocks, and the first 

three days of each block are used for the actual training of the models, 

the fourth days are used as validation data for the early stopping, and 

the fifth days are used to form a holdout dataset. The Optuna hyperpa­

rameter optimization studies were run with 100 trials for each model, 

and the hyperparameter sets resulting in the lowest CRPS for the holdout 

data are selected. After finding the optimal hyperparameters, reported 

in Table 3, the data for every fifth day are used for validation, and the 

rest for the training of the final model.

4 . Results

In the following, we present a detailed comparison of the predictive 

performance of parametric and non-parametric post-processing methods 

introduced in Sections 3.1 and 3.2, respectively. All models are trained 

locally; i.e., post-processing models for a given PV power plant are based 

solely on past forecast-observation pairs for that specific location. For 

verification, we use power data for the calendar year 2023 and, as men­

tioned in Section 2.1, consider only daytime forecasts corresponding to 

positive observed PV power, meaning at most 65 observations/day be­

tween 03:00 and 19:00 UTC. Both the parametric and non-parametric 

post-processing methods are based on normalized data, i.e., both PV 

power forecasts and PV power production of a plant are normalized by 

the corresponding nominal AC power provided in Table 1. Furthermore, 

to ensure a fair comparability of the parametric methods resulting 

in full predictive distributions, non-parametric techniques providing 

quantile forecasts, and the raw ensemble, we consider 51 equidistant 

quantiles from the predictive distributions for each post-processing 

model. These quantiles are then transformed back to the original

scale.

Normalizing by the nominal AC power, as is done with the input 

and target variables of the model, effectively scales the power values 

strictly to a 0–1 range; however, it is not the best basis for normaliz­

ing error metrics. The nominal AC power of PV plants depends on the 

inverter sizing factor, which may vary over a wide range without sub­

stantially affecting the performance of the PV plants. Therefore, even 

very similar PV systems (in terms of nominal DC power or annual en­

ergy production) can have significantly different nominal AC power and 

thus AC-normalized error metrics, which can falsely suggest different 

forecasting performance. Instead, we prefer normalizing the errors to 

the mean power production, which is directly proportional to the total 

amount of electricity generated. This offers improved interoperability, 

e.g., the mean-normalized MAE reflects the ratio of the required bal­

ancing energy to the total produced energy. Therefore, the differences 

between the nominal powers of the seven considered plants are com­

pensated for by reporting score values normalized by the mean daytime 

power production of the PV plants listed in Table 2.

For an overall evaluation, consider first the mean scores averaged 

over all PV plants in Table 4 for all post-processed and raw PV fore­

casts. The lowest CRPS is achieved by the nonlinear QR methods, 

namely the QRNN, BQN, and NCQRNN, achieving a CRPS reduction 

of 14.67–14.73% over the raw ensemble (represented by the CRPSS); 

however, even the least effective EMOS models reach a CRPSS of 

11.08%. The reliability-resolution (REL-RES) decomposition reveals that 

all methods improve the reliability of the forecast at the cost of a de­

creased resolution (sharpness). Even though all methods are able to 

improve the reliability substantially, the non-parametric models achieve 

better reliability values for 0.44–0.83% compared to 1.53–1.97% of the 

parametric models. However, the less effective calibration of the para­

metric models is partly compensated for by a slightly higher resolution.
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Table 2 

Mean daytime power production of the PV plants.

Name Bodajk Cegléd Felsőzsolca Fertőszéplak Magyarsarlós Paks Újkígyós

Power (kW) 169.27 178.29 5503.95 168.37 166.27 6161.85 179.06

Table 3 

Optimal hyperparameters for the QRNN, BQN, and NCQRNN methods.

Model Hyperparameter Bodajk Cegléd Felsőzsolca Fertőszéplak Magyarsarlós Paks Újkígyós

QRNN Activation function sigmoid softplus ReLU sigmoid sigmoid sigmoid sigmoid

Learning rate 0.00050 0.01285 0.00386 0.00120 0.00054 0.00322 0.00740

Early stopping patience 48 47 35 47 30 37 44

Batch size 284 667 590 222 602 366 306

Neurons per hidden layer 152/26 158/135 108/125 124/189 29/7 178/90 38/11

BQN Berstein polynomial degree 10 7 10 15 15 11 10

Activation function sigmoid softplus tanh sigmoid sigmoid sigmoid sigmoid

Learning rate 0.00389 0.00328 0.00134 0.00224 0.00055 0.00317 0.00514

Early stopping patience 43 47 33 42 47 31 33

Batch size 409 310 502 496 836 391 377

Neurons per hidden layer 168/50 142/155 107/85 169/200 176/40 68/94 56/29

NCQRNN Neurons in non-crossing layer 59 52 51 52 54 55 52

Activation function sigmoid ReLU softplus softplus sigmoid softplus sigmoid

Learning rate 0.00326 0.00319 0.00211 0.00121 0.01088 0.00620 0.00085

Early stopping patience 48 39 50 42 41 37 47

Batch size 6425 1318 750 242 2669 200 267

Neurons per hidden layer 13 80/115 196/16 152/160 118/11 32/11 152/141

Table 4 

Summary of CRPS, reliability, and resolution of the probabilistic forecasts as well as the MAE, MBE, and 

RMSE of the consistently summarized deterministic forecasts averaged for all PV plants.

Forecast Probabilistic forecast Median Mean

CRPS Reliability Resolution CRPSS MAE MBE RMSE

CN EMOS 18.95% 1.66% 32.54% 11.13% 26.46% 5.19% 42.41%

CN EMOS–B 18.96% 1.53% 32.40% 11.08% 26.22% 4.16% 42.20%

CN DRN 18.58% 1.97% 33.22% 12.85% 26.00% 3.48% 42.14%

LQR 18.65% 0.46% 31.64% 12.56% 26.39% 2.12% 42.03%

QRNN 18.18% 0.44% 32.09% 14.73% 25.84% 1.68% 41.86%

BQN 18.19% 0.83% 32.48% 14.69% 25.78% 2.07% 41.91%

NCQRNN 18.20% 0.47% 32.10% 14.67% 25.78% 1.65% 41.91%

Ensemble 21.33% 7.63% 36.14% 0.00% 27.58% 9.79% 44.07%

Table 5 

Overall mean CRPS of post-processed and raw PV power forecasts normalized to the mean daytime 

power production of the PV plants.

Forecast Bodajk Cegléd Felsőzsolca Fertőszéplak Magyarsarlós Paks Újkígyós

CN EMOS 19.44% 19.01% 20.62% 19.83% 17.57% 17.77% 18.42%

CN EMOS–B 19.40% 18.91% 20.67% 19.97% 17.49% 17.75% 18.56%

CN DRN 18.83% 18.57% 20.20% 19.46% 17.31% 17.46% 18.27%

LQR 19.06% 18.53% 20.31% 19.55% 17.41% 17.45% 18.23%

QRNN 18.53% 18.13% 19.67% 19.02% 17.10% 17.07% 17.77%

BQN 18.53% 18.11% 19.63% 19.05% 17.14% 17.05% 17.84%

NCQRNN 18.55% 18.11% 19.78% 19.08% 17.01% 17.07% 17.78%

Ensemble 21.99% 21.23% 23.14% 21.87% 21.20% 19.69% 20.17%

To address the dependence of the results on the PV plant locations, 

the CRPS values are presented individually for each PV plant in Table 5. 

The conclusions drawn from the mean score values also hold for all PV 

plants, as there are no significant differences in the order of the methods. 

The lowest CRPS is consistently achieved by one of the nonlinear QR 

models, which ended up head-to-head in all locations, with each being 

the best performer in at least one PV plant. The achieved CRPSS of the 

best model, however, strongly depends on the location, with the lowest 

and highest CRPSS values being 11.89% and 19.32% in Újkígyós and 

Magyarsarlós, respectively.

The mean CRPS of post-processed and raw PV forecasts for each 

hour of the day is displayed in Fig. 3(a). As confirmed by the skill 

scores in Fig. 3(b), compared to the raw ensemble, post-processing re­

sults in a substantial relative improvement of around 10% during the 

hours of peak PV power production (06:00–16:00 UTC). In this period of 

the day, the differences between the competing calibrated forecasts are 

rather small with the advanced quantile-based methods (QRNN, BQN, 

NCQRNN) exhibiting the best, almost identical skill, followed by the 

LQR and CN DRN, whereas the two EMOS variants are slightly behind. 

This trend is in line with the conclusions drawn from the overall scores 
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Fig. 3. Mean CRPS of post-processed and raw PV power forecasts normalized to the mean daytime power production of the PV plants (a) and CRPSS of post-processed 

forecasts with respect to the raw ensemble (b) as functions of the observation time.
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Fig. 4. Coverage (PICP) (a) and average width (PIAW) (b) of nominal 96.15% central prediction intervals of post-processed and raw PV power forecasts normalized to 

the mean daytime power production of the PV plants as functions of the observation time. In panel (a), the ideal coverage is indicated by the horizontal dotted line.

of Tables 4 and 5. Results on the significance of the differences in mean 

CRPS among the various forecasts are presented in the Appendix. They 

confirm that all post-processing methods significantly outperform the 

raw PV power ensemble, and the advantage of the three quantile-based 

methods that perform the best over the other four approaches is also 

significant at a 5% level. 

The improved calibration of post-processed forecasts is also clearly 

visible in the coverage (PICP) values presented in Fig. 4(a). While 

the maximal PICP of the raw forecasts is just slightly above 67%, 

between 08:00–14:00 UTC, all post-processing approaches result in al­

most perfect coverage, which is maintained by the best-performing 

non-parametric approaches for all observation times, except the most 

extreme ones. The reliability diagram in Fig. 5 and the rank histograms 

in Fig. 6 allow a more detailed assessment of reliability over the whole 

range of probability levels. These diagrams not only confirm the sig­

nificant underdispersion of the raw ensemble but also reveal that both 

versions of the EMOS model overcompensate for this, resulting in a slight 

overdispersion in the medium probability range.

As indicated in Fig. 4(b), the price of the better calibration is the loss 

in sharpness. Among the competing calibrated forecasts, the CN DRN 

results in the lowest overall PIAW, followed by the BQN and the two 

EMOS methods. Fig. 7(a) shows the mean PIAW for all central predic­

tion intervals with different nominal coverage rates, clearly revealing 

the widening of all prediction intervals as a result of the calibration. 

That said, this diagram does not account for the fact that the predic­

tion intervals of an uncalibrated ensemble cover a significantly lower 

proportion of the observations as compared to what their nominal cov­

erage rate suggests, and thus misleadingly imply the deterioration of the 
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Fig. 5. Reliability diagrams of post-processed and raw PV power forecasts.

forecast quality. To better represent the sharpness of the forecasts with 

respect to their calibration, Fig. 7(b) plots the mean PIAW as a function 

of the empirical coverage rate (i.e., the PICP) instead of the nominal 

one. This novel graphical representation reveals that, compared to the 
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Fig. 6. Verification rank histograms of post-processed and raw PV power forecasts together with the corresponding reliability indices for observation times 3–11 h 

and 11–19 h.
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Fig. 7. Sharpness of post-processed and raw PV power forecasts normalized to the mean daytime power production of the PV plants as functions of the nominal 

coverage (a) and the corresponding empirical coverage (PICP) (b).

proportion of the observations they cover, the calibrated prediction in­

tervals are narrower compared to the raw ensemble, in line with the 

improved CRPS.

Considering that the CRPS is double the integral of the QS over all 

quantiles [63,67], the QS diagram in Fig. 8 can reveal which quantile 

levels contribute the most to the CRPS improvement. Since, according to 
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Fig. 8. Quantile score of post-processed and raw PV power forecasts normalized 

to the mean daytime power production of the PV plants.

the reliability diagram in Fig. 5, the raw ensemble is only reliable around 

the 62% probability level, the biggest improvement in QS is achieved 

at the lower quantile range. Comparing the different post-processing 

methods, the QRNN, BQN, and NCQRNN have almost the same QS for 

all quantiles, which is slightly but consistently lower than the QS of 

other methods. The LQR performs well up to the 30% and above the 

90% quantile, but lags behind in between. In contrast, the DRN catches 

up with the nonlinear QR methods between 20% and 70%, but slightly 

underperforms around the extreme probability levels.

In terms of the accuracy of point forecasts, the average error metrics 

for all PV plants are presented in Table 4. The greatest relative MAE im­

provement over the raw ensemble is 6.51%, achieved by either the BQN 

or NCQRNN models, whereas the greatest RMSE improvement is 5.02%, 

achieved by the QRNN. The raw forecasts have a significant positive 

MBE, originating from both the ensemble NWP and the model chain. All 

methods decrease the MBE, but the non-parametric approaches can pro­

vide a better correction as compared to the parametric models, among 

which the simple EMOS retains more than half of the original bias.

According to Fig. 9, showing the MAE of the median of probabilis­

tic forecasts and the MAES with respect to the raw ensemble, while 

the ranking of the various forecasts is slightly different, as CN DRN 

can often catch up with the best-performing non-parametric methods, 

the (normalized) improvement in peak hours (06:00–16:00 UTC) hardly 

exceeds 12%. For results addressing the significance of differences in 

MAE among the various forecasts, we again refer to the Appendix. 

A similar behaviour can be observed for the daily evolution of the 

RMSE of the mean forecasts (not shown). Overall, the gain of sta­

tistical post-processing in deterministic forecasting is not so striking, 

but still remarkable considering that the goal of the post-processing is 

probabilistic calibration and only the raw ensemble members are used as

predictors.

Finally, time series plots of the raw and all post-processed forecasts 

are shown for a sample week in Fig. 10. There is no significant visual 

difference between the models within both the parametric and non-

parametric model categories, but forecasts created by these two different 

approaches can be clearly distinguished. The main difference is that the 

parametric models assign narrow prediction intervals to the periods with 

supposedly clear skies (see the mornings of the 20th, 24th, and 27th of 

April), whereas the non-parametric methods assign much wider predic­

tion intervals towards the lower PV power values, especially for the high 

coverage rates. In this way, these models give some probability to the 

events when the clear sky forecasts are wrong, which explains both the 

improved reliability and lower sharpness.

Overall, the results show that the nonlinear QR methods, namely 

the QRNN, BQN, and NCQRNN, are consistently the best performers in 

almost all respects. The lower performance of the LQR can be justified by 

its linearity, while for the parametric method, the pre-defined shape of 

the CDF limits the performance. Among the three nonlinear QR methods, 

the simple QRNN has a slight edge over the others, suggesting that the 

least constrained method can yield the best results in this application. 

However, one should note that a large historical dataset covering four 

full calendar years was available to train the models. When less data are 

available for training, constraints, for instance, on the CDF, can prove 

effective to avoid nonphysical results, and this can be the application 

where parametric methods excel.

5 . Discussion

The present work provides a detailed comparison of seven state-

of-the-art approaches to statistical post-processing of 51-member PV 

power ensemble forecasts obtained from operational ECMWF ensemble 

weather forecasts as outputs of site-specific model chains. With the help 

of PV power data from seven PV plants in Hungary, we evaluated the 

skill of the doubly censored Gaussian ensemble model output statistics 

(CN EMOS) model, its boosted version (CN EMOS-B) and the correspond­

ing distributional regression network (CN DRN) technique together with 

the linear quantile regression (LQR), quantile regression neural network 

(QRNN) and its non-crossing variant (NCQRNN) and Bernstein quantile 

network (BQN) methods.

We found that compared to the raw PV power ensemble, any form 

of statistical post-processing significantly improves the predictive per­

formance, resulting in, for instance, an 11.08–14.73% overall gain in 

terms of the mean continuous ranked probability score. Post-processing 

also decreases the quantile score, the mean absolute error of the median 

and the root mean squared error of the mean, improves the reliability, 

and yields almost perfect coverage of the nominal central prediction 

intervals; however, at the cost of a deterioration in sharpness.
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Fig. 9. MAE of the median of post-processed and raw PV power forecasts normalized to the mean daytime power production of the PV plants (a) and MAES of 

post-processed forecasts with respect to the raw ensemble (b) as functions of the observation time.
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Fig. 10. Sample time series plot of the measured PV power production (blue) and the of the raw and calibrated ensemble probabilistic forecasts (red) for the Paks PV 

plant.

From the competing post-processing methods, the advanced machine 

learning-based non-linear non-parametric quantile regression models 

(QRNN, BQN, and NCQRNN) behave very similarly and consistently 

outperform the other four approaches. Among these three methods, the 

QRNN exhibits the best overall skill. In general, non-parametric meth­

ods show superior predictive performance compared to the parametric 

models, which matches the results of, for instance, [68]; nevertheless, 

the best-performing parametric CN DRN shows performance on par with 

the least skillful non-parametric LQR. Furthermore, our study also con­

firms that machine learning-based approaches surpass their traditional 

statistical counterparts (CN DRN vs. CN EMOS or QRNN vs. LQR), even 

though here the full potential of neural networks stemming from their 

capability of easily accommodating additional relevant covariates was 

not exploited; all models relied merely on the same set of inputs given 

by PV power ensemble forecasts or their summary statistics. The main 

advantage of the machine learning-based approaches in our study thus 

lies in their ability to flexibly model possibly non-linear relationships 

between the inputs and the various types of outputs characterizing 

predictive distributions.

6 . Conclusions

We investigated the forecast skill of seven different models for sta­

tistical post-processing of PV power ensemble predictions using a wide 

range of evaluation metrics. The chosen pool of post-processing methods 

represents, on the one hand, both parametric (CN EMOS, CN EMOS-B, 

CN DRN) and non-parametric techniques (LQR, QRNN, BQN, NCQRNN), 

and on the other hand, both traditional statistical (CN EMOS, CN EMOS-

B, LQR) and machine learning-based approaches (CN DRN, QRNN, BQN, 

NCQRNN). To the best of our knowledge, our study represents the first 

broad comparison of parametric and non-parametric post-processing 

methods for solar energy forecasting in a model chain approach. In line 

with the findings of, e.g., [9] or [23], our study confirms the superi­

ority of any form of statistical post-processing over the raw PV power 

forecasts, with the non-parametric models displaying the best overall 

predictive performance.

The post-processing methods considered in our study provide several 

avenues for further improvements and analysis. For example, compar­

isons with alternative non-parametric approaches that are not directly 

based on quantile regression, such as isotonic distributional regression 

[69], member-by-member post-processing [70], or conformal predic­

tion [71] might be of interest and could help to identify alternative 

approaches, although previous studies generally indicate a similar pre­

dictive performance to EMOS [16]. In addition, while our study indicates 

the superiority of non-parametric techniques over the parametric mod­

els, it would be interesting to investigate under what data availability 

conditions the parametric approaches become more efficient than, for 

instance, the quantile regression methods. Further, it has been noted in 

the post-processing literature that a key reason for the success of modern 

machine learning-based methods is their capability to include additional 

covariates, e.g., [17]. Therefore, the neural network-based parametric 

and non-parametric approaches might be further improved by extend­

ing their inputs with weather predictions from the NWP system. That 

said, [23] noted only minor improvements when doing so. Another route 

towards improving the predictive performance might be a more sophisti­

cated use of the lead time information, as for example proposed by [72], 

or incorporating expert variables into the set of possible covariates, fol­

lowed by a feature selection procedure, as discussed in [73]. Further, 
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instead of applying a single model chain only, it would also be possible 

to consider an ensemble of possible model chains [9], leading to a multi-

model ensemble forecast of PV power production. Given the relevance of 

probabilistic energy forecasts in grid operations and electricity markets, 

the statistical evaluation based on scoring rules considered here should 

further be accompanied by considerations of other aspects, including the 

economic impacts of improved forecasts [5]. Our study was limited to 

PV plants in Hungary. Extensions to other geographical regions would 

be of interest, but are not straightforward due to limitations in the public 

availability of PV power production data.

In recent years, machine learning–based, purely data-driven weather 

models have advanced rapidly. Notable examples include Pangu-

Weather [74], GraphCast [75], and AIFS [76], which provide determin­

istic forecasts, as well as more recent ensemble prediction systems such 

as GenCast [77] and AIFS-CRPS [78]. These models now surpass physics-

based NWP approaches for a range of weather variables. A key question 

in the context of solar energy forecasting is whether predictions from 

these data-driven weather models might replace NWP ensemble fore­

casts, and which role post-processing methods could play. For example, 

recent research has demonstrated that data-driven and physics-based 

weather models might equally benefit from post-processing [79,80]. 

However, most of the current data-driven weather models do not pro­

vide relevant outputs such as GHI, although there have been significant 

recent developments including the FuXi-2.0 model [81], which explicitly 

targets solar and wind energy forecasting.
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Appendix A . Significance of score differences

To address the significance of differences between the various fore­

casts in terms of the mean CRPS and MAE, we consider two different 

approaches. On the one hand, we complement the mean scores and some 

of the skill scores with Gaussian 95% confidence intervals using standard 

deviations based on 2000 stationary block bootstrap samples with ran­

dom block lengths drawn from a geometric distribution [82]. On the 

other hand, for each location and observation time, we perform pair­

wise Diebold-Mariano (DM) [83] tests for equal predictive performance 

and report the proportion of cases where the difference in mean CRPS 

and MAE is significant at a 5% level. Following the suggestions of [84], 

to control the false discovery rate in simultaneous testing, we apply the 

Benjamini-Hochberg algorithm [85]. To avoid the distortion resulting 

from very low observed and forecasted PV production values, the fol­

lowing analysis restricts the time interval of observations to the hours 

of peak PV power production between 06:00 and 16:00 UTC.

According to Fig. A.11(a), the parametric approaches and the sim­

ple LQR are significantly behind the QRNN in terms of the CRPSS to 

almost all considered observation times, and the same applies for the 

other two advanced nonparametric methods (BQN and NCQRNN, not 

shown). Considering the MAES of the median (Fig. A.11(b), the situa­

tion slightly changes, as the skill scores of the CN DRN approach are 

mainly between the lower and upper confidence bounds for the MAES 

of the QRNN (and the BQN and NCQRNN as well, not shown). Finally, 

even the CRPSS values of the worst performing CN EMOS approach are 

significantly positive during the whole observation period (not shown), 

the minimal value of the 95% lower bound is 7.27%, and the MAES of 

this parametric method is not significantly positive at a 5% level only at 

06:00, 06:30, 06:45 and 14:30, 14:45, 15:00 UTC (not shown).

Furthermore, Tables A.6 and A.7 confirm that compared to the 

raw ensemble, any form of post-processing significantly and consis­

tently improves the mean CRPS of the probabilistic predictions and the 

MAE of the median forecasts. They also verify that where Tables 5 

and 1 show substantial differences in terms of the mean CRPS and 

MAE between the QRNN, BQN, and NCQRNN approaches and the 

other four post-processing methods, these differences are significant at

a 5% level.

Finally, Fig. A.12 approaches the question of significance in the score 

differences from another angle. Each entry summarizes the results of 

287 parallel pairwise one-sided DM tests (7 locations, 41 observation 

times) by reporting the proportion of cases where the difference in pre­

dictive performance of the compared forecasts is significant at a 5% 

level. The results of these DM tests are completely in line with the con­

fidence interval-based findings: the differences between QRNN, BQN, 

and NCQRNN are minor, the raw forecast is significantly behind the 

post-processed ones in more than 98% of the cases, and the differences 

between the various post-processing approaches in terms of the MAE of 

the median are less pronounced than in terms of the mean CRPS.
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Fig. A.11. CRPSS (a) and MAES of the median (b) of post-processed PV power forecasts normalized to the mean daytime power production of the PV plants with 

respect to the raw ensemble as functions of the observation time (06:00–16:00 UTC) together with 95% confidence intervals for the QRNN method.

Table A.6 

Mean CRPS of post-processed and raw PV power forecasts normalized to the 

mean daytime power production of the PV plants for the 06:00–16:00 UTC 

time period together with 95% confidence intervals.

Forecast Overall Bodajk Cegléd Felsőzsolca

CN EMOS 22.41±0.23% 23.13±0.63% 22.37±0.53% 24.77±0.71%

CN EMOS–B 22.44±0.23% 23.10±0.64% 22.26±0.53% 24.84±0.72%

CN DRN 21.92±0.23% 22.36±0.62% 21.79±0.55% 24.15±0.74%

LQR 21.90±0.23% 22.57±0.61% 21.64±0.53% 24.21±0.69%

QRNN 21.42±0.23% 21.99±0.61% 21.23±0.54% 23.49±0.72%

BQN 21.44±0.23% 22.00±0.61% 21.22±0.55% 23.46±0.73%

NCQRNN 21.44±0.23% 22.03±0.61% 21.21±0.54% 23.59±0.72%

Ensemble 25.08±0.26% 26.09±0.71% 24.83±0.61% 27.58±0.78%

Fertőszéplak Magyarsarlós Paks Újkígyós

CN EMOS 23.62±0.69% 20.47±0.54% 20.96±0.59% 21.63±0.57%

CN EMOS–B 23.81±0.69% 20.41±0.54% 20.94±0.58% 21.80±0.57%

CN DRN 23.14±0.69% 20.19±0.54% 20.52±0.59% 21.35±0.59%

LQR 23.16±0.66% 20.28±0.53% 20.35±0.58% 21.15±0.56%

QRNN 22.57±0.68% 19.95±0.54% 20.04±0.57% 20.71±0.57%

BQN 22.63±0.69% 20.00±0.53% 20.02±0.58% 20.81±0.58%

NCQRNN 22.67±0.68% 19.85±0.54% 20.04±0.58% 20.75±0.58%

Ensemble 25.93±0.79% 24.66±0.61% 23.08±0.65% 23.45±0.64%

Table A.7 

MAE of the median of post-processed and raw PV power forecasts normalized 

to the mean daytime power production of the PV plants for the 06:00 – 16:00 

UTC time period together with 95% confidence intervals.

Forecast Overall Bodajk Cegléd Felsőzsolca

CN EMOS 31.31±0.33% 32.32±0.90% 31.58±0.78% 34.51±1.00%

CN EMOS–B 31.03±0.32% 31.94±0.90% 31.06±0.76% 34.34±0.99%

CN DRN 30.69±0.33% 31.49±0.89% 30.77±0.79% 33.81±1.03%

LQR 31.11±0.33% 32.10±0.90% 30.86±0.80% 34.32±1.01%

QRNN 30.46±0.34% 31.38±0.88% 30.25±0.81% 33.23±1.06%

BQN 30.40±0.34% 31.26±0.88% 30.17±0.82% 33.04±1.07%

NCQRNN 30.40±0.34% 31.32±0.89% 30.17±0.81% 33.28±1.05%

Ensemble 32.53±0.34% 33.89±0.92% 32.20±0.83% 35.57±1.02%

Fertőszéplak Magyarsarlós Paks Újkígyós

CN EMOS 33.12±0.95% 28.12±0.78% 29.31±0.85% 30.29±0.84%

CN EMOS–B 32.98±0.95% 27.85±0.76% 28.95±0.81% 30.20±0.83%

CN DRN 32.47±0.96% 27.89±0.78% 28.75±0.85% 29.78±0.84%

LQR 32.97±0.99% 29.11±0.78% 28.77±0.85% 29.77±0.86%

QRNN 32.15±1.00% 28.50±0.80% 28.47±0.84% 29.36±0.87%

BQN 32.09±0.99% 28.65±0.80% 28.37±0.85% 29.33±0.86%

NCQRNN 32.11±0.99% 28.36±0.80% 28.41±0.85% 29.26±0.86%

Ensemble 33.56±1.01% 32.05±0.81% 30.10±0.88% 30.43±0.85%
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Fig. A.12. Proportion of cases where the null hypothesis of equal predictive performance in terms of the mean CRPS (a) and MAE (b) of the corresponding one-sided 

DM test is rejected at a 5% level of significance in favor of the forecast in the row when compared with the forecast in the column.

Data availability

The data that has been used in the present study is confidential.
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