KIT | KIT-Bibliothek | Impressum | Datenschutz

Mitigating Label Noise using Prompt-Based Hyperbolic Meta-Learning in Open-Set Domain Generalization

Peng, Kunyu ORCID iD icon 1; Wen, Di ORCID iD icon 1; Sarfraz, Muhammad Saquib 1; Chen, Yufan 1; Zheng, Junwei 1; Schneider, David 1; Yang, Kailun 1; Wu, Jiamin; Roitberg, Alina 2; Stiefelhagen, Rainer ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)

Abstract:

Open-Set Domain Generalization (OSDG) is a challenging task requiring models to accurately predict familiar categories while minimizing confidence for unknown categories to effectively reject them in unseen domains. While the OSDG field has seen considerable advancements, the impact of label noise–a common issue in real-world datasets–has been largely overlooked. Label noise can mislead model optimization, thereby exacerbating the challenges of open-set recognition in novel domains. In this study, we take the first step towards addressing Open-Set Domain Generalization under Noisy Labels (OSDG-NL) by constructing dedicated benchmarks derived from widely used OSDG datasets, including PACS and DigitsDG. We evaluate baseline approaches by integrating techniques from both label denoising and OSDG methodologies, highlighting the limitations of existing strategies in handling label noise effectively. To address these limitations, we propose HyProMeta, a novel framework that integrates hyperbolic category prototypes for label noise-aware meta-learning alongside a learnable new-category agnostic prompt designed to enhance generalization to unseen classes. ... mehr


Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Produktentwicklung (IPEK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2026
Sprache Englisch
Identifikator ISSN: 0920-5691, 1573-1405
KITopen-ID: 1000190454
Erschienen in International Journal of Computer Vision
Verlag Springer
Band 134
Heft 3
Seiten Art.Nr: 99
Vorab online veröffentlicht am 03.02.2026
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page