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Abstract. The explosive growth of Al-driven services has led to cloud-based Field
Programmable Gate Array (FPGA) accelerators as key enablers of high-performance
training and inference in modern data centers. Since 2024, the demand for deploying
large AI workloads, especially Large Language Model (LLM), in the cloud has
increased dramatically, intensifying competition among cloud providers and increasing
pressure on shared FPGA infrastructures. This increasing reliance highlights the need
for robust hardware security measures for cloud FPGAs. A particularly serious threat
is fault injection attacks, which exploit dynamic voltage fluctuations to induce timing
faults, potentially compromising functional integrity and bypassing cryptographic
protections. However, existing verification procedures and structural Design Rule
Check (DRC) remain blind to attacks embedded in benign-looking circuits. In this
paper, we present Power-Wasting Neural Network (PWNN), a novel adversarial
technique that leverages the inherent switching behavior of neural network operations
to act as a power-waster circuit under adversarial input patterns. We systematically
explore network architectures, and input patterns to craft configurations that induce
voltage fluctuations capable of triggering timing faults for successful Differential
Fault Analysis (DFA). Our PWNN implementation uses a standard open-source tool
chain and passes all pre-implementation verification checks, while covertly inducing
faults at runtime. We demonstrate on both the AMD ZCU104 and PYNQ-Z2 that
PWNN can reliably cause timing faults on the critical path of a co-located AES-128
block cipher, enabling the rapid collection of correct/faulty ciphertext pairs needed
for DFA-based key recovery. These results show that functionally correct, DRC
compliant accelerators can serve as powerful, adaptive fault injectors that invalidate
assumptions about bitstream security and hardware isolation.

Keywords: Fault injection attack - Neural network - AES key recovery - Cloud
FPGA

1 Introduction

Modern computing infrastructures, including AT applications [FAFK*24, OLK25], online
banking [YWC*24], healthcare systems [HBH24, TCC™"24], industrial control and commu-
nication networks, form the foundation of almost every aspect of daily life. Ensuring the
security of both software and hardware platforms is critical. While software vulnerabilities
have been extensively studied and patched for decades, hardware is often assumed to be
inherently trustworthy once manufactured and configured. However, as hardware functions
become increasingly complex and reconfigurable, new attack vectors are emerging that
can undermine this assumption [CNGT24, SZY21, LHWW?22].

Field Programmable Gate Array (FPGA) is playing an increasingly important role
in modern computing. Its ability to be reconfigured on demand makes FPGAs ideal
for accelerating a variety of workloads, including AT inference, cryptographic processing
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and real-time signal analysis. In recent years, cloud service providers have integrated
FPGAs into large data centers to enable high-performance, low-latency computing for a
wide range of users. Platforms such as Amazon EC2 F2 [Ama25] and Microsoft Azure’s
[Mic25] configurable compute instances allow customers to deploy custom logic in a shared
hardware environment. This multi-tenant FPGA model offers flexibility and efficiency,
but also brings unique security challenges that arise from the physical sharing of on-chip
resources [EKC19]. In addition, advances in heterogeneous and 3D integration have enabled
FPGAs to be tightly integrated with CPUs, GPUs, and DRAM in the same package,
forming chiplet-based SoCs [Man25, CZL™25, ZYCH22, ZWY ™ 24]. For example, AMD’s
recent designs leverage chiplet architectures to incorporate reconfigurable logic (Xilinx
XDNA) alongside general-purpose cores and high-bandwidth memory, making FPGAs an
integral component of unified compute fabrics [AMD24, AMD25]. These trends amplify
the attack surface, as FPGAs become embedded in high-performance systems with shared
power, thermal, and memory domains, raising the stakes for hardware-level security in
both edge and cloud deployments.

In cloud FPGA environments, users occupy separate partitions that are logically
isolated but share underlying resources such as the PDN, interconnect, and clocks. This
shared infrastructure enables malicious tenants to compromise the timing or correctness of
neighboring designs One notable vulnerability is voltage fluctuations caused by aggressive
dynamic power consumption [MLPK20, PHT20]. A design that intentionally switches a
large number of gates at a high frequency can cause significant transient local voltage
drops that lead to timing faults in neighboring circuits.

Simple circuits such as ring oscillators or high-speed shift registers can act as power-
wasters by deliberately drawing current to disrupt the critical timing path of other parts
of the chip [KSY23, ZS25]. To defend against these attacks, FPGA vendors and cloud
providers implement a combination of Design Rule Check (DRC), bitstream scanning, and
enforcement of placement and routing constraints to detect and block known fault injection
attack structures during the deployment of user designs [LMG™20, LPPK23, ZGK22,
MSRZ"25]. However, these safeguards are primarily focused on detecting fixed, structural
patterns and are often ineffective against adaptive or input-triggered fault injectors.

In this paper, we propose Power-Wasting Neural Network (PWNN) that re-purpose
binarized neural network accelerators as dynamic power wasters that trigger precisely
controlled fault injection attacks on cloud FPGA platforms. These designs leverage
the inherently high toggle rates of binary operations—such as XNOR based matrix
multiplication and popcount accumulation that are commonly found in lightweight Al
inference engines. Under typical operation, the network appears benign, functioning as a
standard low-precision neural model. With specially developed trigger inputs, however,
the same operations generate extreme switching activity that leads to abnormal voltage
drops on Power Distribution Network (PDN). This dual behavior makes the network
appear structurally innocent, as the malicious behavior is only activated conditionally.
Because the PWNN is built exclusively from standard lookup table logic and adheres to all
synthesis constraints, it is assumed to pass manufacturer verification and escapes existing
security checks in the cloud.

We validate our approach mainly on two AMD FPGA platforms: the resource-constrained
PYNQ-Z2 and the commonly used cloud FPGA Zynq UltraScale+. Our experiments
show that the activation of PWNN can reliably inject single-bit or multi-bit faults in a
co-located AES-128 block cipher [Nat23]. This demonstrates that it is possible to collect
correct and faulty ciphertext pairs for Differential Fault Analysis (DFA) [DLV03] in under
a second with a few plaintexts under certain conditions. We also systematically investigate
how factors such as the network topology and the number of concurrent PWNN instances
influence fault rate and injection accuracy. In this work, we model PWNN architectures
using an open-source FINN framework from AMD research lab [UJFGT17].
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Our Contributions

Our main contribution is the introduction of PWNN, a power-wasting neural network
designed for remote fault injection on cloud FPGA platforms. We propose a methodology
that leverages begnig-looking Al workloads to induce faults while evading detection.
PWNNSs convert binarized neural network accelerators into stealthy circuits that behave
normally under random inputs but induce excessive power consumption when activated by
specific trigger inputs, all while remaining fully compliant with vendor design rule checks
and bitstream security verification. Unlike other power-wasters presented in previous
research [MLPK20, PHT20] PWNNSs are not statically identifiable by security check in
cloud FPGA platform. They can only be triggered at runtime by certain input patterns,
which makes them extremely difficult to detect by existing security measures.

Furthermore, we also conduct a comprehensive and systematic study of PWNN design
parameters. We investigate how the depth of the adder tree, the number of parallel PWNN
instances and their placement on the FPGA fabric influence the switching activity, the
fault intensity and the rate of exploitable faults. This systematic investigation shows how
design decisions influence the effectiveness of the attack.

Finally, we validate our approach through practical experiments targeting both
cryptographic and arithmetic modules. In particular, we show that PWNNs can reliably
inject faults into the AES-128 encryption module and the 256-bit Ripple Carry Adder (RCA)
on two representative AMD FPGA platforms: the resource-constrained PYNQ-Z2 and
the commonly used cloud FPGA Zynq UltraScale+. Our results show that PWNNs can
reliably generate correct and faulty ciphertext pairs under precise control, enabling a
range of fault attacks on cryptographic cores. While we demonstrate DFA as one concrete
example, the underlying fault injection attack capability of PWNNs is broadly applicable
to many fault-based attack strategies.

2 Background and Related work

2.1 Threat Model

We examine a well-documented multi-tenant FPGA environment [KGT18, DSZ21], which
includes applications within data centers such as the Amazon EC2 F2 FPGA instance
[Ama25], as well as SoC platforms. In these scenarios, distinct CPU processes can
independently utilize portions of the FPGA logic, as illustrated in Figure 1. The victim
and adversary operate within separate processes managed by the same operating system
and each have access to a dedicated fraction of an FPGA, where they can load their own
arbitrary designs, such as cryptographic accelerators. Their respective designs are logically
and spatially isolated on the FPGA, but it is assumed that the entire FPGA fabric shares
a common power supply.

Further, we assume that the victim employs their allocated region for implementing a
security-critical algorithm, such as a block cipher, with a secret key either hard-coded or
loaded at runtime. In this work, we focus on AES as the target algorithm. The adversary
is assumed to have the ability to issue arbitrary encryption requests and observe the
corresponding outputs. In practice, it may suffice to trigger the encryption of the same
(but random) plaintext twice, which is sufficient for DFA. Even weaker conditions may be
adequate for other types of fault attack.

2.2 Power-Wasters Circuits and Fault Attacks on FPGAs

FPGAs in multi-tenant systems can be used by adversaries to exploit the vulnerability of
shared PDN. In these attacks, a malicious circuit, which is usually called a power-waster,
can be implemented on FPGA to force the shared supply voltage to drop or glitch, resulting
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Figure 1: Threat model in multi-tenant environment.

in timing faults in victim logic [KGT18, MDH™'22]. The adversary can then use the faulty
outputs (for example, from an AES cipher) to perform DFA or other key-recovery methods.
Such attacks are possible on-chip within single FPGA [KGT18] or FPGA as part of a
System on Chip (SoC) [MDH™22], or theoretically even with multiple chips sharing power
supply at the board level.

2.2.1 Effect of Power-Waster Circuits on FPGAs

The dynamic power consumption of a (power-waster) circuit in an FPGA is primarily
determined by switching activity following the relation, where Cly.itching is the capacitive
load , fswitching is the operating frequency, and Vpp is the supply voltage:

~ 172
den ~ VDD : fswitching : Oswitching (1)

Circuits designed to maximize signal toggling with preferably minimal logic utilization are
effective for inducing high dynamic power consumption in FPGAs. The main idea here is
to create events with peak dynamic power consumption which will not be well regulated at
PDN and cause a voltage drop. For instance, it was shown that simultaneous activation of
a large amount of Ring Oscillators (ROs) causes the voltage to drop by a certain amount
and then more slowly return to the original value [GOKT18]. Such voltage drops can be
high enough to crash the whole FPGA-based system [GOT17].

To explore how the supply voltage of an FPGA can be reduced using on-chip logic
elements, it is essential to understand the behavior of the PDN under the influence of
different circuit designs. The PDN spans from the external voltage regulation module
on the board to the internal power rails and ultimately to every transistor within the
FPGA. Tt is typically modeled as a mesh comprising resistive, inductive, and capacitive
components. Consequently, the supply voltage is affected by two primary factors: the
average static current drawn by the implemented design (resulting in an Isa¢. - R drop),
and transient voltage fluctuations caused by switching activity and inductive effects. This
relationship is described by the Law of Inductance:

di
Vdrop = lstatic * R + L% (2)

However, with ongoing technology scaling, the impact of static voltage drops has diminished
in significance, while the influence of dynamic voltage fluctuations due to inductive
components and switching activity has become increasingly prominent.

Further, the runtime variations of voltage cause changes in actual signal delays in the
implemented circuits on the FPGA, which can be described with the following relation:

1
t N 3
vdrop delay VDD — Vdrop ( )
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The clock signal driving any functional block in a synchronous FPGA design imposes
timing constraints on all associated signal paths. Typically, FPGA mapping tools ensure
these constraints are met by accounting for expected process variations as well as runtime
fluctuations in voltage and temperature. However, under extreme voltage glitch conditions,
these assumptions may no longer hold, potentially leading to timing violations. This can be
described with the following relations, where t., is the clock period, tsetyp is the register
setup time, and tcomp static 1S the combinational path delay excluding runtime variations:

tclk < tsetup + tcmnb static T t'ud'rop delay (4)

As a result, incorrect data may be latched into sequential registers, causing functional
faults or exploitable faults.

2.2.2 Known Power-Waster Circuits for FPGAs

The most common and simple power-waster circuit is an array of ROs. In an FPGA the
RO is implemented as LUT-based combinational loops, which toggle the output signal,
drive it back to the input and oscillate this way with a very high frequency. For fault
injection attack, an array of such ROs is toggled at high frequency. The excessive switching
current causes a supply voltage drop, lengthening logic delays and triggering timing faults.
To make the attack more precise, the number of active ROs, activation patterns, frequency
and duty cycles can be controlled by the adversary [KGT18, PHT20].

Additionally, power-wasters can be implemented with shift registers driven by a very
high clock speed. Here, a set of looped shift registers is used, and each is initialized with a
sequence of 1’s followed by 0’s in a way that after each shift the signal at the output of
each register in the chain is toggled [PHT20]. Although shift registers are less effective
at wasting power compared to RO-based circuits, they are often integrated with the
functional logic of an Intellectual Property (IP) core, making them difficult to distinguish
from legitimate design elements. This allows a malicious user to embed numerous shift
registers within an IP core to stealthily increase power consumption and potentially induce
voltage instability.

Since signal glitches contribute significantly to a circuit’s overall dynamic power
consumption, they are also exploited in the design of power-wasting circuits. In this
context, "glitches" do not refer to fault injection attacks, but to unwanted multiple output
transitions of a logic gate caused by mismatched arrival times of its input signals. These
mismatched arrival times typically arise from imbalanced path delays leading to the gate’s
inputs. Furthermore, the effect of glitches can be magnified in longer combinational paths,
which are also designed in a way to make many concurrent and consecutive unbalanced
paths. An example is the combinational concatenation of a single block-cipher round
instances (such as Advanced Encryption Standard (AES)) repeated in a longer chain
with XOR gates in between the instances driven by the outputs of different stages in the
chain [PHT20]. Another example is s1238 from the ISCAS’89, which also can be used as a
power-wasting circuit as shown in [KGT21].

2.2.3 Detection of Power Wasters

Design Rule Check (DRC). Cloud providers rely on FPGA vendor DRC to catch naive
Trojans. For instance, Amazon’s F1 service runs AMD DRC on the user’s netlist to reject
obvious ROs before generating the bitstream [ZVFT21]. Gross short-circuits or extremely
high-fanout nets are also flagged. However, as noted in the literature, DRCs are limited: a
ring oscillator with a register or latch added (making it sequential) may bypass the “no
feedback loop” rule yet still toggle at high frequency [PHT20]. Similarly, glitch-amplifier
circuits (e.g. a flip-flop feeding an XOR with delayed feedback) can self-oscillate without
forming a simple loop.
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Signature/Pattern Scanning (Bitstream Antivirus). Bistream can be scanned
for malicious signatures or patterns like it is done by conventional antivirus software [KGT19,
LMG™20]. This works well for any known malicious circuit designs, including power-
wasting circuits. However, it would require continuous updates to protect against any
newly introduced malicious designs.

Machine Learning on Bitstreams or Netlists. Machine Learning (ML) can be
trained to recognize malicious patterns in Bitstreams or Netlists. Convolutional Neural
Network (CNN) trained on raw bitstream data can distinguish normal vs. malicious
designs [CC22]. Graph Neural Network (GNN), the MaliGNNoma framework [ANK™24],
builds a graph of the synthesized netlist (gates and interconnects) and applies a Graph
Neural Network to classify it as benign or malicious.

Formal and Analytical Methods. Run formal checks (SAT/SMT) for forbidden
structures on the netlist. For instance, one could use a SAT solver to detect any com-
binational loop or use graph algorithms to find exceptionally high-fanout nodes. These
methods are akin to vendor DRCs but can be more exhaustive. However, they share the
same limitation: they must know what to look for.

Runtime Monitoring. FPGAs include sensors that can indirectly detect anomalies
at run-time. For example, AMD Ultrascale4 parts have on-chip power monitors and
RO-based sensors; Intel Stratix devices expose power rails and temperature sensors.
Additionally, sensors can be implemented using reconfigurable FPGA logic, e.g. based
on Time-to-Digital Converter (TDC) [MZTF22]. These can be polled to flag unusual
switching activity.

In modern FPGA design flows, vendor toolchains (e.g., Vivado, Quartus) provide not
only synthesis/P&R /timing sign-off but also built-in power analysis. These analyzers come
in two modes: vectorless (default) and vector-based (simulation driven). Vector-based
estimates are more accurate but cannot guarantee coverage, while advanced statistical
methods (e.g., sigmaDvD) are not yet integrated in current FPGA flows. Estimating
worst-case power is especially infeasible for NN accelerators in the cloud, since inputs and
weights can be modified at runtime, enabling adversaries to maximize switching. Vendor
DRCs enforce legality and block obvious oscillators, but they cannot capture NN parameter
dependent power peaks. This gap makes multi-tenant cloud FPGAs vulnerable: attackers
can deliberately stress the shared PDN to impact co-located designs.

2.3 FINN

FINN [UJFG™17] is an open-source framework developed by AMD Xilinx Research for
generating FPGA accelerators from quantized and binarized neural networks (QNNs and
BNNGs).Its architecture adopts a dataflow model in which each neural network layer is
implemented as a separate, stream-connected hardware block, enabling fine-grained control
over latency, throughput, and parallelism. FINN leverages High-Level Synthesis (HLS) to
generate vendor-compatible IP cores and supports exporting trained models from PyTorch
(via Open Neural Network Exchange (ONNX)) into deeply pipelined, hardware-efficient
architectures.

The accelerators generated by FINN are structured to be compatible with standard
vendor tool chains like Vivado, which perform DRC during implementation. Our PWNN
designs, generated through FINN’s flow, pass all vendor-enforced checks without triggering
alerts, demonstrating that such adversarial behavior can be embedded even in tool chain
compliant designs.
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Figure 2: PWNNs are iteratively optimized by evaluating values from on-chip voltage
sensor, fault intensity in Ripple Carry Adder (RCA) and fault rates from Advanced En-
cryption Standard (AES), guiding both network architecture exploration and input/weight
optimization.

3 Methodology

3.1 End-to-End Workflow

In this subsection, we present our method for constructing a malicious Binarized Neural
Network (BNN) that functions as a power-wasting circuit. The goal is to induce voltage
drops in neighboring circuits on multi-tenant FPGA platforms, causing timing faults
when triggered. We leverage AMD’s open-source FINN framework [UJFGT17] to produce
accelerators that appear benign but exhibit harmful, input-dependent behavior at runtime.
As part of the standard design flow, we ran the DRC using the Vivado Design Suite to
ensure our accelerators complied with implementation constraints. Our attack consists of
four key stages:

1. Topology Search & Optimization: We systematically explore a range of BNN
topologies by varying the number of input features, the size of hidden layers, and
the activation quantization strategies, with the goal of maximizing switching activity
while maintaining a small hardware footprint. Based on an empirical evaluation,
we choose a compact single-layer MLP with binary weights and activations (£1)
implemented with Brevitas and Pytorch [Xil19] in software.

2. Joint Input & Weight Optimization: We jointly optimize the network weights
and two input images using a custom loss that maximizes the Hamming distance
between XNOR outputs and bit flips in the adder tree. Alternating these inputs each
clock cycle drives near-maximum toggling across all neurons, thereby maximizing
switching activity.

3. Stealth Compliant Synthesis via FINN: The optimized model and input patterns
are exported to ONNX and compiled with FINN into vendor HLS modules and
streaming kernels. FINN produces a standalone bitstream that can be deployed
with a victim core on a shared cloud FPGA. Although PWNN and victim logic are
isolated in logic and placement, they still share low-level resources such as the PDN,
clock trees, and interconnects.



Huashuangyang Xu, Sergej Meschkov, Vincent Meyers and Mehdi Tahoori 455

4. Cycle-Level Attack Execution: At runtime on a cloud FPGA the adversary loads
two input patterns into on-chip buffers and alternates them each inference to induce
voltage drops on the shared PDN. These drops can produce timing faults on the
victim’s critical path at arbitrary cycles, enabling runtime fault attacks (e.g., DFA)
to recover block cipher keys.

We propose a closed-loop design and deployment methodology for PWNNs, where
fault effects are measured and fed back to guide the generation of power-wasting behavior
that induces voltage-based timing faults. The workflow, shown in Figure 2, comprises two
phases: (i) generation and optimization of the PWNN and (%) fault-injection evaluation
on a cryptographic target.

To identify an effective architecture, a broad set of BNN topologies are examined by
varying layer width and input dimensionality. Each candidate is implemented in software
using PyTorch and Brevitas, then subjected to joint input and weight optimization using
the Adam solver [KB14]. During backward propagation we apply the loss function as
defined in Subsection 3.2, updating both the network parameters and the two binary trigger
images so that the internal circuit logic maximizes bit-level toggling during operation.
Each candidate is compiled with the standard FINN framework tool chain, deployed to
the FPGA alongside an n-bit RCA as a reference canary circuit, and exercised while an
on-chip sensor records the resulting voltage drop. We select the inputs for the RCA in
a way that forces the carry to propagate through each full adder in turn, the structure
behaves like a long delay line: a deeper voltage drop stops the carry earlier, so the distance
it travels, reflected in how many higher-order sum bits become faulty as the fault moves
toward the most significant bit, is a direct measure of the magnitude of the voltage drop.
In addition, we study the correlation between the bit-level fault pattern and the power
trace to evaluate each design. If the induced fault intensity remains below the target
value, the BNN topology needs to be adjusted, and the optimization loop is repeated. The
optimization ends as soon as the fault intensity has reached the expectation within the
resource and software limits. The resulting PWNN bitstream and the associated trigger
inputs are then saved as the final configuration.

After completion of this phase, we evaluate the fault injection rates of the optimized
PWNN for AES-128 block cipher on two distinct boards, namely an AMD PYNQ-Z2 and
an AMD ZCU104. For each platform, we measure three metrics: the overall fault rate,
the subset of faults that meet the classical DFA model, and the effort required to gather
enough correct/faulty ciphertext pairs (number of plaintexts and consumed time). For
experiments on the ZCU104, we deploy 8 instances of the PWNN and vary the number of
active power-wasting accelerators running in parallel. Here we also elaborate on the effects
of the placement and for a given number of activated PWNN instances, try all possible
combinations of available PWNNSs.

3.2 Generating Power-Wasting NN with FINN

We first train our PWNN in software using the Brevitas library developed by the AMD Al
Research Lab. Brevitas is specifically designed to train quantized neural network models
suitable for efficient hardware deployment while preserving the full functionality and
flexibility of PyTorch. In contrast to typical use cases where throughput is often traded
off for reduced area by folding the architecture, we configure the number of Processing
Element (PE) and Single Instruction Multiple Data (SIMD) lanes to their maximum values,
thereby ensuring full spatial parallelism in the hardware. This setup allows us to directly
control the switching behavior at the granularity of individual XNOR and adder gates,
resulting in predictable and reproducible power characteristics.

We choose the BNN as the base architecture for our PWNN method for two main
reasons, though other neural network architectures could also be extended or utilized
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Figure 3: Resource-efficient BNN design in FINN: multiplications are implemented via
XNOR-popcount logic, and nonlinear activations are realized as simple, threshold functions
in hardware.

within the PWNN framework. First, the FINN framework efficiently saves hardware
resources by implementing multiplications as XNOR followed by popcount operations,
which aligns naturally with BNN computations. Second, due to the binary nature of
BNNSs, we can create a training target that explicitly controls both the input and weight
patterns, giving us precise control over switching activity and thus power consumption
variations within the FPGA fabric. However, once the network is deployed on our BNN
accelerator, switching is controlled almost exclusively by the input patterns, as the XNOR
logic renders the stored weights largely inactive.

Figure 3 illustrates the hardware data path of a single neuron: individual bits of
the input and weight vectors are compared via XNOR gates, and their outputs are fed
through a deep adder tree that accumulates the total popcount. Accumulated result is
then evaluated by a simple threshold function, which produces a binary activation of either
—1 or +1.

To generate PWNN configurations that maximize dynamic power consumption on
FPGA hardware, we develop a custom training procedure that jointly optimizes both the
weights and the selected inputs of the network. The goal is to generate input pairs that
trigger high density gate-level switching activity in the hardware, thereby inducing frequent
and widespread bit-flips during inference. As detailed in algorithm 1, we optimize the
weights 6 and two binary inputs x1, x5 simultaneously. For each training step, the network
is executed on both inputs, resulting in the corresponding bitwise XNOR outputs and
popcount intermediate values on each layer, which together capture the internal switching
activity of PWNN.

The loss function maximizes the absolute differences between these outputs:

L= _Had —Clz||1 - ||p1 —p2||1’

Here, £ measures the total number of bits that toggle between two successive forward
passes both at the XNOR gate outputs and at intermediate results of the adder tree.
Rather than minimizing a conventional loss, the training objective is to maximize this
switching activity. In effect, the optimizer searches for network parameters that induce
the greatest number of bit flips across the entire circuit, thereby driving the model toward
configurations that exhibit maximal internal dynamic behavior.

Optimization proceeds via the Adam optimizer, with Straight-Through Estimators
(STE) used to back propagate gradients through binarized operations. After each update,
weights are clipped to [—1, 1] and binarized, and inputs are clipped to [0, 1] to maintain
valid binary states. The best-performing configuration (6*, z7, z3) is retained.
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Algorithm 1: Co-optimization of inputs and binarized weights for PWNN infer-
ence, driving peak switching activity in hardware.

Input: Quantized BNN model Fy;
Random binary inputs z1, 25 € {0,1
Learning rate schedule {7;}; total epochs N
Output: Optimized weights 6* and inputs =7, =5
1 Notation:
2 - a;: bitwise XNOR output for input x;
3 - p;: intermediate bit-flip counts in the adder tree during popcount stage for a;
4 Initialize 6, 1, zo randomly ;
5 fort=1to N do

}hxw;

6 | (a1,p1) < Fo(z1) ;
7 (az,p2) < Fo(x2) ;
8 | L« —|sign(ar — a2)lly — [Isign(pr — p2)ll1 ;
9 Compute gradients Vg z, 2, L ;
10 Update:
00— ntVQa Ty Chp(xl - ntvwﬂoa 1)7 To Cllp(.’l}g - ntvwza 07 1)
Clip weights: 6 « clip(d,—1,1) ;
11 if loss improves then
12 L Save 0%, z7, =5

* * *
13 return 0%, x7, x5

Finally, this configuration is deployed via the FINN tool chain into a fully parallel
accelerator (PE=MAX, SIMD=MAX), ensuring that the toggling behavior optimized
in training manifests faithfully in hardware, resulting in significantly increased dynamic
power consumption and effective fault injection attack.

In our FPGA implementation generated by the FINN framework, the accelerator 1P
is originally designed with a direct streaming interface where input pattern flows from the
input Direct Memory Access (DMA) directly into the stitched accelerator block. To enable
more controlled and flexible input pattern generation for fault injection attack experiments,
we modify this data path as follows:

o We break the direct connection between the input DMA and the accelerator IP block.

e In place of the direct streaming path, we insert a custom controller module with
on-chip memory.

e The ARM processor writes input patterns into the controller’s on-chip memory.

e The controller then reads out these pre-stored input patterns into the accelerator,
alternating between two distinct input patterns.

o Additional delay cycles used to activate PWNN can be configured via AXI registers
in controller.

By switching between two input patterns stored on the chip, the PWNN is forced to
repeatedly change its internal states, maximizing the voltage drops to add larger delays on
the critical timing path and cause timing faults on the target module.
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Figure 4: Example attack scenario evaluated in this work: On the left, a malicious NN,
which acts like benign while processing random inputs. On the right, the same NN which
turns into power-wasting circuit while processing a trigger input. This causes a voltage
drop on the shared PDN, which result in delay faults at the logically separated neighboring
AES-128 core, enabling key extraction via fault injection attack.

3.3 Attack Flow

In our example attack flow as illustrated in Figure 4, an adversary first uploads a mali-
cious FPGA bitstream implementing the PWNN accelerator and deploys it into its own
reconfigurable partition. To avoid triggering any dynamic power consumption alarms,
PWNN initially runs on random input patterns and generates only nominal gate-level
switching activity. As soon as the cryptographic module is in place and starts working,
the adversary switches the PWNN input to two specially generated patterns that force
maximum switching of the internal circuits and insert timing faults at certain clock cycles.

Next, the adversary uses the cloud provider’s host API to transmit a set of selected
plaintexts to the victim’s AES engine and records the correct ciphertexts in stealth mode.
With this data in hand, the adversary uses simple delay loops or inactive clock domain
switching on the soft CPU to gradually match the highly active PWNN bursts with the
critical, targeted round S-box computations of the AES kernel. By performing a small
number of test injections and statistically analyzing the outputs, the exact cycle offset for
fault induction is determined.

Once PWNN and the victim’s AES-128 core are synchronized, the adversary first
feeds a fixed set of selected plaintexts into the AES engine and records the corresponding
correct ciphertexts under normal performance conditions. Then with help of the previously
determined delay offset, the adversary reuses the same set of plaintexts while activating
PWNN with maximum switching activity under high power input patterns. This leads to
timing violations in the timing-sensitive part of the AES core and causes it to output the
matching faulty ciphertexts for this identical plaintext sequence.

Ideally, we expect a one-byte fault to occur in round 8 of the AES computation in
a precise fault injection attack with PWNN. This single-byte fault is then propagated
to other rounds due to the MixColumns and ShiftRows operations, which distribute the
single-byte fault across multiple state bytes. The adversary focuses on the last round and
collects 4 different faulty ciphertexts, each generated by the same fault location but with a
different plaintext.

With these four pairs of correct and faulty ciphertext, the adversary performs a DFA
entirely in software: For each byte position, they first apply the inverse ShiftRows and
inverse MixColumns from the last round of AES to isolate the affected byte. Then, for
each of the 256 possible key byte values, they simulate the corresponding faulty SubBytes
output and compare it to the observed error. Each of the four faulty patterns excludes the
vast majority of incorrect candidates, and the intersection of the surviving guesses across
all four patterns yields the exact key byte. This DFA procedure is repeated for all sixteen
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byte positions, adversary can fully reconstruct the 128-bit AES key.

During the attack, PWNN processes a specific pair of patterns which lead to high
dynamic power consumption and pressure on the shared PDN, resulting in a voltage
drop and timing violations in critical paths. While the cloud platform can detect this
via board-level power monitoring systems, it has no way to isolate just the adversary’s
partition. The only available response is to reset the entire FPGA, disrupting all tenants.
This makes mitigation costly and impractical, so the attack may be successful before any
action is taken.

4 Results

4.1 Experimental Setup

To evaluate our proposed fault injection method described in Section 3, we conduct
experiments on two AMD FPGA development platforms: PYNQ-Z2 and ZCU104. These
platforms represent different resource scales, allowing us to assess our approach in both
constrained and more capable environments. The PYNQ-Z2, based on a Zyng-7000 SoC,
is used to study fault injection under limited hardware resources and serves as a baseline
for minimal PWNN deployment. The ZCU104, featuring a Zynq UltraScale+ MPSoC,
provides significantly more programmable logic, enabling us to explore the scalability of
our method by varying the number and placement of PWNN instances. On this platform,
we examine how duplicating multiple PWNN units and controlling their spatial layout
impacts overall fault injection effectiveness.

We conduct two experiments to evaluate the effectiveness of our PWNN-based fault
injection approach. In the first, we target a 256-bit RCA on an FPGA platform and
use four on-chip voltage sensors to monitor fluctuations induced by the PWNN during
execution, supporting architectural optimization. In the second experiment, we target an
AFES-128 block cipher deployed on both platforms, with the core operating at 210 MHz
on the PYNQ-Z2 and 460 MHz on the ZCU104. We demonstrate practical fault injection
within a complete system setup, which includes DMA-based data transfers and a custom
controller for managing communication between the processing system and programmable
logic.

4.2 Influence of Network Topology on RCA Fault Susceptibility

To understand how PWNN architectural parameters influence fault intensity before apply-
ing to real cryptographic targets, we first analyze a simpler arithmetic RCA module. The
PWNN generated by the FINN compiler and evaluated in our experiments requires 10
clock cycles to complete each inference. To identify the clock cycles with peak switching
activity in our single layer binarized PWNN and evaluate how neural network architecture
influences fault intensity, we conduct fault injection attacks targeting the RCA. The critical
path in the RCA is typically the carry bit chain, which on FPGAs is often implemented
using two LUT5 resources per full adder, as illustrated in Figure 5. In a full adder, the
critical path extends from the data inputs to the carry out output, traversing a sequence
of XOR and AND/OR gates, and represents the longest delay within the adder. When
multiple full adders are cascaded to form a RCA, the carry out from each stage feeds
into the carry in of the next, creating an extended carry propagation chain. Thus, the
critical path of an n-bit RCA starts at the least significant bit (LSB) inputs and propagates
through the entire carry chain to the most significant bit (MSB) outputs. We exploit
the timing sensitivity of the RCA by placing it adjacent to our power-wasting neural
network, which induces localized voltage fluctuations through high switching activity. By
flipping a single bit at the least significant position of the carry chain immediately before
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Figure 5: Critical path in full adder and carry bit propagation in 256-bit RCA.
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Figure 6: Hardware floorplan on the AMD PYNQ-Z2 board highlighting the positions of
four voltage sensors, the RCA, and the Matrix-Vector Activation Unit (MVAU) used for a
single fully connected layer in an Multilayer Perceptron (MLP).

propagation, we selectively stress the critical path of the adder. One input operand is held
at all ones and the other carries a single ’1’ to maximize ripple effects. To better observe
the fault manifestations induced by distinct PWNN architectures, synthesis constraints
are applied to suppress timing violations and prevent synthesis tools from optimizing the
structure of the target RCA.

4.2.1 Floorplan and On-Chip Voltage Sensing

Figure 6 shows the floorplan of our deployed system on the PYNQ-Z2 as generated by AMD
Vivado software. We place four routing delay sensors near the RCA and above the MVAU
of the accelerator. The Routing Delay Sensor (RDS) [SGS23] used in this experiment are
more sensitive to voltage fluctuations compared to the TDC. Each sensor has a value
range between [0-255] and is calibrated prior to sampling the voltage fluctuations caused
by our proposed power-waster. These sensors are based on routing resources rather than
delay line structures. Specifically, they exploit the timing sensitivity of long routed nets
whose delays are influenced by local supply voltage fluctuations. A global clock signal
is used as both the reference and the input signal to the sensor. This clock toggles the
routed net, and output registers together with a counter record how many transitions
arrive at the sensor output within a fixed sampling window. When the supply voltage
drops, routing delays increase, resulting in fewer transitions being counted and hence lower
sensor values. Conversely, higher voltages reduce routing delays, leading to higher toggle
rates and sensor readings. In this experiment, both the PWNN and the sensors operate at
100 MHz, ensuring synchronized, cycle-accurate observation of supply voltage variations.
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Figure 7: Power traces with 800 time points of 230x35 MLP as an example. The dashed
line is the baseline with PWNN off, setting thresholds for voltage variations. The blue
trace corresponds to PWNN running inference with a high power input, while the orange
trace shows normal operation with random input.

The calibrated sensor initially runs with the PWNN deactivated while the collected
power trace represents system noise in the idle state, which is labeled as the baseline
condition. This baseline is used to define thresholds for identifying both voltage drops or
voltage overshoots that may occur during recovery from such drops. The blue waveform
corresponds to the PWNN executing with the optimized high power input, while the
orange waveform reflects execution with random inputs as depicted in Figure 7. When the
high power input is active, we observe significantly more pronounced voltage fluctuations,
as captured by sharp dips in the sensor output. These fluctuations are consistent with
large scale switching activity across the network and support our claim that the optimized
input pattern triggers maximal dynamic power. In contrast, random inputs cause more
moderate and uniform power variations. This visual distinction confirms the effectiveness
of our proposed fault injection attack strategy in amplifying the likelihood of timing faults
during sensitive circuit operations. Here, we use two optimized input images obtained
during software based training, as described in Section 3. The input images are first
stored in a custom buffer controller IP. This module provides fine-grained control over
the accelerator’s execution, allowing it to alternate between two inputs. Depending on
the attack strategy, the controller can switch inputs either continuously for random fault
injection or for a limited number of cycles to enable more precise, targeted faults.

4.2.2 Fault Injection Attack Procedure and Result Analysis

To investigate how the depth of the adder tree affects fault intensity, we configure each
XNOR bit operation to invert its output during training, thereby maximizing switching
activity and making the XNOR-induced switching activity as uniform as possible across
all six PWNN variants. In this way, we can clearly isolate and observe the influence of the
depth of the adder tree on the fault sensitivity. In this configuration, all PWNNs complete
the inference in exactly 10 cycles. In each attack iteration, the fault is applied to one
specific clock cycle only, after which the RCA is reset in preparation for the next iteration.

As illustrated in Figure 8, in order to observe the effect of voltage drop induced delay
on carry propagation in the RCA, we apply two specific input patterns: one with all bits
set (0xFFFF...FFFF) and another with a single least significant bit set (0x0000...0001).
This configuration ensures full carry chain activation, thereby stressing the critical path.
The x-axis in the figure denotes the number of bit transitions, which serves as an indicator
of switching activity. An increased number of bit flips correlates with intensified voltage
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Figure 8: Fault intensity represented by NFR of 400 sample points across PWNNs with
different adder tree depth.

drops induced by the PWNN, resulting in extended delays along the critical path.

The experimental results demonstrate the relationship between fault intensity and
the corresponding power profile across different MLP configurations. For each experiment,
faults were injected into the RCA during the clock cycle exhibiting peak switching activity,
specifically cycles involving XNOR or accumulation operations. Concurrently, 400 voltage
sensor samples were collected per configuration. The tested MLP architectures vary from
compact networks (e.g., 10x810) to larger ones with more synapses (e.g., 230x35). Fault
intensity is quantified as the Hamming distance (counted bit flips) between expected and
faulty RCA outputs (x-axis), while sensor readings reflecting voltage drops via timing
delays are plotted on the y-axis. To quantify the fault intensity in the PWNN output, we
define Normalized Fault Rate (NFR) as:

2.;HD(0i, 0j)

NFR = :
Nfault . ZO

()
where HD(O;, O}) is the Hamming distance between the correct adder output O; and the
faulty output O, Ngauit is the number of faulty samples (i.e., outputs where HD > 0), and
Zo is the number of zero bits in the correct output O;. This normalization reflects the
average number of bit flips per correct bit, conditioned on a fault occurrence.

A consistent trend emerges: networks with deeper adder trees and higher numbers of
synapses have significantly higher fault intensity and lower sensor values (NFR of 14.25%),
while smaller networks (10x810 and 45x180) have significantly lower rates of 3.00% and
5.72% respectively. This discrepancy emphasizes the crucial influence of the topology of
the neural network, especially the depth of the adder tree, on the effectiveness of fault
injection attacks with our PWNN approach. The increased cumulative switching activity
and the longer carry propagation paths in deeper adder trees increase the fault suscep-
tibility. Further analysis of the fault distribution shows that multi-bit faults (Hamming
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Figure 9: Post-placement floorplan on AMD ZCU104. The AES-128 core is located at the
top of the device, and eight distributed instances of the 230x35 MLP are placed across
the remaining area. At runtime, each PWNN instance can be independently activated
using an 8-bit control mask (from LSB to MSB: NN1 to NN8), enabling dynamic control
of switching activity and global placement.

distance > 3) predominantly occur in deeper networks, while shallow configurations mostly
exhibit single-bit faults, reinforcing the correlation between architecture depth and fault
severity. Accordingly, power traces associated with higher fault intensities show pronounced
amplitude reductions and often exceed detection thresholds with lower sensor values in
deeper models. This comprehensive analysis confirms that the depth of the adder tree is a
key factor for fault susceptibility in our attack model.

However, the depth of the adder tree cannot be increased indefinitely due to practical
limitations imposed by the FINN framework and the FPGA architecture. In particular,
the FINN framework requires additional resources to implement pipelining stages, which
grow as the depth of the adder tree increases and affect the overall resource utilization.
In addition, the FINN/Vitis HLS tool chain enforces a maximum limit of 8190 bits for
the weighted input matrix, which limits the size of the MVAU layer and thus also the
scalability of the network. Apart from resource utilization, deeper adder trees generate a
larger number of control signals such as clock enables and resets, which require dedicated
control sets on the FPGA. On AMD FPGA architectures, the number of these control sets
is limited, and exceeding this budget can lead to routing congestion and implementation
faults, even if the logical resources remain available. These combined factors limit the
feasible depth of adder trees within the FINN framework and limit the scalability of the
accelerator without more advanced architectural or tool chain optimizations.

4.3 DFA of AES-128 evaluated using PYNQ-Z2 and ZCU104
4.3.1 Dynamically Adjustable Multi-Instance PWNNs on ZCU104

Figure 9 illustrates the physical layout of our system on the AMD ZCU104 platform.
The AES encryption core is located in the upper region, while eight neural network (NN)
instances are distributed over the remaining area to maximize spatial coverage. Each NN
implements a single-layer 230x 35 MLP, which is the largest feasible configuration previously
tested on the PYNQ-Z2 platform. On PYNQ-Z2, only a single instance could be deployed
due to limited hardware and software constraints, as discussed in Subsubsection 4.2.2. In
contrast, the larger resource capacity of ZCU104 enables the parallel use of several such
instances.

The number of active PWNN instances can be set at runtime, while their placement
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Figure 10: Fault rates observed over 500,000 AES encryptions with PWNNs active. On
PYNQ-Z2 (1 instance), DFA-usable fault rate is 12.2%; on ZCU104 (5 instances under the
best placement), DFA-usable fault rate is 13.9%.

is fixed at design time. After bitstream generation, instances are selectively enabled or
disabled, with the attacker assumed to occupy a fixed FPGA region. Up to 8 PWNNs
can run concurrently and their count and placement trade off fault effectiveness. In the
next, we investigate how different number of NN accelerators and their dedicated global
placement options affect the reliability of fault injection in our PWNN approach.

4.3.2 Evaluation of DFA Efficacy on PYNQ-Z2 and ZCU104

In this part, we evaluate our PWNN-based on-chip fault injection method across 500,000
AES-128 encryptions per device using 1000 uniformly random plaintexts. We record the
cumulative mean of total faults and DFA-usable faults on both edge and cloud FPGA
platforms as illustrated in Figure 10. On the PYNQ-Z2, a single PWNN instance achieves
a total fault rate of 19.5% and a DFA-usable fault rate of 12.2%, demonstrating reliable
injection within a narrow timing window but limited scalability due to resource and
placement constraints. On the cloud FPGA Zynq UltraScale+ (ZCU104 development
board), five PWNN instances as example are deployed under the corresponding best
placement configuration. Despite the stronger PDN of the ZCU104 compared to PYNQ-Z2,
the system achieves a significantly higher overall fault rate of 56.6% with a constant
DFA-usable rate of 13.9%. These results show that scalable PWNN-based fault injection
remains effective even under improved PDN conditions, enabling efficient DFA in cloud
FPGA environments.

Figure 11 provides a placement-aware fault injection analysis on the ZCU104, showing
the distribution of total and DFA-usable fault rates for 1 to 8 PWNN instances. For
each instance count, we exhaustively evaluate all placement combinations by activating
different PWNN instances in global placement as shown earlier in Figure 9, resulting in
256 placement combinations overall. This provides a comprehensive view of how spatial
deployment impacts both scalability and fault injection effectiveness.

Total fault rate rises with PWNN count, but effectiveness is highly placement de-
pendent for 1-3 instances: placing PWNNs near the AES core significantly boosts both
total and DFA-usable faults, indicating strong spatial coupling between local voltage drop
and AES timing. With 4-5 instances, placement sensitivity diminishes and fault rate
is more uniformly, likely due to overlapping switching and a broader PDN disturbance.
The DFA-usable rate is not monotonic, it increases at five instances and then decreases.
At 7-8 instances, the total faults keep increasing but the DFA-usable rate decreases
as noise and timing uncertainties from widely distributed PWNNs hinder synchronized
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Figure 11: Analysis of total and DFA-usable fault rates on the ZCU104 across 500,000
AES-128 encryptions. For each PWNN instance count (1-8), all valid global placement
combinations are evaluated. Results demonstrate the scalability of fault injection and the
placement sensitivity of DFA-usable faults

drops (routing delays, clock skew, varying impedance), reducing the spatial precision and
temporal alignment required for single-byte DFA faults.

Table 1 provides a quantitative summary of the results visualized in Figure 11,
summarizing average, best and worst case of total and DFA fault rates for both ZCU104
and PYNQ-Z2 devices. The average total fault rate increases linearly from 2.8% at
single PWNN instance to 99.5% at eight, indicating strong scalability of injected faults as
more PWNNs are activated. The average DFA fault rate rises only up to five instances,
reaching a best-case value of 13.9% before declining. Beyond this point, the fault activity
becomes either too strong or too de-synchronized, making it difficult to consistently induce
controlled, single-byte faults required for DFA. In the best case placement, both total
and DFA fault rates vary non-monotonically across instance counts. Although other
instance counts, such as 8 or 7 PWNNs, may have higher total fault rates approaching

Table 1: Average, best and worst fault rates (total and DFA-usable) on ZCU104 and
PYNQ-Z2 according to placement pattern. For ZCU104, the best placement configuration
is selected per instance count (For five active NN accelerators, the best placement enables
instances 2, 4, 5, 6, and 7 as illustrated in Figure 9).

Device NN Instances Total Fault Rate (%) DFA Fault Rate (%)

avg. best worst avg. best worst
PYNQ-Z2 1 19.5 195 19.5 12.2 122 12.2
1 2.8 9.7 0.008 14 4.8 0.0
2 10.2  68.7 1.0 4.6 13.4 0.9
3 245 779 9.1 8.7 13.2 6.2
4 43.4 849 23.8 11.1 121 9.4
Zculo4 5 65.2 90.9 42.7 11.8 13.9 7.6
6 84.4  95.5 65.3 9.2 13.7 5.0
7 95.8 98.3 86.6 4.5 10.1 2.4
8 99.5 99.5 99.5 1.1 1.1 1.1
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Table 2: Required average number of plaintexts and corresponding execution time to
obtain 8 correct/faulty ciphertext pairs for successful DFA over 1000 keys. Results are
shown for the best placement configuration under instance counts, achieving optimal
efficiency in extracting the required pairs for DFA.

Device NN Instances Plaintexts Used Exec. Time (s)

PYNQ-Z2 1 248 2.85
1 1798 9.23
2 134 0.69
3 123 0.63
4 131 0.67
ZCU104 5 110 0.57
6 106 0.55
7 146 0.75
8 1307 6.71

saturation, placement with 2, 3, 5, and 6 instances provides a better balance between fault
quantity and precision. This emphasizes the importance of spatial distribution for effective
single-byte fault injection.

Table 2 shows the average number of plaintexts and time required to collect sufficient
correct /faulty ciphertext pairs for successful DFA across 1000 keys. Results are reported
under the best placement configuration for each PWNN instance count on the ZCU104
and PYNQ-Z2. On PYNQ-Z2, a single PWNN instance requires 248 plaintexts and 2.85
seconds on average. On the ZCU104, activating five or six PWNN instances yields higher
efficiency, requiring fewer than 110 plaintexts and reducing collection time to under 0.6
seconds. However, best placement with only one or as many as eight instances requires
significantly more plaintexts and time, making them less practical for real-world DFA.

In general, activating more PWNN instances increases switching activity but also
introduces synchronization challenges that reduce fault injection precision. With limited
resources, as in cloud FPGA scenarios, placing the adversary close to the victim core is
most effective, especially with 1-3 instances. At 5 instances, however, switching activity is
strong enough that proximity is no longer required, making this configuration the most
effective overall.

5 Discussion

In this work, we demonstrated that malicious neural networks can act as power-wasting cir-
cuits. The key insight is that those binary NNs do not require any significant modifications
in their usual topology, which effectively makes them indistinguishable from benign.

As we have shown, even when a neural network is generated using an established open-
source framework, FINN, it can be configured and trained to maximize switching activity
during operation, thereby increasing dynamic power consumption and causing voltage
fluctuations that can be exploited in fault injection attacks without further modification.
We believe that a NN generated and unmodified in this way, decoupled from the weights,
is already practically indistinguishable from benign. Moreover, the weights can usually be
reconfigured at runtime, which provides the ability to execute some proper workload. In
this way, a potential adversary can switch between benign and attack modes by loading
different sets of weights, using the benign mode as additional camouflage. Moreover, it is
very difficult to predict malicious intentions in advance if the input patterns that activate
the power-wasting properties are unknown and depend on training.

Therefore, we believe that both DRC and other formal and analytical methods
are rather unable to detect malicious networks with acceptable probability or lead to a
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high number of false positives, which would make these detection approaches practically
infeasible. Furthermore, the proposed method demonstrates good scalability in cloud
FPGA platform, although its effectiveness may be influenced by placement and routing
constraints such as component proximity and routing paths. In addition, the exact
architecture and size of the PWNN can be slightly modified each time to avoid possible
detection by signature/pattern scanning. This will also likely help to avoid detection by
machine learning techniques applied to bitstreams or netlists. Overall, we believe that the
detection of such malicious neural networks deployed in cloud computing environments is
practically infeasible.

Techniques such as continuous runtime monitoring of voltage/delay fluctuations with
anomaly detection, as well as error detection and error correction, would be suitable to
detect and counter an ongoing attack. However, it still probably would require a lot of
manual effort to pinpoint the exact source of the voltage fluctuations, since the PWNN is
considered to execute an attack for a very short time in total.

Further, it should be possible to trade off some stealthiness and craft fully custom
PWNNs with more significant changes to the usual topology and activation functions,
which will result in even more switching activity and dynamic power consumption, making
it suitable for more intense voltage drops. Additionally, the intensity of the voltage drops
may be controlled almost gradually by the changes to the activation input patterns. So,
some sort of Fault Sensitivity Analysis (FSA) attacks may also be possible where only
knowledge if the encryption was faulty or fault-free is necessary and it is not required to
encrypt the same plaintext at least two times or know the exact outputs.

6 Conclusion

We introduced PWNN;, a stealth neural accelerator that induces targeted voltage fluctua-
tions by maximizing switching activity in binarized neural networks. Unlike conventional
power wasters, PWNN circuits are synthesized using standard tool flows, pass all design
rule checks, and embed malicious behavior only in their inputs and trained weights.

Our experiments show that PWNNs can reliably induce timing faults in victim AES
cores on both resource-constrained and commonly used cloud FPGA platforms. On cloud
FPGA Zynq UltraScale+, we are able to dynamically adjust the number of active PWNN
instances and selectively control their placement within the global FPGA fabric at runtime.
This flexibility enables effective generation of DFA-usable faults and rapid recovery of
the required correct/faulty ciphertext pairs. These results demonstrate that functionally
correct BNN accelerators, when adversarially trained, can act as effective fault injectors
by inducing power-induced timing violations in nearby logic.

On the other hand, PWNN represents a new attack paradigm that challenges the
assumptions underlying FPGA isolation and bitstream security. In the future, the defense
needs to evolve from static validation to runtime monitoring of activity profiles, especially in
shared computing environments. Our work motivates further research on adversary-trained
hardware accelerators and their impact on the security of reconfigurable platforms.
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