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1 Introduction

Over the last two decades, the evolving needs of the physics program at the Large Hadron
Collider (LHC) have shaped theoretical studies aimed at improving the understanding of
partonic scattering processes. Since the asymptotic freedom of quantum chromodynamics
(QCD) allows the use of perturbation theory for the description of high-energy interactions,
computing higher-order predictions for a wide range of partonic cross sections has become one
of the major undertakings in contemporary theoretical particle physics. Central to this goal
is the efficient treatment of infrared singularities, which arise separately in real-emission and
virtual corrections and must cancel among themselves to give a finite physical result. This
is challenging because the real and virtual corrections populate different phase spaces, and
solving this problem relies on so-called subtraction schemes. At next-to-leading order (NLO) in
perturbative QCD, such schemes were developed in a process-independent fashion nearly thirty
years ago [1–4] and have been extensively used for theoretical predictions. However, a similar
level of understanding at next-to-next-to-leading order (NNLO) has not yet been achieved.

Indeed, in spite of the fact that many different subtraction schemes for NNLO calculations
are being developed [5–35], none is as advanced as the NLO methods. What is missing is the
explicit demonstration of the cancellation of infrared divergences and the derivation of finite
remainders of the integrated subtraction terms for arbitrary collider processes. However, it is
important to stress that the absence of such general results has not hindered the impressive
progress in NNLO QCD computations. In fact, such calculations for many very important and
complex LHC processes have already been performed (see, e.g., refs. [36–65] for a selection
of phenomenological papers employing different theoretical methods), which implies that
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this issue is hardly a practical limitation. Nevertheless, we believe that understanding the
infrared structure of perturbative QCD at NNLO in full generality is an interesting theoretical
problem whose solution may also improve the efficiency of computations at this order and
lead to their automation, as well as provide insight into the connection between fixed-order
and all-order (i.e. resummed or parton shower) approaches.

In this paper, we solve this problem in the context of the nested soft-collinear (NSC)
subtraction scheme [16] by deriving the finite remainders of the integrated NNLO subtraction
terms for arbitrary collider processes with massless partons. Along the way, we demonstrate
analytically the cancellation of all 1/ϵ infrared poles for infrared-safe observables in a process-
independent manner.

Achieving this requires a good understanding of the many singular limits of various
scattering amplitudes, as well as the interplay of these limits, which becomes rather intricate
at NNLO. Furthermore, the integrals over the unresolved parts of phase space of universal
quantities arising in these limits, such as eikonal and splitting functions, have to be calculated.
We have studied these issues in detail in refs. [66, 67], focusing on final states of increasing
complexity and preparing a solid foundation for addressing the NNLO subtraction problem
in full generality.

Another outstanding obstacle that one has to face when crafting subtraction schemes
at NNLO is the bookkeeping. This issue is somewhat unusual, as it originates from the
need to keep track of the many partonic channels that contribute to an arbitrary process.
The problem stems from the fact that the cancellation of collinear singularities involves all
partonic channels at once, because collinear emissions by initial-state partons may change the
initial state of a hard partonic process. A different, but somewhat analogous problem also
exists for the final-state collinear splittings, since particular combinations of various limits
and various final states are needed to arrive at the physical splitting functions and collinear
anomalous dimensions. Although some aspects of this problem have already been addressed
in ref. [67], the fully general treatment that we present in this paper goes beyond these results.

The remainder of the paper is organized as follows. In section 2, we set the stage by
summarizing the results of the earlier papers on the NSC scheme [16, 66–70]. The goal of this
section is to make the discussion in the following sections understandable without the need
to consult earlier papers. In sections 3 and 4, we discuss the calculation of NLO and NNLO
QCD corrections, respectively. In particular, section 4 contains the final result for the finite
remainders of the integrated subtraction terms for arbitrary process. We conclude in section 5,
where we also summarize how to use the final results scattered throughout section 4. Several
appendices contain discussions of some aspects of the problem at a more technical level.

2 Summary of the nested soft-collinear subtraction scheme

Before proceeding with the derivation of the integrated subtraction terms for arbitrary
processes at colliders, both at NLO and at NNLO in QCD, we summarize the aspects of
earlier work on the NSC scheme [16, 66–70] that provide the foundation for the following
discussion. Our primary intention is to explain the basic approach of this method and
introduce notation that will be used throughout the paper. With this out of the way, we
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will be able to focus on the problems of combinatorics and bookkeeping that will arise when
discussing NLO and NNLO QCD corrections to general processes in sections 3 and 4.

Consider a process where N jets and a color-singlet X are produced in a hadronic
collision.1 The cross section for this process is written as

dσ =
∑
a,b

∫ 1

0
dx1dx2 fa(x1, µF)fb(x2, µF) dσ̂ab(x1, x2, µF, µR;O)

=
∑
a,b

(fa ⊗ fb)⊗ dσ̂ab(x1, x2, µF, µR;O) ,
(2.1)

where fa,b are the parton distribution functions (pdfs), µR and µF are the renormalization and
factorization scales, respectively, and O is an infrared-safe observable. The sum in eq. (2.1)
includes all initial-state partons a and b that contribute to the production of a particular
final state. Throughout the paper, we set µF = µR = µ.

It is conventional to expand partonic cross sections in series in the strong coupling αs,

dσ̂ab = dσ̂LO
ab + dσ̂NLO

ab + dσ̂NNLO
ab + . . . , (2.2)

where each subsequent term in the above equation is suppressed by an additional power of αs
with respect to dσ̂LO

ab . The leading-order (LO) term dσ̂LO
ab is defined as

2sabdσ̂LO
ab =

〈
F ab

LM[...]
〉
=N

∫
dΦ(2π)4δ(4)(pH+pX−pa−pb)|M0(pa,pb;pH,pX)|2O(pH,pX),

(2.3)

where N is the appropriate symmetry factor, pH and pX denote the momenta of the outgoing
partons and the color-singlet in the hard process, respectively, and dΦ is the phase space for
final-state particles. We do not display the arguments of the function FLM since a convenient
way to introduce them will be discussed later. Further details about the function FLM can
be found in section 2 of ref. [66].

The well-known problem with constructing the perturbative expansion of the partonic
cross section in eq. (2.2) is that, at each perturbative order, one must combine contributions
of partonic final states with different multiplicities to achieve results which are insensitive to
long-distance physics. These long-distance effects manifest themselves as infrared divergences
that appear in contributions with different numbers of emissions of off-shell (in virtual loops)
and on-shell (i.e. real) partons. These divergences cancel when their combined effect on
infrared-safe observables is evaluated. The goal of many studies performed during the past
thirty years aimed at developing subtraction schemes both at NLO and NNLO [1–27, 29–
34] was to establish a general, process- and observable-independent procedure, where the
cancellation of the divergences is achieved prior to nontrivial integrations over the phase
space of hard partons.

Restricting our discussion to NLO and NNLO in the perturbative expansion, it is fair
to say that the origin of infrared divergences is well understood. They arise from three

1Throughout the paper, we discuss hadronic collisions, but our results can easily be modified to obtain
formulas valid for leptonic or lepton-hadron collisions. We explain how to do so when we present our final
result in section 4.
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∣∣∣∣∣∣
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Figure 1. Illustration of soft and collinear factorizations for real emissions and of virtual contributions.
The unresolved parton m, shown in red, is either soft or collinear. The first pane illustrates the
single-soft limit Em → 0, as defined in eq. (2.5). The second pane shows the final-state collinear
splitting [im]∗ → i(z)+m(1−z), with z = 1−Em/E[im], described in eq. (2.8). The third pane depicts
the initial-state collinear splitting a → [am̄]∗ +m, where z = 1− Em/Ea, from eq. (2.9). Finally, the
fourth pane represents the virtual contributions described in point vii).

sources: i) from the integration over loop momenta in virtual corrections, where their general
form is encapsulated by the well-known formulas due to Catani [71], ii) from the emission
of low-energy (soft) gluons, and iii) from the emission of (collinear) partons at small angles
relative to other incoming or outgoing partons. The individual singular limits, both at NLO
and at NNLO, have been known for more than twenty years [72, 73], yet the question of
how to combine them into a working subtraction scheme at NNLO continues to be the
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subject of active research. This includes our work [66, 67] on the development of the nested
soft-collinear subtraction scheme, introduced in ref. [16].

Our goal in this section is to provide the reader with a minimal background to understand
the following discussion of NLO and NNLO subtraction-based calculations in this scheme. To
this end, we need to explain how we identify, manipulate, and isolate singular contributions
that arise from emissions of soft and collinear partons. Below we summarize the important
steps required to accomplish this in the NSC scheme.

i) As the name of the subtraction scheme suggests, the singular limits of the real-emission
contributions are removed sequentially, starting with the soft ones, and continuing with
subtracting the collinear singularities from the soft-regulated expressions.

ii) To isolate singularities, we define soft and collinear operators that act on functions
FLM. We denote them as Si, Cij , Sij and Cij,k, where the indices identify partons that
become soft (in case of Si and Sij) or collinear to each other (in case of Cij and Cij,k).
When these operators act on the product of the matrix element squared, the observable,
and the phase space, they pick up the leading asymptotic behavior of this product in
the respective limit that is non-integrable in four dimensions.2 Hence, if any of these
operators acts on a quantity that does not possess a non-integrable singularity, the
result vanishes.

iii) When considering processes with a large number of final-state partons, one needs to
account for the fact that all partons can contribute to singular limits of matrix elements.
However, since we work at a particular order in perturbation theory, we need to ensure
that the number of hard partons does not drop below the number of jets in the LO
processes. Hence, the observable O that is contained in FLM vanishes if more than one
parton at NLO, and more than two partons at NNLO, are “lost” to various infrared
limits (i.e., become unresolved).
We need to find a way to divide the final-state partons into those that can become
unresolved, causing singularities, and those that remain resolved and define physical
jets. To accomplish this, we introduce damping factors. They are constructed in such a
way that they vanish if a resolved parton becomes soft or collinear to another resolved
parton, and thus the integrand (which includes a damping factor) is not singular. On
the contrary, if a potentially unresolved parton becomes soft, or collinear to any of the
resolved partons or to another unresolved parton, the integrand remains singular.
We will refer to the unresolved partons as m and n, and to the damping factors as ∆(m)

if only one parton is potentially-unresolved, or ∆(mn) if two are unresolved. We can use
the symmetry of the matrix elements with respect to different types of partons (gluons,
quarks, antiquarks etc.), to minimize the number of unresolved partons that we have to
consider. We then write the cross section as a sum over the contributions with different
unresolved partons, i.e.

dσ ∼
∑

m∈{q,q̄,g}

〈
∆(m)F ab

LM[Hf |m]
〉

, or dσ ∼
∑

m,n∈{q,q̄,g}

〈
∆(mn)F ab

LM[Hf |m, n]
〉

, (2.4)

2We use dimensional regularization throughout this paper, working in d = 4 − 2ϵ dimensional space-time.
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where Hf represents the list of final-state resolved partons. We note that the damping
factors are explicitly constructed in appendix B of ref. [66].

iv) At NLO, soft singularities in eq. (2.4) appear when m = g, while at NNLO, they arise
when m = g and/or n = g, as well as when m = q, n = q̄. In the NNLO case, when both
m and n become soft, it is important to order them in energy, as this makes the approach
of the double-soft limit unambiguous. Therefore, when double-soft singularities are
present, we require the energy of the parton n to be smaller than the energy of the
parton m, En < Em, and introduce double- and single-soft operators Smn and Sn. The
former extracts the soft limit Em,n → 0 with the ratio En/Em fixed, while the latter
extracts the soft limit En → 0 at fixed Em.
The action of the soft operators on the function FLM can be described by compact
formulas. The single-soft operator acting on ∆(m)FLM[m] returns the phase-space
element of the gluon m and an eikonal factor, multiplied with the FLM function that
does not depend on m anymore. Integrating over the soft gluon momentum with an
upper cut-off on the gluon energy Emax, we find〈

Sm∆(m)F ab
LM[m]

〉
= δmg [αs]

〈
IS(ϵ, Emax) · F ab

LM
〉

. (2.5)

Here, [αs] is defined as
[αs] =

αs(µ)
2π

eϵγE

Γ(1− ϵ) , (2.6)

where αs(µ) is the renormalized strong coupling constant and γE the Euler-Mascheroni
constant, and IS is an operator in color space that contains sums over color matrices
T i · T j . Its explicit expression can be found in eq. (A.38) of ref. [67]. The relation in
eq. (2.5) is shown schematically in the first pane of figure 1; we will use it extensively
throughout this paper. We note that eq. (2.5) can also be used to describe single-soft
limits in NNLO contributions with the unresolved parton n. In this case, if the energy
ordering En < Em is present, one needs to replace Emax in the expression for IS with
Em.
We can write a similar formula for the double-soft limits that appear at NNLO. It reads〈

SmnΘmn∆(mn)F ab
LM[mn]

〉
∼ [αs]2

〈
IDS(ϵ, Emax) · F ab

LM
〉

, (2.7)

where Θmn = Θ(Em−En), and the IDS-operator on the right-hand side can be extracted
from ref. [74] for both gg and qq̄ unresolved partons.

v) Once the soft singularities are removed, one needs to extract the hard-collinear ones.
These arise when an unresolved parton m or a pair of unresolved partons (m, n) be-
comes collinear to initial-state or hard final-state partons, or they become collinear to
each other.
To ensure that we can focus on a minimal subset of collinear singularities at a time, we
partition the phase space by means of angular functions. We refer to them as ωmi at
NLO, and ωmi,nj at NNLO. Their properties and definitions are reported in appendix B
of ref. [66]. Here we only mention that Cmj ωmi = δij , ∀ i, j ∈ {a, b,Hf}, where Cmj is

– 6 –



J
H
E
P
0
1
(
2
0
2
6
)
1
3
7

the operator which extracts the leading singular behavior in the collinear limit m ∥ j.
In the case of the NNLO partitions with i = j, i.e. ωmi,ni, we need to further divide
the angular phase space into sectors in order to fully isolate the collinear divergences.
A parametrization of the angular phase space that achieves this sectoring is given in
refs. [12, 13].

vi) At NLO, the hard-collinear divergences are extracted by acting with the operator
SmCim ≡ (1−Sm)Cim on the product of the relevant function FLM, the damping factor
∆(m) and the partition functions. Depending on whether i belongs to the final state,
i ∈ Hf , or to the initial state, i.e. i ∈ {a, b}, the hard-collinear limits evaluate to

〈
SmCim∆(m)ωmiF ab

LM[... ,i,...|m]
〉
= [αs]

ϵ

〈
Γ[im],f[im]→fifm F ab

LM[... ,[im],...]
〉
, (2.8)

〈
SmCam∆(m)ωmaF ab

LM[m]
〉
= [αs]

ϵ
δgm

〈
Γa,faF ab

LM
〉
+[αs]

ϵ

〈
Pgen

f[am̄]fa
⊗F

[am̄]b
LM

〉
, (2.9)

where [im] and [am̄] are the final- and initial-state clustered partons, respectively,
and m̄ is the anti-particle corresponding to m (i.e. q̄ for q, q for q̄ and g for g).
The explicit definition of the various functions appearing in eqs. (2.8), (2.9) can be
found in ref. [67]. In particular, the generalized splitting functions Pgen are given
in eq. (A.18), the generalized collinear anomalous dimensions Γi,fi

are reported in
eq. (A.17), the weighted anomalous dimensions Γ[im],f[im]→fifm are given in eq. (A.19),
and the convolution denoted by ⊗ is defined in eq. (3.13) of that reference, and reads

Pgen
αβ ⊗ FLM =

∫ 1

0
dz Pgen

αβ (z) FLM[z · pa, pb;Hf ]
z

,

FLM ⊗ Pgen
αβ =

∫ 1

0
dz Pgen

αβ (z) FLM[pa, z · pb;Hf ]
z

,

(2.10)

for the left and right convolutions, respectively. We emphasize that the order of the
partons in the weighted anomalous dimension Γi,f1→f2f3 is important, with f2 being
the hard parton, and f3 being the potentially-unresolved one. The action of the hard-
collinear operators on FLM in eqs. (2.8), (2.9) is illustrated by the second and third
panes in figure 1.

It is clear from eqs. (2.8) and (2.9) that there is a peculiar difference between initial- and
final-state collinear limits, in that the latter give rise to weighted anomalous dimensions,
while the former lead directly to generalized anomalous dimensions. This is due to the
behavior of the damping factors under the action of the collinear operators. Indeed, we
have [67]

Cam∆(m) = 1 , Cim∆(m) = Ei/(Ei + Em) ≡ zi,m , (2.11)

where a(i) is the initial-state (resolved final-state) parton. The additional factor of
zi,m leads to the weighted anomalous dimensions when one integrates over energies in
the case of final-state collinear limits. However, we showed in ref. [67] that collinear
splittings arising from different potentially-unresolved partons can be combined to
obtain generalized anomalous dimensions, and that it is advantageous to do so before
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integrating over partonic energies. In particular, to obtain the generalized anomalous
dimension for a quark, we need to combine cases where m = q becomes collinear to a
hard gluon with those where m = g becomes collinear to a hard quark. In fact, in the
combination

Γi,q = Γi,q→qg + Γi,q→gq , (2.12)

which appears naturally in our set-up, the weight factors zi,m disappear, leading to a
standard quark collinear anomalous dimensions, related to the integral of a splitting
function. Similarly, by accounting for g → gg and g → qq̄ splitting, we obtain

Γi,g = Γi,g→gg + 2nf Γi,g→qq̄ , (2.13)

which is directly related to the collinear anomalous dimension of a gluon.

At NNLO one has to consider the joint action of two soft-subtracted collinear operators
CimCjn which, depending on the partition function, may either be applied to different
hard legs (i ≠ j) or to the same leg (i = j). The treatment of such combinations of
collinear limits is complicated for two reasons. First, when the limits are applied to
the same resolved parton, the phase spaces for partons m and n become intertwined,
and care is needed in order to extract the relevant (generalized or weighted) anomalous
dimensions [66]. Second, one needs to properly account for the many possible types
of clustered partons that may appear in those cases; this is one of the problems
that we discuss in detail in this paper. This issue is particularly important for the
reconstruction of the generalized anomalous dimensions, discussed above. Indeed, the
different splittings that lead to various weighted anomalous dimensions of the form
Γi,f1→f2 f3 can only be combined into generalized anomalous dimensions, as shown in
eqs. (2.12), (2.13), if they multiply the same FLM function. Since one starts with FLM
functions with different partonic configuration as arguments, showing that they become
the same under the action of collinear operators is essential. While it is relatively
straightforward to demonstrate this at NLO, it becomes highly nontrivial to do so
when dealing with arbitrary processes at NNLO. Finally, once generalized anomalous
dimensions are extracted, we combine them into the NLO collinear operator

IC(ϵ) =
∑

i

Γi,fi

ϵ
, (2.14)

or its NNLO counterparts I2
C(ϵ) and IC(2ϵ).

In addition to generalized collinear anomalous dimensions, hard-collinear configurations
also give rise to boosted contributions, see eq. (2.9). This happens for the initial-state
splittings, since in such cases the energy flowing into the hard processes is rescaled by
a factor z = 1− Em/Ea. When z = 1, the integrated hard-collinear subtraction term
corresponds to the generalized anomalous dimension functions, Γi,fi

, i ∈ (a, b). However,
if z < 1, which implies the emission of an unresolved parton with non-vanishing energy,
a hard-collinear limit leads to a convolution denoted by the symbol ⊗ in eq. (2.9).
Such structures do not occur in the case of final-state splittings, as the energy of the
underlying hard process remains unchanged.
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vii) In addition to the real-emission contributions, one has to consider one- and two-loop
virtual corrections, one-loop virtual corrections to single-parton emissions, and the
renormalization of parton distribution functions. The divergences of virtual corrections
can be written as operators in color space acting on LO matrix elements squared. For
example, at NLO we refer to such operators as IV(ϵ), see the fourth pane in figure 1.
We note that IV is defined in eq. (A.36) of ref. [67] and is closely related to Catani’s
operator I1(ϵ) introduced in ref. [71].
At NNLO, the singular contributions of the double-virtual corrections through O

(
ϵ−2)

can be written in terms of IV(ϵ) and IV(2ϵ), and the commutator [I1(ϵ), I†1(ϵ)] (see
section 4.3 in ref. [66]). The collinear renormalization of parton distribution functions
at NLO leads to the convolution of tree-level Altarelli-Parisi (AP) splitting functions,
P̂

(0)
ij , and Born-level matrix elements. At NNLO, further contributions appear, for

example the convolution of the one-loop AP splitting functions, P̂
(1)
ij , with LO matrix

elements squared, and convolutions of P̂
(0)
ij with NLO partonic cross sections.

viii) At NNLO, we also need to account for triple-collinear singular limits. Due to the
iterative nature of the NSC subtraction scheme, we require such limits with all single-
collinear and soft divergences removed. After integrating over the unresolved phase
space, these terms contribute at 1/ϵ and are given in ref. [75]. We note that the
results of this reference need to be modified slightly for our purposes; we discuss this in
section 4.2.2.

ix) For the processes that we considered in refs. [66, 67], we were able to demonstrate
the cancellation of 1/ϵ poles analytically and to derive finite remainders. As noted in
ref. [66], to achieve this it is useful to separately consider contributions with different
final-state kinematics (double-boosted, single-boosted, unboosted), as well as other
distinguishing features of the FLM functions (color-correlated pieces, spin-correlated
pieces, etc.) to identify subsets of integrated subtraction terms where the cancellation
of divergences occurs independently. In this paper we will show that such a procedure is
sufficiently flexible and can be used for an analysis of arbitrary processes. We note that

– at NLO, the 1/ϵ poles proportional to the boosted matrix elements do not involve
color-correlated matrix elements, and have to cancel among themselves. As we will
see in section 3, this is achieved upon combining the terms from the initial-state
hard-collinear limits with those from the pdf renormalization, using the relation
Pgen

αβ = −P̂
(0)
αβ +O(ϵ) between the generalized splitting functions and the Altarelli-

Parisi collinear splitting kernels. At NNLO the combination of pdf renormalization
and hard-collinear limits has to be supplemented by the real-virtual integrated
subtraction terms. This leads to the appearance of divergent boosted terms that
are also color-correlated.

– at NLO, the 1/ϵ poles proportional to the unboosted LO matrix elements feature
both color-correlated and color-uncorrelated contributions. The former cancel
in the combination IV(ϵ) + IS(ϵ), which however still contains color-uncorrelated
1/ϵ divergences. These divergences cancel upon accounting for the collinear
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contribution IC(ϵ), defined in eq. (2.14). We then introduce an operator

IT(ϵ) = IV(ϵ) + IS(ϵ) + IC(ϵ) , (2.15)

which has a finite ϵ → 0 limit. Its first non-vanishing contribution in the ϵ-
expansion, I

(0)
T , contains color-correlated terms proportional to T i · T j (see ap-

pendix A in ref. [67]). It turns out that many NNLO singularities are captured by
the operators IS, IC and IV or their iterations, and that frequently they can be
combined into iterations of the IT operator. Identifying such structures early on
in the calculation substantially streamlines both the cancellation of the ϵ-poles,
and the derivation of the finite remainders at NNLO.

3 NLO QCD corrections to a general process at a hadron collider

In this section, we discuss the computation of next-to-leading order QCD corrections to the
process pp → X + N jets, where X is an arbitrary color-singlet state. At leading order, such
a process is obtained from eq. (2.3), where the partonic cross sections can be written as

2sab dσLO
ab =

∑
n

〈
F ab

LM[BN,n]
〉

. (3.1)

Here, BN,n denotes a particular final state with N QCD partons, each associated with an
identified jet, that can be produced together with the color-singlet X in the collision of
partons a and b. The index n enumerates all QCD final states which may contribute to the
partonic process, including all combinations of flavors consistent with the initial state (a, b)
and the color-singlet X in the final state. In what follows, we assume that such final states
have been enumerated for arbitrary jet multiplicity N .3 We also note that FLM contains all
the symmetry factors associated with a particular final state BN,n.

At NLO, several contributions are required. We will focus on the analysis of a real-
emission process with initial state a and b, which corresponds to the LO partonic process
ab → (N + 1) partons + X. The cross section reads

2sab dσ̂R
ab =

∑
n

〈
F ab

LM[BN+1,n]
〉

. (3.2)

The sum appearing on the right-hand side of eq. (3.2) has the same meaning as in eq. (3.1).
Proceeding as in refs. [66, 67], we insert a partition of unity for each term in the sum in eq. (3.2)∑

i∈BN+1,n

∆(i) = 1 , (3.3)

where the sum over the index i runs over all final-state partons in the list BN+1,n. As
mentioned in section 2, each damping factor ∆(i) vanishes if any parton other than parton
i becomes unresolved. For convenience, we relabel the partons entering BN+1,n in such a
way that the potentially-unresolved parton i is always identified by m. Furthermore, we use

3We demonstrate how this can be achieved in a toy model with one quark flavor in appendix A.
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the symmetry of FLM to write dσ̂R
ab in terms of three contributions, distinguishing the cases

where m is a gluon from those where m is a quark or an antiquark. We find

2sab dσ̂R
ab =

∑
n

〈
∆(m)F ab

LM[BN+1,n(mg)]
〉
+

∑
n

nf∑
ρ=1

〈
∆(m)F ab

LM[BN+1,n(mqρ)]
〉

+
∑

n

nf∑
ρ=1

〈
∆(m)F ab

LM[BN+1,n(mq̄ρ)]
〉

,

(3.4)

where we have made explicit the sum over nf quark flavors. The notation BN+1,n(m),
introduced in the above equation, indicates a list of N + 1 partons where parton m has been
identified as potentially-unresolved. We use the convention that the symmetry factors in
F ab

LM[BN+1,n(m)] are determined by all final-state partons except the marked one, m. We
also note that to identify a parton of a particular type as potentially-unresolved, BN+1,n

must contain at least one such parton. This trivial remark implies that the sum over n

in the first term on the right-hand side of eq. (3.4) runs over all QCD final states that
contain at least one gluon and can be produced in collisions of partons a + b together with
X. Analogously, the sum over n in the second term runs over all possible final states with
at least one quark of flavor ρ, and the same applies to the third term with respect to the
antiquark q̄ρ. Therefore, although we always sum over same index n to lighten the notation,
the three sums in eq. (3.4) run over different final states.

We can now apply the subtraction procedure introduced in ref. [16] and outlined in
section 2 to dσ̂R

ab, by multiplying each contribution in eq. (3.4) with an identity operator
written in the following way

1 = Sm +
∑
i∈H

SmCim +O(m)
NLO , (3.5)

where O(m)
NLO is defined as

O(m)
NLO =

∑
i∈H

SmCim ωmi , (3.6)

and depends on the partition functions ωmi introduced in section 2. The sums are taken over
sets H, which include both the initial- and final-state partons specified by the arguments of
the FLM functions upon which the above operators act, excluding the parton m.

We need to understand what happens when the operators in eq. (3.5) act on the function
FLM and, in particular, how a list BN+1,n(m) changes once the parton m becomes soft or
collinear to another parton. We begin by considering a potentially-unresolved gluon, which
can be emitted by either of the initial-state partons, or by any of the resolved final-state
partons, without changing the identity of the emitter. It follows that the action of the soft
operator Sm is described by the formula (cf. eq. (2.5))∑

n

〈
Sm∆(m)F ab

LM[BN+1,n(mg)]
〉
=

∑
n′

〈
IS(ϵ) · F ab

LM[BN,n′ ]
〉

, (3.7)

where the sum on the right-hand side extends over all sets with N hard partons that can
be produced in the process ab → N jets + X.
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Figure 2. Examples of contributions to initial- and final-state collinear limits.

We now move on to the hard-collinear limit Smg Cimg . As we already mentioned, the
potentially-unresolved gluon can be emitted from, or clustered with, any hard parton without
changing the hard parton’s identity. Therefore, under the action of the hard-collinear
operator, the list BN+1,n(mg) becomes a list composed of resolved partons taken from the
same list. Accordingly, no changes in the FLM symmetry factors occur and, in analogy to
eqs. (2.8), (2.9), we obtain∑

n

〈
SmCam∆(m)F ab

LM[BN+1,n(mg)]
〉
=
∑
n′

[ [αs]
ϵ

〈
Γa,faF ab

LM[BN,n′ ]
〉
+[αs]

ϵ

〈
Pgen

aa ⊗F ab
LM[BN,n′ ]

〉]
,

(3.8)

for the initial-state radiation and∑
n

∑
i∈BN+1,n(mg)

〈
SmCim∆(m) F ab

LM[BN+1,n(mg)]
〉
=

∑
n′

∑
i∈B

N,n′

[αs]
〈Γi,fi→fig

ϵ
F ab

LM[BN,n′ ]
〉

,

(3.9)

for the final-state radiation. The sum over i on the right-hand side of eq. (3.9) runs over
all final-state partons in the configuration BN,n′ , while the sums over n′ on the right-hand
sides of eqs. (3.8) and (3.9) indicate that all partonic channels consistent with the final-state
color-singlet X and the initial state given by the associated FLM function have to be included.

We now turn to the case where the potentially-unresolved parton is a quark of flavor
ρ, mqρ . Then, infrared singularities arise if mqρ becomes collinear to an initial-state gluon,
or to an initial-state quark of the same flavor, qρ, or if it becomes collinear to a final-state
gluon or an antiquark of the same flavor, q̄ρ. Therefore, we need to understand what happens
to the partonic final state BN+1,n(mqρ) in these limits.

Suppose mqρ becomes collinear to an initial state gluon, which we identify with parton a

for concreteness. The singular contribution arises from diagrams where the initial-state gluon
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splits into a qρq̄ρ pair, with the q̄ρ entering the scattering process and producing color-singlet
X as well as all partons in the list BN+1,n(mqρ) other than qρ. This is shown in figure 2(a).
In this collinear limit, the resolved final-state partons are unchanged, while the initial state
of the hard process changes to q̄ρb. Thus, in this limit, summing over the contributions of all
processes with (a, b) in the initial state and final states denoted by BN+1,n(mqρ) is equivalent
to summing over all processes with the initial state q̄ρb and N partons in the final state. We
will refer to final states in such processes as BN,n′ . Thus, we can write

∑
n

δag
〈
Cam∆(m)F ab

LM[BN+1,n(mqρ)]
〉
=

∑
n′

[αs]
ϵ

〈
Pgen

q̄g ⊗ F
q̄ρb
LM[BN,n′ ]

〉
. (3.10)

We note that, since the symmetry factor of a function FLM is determined solely by the
“unmarked” (i.e., resolved) final-state partons (thus excluding m), and since a collinear
limit with the initial state always leaves the list of hard final-state partons unchanged, the
symmetry factors on the left-hand side and the right-hand side of eq. (3.10) are identical.
This statement holds in general, independently of the flavors of a and m. We note that
the spin degrees of freedom as well as the color factors in the initial state do change; these
changes are absorbed in the definition of Pgen

q̄g .
The argument used to obtain eq. (3.10) can be repeated verbatim if we consider the

other singular initial-state collinear limit, which occurs when a = qρ. This contribution arises
from diagrams where the initial state qρ splits into a final-state quark mqρ and a gluon that
becomes an initial-state parton for the hard process, see figure 2(b). Exploiting the (by now
clear) connection between final states with N + 1 and N partons, we write the hard-collinear
initial state term for an unresolved quark as
∑

n

〈
Cam∆(m)F ab

LM[BN+1,n(mqρ)]
〉
=
∑
n′

δag
[αs]

ϵ

〈
Pgen

q̄g ⊗F
q̄ρb
LM [BN,n′ ]

〉
+
∑
n′

δaqρ

[αs]
ϵ

〈
Pgen

gq ⊗F gb
LM[BN,n′ ]

〉
,

(3.11)
where, again, the summation goes over all final states with N partons and a modified
initial state.

This argument can be extended to final-state hard-collinear limits, described by operators
SmCimqρ

, in a fairly simple way. These limits are singular if the parton i is either a gluon
or an antiquark q̄ρ. In the former case, singularities reside in the Feynman diagrams where
the quark line qρ radiates the gluon i, with all other particles emerging separately (see
figure 2(c)). We write

∑
n

∑
i∈BN+1,n(mqρ )

δig
〈
SmCim∆(m)F ab

LM[BN+1,n(mqρ)]
〉
=

∑
n′

∑
i∈B

N,n′

δiqρ

[αs]
ϵ

〈
Γi,q→gqF ab

LM[BN,n′ ]
〉

,

(3.12)
where the sum on the right-hand side runs over all processes with N final-state partons
produced in the collisions of initial-state partons a, b.

An important aspect of the final-state collinear limits that needs to be understood to
ensure the validity of eq. (3.12) is the symmetry factors. To this end, consider a term on
the left-hand side of eq. (3.12) that describes a process with the final state BN+1,n(mqρ).
We assume that it contains Ng gluons, Nqρ quarks of flavor ρ (not including mqρ into the
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quark count), and other partons that are not important for our purposes. The symmetry
factor included in F ab

LM[BN+1,n(mqρ)] is 1/(Ng! × Nqρ ! × . . .), where the ellipses stand for
contributions to the symmetry factor from other final-state partons. In the limit ig ∥ mqρ ,
these two partons are removed from the list BN+1,n(mqρ) and replaced by the clustered
parton [im]qρ . This results in a final state with Ng − 1 gluons, Nqρ + 1 quarks of flavor
ρ and everything else unchanged. Denoting the corresponding final state as BN,n′ , the
symmetry factor associated with the function F ab

LM[BN,n′ ] on the right-hand side of eq. (3.12)
is 1/((Ng − 1)!× (Nqρ +1)!× . . .). This apparent mismatch is easy to understand. Indeed, the
sum over i on the left-hand side of eq. (3.12) gives a factor Ng in the numerator, owing to the
symmetry of FLM under permutations of the gluons. For the same reason, the sum over quarks
on the right-hand side of eq. (3.12) compensates for the factor (Nqρ + 1) in the denominator.

The reasoning used to obtain eq. (3.12) can be applied to the other final-state limit,
where the singularities arise from a gluon splitting into a qρq̄ρ pair, displayed in figure 2(d).
Combining these, we obtain∑

n

∑
i∈BN+1,n(mqρ )

〈
SmCim∆(m)F ab

LM[BN+1,n(mqρ)]
〉
=

∑
n′

∑
i∈B

N,n′

[αs]
ϵ

〈(
δigΓi,g→qq̄+δiqρΓi,q→gq

)
F ab

LM[BN,n′ ]
〉
.

(3.13)

Thus we see that the summation over the relevant underlying Born processes with N partons
emerges quite naturally, allowing us to combine eq. (3.13) with the weighted anomalous
dimensions present in eq. (3.9). We can repeat this argument for the last term in eq. (3.4)
where the potentially-unresolved parton is an antiquark mq̄ρ . Combining these contributions,
we reconstruct the collinear anomalous dimensions for all hard partons and hence the IC
operator, introduced in section 2. Putting everything together, we obtain4

2sabdσ̂R
ab=

∑
n

〈
O(m)

NLO∆
(m)

[
F ab

LM[BN+1,n(mg)]+
nf∑

ρ=1

[
F ab

LM[BN+1,n(mqρ)]+F ab
LM[BN+1,n(mq̄ρ)]

]]〉
+
∑

n

[αs]
〈[

IS(ϵ)+IC(ϵ)
]
·F ab

LM[BN,n]
〉
+[αs]

ϵ

∑
x

∑
n

〈
Pgen

xa ⊗F xb
LM[BN,n]+F ax

LM[BN,n]⊗Pgen
xb

〉
.

(3.14)

The treatment of the lists of LO and NLO partonic configurations that we have presented
is necessarily quite abstract, as any enumeration of such lists is process-specific. Nevertheless,
we can explicitly construct all lists of allowed partonic processes if we limit ourselves to
the case of a single quark flavor nf = 1, and therefore chargeless color-singlet states X.
Such a construction is described in appendix A, which is useful to understand the details
and subtleties of our approach.

For an NLO computation, the real-emission cross section in eq. (3.14) has to be sup-
plemented with the virtual corrections to the LO cross section, and the contribution from

4We emphasize one more time that, for the sake of compactness, we use one label n to describe sums over
all possible final states consistent with a particular partonic initial state. However, in reality these sums can
be quite different, including their summation ranges.
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the collinear renormalization of pdfs. We write them as

2sab dσ̂V
ab =

∑
n

[
[αs]

〈
IV(ϵ) · F ab

LM[BN,n]
〉
+

〈
F ab

LV,fin[BN,n]
〉]

, (3.15)

2sab dσ̂pdf
ab = αs(µ)

2π

1
ϵ

∑
x

∑
n

〈
P̂ (0)

xa ⊗ F xb
LM[BN,n] + F ax

LM[BN,n]⊗ P̂
(0)
xb

〉
, (3.16)

where FLV,fin is the ϵ-finite remainder of the one-loop amplitude. Combining eqs. (3.14),
(3.15), (3.16), we find the finite NLO partonic cross section

2sabdσ̂NLO
ab =

∑
n

〈
O(m)

NLO∆(m)
[
F ab

LM[BN+1,n(mg)]+
nf∑

ρ=1

[
F ab

LM[BN+1,n(mqρ)]+F ab
LM[BN+1,n(mq̄ρ)]

]]〉
+
∑

n

[
[αs]

〈
I

(0)
T ·F ab

LM[BN,n]
〉
+
〈
F ab

LV,fin[BN,n]
〉]

+
∑

x

∑
n

[αs]
〈
PNLO

xa ⊗F xb
LM[BN,n]+F ax

LM[BN,n]⊗PNLO
xb

〉
, (3.17)

where I
(0)
T is the O

(
ϵ0) term of IT(ϵ) defined in eq. (2.15); its explicit expression is given

in eq. (A.45) of ref. [67]. The functions PNLO
αβ , which are defined in table 1, arise from the

combination of generalized splitting functions Pgen
αβ and the Altarelli-Parisi splitting kernels,

thanks to the following relation

Pgen
αβ (z, Ei) + P̂

(0)
αβ (z) = ϵPNLO

αβ (z, Ei) +O
(
ϵ2
)

. (3.18)

The energy arguments of the functions Pgen
αβ and PNLO

αβ should be taken to be Ea for left
convolutions (as in the second-last term of eq. (3.17)) and Eb for right convolutions (as
in the final term of eq. (3.17)). This convention applies to all the splitting functions that
are used in this paper. We conclude by noting that the hadronic cross section at NLO
at scales µR = µF = µ is obtained by convoluting the partonic cross sections with parton
distribution functions

dσNLO =
∑
a,b

(fa ⊗ fb)⊗ dσ̂NLO
ab . (3.19)

4 NNLO QCD corrections to an arbitrary process at colliders

The goal of this section is to present formulas for the NNLO QCD corrections to pp → X +
N jets and ℓ+ℓ− → X + N jets, where X is an arbitrary color-singlet state. The underlying
ideas behind these results closely follow refs. [66, 67]; the novelty is that here we deal with
arbitrary initial and final states. In section 3, we have explained how this aspect of the
problem is addressed, using NLO as an example. The NNLO case is obviously more complex
and requires more attention.

We begin in section 4.1 with a brief discussion of the general framework, followed by
the presentation of the final results in eqs. (4.9)–(4.24). Then, in section 4.2, we discuss
details of the calculation that we found challenging when extending the results of refs. [66, 67]
to general processes.
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4.1 General setup and the final formula

To compute the NNLO corrections to the production of N jets and a color-singlet X in hadron
collisions, three contributions need to be considered — the double-virtual, the real-virtual,
and the double-real. We begin with the double-real contribution and write the partonic
cross section as (cf. eq. (3.2))

2sab dσ̂RR
ab =

∑
n

〈
F ab

LM[BN+2,n]
〉

. (4.1)

As in the NLO case, the index n parametrizes a particular final state with N + 2 QCD
partons that can be produced in the collision of partons (a, b) in association with X, and the
sum over n indicates that all such final states have to be included. We note that eq. (4.1)
can also be used to describe the production of N + 2 jets in association with X, provided
of course the measurement function is modified.

Following refs. [66, 67] (see also the discussion in section 2), we insert the partition of unity∑
(ij)∈BN+2,n

∆(ij) = 1 , (4.2)

into eq. (4.1). The sum over the indices i, j in eq. (4.2) runs over all final-state partons in
the list BN+2,n, and each damping factor ∆(ij) vanishes if any parton other than partons i, j

becomes unresolved. Then, similarly to the NLO case, we label the potentially-unresolved
partons as m and n, and use the symmetry of the gluon, quark, and antiquark lists within
BN+2,n to write the double-real emission partonic cross section as

2sab dσRR
ab =

〈
∆(mn)ΘmnF

ab,DS
LM [m, n]

〉
+

〈
∆(mn)Fab,✟✟DS

LM [m, n]
〉

. (4.3)

The functions FLM in the above equation are defined as follows

Fab,DS
LM [m, n] =

∑
n

F ab
LM[BN+2,n(mg, ng)] +

∑
n

nf∑
ρ=1

F ab
LM[BN+2,n(m(qρ

, nq̄ρ))], (4.4)

and
Fab,✟✟DS

LM [m, n] = Fab,✟✟DS
LM,1 [m, n] + Fab,✟✟DS

LM,2 [m, n] , (4.5)

with

Fab,✟✟DS
LM,1 [m, n] =

∑
n

nf∑
ρ=1

F ab
LM[BN+2,n(mqρ , ng)] +

∑
n

nf∑
ρ=1

F ab
LM[BN+2,n(mq̄ρ , ng)]

+
∑

n

nf∑
ρ=1

1
2F ab

LM[BN+2,n(mqρ , nqρ)] +
∑

n

nf∑
ρ=1

1
2F ab

LM[BN+2,n(mq̄ρ , nq̄ρ)]
]

,

(4.6)

Fab,✟✟DS
LM,2 [m, n] =

∑
n

nf∑
ρ,τ=1
τ>ρ

F ab
LM[BN+2,n(mqρ , nqτ )] +

∑
n

nf∑
ρ,τ=1
τ>ρ

F ab
LM[BN+2,n(mq̄ρ , nq̄τ )]

+
∑

n

nf∑
ρ,τ=1
τ≠ρ

F ab
LM[BN+2,n(mqρ , nq̄τ )] .

(4.7)
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In writing eq. (4.4), we adopted the shorthand notation

F ab
LM[BN+2,n(m(qρ

, nq̄ρ))] = F ab
LM[BN+2,n(mqρ , nq̄ρ)] + F ab

LM[BN+2,n(mq̄ρ , nqρ)] , (4.8)

which was already introduced in ref. [67].
The above representation of the FLM functions has several important features that we

would like to comment upon. First, the DS contribution in eq. (4.4) collects combinations
of unresolved partons that possess a singular double-soft limit (i.e. Em,n → 0 with Em/En

fixed), whereas the ✟✟DS terms in eqs. (4.5)–(4.7) contain those that do not. In both cases, the
symmetry factors included in the definition of the FLM functions are determined entirely by
the final-state partons in BN+2,n(m, n) that do not carry labels m or n.

The last two terms in eq. (4.6) contain factors 1/2, which account for the symmetry of
the FLM functions under the exchange mqρ ↔ nqρ or mq̄ρ ↔ nq̄ρ . A similar factor for the
(mg, ng) unresolved final states is absent due to the energy ordering enforced by the function
Θmn = Θ(Em − En) in eq. (4.3). Finally, in eqs. (4.4)–(4.7), each FLM function depends on
its own list of final-state partons BN+2,n(m, n), and the sum over n runs over all possible
states consistent with the initial partonic state ab.

Using eqs. (4.4)–(4.7) as the starting point, we follow the steps described in refs. [66, 67]
to extract the 1/ϵ poles in the double-real contribution. We then combine these with the
divergences arising from the virtual corrections in order to cancel all 1/ϵ singularities and
extract the finite remainders which can be evaluated in four dimensions. We do so separately
for the fully-resolved (FR), single-unresolved (SU), and double-unresolved (DU) contributions,
which we specify below. In terms of these three contributions the result reads

2sab dσ̂NNLO
ab = 2sab

[
dσ̂FR

ab + dσ̂SU
ab + dσ̂DU

ab

]
. (4.9)

The first term in eq. (4.9) is the fully-resolved contribution, which contains N +2 resolved
partons in the final state and subtraction terms that make it finite. This contribution reads

dσ̂FR
ab =

〈
SmnSnΩ1∆(mn)ΘmnF

ab,DS
LM [m, n]

〉
+

〈
SmnSnΩ1∆(mn)Fab,✟✟DS

LM [m, n]
〉

. (4.10)

The Ω1 operator reads

Ω1 =
∑
(ij)

CimCjn[dpm][dpn]ωmi,nj

+
∑

i

[
Cinθ

(a) + Cmnθ
(b) + Cimθ(c) + Cmnθ

(d)
]
[dpm][dpn]Cmn,i ωmi,ni .

(4.11)

In eq. (4.11), the sum over i runs over all resolved partons, while the sum over (ij) runs
over all unordered pairs of resolved partons with i ̸= j (i.e. this sum would include both
i = 1, j = 2 and i = 2, j = 1, and so forth). The calculation of dσ̂FR

ab is performed numerically,
and the discussion of how this is done in practice is beyond the scope of this paper. We
note, however, that the angular partition functions ωmi,nj and ωmi,ni and the sector functions
θ(a,...,d) identify the distinct ways in which two partons can approach collinear singularities.5

5The sector functions are defined as θ(a) = Θ (ηin < ηim/2), θ(b) = Θ (ηim/2 < ηin < ηim), θ(c) =
Θ (ηim < ηin/2), θ(d) = Θ (ηin/2 < ηim < ηin), where ηij = (1 − cos θij)/2.
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Functions collected in the ancillary file FinalResult.m

Function Eq. number Name in the ancillary file
Quantities in spin-correlated contributions

γ⊥
g Eq. (4.16) γgPerp

γ⊥,r
g Eq. (4.16) γgPerpR

δ(0) Eq. (4.22) δzero
δ⊥,(0) Eq. (4.22) δPerpzero

Splitting functions
P̂

(0)
xy (z) Eqs. (4.13), (4.14) PxyAP[z_]

PNLO
xy (z, E) Eqs. (4.13), (4.14), (4.18)–(4.20) PxyNLO[z_,En_]
PW

xx(z, E) Eqs. (4.19), (4.20) PxxW[z_,En_]
PNNLO

xy (z, E) Eqs. (4.19), (4.20) PxyNNLO[z_,En_]
Elastic functions

γW
z,g→gg(E) Eq. (4.22) γWgTOgg[En_]

γW
z,q→qg(E) Eq. (4.22) γWqTOqg[En_]

DT 2 Eq. (4.24) DT2
DISR

g (E) Eq. (4.24) DgISR[En_]
DISR

q (E) Eq. (4.24) DqISR[En_]
DFSR

g (E) Eq. (4.24) DgFSR[En_]
DFSR

q (E) Eq. (4.24) DqFSR[En_]
Double-soft finite remainders

DSfin
ij Eq. (4.23) DSfin[i_,j_]

Table 1. List of functions collected in the ancillary file FinalResult.m. The first column shows the
names of the functions that are used in the final result, the second column indicates the equation
in which they appear, and the third provides their names in the file FinalResult.m. For brevity, in
the second block of the table, the splitting kernels P ...

gg , P ...
qg , etc., are collectively denoted by P ...

xy .
Further information can be found in the README.txt file provided with the ancillary file. We recall
that the energy arguments of the initial-state splittings should be taken to be Ea when the splitting
appears on the left-hand side of the ⊗ or ⊗̄ symbols, and Eb when on the right (see the comment
below eq. (3.18)).

Each sector is treated separately, using the parameterization of the unresolved angular phase
space proposed in refs. [12, 13].

Upon fixing m and n, only four distinct sectors are required to implement the fully-
resolved contributions for each of the N + 2 triple-collinear partitions ωmi,ni. The total
number of double-collinear partitions ωmi,nj with i ≠ j is (N + 2)(N + 1), and each can be
parameterized independently, allowing the integration variables to be optimally adapted to
the relevant singular limits. We note that in each sector and partition, one needs to consider
at most seven different kinematic configurations, each resulting from applying one or more of
the operators in eq. (4.11) to the double-real emission kinematics. Furthermore, in eq. (4.11),
for consistency with the computation of the integrated triple-collinear subtraction terms (see
the comment below eq. (4.34)), the Cmn,i operator does not act on the unresolved phase
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space, while the operators Cij do. To emphasize this, we write the phase space measure to
the right of the operators Cij but to the left of the operators Cmn,i.

The second term in eq. (4.9) is the single-unresolved contribution, which contains N + 1
resolved final-state partons and subtraction terms that make it finite. It is written as

dσ̂SU
ab = dσ̂SU,sb,a

ab + dσ̂SU,sb,b
ab + dσ̂SU,el

ab . (4.12)

The first two terms on the right-hand side are the single-boosted contributions. They read

dσ̂SU,sb,a
ab = [αs]

∑
x

∑
m

∑
n

{〈
O(a,m)

NLO ωma,na
a∥n ∆(m) log

(
ηam

2

)
P̂ (0)

xa ⊗ F xb
LM[BN+1,n(m)]

〉
+

〈
O(m)

NLO ∆(m)PNLO
xa ⊗ F xb

LM[BN+1,n(m)]
〉}

,

(4.13)

and

dσ̂SU,sb,b
ab = [αs]

∑
x

∑
m

∑
n

{〈
O(b,m)

NLOωmb,nb
b∥n ∆(m) log

(
ηbm

2

)
F ax

LM[BN+1,n(m)]⊗ P̂
(0)
xb

〉
+

〈
O(m)

NLO ∆(m)F ax
LM[BN+1,n(m)]⊗ PNLO

xb

〉}
,

(4.14)

where we recall that the left and right convolutions are defined in eq. (2.10). We note that the
sum over m is understood as the sum over different species of potentially-unresolved partons,
i.e. g, qρ, q̄ρ, with ρ running over distinct quark flavors, and that each species provides exactly
one representative to the sum. The sum over n accommodates all final states with a given m

that can be produced in a particular partonic collision, and therefore it can have a different
meaning for each term in the above equations, in spite of the fact that we use just one sum to
keep equations more compact. Finally, the sum over x runs over the subset of partons that can
be produced by the parton a or the parton b upon considering all possible collinear splittings.

The ONLO operators are defined as

O(i,m)
NLO = SmCim , O(m)

NLO =
∑
i∈H

O(i,m)
NLO ωmi , (4.15)

where, as before, H denotes the list of initial- and final-state partons associated with a
given FLM, excluding the potentially-unresolved parton m, and ωmi are the NLO partition
functions discussed in item v) of section 2. The functions ωmi,ni

i∥n are the NNLO partition
functions (also referenced in item v) of section 2) upon which the collinear operator Cin

has been applied. Note that after the action of Cin, ωmi,ni
i∥n does not depend on parton n

anymore. The variable ηim is defined as ηim = (1− cos θim)/2, where θim is the relative angle
between the directions of parton i and m, computed in the preselected reference frame (e.g.,
the center-of-mass frame of the partonic collision).
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The last term on the right-hand side of eq. (4.12) is the elastic contribution, which reads

dσ̂SU,el
ab

=
∑
m

∑
n

{
[αs]

〈
O(m)

NLO∆(m)[δmgI
(0)
T (Em)+δmgI

(0)
T (Emax)

]
·F ab

LM[BN+1,n(m)]
〉

−
∑
i∈H

[αs]
〈
O(i,m)

NLO ωmi,ni
i∥n log

(ηim

2

)
∆(m)

[
δmg

(
γi+2T 2

i Li(Em)
)
+δmg

(
γi+2T 2

i Li

)]
F ab

LM[BN+1,n(m)]
〉

−
∑
i∈H

[αs]
〈
O(i,m)

NLO ωmi,ni
m∥n log

(
ηim

4(1−ηim)

)
∆(m)

[
γm+2T 2

qLmδmg

]
F ab

LM[BN+1,n(m)]
〉

+
〈
O(m)

NLO∆(m)F ab
RV,fin[BN+1,n(m)]

〉}
+
∑

n

∑
i∈H

[αs]
2

〈
O(i,m)

NLO ωmi,ni
m∥n ∆(m)

[
γ⊥,r

g F ab
LM[BN+1,n(mg)]

+γ⊥
g (rµ

i rν
i +gµν)F ab

LM,µν [BN+1,n(mg)]
]〉

.

(4.16)
In the above equation, δij = 1 − δij , and the quantity I

(0)
T denotes the O

(
ϵ0) expansion

coefficient of the infrared-finite operator IT(ϵ); one should replace Emax with Em in that
equation to obtain I

(0)
T (Em). In the second line of eq. (4.16), Li = log(Emax/Ei), Li(Em) =

log(Em/Ei), and γi is the collinear anomalous dimension of parton i, with γq = γq̄ = 3/2CF
and γg = β0 = 11/6CA − 2/3TRnf . In the third line, the functions ωmi,ni

m∥n are the NNLO
partition functions computed in the collinear limit m ∥ n,6 and Lm = log(Emax/Em). The
vector rµ

i that appears in the last line of eq. (4.16) is defined in appendix E of ref. [66]. All
remaining quantities can be found in an ancillary file, as summarized in table 1. We note
that the sums over the index i ∈ H in the second, third, and fourth lines of eq. (4.16) run
over all partons in the corresponding FLM functions, excluding the unresolved parton m,
and that sums over n have the usual meaning.

Next, the double-unresolved contribution in eq. (4.9) contains N resolved partons in
the final state, which equals the number of jets in the LO process. We can write it as a
sum of four terms, each having distinct kinematics

dσ̂DU
ab = dσ̂DU,db

ab + dσ̂DU,sb,a
ab + dσ̂DU,sb,b

ab + dσ̂DU,el
ab . (4.17)

The first term is the double-boosted contribution

dσ̂DU,db
ab =

∑
x,y

∑
n

[αs]2
〈
PNLO

xa ⊗ F xy
LM[BN,n]⊗ PNLO

yb

〉
, (4.18)

where x, y include all partons that can be obtained from the collinear splittings of partons
a, b. The second and the third terms are the single-boosted contributions which describe
collinear splittings of partons a and b, respectively. They read

dσ̂DU,sb,a
ab =

∑
x

∑
n

[
[αs]

〈
PNLO

xa ⊗Fxb[BN,n]
〉
+ [αs]2

〈
PNNLO

xa ⊗ F xb
LM[BN,n]

〉]
+

∑
n

[αs]2
〈
PW

aa ⊗
[
Wa∥n,fin

a · F ab
LM[BN,n]

]〉
,

(4.19)

6Analogously to ωmi,ni
i∥n , the functions ωmi,ni

m∥n are independent of parton n.
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and

dσ̂DU,sb,b
ab =

∑
x

∑
n

[
[αs]

〈
Fax[BN,n]⊗ PNLO

xb

〉
+ [αs]2

〈
F ax

LM[BN,n]⊗ PNNLO
xb

〉]
+

∑
n

[αs]2
〈[
Wb∥n,fin

b · F ab
LM[BN,n]

]
⊗ PW

bb

〉
,

(4.20)

where
F ij [BN,n] = [αs] I(0)

T · F ij
LM[BN,n] + F ij

LV,fin[BN,n] . (4.21)

The functions PNNLO
αβ ,7 and PW

αα can be found in table 1, and we will comment on the operators
Wa∥n,fin

a and Wb∥n,fin
b shortly. We note that eqs. (4.18)–(4.20) are a natural extension of

formulas reported in refs. [66, 67], except that in those references collinear splittings that
change the type of the initial-state parton were omitted.

Finally, the double-unresolved contribution corresponding to N -jet final states without
additional boosts reads

dσ̂DU,el
ab =

∑
n

{
[αs]2

〈[
Ifin

cc + Ifin
ss + Ifin

tri + Ifin
unc

]
· F ab

LM[BN,n]
〉

+ [αs]2
∑
i∈H

〈[
θHf γ

W
z,fi→fig(Li)W i∥n,fin

i + δ(0)Wm∥n,fin
i + δ⊥,(0)W(i)

r

]
· F ab

LM[BN,n]
〉

+ [αs]
〈
I

(0)
T · F ab

LV,fin[BN,n]
〉
+

〈
F ab

LV2,fin[BN,n]
〉
+

〈
F ab

VV,fin[BN,n]
〉}

,

(4.22)
where H = {a, b} ∪ BN,n. In the second line of eq. (4.22), we use the function θHf which
evaluates to θHf = 1 if i ∈ Hf (final-state parton) and θHf = 0 otherwise. We note that all
limits that contribute to the elastic contribution dσ̂DU,el

ab were considered in refs. [66, 67].
Consequently, the structure of this result is identical to those discussed in these references,
and the functions appearing in eq. (4.22) have already been defined there. Nevertheless, for
completeness, we briefly describe the various terms that appear in this equation.

The operator Ifin
cc in the first line of eq. (4.22) is defined in eq. (7.13) of ref. [67]. It

contains terms with two and four color-charge operators T i as well as various remnants of
virtual IV, soft IS and collinear IC operators. The quantity Ifin

ss denotes a particular finite
remainder of the double-soft integrated subtraction term. It is defined as8

Ifin
ss =

∑
(ij)∈H

DSfin
ij (T i · T j) , (4.23)

and the coefficients DSfin
ij can be obtained from an ancillary file, see table 1. Here, the notation

(ij) ∈ H means that one sums over unordered pairs of initial- and final-state particles, i.e.
H = {a, b} ∪ BN,n, with i ̸= j. The operator Ifin

tri represents the component proportional to
the product of three color-charge operators. In ref. [66], we have shown that such triple-color

7In eqs. (4.19), (4.20), the αβ pairs in PNLO
αβ that yield non-vanishing results are qq, qg, gq, gg, together

with the same pairs where q is replaced by q̄. For the functions PNNLO
αβ , in addition to the pairs listed

above, the combinations qq̄, qq′, and qq̄′ also contribute. Moreover, one finds that PNNLO
qq̄ = PNNLO

q̄q and
PNNLO

qq′ = PNNLO
qq̄′ .

8These terms are given in the third line of eq. (7.12) of ref. [67].
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correlators originate from three distinct sources: i) double-virtual corrections [71, 76, 77], ii)
commutators of the soft IS and virtual IV operators, and iii) the soft limit of the real-virtual
contributions [73]. The triple color-correlated contribution was computed in ref. [66] in full
generality, cf. eq. (I.9) in that reference. For this reason, it can be used for calculating NNLO
QCD corrections to arbitrary processes without further ado.

All remaining color-uncorrelated contributions are collected into the term Ifin
unc. It is

defined as

Ifin
unc =

∑
i∈H

[
T 2

i DT 2 + Dfi
(Ei)

]
, (4.24)

where, in the first function DT 2 , we have collected all the color-uncorrelated terms that
depend on the external legs only via the relevant Casimir factor. The remainder Dfi

depends
on the type of parton, i.e. i being a quark or a gluon. These quantities can be extracted
from the ancillary file as explained in table 1 (note that in the table 1 the Dfi

functions are
reported with superscripts ISR and FSR added to distinguish between initial- and final-state
radiation contributions).

In the second line of eq. (4.22), the partition-dependent operators W i∥n,fin
i , Wm∥n,fin

i , and
W(i)

r appear. The former arise from residual partition-dependent correction from subsectors
(a) and (c), while the latter two arise from spin-correlated singular contributions, which
are discussed extensively in refs. [66, 67].

We emphasize that these functions are independent of parton n: the notation i ∥ n

and m ∥ n is kept to identify which collinear limit has been performed. The quantities
δ(0), δ⊥,(0), and γW

z,fi→fig
can be extracted from the ancillary file as explained in table 1.

Finally, the quantities FLV2,fin and FVV,fin that appear in the final line of eq. (4.22) are the
process-dependent finite remainders of the Catani-subtracted one-loop squared and two-loop
virtual amplitudes, respectively.

Eqs. (4.9)–(4.24) provide finite remainders of the integrated NNLO QCD subtraction
terms for hadron collider processes, pp → X + N jets. However, since these formulas are
written as expressions that are applied to each of the resolved partons, they can accommodate
processes at lepton-hadron or lepton-lepton colliders with minimal adjustments. Taking
the latter case as an example, we explain how to modify eqs. (4.9)–(4.24) to arrive at the
finite remainders for ℓ+ℓ− → X + N jets.

i) The fully-regulated contribution in eq. (4.10) remains unchanged. However, the sums
over the indices i and j in eq. (4.11) should include initial-state particles only if they
have color charge; hence, in the case of a lepton-lepton collider, these sums should run
over final-state partons only.

ii) In the single-unresolved contribution in eq. (4.12), the boosted terms, defined in
eqs. (4.13), (4.14), must be set to zero.

iii) In the elastic single-unresolved contribution given in eq. (4.16), all terms involving
initial states must be discarded. Hence, in the operators I

(0)
T , O(m)

NLO and O(i,m)
NLO, as well

as in the sums over i ∈ H, only final-state partons should be considered.
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iv) In the double-unresolved contribution of eq. (4.17), the first three initial-state-boosted
terms, defined in eqs. (4.18)–(4.20), must be set to zero.

v) For the elastic double-unresolved contribution in eq. (4.22), the comments from point iii)
apply, i.e. all terms involving a initial state must be dropped. Furthermore, the operator
Ifin

tri simplifies and the corresponding expression can be found in eq. (H.16) of ref. [66].

4.2 Important aspects of the calculation

Having presented the final result in section 4.1, we would like to discuss those aspects of the
derivation that are new with respect to refs. [66, 67]. In particular, we describe the emergence
of complete sums over intermediate (clustered) partons in the collinear limits involving
initial states, the appearance of full collinear anomalous dimensions, and the triple-collinear
integrated subtraction terms. Additional technical details pertinent to these problems are
provided in appendices B and C.

4.2.1 Double-collinear contribution

We begin with the discussion of the double-collinear soft-subtracted contributions. We find
it convenient to treat terms arising from the double-collinear and triple-collinear partitions
separately. Thus, we define

Σdc
DC=

∑
n

∑
(ij)∈H

〈
SmSnCimCjn∆(mn)

[1
2Fab,DS

LM [m,n]+Fab,✟✟DS
LM [m,n]

]〉
, (4.25)

Σtc
DC= 1

2
∑

n

∑
i∈H

[〈
SmSnCimCin∆(mn)Fab,DS

LM [m,n]
〉
+
〈
Sn

(
CinCim+CimCin

)
∆(mn)Fab,✟✟DS

LM [m,n]
〉]

,

(4.26)

where the functions FLM[m, n] are given in eqs. (4.4), (4.5). The sets H in eqs. (4.25), (4.26)
include partons {a, b} and the resolved partons in the lists BN+2,n(m, n) present in the
FLM[m, n] functions, whereas in eq. (4.25), the second sum runs over all unordered pairs
of i, j ∈ H with i ≠ j.

We need to rewrite Σdc
DC and Σtc

DC in such a way that their collinear singularities are
made explicit, and their finite remainders are clearly defined. The calculation of the DS
terms on the right-hand side of eqs. (4.25), (4.26) was discussed in detail in section 5.4 of
ref. [66],9 while the ✟✟DS terms were partially addressed in section 5.2 of ref. [67], and we
complete the analysis here. Hence, in this section we briefly summarize the key steps of the
calculation without repeating all technical details. Additional technical aspects relevant to
the simplification of eq. (4.26) can be found in appendix B.

The double-collinear sector We begin with the discussion of the double-collinear partition,
eq. (4.25). Since i ̸= j, these terms, essentially, are the product or convolution of two NLO-

9Specifically, the discussion in this reference focuses on the case of an FLM function whose unresolved
partons m, n are a pair of gluons. As noted in ref. [67], the same procedure can be straightforwardly extended
for an unresolved qq̄ pair of the same flavor.
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like contributions that appear because of the action of the soft-regulated collinear operators
SmCim and SnCjn. Their analysis results in a simple, natural formula that reads

Σdc
DC=

∑
n

∑
(ij)∈H

[αs]2
〈Γi,fiΓj,fj

2ϵ2 F ab
LM[BN,n]

〉
+
∑
x,y

∑
n

[αs]2
ϵ2

〈
Pgen

xa ⊗F xy
LM[BN,n]⊗Pgen

yb

〉
+
∑

x

∑
n

[αs]2
ϵ

[〈
Pgen

xa ⊗
[(

IC(ϵ)−
Γa,x

ϵ

)
·F xb

LM[BN,n]
]〉

+
〈[(

IC(ϵ)−
Γb,x

ϵ

)
·F ax

LM[BN,n]
]
⊗Pgen

xb

〉]
.

(4.27)

The equation above shares several important features with the results for finite remainders
presented in the previous subsection. In particular, it includes the double-boosted contri-
butions, the convolutions of collinear operators with splitting functions Pgen

xy , and pair-wise
products of collinear anomalous dimensions of external partons. Furthermore, we also observe
the summation over relevant Born processes.

The derivation of eq. (4.27) is conceptually straightforward but somewhat tedious. Hence,
we will outline how its features arise from eq. (4.25), where Σdc

DC is written in terms of soft
and collinear operators. There are three cases to consider: i) partons i and j are in the
initial state, ii) parton i is in the initial and parton j in the final state (or vice versa), and
iii) partons i and j are in the final state.

We begin with the first case, where the unresolved partons become collinear to different
incoming partons. Then, hard final-state partons are not affected, but the initial-state partons
undergo clustering and may change their types. Since this clustering occurs independently
on each initial-state leg, the NLO analysis can be repeated by considering the simultaneous
action of the operators CamCbn and CanCbm on an FLM function (cf. eqs. (3.10), (3.11)).
Among other things, this leads to a double-boosted contribution (the second term on the
right-hand side of eq. (4.27)) where the sums over all intermediate parton types (x and y)
emerge. This happens because the potentially-unresolved partons m and n can be of all
possible flavors, so that the sum over all types of m, n naturally becomes a sum over all
possible types of clustered partons.

Initial-state collinear limits also produce collinear anomalous dimensions if the unresolved
parton is a gluon (cf. eq. (3.8)). Thus, the case where the unresolved partons m and n

both become collinear to distinct initial-state partons leads, in addition to the double-
boosted contribution, to terms that contain Γa,faΓb,fb

, Pgen
xa ⊗ Γb,fb

, and Γa,fa ⊗ Pgen
xb . These

contributions appear in the first term of eq. (4.27) and in the IC operators in the second line
of that equation, respectively. We note that the initial-state anomalous dimensions Γa,x and
Γb,x are subtracted from these IC operators. This happens because terms such as Pgen

xa ⊗Γa,fa

and Γb,fb
⊗ Pgen

xb cannot appear in the double-collinear sectors, because the two collinear
operators are applied to different external partons.

We continue with the case where one of the partons m and n becomes collinear to an
initial-state parton, while the other becomes collinear to a final-state parton. This case can
be analyzed following the NLO calculation, leading to the remaining products of an initial-
and a final-state anomalous dimension in the first term of eq. (4.27), as well as the remaining
terms in the IC operators in the second line of that equation.
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Finally, we consider the case where the two partons m and n become collinear to different
final-state partons. Here, the calculation is more involved, because hard final-state partons
are affected by clustering with the unresolved partons m and n, which can change their types.
Such a clustering removes two partons from the final state; the list BN+2,n(m, n) then becomes
one of the LO-like lists. The challenge is to make sure that a proper LO-like list appears
at the right place. Furthermore, one also needs to reconstruct all generalized anomalous
dimensions by combining incomplete contributions, since the latter are standard outcomes
of individual collinear limits (cf. eqs. (2.12), (2.13)).

Although a detailed analysis of final-state collinear limits requires significant care, at
its core, it is again an iterative extension of what has already been discussed in section 3.
Nevertheless, we find it instructive to discuss an explicit example of how complete anomalous
dimensions arise. To this end, we consider the term Γi,gΓj,qρ/(2ϵ2) in eq. (4.27) and, for
simplicity, ignore the 2nf Γi,g→qq̄ contribution to Γi,g. To obtain this term, we focus first on
Fab,DS

LM [m, n] (cf. eq. (4.4)) with the (mg, ng) pair, and consider the collinear limits mg ∥ ig and
ng ∥ jqρ . Applying eq. (3.9) separately to the two legs i and j, we obtain

∑
(ij)∈BN,n

δigδjqρ Γi,g→gg Γj,q→qg F ab
LM[BN,n] . (4.28)

As anticipated, the quark anomalous dimension Γj,q→qg in this expression is incomplete, as
it lacks the contribution Γj,q→gq. To complete it, we focus on the term with the unresolved
partonic state (mqρ , ng) appearing in Fab,✟✟DS

LM [m, n] (cf. eq. (4.4)), and we consider final states
with at least two distinct hard gluons, so that both unresolved partons can independently
become collinear to a hard gluon. To identify all singular contributions of this type, the
NLO construction that we described in section 3 is particularly helpful. Indeed, a sequential
application of eq. (3.9) and eq. (3.12)10 automatically yields the following result

∑
(ij)∈BN,n

δigδjqρ Γi,g→gg Γj,q→gq F ab
LM[BN,n] . (4.29)

This complements the collinear anomalous dimension in eq. (4.28), since the sum of the
two equations gives Γj,qρ , as desired. Proceeding in the same way while considering all
possible pairs of collinear limits acting on different final-state legs of the FLM functions in
Fab,DS

LM [m, n] and Fab,✟✟DS
LM [m, n], one obtains the first term on the right-hand side of eq. (4.27)

when i and j are two final-state partons.

The triple-collinear sector The triple-collinear partition contribution, defined in eq. (4.26),
involves sequential soft-regulated collinear limits where partons m and n become collinear to
a single hard parton i. This calculation is more complicated than the one for the double-

10These hard-collinear operators may be applied in either order, since the two collinear limits commute
when acting on different legs.
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collinear partitions, and we describe it in detail in appendix B. Combining the results of
this appendix, we find11

Σtc
DC= [αs]2

2ϵ2

∑
x

∑
n

{〈[∑
y

[
Pgen

xy ⊗̄Pgen
ya

]
+Gxa

]
⊗F xb

LM[BN,n]
〉

+
〈

F ax
LM[BN,n]⊗

[∑
y

[
Pgen

xy ⊗̄Pgen
yb

]
+Gxb

]〉}

+[αs]2
ϵ

∑
x

∑
n

{〈
Pgen

xa ⊗
[Γa,x

ϵ
F xb

LM[BN,n]
]〉

+
〈[Γb,x

ϵ
F ax

LM[BN,n]
]
⊗Pgen

xb

〉}
(4.30)

+[αs]2
2ϵ2

∑
n

〈[∑
i∈H

Γ2
i,fi

+
∑

i∈B
N,n

(
δig

[
2nfΓi,g→qq̄

(
Γi,q−Γi,g

)
+Gi

∣∣g
z,g→gg+2nf Gi

∣∣q
z,g→qq̄

]

+
nf∑

ρ=1
(δiqρ+δiq̄ρ)

[
Γi,q→gq

(
Γi,g−Γi,q

)
+Gi

∣∣q
z,q→qg+Gi

∣∣g
z,q→gq

])]
F ab

LM[BN,n]
〉

.

Even without an in-depth discussion of the derivation of the above equation, we can still
explain how some of its features follow from eq. (4.26). In the first line of eq. (4.30), the
convolutions of two generalized splitting functions and F xb

LM[BN,n] are present. Such terms
arise from the initial-state collinear limits, which lead to two sequential clusterings of partons.
In the first step, we cluster partons a and n to form [an̄], and in the second step, we cluster it
with parton m to produce [am̄n̄]. Schematically, the following equation holds〈

SmSnCamCanF
ab
LM[. . . |m, n]

〉
∼ P[am̄n̄][an̄] ⊗̄ P[an̄]a ⊗ F

[am̄n̄]b
LM . (4.31)

One can check that summing over all types of partons m and n, encoded in the function
FLM[m, n], is equivalent to summing over all types of clustered partons x and y. Furthermore,
as explained in detail in refs. [66, 67], the collinear limits i ∥ m and i ∥ n are not fully
independent because of phase-space constraints. This gives rise to the functions Gxa and
Gxb that appear in eq. (4.30).

In the second line of eq. (4.30) terms appear that allow the completion of the IC operators
present in the second line of eq. (4.27). We recall that such contributions are due to initial-
state collinear limits. In particular, if m or n is a gluon, these limits lead to diagonal
transitions which introduce anomalous dimensions, as shown in eq. (2.9). Convolutions
between these terms and the splitting functions lead to terms on the second line of eq. (4.30),
whereas the product of initial-state anomalous dimensions forms part of the first term on
the third line of eq. (4.30).

The remaining terms in the last two lines in eq. (4.30) describe final-state collinear limits.
By analogy with the initial-state contribution, we expect two sequential final-state collinear
limits to give rise to products of weighted anomalous dimensions, i.e.〈

SmSnCimCinF
ab
LM[. . . , i, . . . |m, n]

〉
∼ Γ[imn]→[in]m Γ[in]→in F ab

LM[. . . , [imn] , . . .] , (4.32)

as well as some functions Gi which, as mentioned previously, take into account the phase-space
intertwinement of partons m and n. Finally, moving from eq. (4.32) to the last two lines

11We note that the ⊗̄ convolution that we use here is defined differently (cf. eq. (B.11)) compared to what
we have used earlier in refs. [66, 67].
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in eq. (4.30) requires an explicit enumeration of all possibilities for the clustered partons,
an analysis of the transformation of the final-state hard partons under the action of the
collinear limits, and the reconstruction of the squares of the complete anomalous dimensions,
which will be needed for the I2

C operator.

4.2.2 Triple-collinear subtraction contribution

We now turn to the triple-collinear limits, which correspond to the situation in which the
two unresolved partons m, n become simultaneously collinear to a resolved parton. In the
context of the nested soft-collinear subtraction scheme, the relevant terms are obtained as
integrals of the triple-collinear limits of the double-real matrix elements squared, followed
by the subtraction of the double-soft, single-soft, as well as single-collinear singularities.
Hence, such contributions are written as∑

n

∑
i∈H

〈
SmnSnΩ(i)

2 ∆(mn)
[
ΘmnF

ab,DS
LM [m, n] + Fab,✟✟DS

LM [m, n]
]〉

, (4.33)

where the two FLM[m, n] functions can be found in eqs. (4.4) and (4.5), while the operator
Ω(i)

2 reads

Ω(i)
2 =

[
Cinθ

(a) + Cmnθ
(b) + Cimθ(c) + Cmnθ

(d)
]
[dpm][dpn]Cmn,i ωmi,ni . (4.34)

The functions θ(a,b,c,d) define the phase-space sector, restricting the number of possible singular
collinear limits that one needs to consider. We note that the triple-collinear operator Cmn,i

does not act on the phase-space measure of the unresolved gluons, while operators Cij do.
For further details, see the discussion below eq. (4.11) as well as refs. [66–68].

All triple-collinear splitting functions were computed in ref. [73]. They were integrated
over the appropriate phase spaces in ref. [75], for both initial- and final-state splittings.
However, as we already pointed in ref. [67], the integrated triple-collinear subtraction terms in
eq. (4.33) differ slightly from the quantities computed in ref. [75] for some final-state splittings.
This happens because some integrals were calculated in this reference without the damping
factors ∆(mn), which produce additional energy-dependent weights in the triple-collinear
limits. Furthermore, in ref. [75], all unresolved partons were energy-ordered when considering
final-state splittings, whereas here we do not employ energy ordering for the combinations of
unresolved partons that cannot produce double-soft singular limits. These differences lead to
very minor modifications to the soft and strongly-ordered collinear subtraction terms, while
the unsubtracted integrals of the triple-collinear splitting functions over the phase space
of the unresolved partons remain unchanged.

We discuss the required changes in appendix C. Here, we sketch them briefly by considering
the g∗ → gqq̄ splitting. Using the definitions of functions FLM, we find that the following
quantity is required∑

n

∑
i∈Hf

〈
SmnSnΩ(i)

2 ∆(mn)
[
δigΘmnF

ab
LM[BN+2,n(m(qτ

, nq̄τ ))]

+
nf∑

ρ=1

(
δiq̄ρF ab

LM[BN+2,n(mqρ , ng)] + δiqρF ab
LM[BN+2,n(mq̄ρ , ng)]

)]〉
.

(4.35)
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A similar but not identical quantity was computed in ref. [75], where the energy-ordering
Θmn function was applied to all three FLM functions in eq. (4.35). One can show that the
difference between the two calculations is given by

−
∑

n

∑
i∈Hf

〈
ΘnmSnΩ(i)

2 ∆(mn)
nf∑

ρ=1

[
δiq̄ρF ab

LM[BN+2,n(mqρ , ng)] + δiqρF ab
LM[BN+2,n(mq̄ρ , ng)]

]〉
,

(4.36)
where Θnm = Θ(En − Em). The important point is that the difference involves the soft
operator Sn, which implies that a simplified version of the triple-collinear splitting function is
needed to compute the difference. We note that similar simplifications occur for all other
splitting functions where modifications are required.

We find it convenient to define triple-collinear terms in the following way. For the
final-state gluon splitting, we combine the g∗ → ggg and g∗ → gqq̄ processes, and write

∑
n

∑
i∈Hf

δ[imn]g

〈
SmnSnΩ(i)

2 ∆(mn)
[
ΘmnF

ab,DS
LM [m,n]+Fab,✟✟DS

LM [m,n]
]〉

=
∑

n

∑
i∈B

N,n

δig
[αs]2

ϵ

〈
ΓTC

i,g F ab
LM[BN,n]

〉
.

(4.37)
For the final-state quark splitting, q∗ → qgg and q∗ → qq′q̄′ (with q′ running over all flavors
including q′ = q), we define

∑
n

∑
i∈Hf

δ[imn]q

〈
SmnSnΩ(i)

2 ∆(mn)
[
ΘmnF

ab,DS
LM [m,n]+Fab,✟✟DS

LM [m,n]
]〉

=
∑

n

∑
i∈B

N,n

δiq
[αs]2

ϵ

〈
ΓTC

i,q F ab
LM[BN,n]

〉
,

(4.38)
where we have suppressed the flavor index of q to simplify the notation. We note that
the case [imn] = q̄ is identical to the one just described, so that ΓTC

i,q̄ ≡ ΓTC
i,q . The explicit

expressions for all relevant integrated triple-collinear terms ΓTC
i,fi

are reported in the ancillary
file TripleCollinearSplittings.m provided with this paper (see table 2).

Next, we consider the initial-state triple-collinear splittings, i.e. i ∈ {a, b}. For definiteness,
we focus on the case i = a; then, the splitting process we are interested in is a → [am̄n̄]∗+m+n.
We have to sum over all possible types of partons m and n, keeping [am̄n̄] fixed, and collect
all contributions to the integrated triple-collinear splitting function PTC

[am̄n̄]a. Accounting for
all the relevant terms with appropriate parton permutations and averaging factors, we arrive
at the following formula for the integrated initial-state triple-collinear subtraction terms

∑
n

〈
SmnSnΩ(a)

2 ∆(mn)
[
ΘmnF

ab,DS
LM [m, n] + Fab,✟✟DS

LM [m, n]
]〉

=
∑

x

∑
n

[αs]2
ϵ

〈
PTC

xa ⊗ F xb
LM[BN,n]

〉
.

(4.39)
Similar to cases discussed earlier, the sum over x runs over all parton types, and
the triple-collinear splitting functions PTC

xa accommodate the allowed a → x split-
tings. Explicit expressions for these splitting functions are reported in the ancillary file

– 28 –



J
H
E
P
0
1
(
2
0
2
6
)
1
3
7

TripleCollinearSplittings.m, see table 2. We conclude this section by writing the final
expression for eq. (4.33) that takes into account all initial- and final-state splittings∑

n

∑
i∈H

〈
SmnSnΩ(i)

2 ∆(mn)
[
ΘmnF

ab,DS
LM [m,n]+Fab,✟✟DS

LM [m,n]
]〉

=
∑

x

∑
n

[αs]2
ϵ

[〈
PTC

xa ⊗F xb
LM[BN,n]

〉
+
〈
F ax

LM[BN,n]⊗PTC
xb

〉]
+
∑

n

∑
i∈BN,n

[αs]2
ϵ

〈
ΓTC

i,fi
F ab

LM[BN,n]
〉
.

(4.40)

5 Conclusions

In this paper, we have presented a fully general derivation of the finite remainders of the
integrated NNLO subtraction terms within the nested soft-collinear framework. Our results
are applicable to arbitrary processes with massless QCD partons at lepton and hadron
colliders. In the process, we verify the analytic cancellation of all infrared divergences for
infrared-safe observables in a process-independent manner, confirming the consistency of
the subtraction scheme at NNLO.

Our analysis focused on the process pp → X + N jets, where X represents a generic
color-singlet system, and the number of jets N is a free parameter. The finite remainders
for this process at NNLO QCD accuracy are given in section 4.1. We also discuss there the
required (minor) modifications to make our results applicable to processes at lepton colliders.

The calculation of finite remainders at NNLO QCD accuracy for arbitrary processes
required us to overcome two central challenges. The first one involved developing a systematic
understanding of the singular limits of radiative scattering amplitudes at NNLO, including
their interplay, and finding a suitable way to combine the corresponding subtraction terms
with divergent contributions from virtual corrections. In ref. [66], this problem was addressed
by adopting, as the guiding principle, the idea of expressing the integrated subtraction
terms in a form closely resembling that of Catani’s operator [71], which describes the
1/ϵ poles from virtual corrections. This approach enabled the cancellation of such poles
through the combination of process-independent soft and collinear operators. The analysis
in ref. [66] showed that, in this way, the apparent mismatch between the “simple” form
of the (double-) virtual singularities and the increasing complexity of the real-virtual and
double-real contributions can be resolved through a careful combination of contributions
that share certain functional properties, such as color correlations. The method introduced
in ref. [66] was proven to be valid in the specific case of quark-antiquark annihilation into
an arbitrary number of gluons.

The second challenge concerned the combinatorial complexity of bookkeeping. This can
be understood as the need for a systematic enumeration of all relevant partonic channels
contributing to a given process at fixed perturbative order, as well as their modifications
induced by soft and collinear limits. This step is essential to the subtraction procedure,
as the cancellation of collinear singularities requires precise control over all initial- and
final-state divergent components. To investigate how these cancellations occur, the method
introduced in ref. [66] was extended in ref. [67] to a more complex process that includes a
quark in the Born-level final state. This study revealed important structural patterns, and
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highlighted the main combinatorial challenges. The main conclusion of ref. [67] was that the
nested soft-collinear subtraction scheme, in its revised formulation introduced in ref. [66], is
sufficiently robust to be applied to complex final states involving both quarks and gluons. It
was also shown that physically relevant quantities, such as collinear anomalous dimensions,
emerge naturally when singular configurations are combined prior to integration over the
unresolved phase space. These findings indicated that the method not only facilitated the
computation of NNLO corrections but also improved the physical transparency of the results.

Before concluding, we provide an overview of the main results of this paper. The
master formulas for partonic and hadronic NLO cross sections within the nested soft-collinear
subtraction scheme are given in eqs. (3.17) and (3.19), respectively. The NNLO master formula,
the central result of this work, is distributed across section 4.1. While it mirrors the structure
of the NLO expression, the additional complexity of the singular limits at this order leads to
a more intricate decomposition. Thus, we divide the result into three parts: fully-resolved,
single-unresolved, and double-unresolved, whose highest-multiplicity contributions involve
(N + 2), (N + 1), and N jets, respectively. Each part is made finite by virtue of dedicated
subtraction terms. The fully-resolved term appears in eq. (4.10). A thorough discussion of
its numerical implementation goes beyond the scope of this paper. We simply comment that
it requires enumerating all possible partonic channels and singular configurations for a given
process, together with an appropriate sector-by-sector phase-space parametrization, similar
in spirit to the FKS construction at NLO [1]. In the triple-collinear limit, this becomes
subtle since new overlapping singularities appear, making further partitioning necessary. A
suitable phase-space parametrization for this partitioning was presented in ref. [12]. Particular
attention must be paid to spin correlations in triple-collinear splittings. The single- and double-
unresolved contributions arise from integrating the subtraction terms over the unresolved
phase space. The single-unresolved contributions, residing in the (N + 1)-parton phase space,
are given in eqs. (4.13), (4.14), and (4.16). The first two involve boosted kinematics, arising
due to collinear radiation by the initial state partons, while the latter exhibits kinematics
identical to that of the NLO real-emission contributions.

The double-unresolved term lives in the N -parton phase space and is decomposed into
four parts, as summarized in eq. (4.17). The first contribution, eq. (4.18), involves a double
convolution and hence double-boosted kinematics. The single-boosted terms are given in
eqs. (4.19) and (4.20), resembling the NLO boosted contributions. The elastic contribution
appears in eq. (4.22). Despite containing the most intricate functions from the double-soft
limits, it is the simplest to implement in a numerical code due to its LO-like kinematics.

In summary, building on the findings of refs. [66, 67], we have extended the approach
developed in these references to arbitrary final states, completing the construction of a general
NNLO subtraction scheme. In this paper, we have addressed and resolved the two challenges
described above, organizing all unresolved limits and their integrated counterparts into a
compact expression. Its modular structure enables its application to any process with an
X + N jets final state without requiring process-specific modifications. Furthermore, the
formula separates final-state and initial-state contributions, making it directly applicable
to non-hadronic collisions, such as ℓ+ℓ− → X + N jets, thereby extending its applicability
beyond the current LHC program. Future developments include the treatment of massive
final-state quarks, embedding this scheme in parton-level event generators, and exploring
its extension to N3LO QCD accuracy.
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A Operations with lists

In section 3 and section 4 we discussed how to derive the finite remainders of subtraction
terms for NLO and NNLO QCD corrections, respectively, to a generic process of the type
pp → X + N jets. Focusing on a given partonic channel (a, b), we introduced abstract
representations of the final-state N -parton configurations BN,n where index n parametrizes
different final states at fixed N and (a, b). We then examined how soft and collinear operators
act on these lists, and showed that applying such operators to a complete set of FLM functions

— each depending on a given higher-multiplicity final-state configuration — leads to a complete
sum of FLM functions involving lists with lower final-state multiplicity.

In this appendix, we will construct such lists explicitly for a toy example — a process
pp → N jets in QCD with gluons and a single quark flavor. While this is only a toy example
(and is not designed to accommodate processes including W bosons, for instance), we believe
that an explicit construction of these lists is useful for checking the general statements made
in the main body of the paper.

Given an initial state (a, b), we can describe the corresponding final states with N jets
in terms of the lists

B =
(
{g}Ng , {q}Nq , {q̄}Nq̄

)
. (A.1)

Here, Ng, Nq, and Nq̄ denote the numbers of final-state gluons, quarks, and antiquarks,
respectively. These multiplicities must be such that the process ab → B is allowed in QCD.
This implies that the possible combinations of gluons, quarks, and antiquarks for a given jet
multiplicity N depend on the initial-state baryon charge Qab. In the toy model with a single
quark flavor, the baryon charge of the initial partonic state can take values Qab = 0,±1,±2,
and we will now examine the possible final-state configurations corresponding to each of
these cases.

We begin by considering the initial states with the vanishing baryon charge, Qab = 0.
They are (a, b) ∈ {(q, q̄), (q̄, q), (g, g)}. Such initial-state configurations are compatible with
N -gluon final states, as well as with all the partonic channels that can be obtained by
replacing 2n of these gluons with n qq̄ pairs. Upon doing this, we find the following possible
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final-state configurations

N even :



{g}N {q}0 {q̄}0
{g}N−2 {q}1 {q̄}1
{g}N−4 {q}2 {q̄}2

...
...

...

{g}0 {q}N
2
{q̄}N

2


N odd :



{g}N {q}0 {q̄}0
{g}N−2 {q}1 {q̄}1
{g}N−4 {q}2 {q̄}2

...
...

...

{g}1 {q}N−1
2

{q̄}N−1
2


, (A.2)

which differ for even and odd N . We can unify the two cases by using the so-called floor
function ⌊x⌋ which is defined as the largest integer n such that n ≤ x. Then, it is easy to
see that all N -jet partonic final states that can be produced from a Qab = 0 initial state
are described by the following list

B0
N,n =

(
{g}N−2n, {q}n, {q̄}n

)
, n ∈

[
0,

⌊
N

2

⌋]
, (A.3)

where the superscript in B0
N,n refers to the baryon charge. To give a concrete example of this

notation, we note that in ref. [66] we considered the case B0
N,0, i.e. the process qq̄ → X +N g.

We continue with the initial states that carry baryon charge Qab = ±1, namely (a, b) ∈
{(g, q), (q, g), (g, q̄), (q̄, g)}. Considering for definiteness the (g, q) initial state which has
Qab = +1, the allowed partonic final states are given by the following lists

N even :



{g}N−1 {q}1 {q̄}0
{g}N−3 {q}2 {q̄}1
{g}N−5 {q}3 {q̄}2

...
...

...

{g}1 {q}N
2
{q̄}N−2

2


, N odd :



{g}N−1 {q}1 {q̄}0
{g}N−3 {q}2 {q̄}1
{g}N−5 {q}3 {q̄}2

...
...

...

{g}0 {q}N+1
2

{q̄}N−1
2


, (A.4)

which can be summarized as

B+1
N,n =

(
{g}N−1−2n, {q}n+1, {q̄}n

)
, n ∈

[
0,

⌊
N − 1

2

⌋]
. (A.5)

We note that in ref. [67] we analyzed the case B+1
N,0, i.e. the process gq → X + (N − 1)g + q.

The final states compatible with Qab = −1 are obtained from eq. (A.4) and eq. (A.5) by
replacing quarks with antiquarks and vice versa.

Finally, initial states with baryon charge Qab = ±2 include (a, b) = {(q, q), (q̄, q̄)}.
Focusing for definiteness on the Qab = +2 case, we find

N even :



{g}N−2 {q}2 {q̄}0
{g}N−4 {q}3 {q̄}1
{g}N−6 {q}4 {q̄}2

...
...

...

{g}0 {q}N+2
2

{q̄}N−2
2


, N odd :



{g}N−2 {q}2 {q̄}0
{g}N−4 {q}3 {q̄}1
{g}N−6 {q}4 {q̄}2

...
...

...

{g}1 {q}N+1
2

{q̄}N−3
2


. (A.6)

We write the above lists as

B+2
N,n =

(
{g}N−2−2n, {q}n+2, {q̄}n

)
, n ∈

[
0,

⌊
N − 2

2

⌋]
. (A.7)

The final state with Qab = −2 are easily obtained from the above formula by exchanging
q ↔ q̄.
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It is clear that all the final-state lists in eqs. (A.3), (A.5), and (A.7) can be unified
by writing

Qab≥0: BQab

N,n =
(
{g}N−Qab−2n,{q}n+Qab

,{q̄}n

)
,

Qab <0: BQab

N,n =
(
{g}N−|Qab|−2n,{q}n,{q̄}n+|Qab|

)
,

n∈ [0,ξ(N,Qab)], ξ(N,Qab)=
⌊

N−|Qab|
2

⌋
.

(A.8)
The upper bound in eq. (A.8) satisfies ξ(N, Qab) ≥ 0, which implies N ≥ |Qab| for any BQab

N,n.
Through the parametrization in eq. (A.8), the sum over n that appears in eq. (3.1)

becomes explicit. Indeed, fixing the initial state (a, b) determines the baryon charge Qab,
which is used in the parametrization of eq. (A.8) to write the lists BQab

B,n enumerating the
possible final states. In this way, the sum over all possible configurations in eq. (3.1) becomes
a sum over the parameter n ∈ [0, ξ(N, Qab)]. One can use the explicit parametrizations
constructed in this appendix to check all the statements made in the main text of the paper
concerning the behavior of various lists in different limits and, especially, how they transform
into each other. We emphasize that the example discussed in this appendix is limited, while
the construction and formulas presented in the main body of the paper are valid for any
number of quark flavors and are also independent of the nature of the color singlet X.

B Details on the double-collinear contribution in the triple-collinear
sector

In eq. (4.26) we introduced the double-collinear contribution which occurs when partons
m and n simultaneously become collinear to one of the hard partons i. For convenience,
we repeat the expression here

Σtc
DC= 1

2
∑

n

∑
i∈H

[〈
SmSnCimCin∆(mn)Fab,DS

LM [m,n]
〉
+
〈
Sn

(
CinCim+CimCin

)
∆(mn)Fab,✟✟DS

LM [m,n]
〉]

.

(B.1)

The functions FLM are defined in eqs. (4.4)–(4.7). We presented the result for Σtc
DC in eq. (4.30)

without providing a derivation. Here we explain in detail how to obtain it, considering the
initial state first and then the final state.

Before proceeding with the calculation, it is useful to write eq. (B.1) in a more suitable
way. Specifically, we would like to write the ✟✟DS contribution in the same way as the DS part,
using a single pair of operators CimCin. This is achieved by first symmetrizing Fab,✟✟DS

LM,1 [m, n]
with respect to m and n. We write

Sn
(
CinCim + CimCin

)
∆(mn)F ab

LM[BN+2,n(mq, ng)]

= SmSn
(
CinCim + CimCin

)
∆(mn) 1

2
[
F ab

LM[BN+2,n(mq, ng)|+]F ab
LM[BN+2,n(mg, nq)]

]
,

(B.2)

and do the same for the (mq̄, ng) term. We note that on the right-hand side of eq. (B.2), we
have added the operator Sm, which coincides with the identity operator for m ≠ g. Therefore,
it can also be inserted into eq. (B.1) for the remaining terms of Fab,✟✟DS

LM,1 [m, n], since in all such
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cases m is not a gluon. Finally, we symmetrize Fab,✟✟DS
LM,2 [m, n] by writing

Fab,✟✟DS
LM,2 [m, n] =

∑
n

nf∑
ρ,τ=1
τ≠ρ

1
2F ab

LM[BN+2,n(mqρ , nqτ )] +
∑

n

nf∑
ρ,τ=1
τ ̸=ρ

1
2F ab

LM[BN+2,n(mq̄ρ , nq̄τ )]

+
∑

n

nf∑
ρ,τ=1
τ ̸=ρ

1
2
(
F ab

LM[BN+2,n(mqρ , nq̄τ )] + F ab
LM[BN+2,n(mq̄τ , nqρ)]

)
.

(B.3)

Again, in this case we can insert the operator Sm in front of Fab,✟✟DS
LM,2 [m, n], since it acts as

the identity operator.
After these changes, the function Fab,✟✟DS

LM [m, n] becomes symmetric under the exchange
m ↔ n, allowing us to replace the sum of operators SmSn

(
CinCim+CimCin

)
with 2SmSnCimCin.

Combining this result with the DS contribution, we can write eq. (B.1) as

Σtc
DC = 1

2
∑

n

∑
m,n

∑
i∈H

〈
SmSnCimCin∆(mn)F ab

LM[BN,n(m, n)]
〉

, (B.4)

where m, n ∈ {g, q̄ρ, q̄′ρ} with ρ = 1, . . . , nf . Eq. (B.4) is our starting point for our discussion.
We note that definitions of several quantities that appear below are given in appendix A
of ref. [67].

Initial-state We begin with the initial-state case, and assume i = a for definiteness. The
action of the operators SnSmCamCan on a generic function FLM gives

SmSnCamCan∆(mn)F ab
LM[m, n] =

(
g2

s,bµ2ϵ
0
)2

E2
mE2

n ρamρan

[
P[an̄]a,i(zn)
(1− zn)−1

P[am̄n̄][an̄],i(zm)
(1− zm)−1

F
(zmzn·[am̄n̄])b
LM

zmzn

− δ[an̄]a2T 2
[an̄]

P[am̄n̄][an̄],i(wm)
(1− wm)−1

F
(wm·[am̄n̄])b
LM

wm

− δ[am̄n̄][an̄]2T 2
[am̄n̄]

P[an̄]a,i(zn)
(1− zn)−1

F
(zn·[am̄n̄])b
LM

zn

+ δ[an̄]aδ[am̄n̄][an̄]4T 2
[an̄]T

2
[am̄n̄]F

[am̄n̄]b
LM

]
,

(B.5)

where the Pαβ,i splitting functions are reported in eq. (A.12) of ref. [67], and

ρij =1−cosθij , Em,n∈ [0,Emax], zn=1−En

Ea
, zm=1− Em

znEa
, wm=1−Em

Ea
.

(B.6)
The arguments of the FLM functions on the right-hand side — which we do not display
for simplicity — are lists that are obtained from those on the left-hand side by removing
partons m and n.

Since the integration over the angular phase space in eq. (B.5) is straightforward, we focus
on the energy integrals. We will discuss the first term on the right-hand side, which is the
most complicated. First, we change the integration variables from (Em, En) to (zn, ξ = zmzn),
where zn ∈ [1− Emax/Ea, 1] and ξ ∈ [zn − Emax/Ea, zn]. Since Ea < Emax, and the physical
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integration region of a splitting function requires zn ≥ 0, we can restrict the values of this
variable to zn ∈ [0, 1]. In the case of the variable ξ, we have zn ≤ 1 and Emax/Ea > 1, which
implies zn − Emax/Ea < 0. However, since the function F

(ξ·[am̄n̄])b
LM has no support for ξ < 0,

we can assume ξ ∈ [0, zn]. The integral over the energies therefore reads
∫ Emax

0
dEn E1−2ϵ

n

∫ Emax

0
dEm E1−2ϵ

m

1
E2

mE2
n

P[an̄]a,i(zn)
(1− zn)−1

P[am̄n̄][an̄],i(zm)
(1− zm)−1

F
(zmzn·[am̄n̄])b
LM

zmzn
=

E−4ϵ
a

∫ 1

0

dzn
zn

z−2ϵ
n

P[an̄]a,i(zn)
(1− zn)2ϵ

∫ zn

0
dξ

P[am̄n̄][an̄],i(ξ/zn)
(1− ξ/zn)2ϵ

F
(ξ·[am̄n̄])b
LM

ξ
.

(B.7)

We change the order of integration and rename the integration variables as ξ 7→ z and zn 7→ t

to obtain a convolution, and then use the definition of the splitting function P(2)
αβ given in

eq. (A.15) of ref. [67] to rewrite eq. (B.7) as

E−4ϵ
a

∫ 1

0
dz

[[∫ 1

z

dt

t
t−2ϵP(2)

[an̄]a,i(t,Ea)P(2)
[am̄n̄][an̄],i(z/t,Ea)

]
−δ[an̄]a

T 2
[an̄]
ϵ

e−2ϵLaP(2)
[am̄n̄][an̄](z,Ea)

−δ[am̄n̄][an̄]
T 2

[am̄n̄]
ϵ

e−2ϵLaz−2ϵP(2)
[an̄]a(z,Ea)+δ[an̄]aδ[am̄n̄][an̄]

T 2
[an̄]T

2
[am̄n̄]

ϵ2 e−4ϵLaδ(1−z)
]

F
(z·[am̄n̄])b
LM

z
,

(B.8)

where La = log(Emax/Ea). Treating the remaining terms in eq. (B.5) in the same manner,
and including the integral over the angular phase space leads to the following expression〈

SmSnCamCan∆(mn)F ab
LM[m, n]

〉
= [αs]2

ϵ2

[(2Ea

µ

)−2ϵ Γ2(1− ϵ)
Γ(1− 2ϵ)

]2 ∫ 1

0
dz

〈[(∫ 1

z

dt

t
t−2ϵP(2)

[an̄]a,i(t, Ea)P(2)
[am̄n̄][an̄],i(z/t, Ea)

)

+ δ[am̄n̄][an̄]
T 2

[am̄n̄]
ϵ

e−2ϵLa(1− z−2ϵ)P(2)
[an̄]a(z, Ea)

]
F

(z·[am̄n̄])b
LM

z

〉
.

(B.9)

The next step consists of rewriting the splitting functions P(2)
αβ in eq. (B.9) using eq. (A.16)

of ref. [66] and expressing P(2)
αβ in terms of the quantities Pgen

αβ and Γa,α. From this, we obtain
〈
SmSnCamCan∆(mn)F ab

LM[m,n]
〉
=

[αs]2
ϵ2

∫ 1

0
dz

〈{[
Pgen

[am̄n̄][an̄]⊗̄Pgen
[an̄]a

]
(z,Ea)+δ[an̄]aΓa,[an̄]Pgen

[am̄n̄][an̄](z,Ea)

+δ[am̄n̄][an̄]z
−2ϵΓa,[am̄n̄]Pgen

[an̄]a(z,Ea)+δ[an̄]aδ[am̄n̄][an̄]Γa,[an̄]Γa,[am̄n̄]δ(1−z)

−δ[am̄n̄][an̄]
T 2

[am̄n̄]

ϵ
e−2ϵLa(1−z−2ϵ)

[
Γa,[an̄]δ(1−z)+Pgen

[an̄]a(z,Ea)
](2Ea

µ

)−2ϵ Γ2(1−ϵ)
Γ(1−2ϵ)

}
F

(z·[am̄n̄])b
LM

z

〉
.

(B.10)

In eq. (B.10) we have defined the ⊗̄ convolution as

[
fxy ⊗̄ gya](z, Ea)

def=
∫ 1

z

dt

t
fxy(z/t, Ea)× t−2ϵgya(t, Ea) , (B.11)
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which differs from the one used in ref. [67] by the order in which the convoluted functions
are written. This ensures that the indices appear in the same order as in the terms arising
from the renormalization of the pdfs. The long expression in the curly brackets in eq. (B.10)
can be simplified by noting that

z−2ϵΓa,[am̄n̄] −
T 2

[am̄n̄]
ϵ

e−2ϵLa(1− z−2ϵ)
(2Ea

µ

)−2ϵ Γ2(1− ϵ)
Γ(1− 2ϵ) = Γz·a,[am̄n̄] ,

where Γz·a,α
def= Γa,α

∣∣
Ea 7→zEa

,

(B.12)

and also that (1 − z−2ϵ)δ(1 − z)F (z) = 0. Employing these relations, we obtain〈
SmSnCamCan∆(mn)F ab

LM[m, n]
〉
=

[αs]2
ϵ2

∫ 1

0
dz

〈{[
Pgen

[am̄n̄][an̄] ⊗̄ Pgen
[an̄]a

]
(z, Ea) + δ[an̄]aΓa,[an̄]P

gen
[am̄n̄][an̄](z, Ea)

+ δ[am̄n̄][an̄]Γz·a,[am̄n̄]P
gen
[an̄]a(z, Ea) + δ[an̄]aδ[am̄n̄][an̄]Γa,[an̄]Γa,[am̄n̄]δ(1− z)

}
F

(z·[am̄n̄])b
LM

z

〉
.

(B.13)

Finally, we include the sum over the unresolved partons m, n, which allows us to write the
i = a term of eq. (B.4) as

1
2
∑

n

∑
mn

〈
SmSnCamCan∆(mn)F ab

LM[BN+2,n(m, n)]
〉
=

[αs]2
∑

n

〈Γ2
a,fa

2ϵ2 F ab
LM[BN,n]

〉
+ [αs]2

2ϵ2

∑
x

∑
n

〈[∑
y

[
Pgen

xy ⊗̄ Pgen
ya

]
+ Gxa

]
⊗ F xb

LM[BN,n]
〉

+ [αs]2
ϵ

∑
x

∑
n

〈
Pgen

xa ⊗
[Γa,x

ϵ
F xb

LM[BN,n]
]〉

,

(B.14)

where

Gxa(z, Ea) ≡
∑

y

[
δayΓa,yPgen

xy (z, Ea)− δxyΓz·a,xPgen
ya (z, Ea)

]
=

[
Γa,fa − Γz·a,x]Pgen

xa (z, Ea) .

(B.15)
Note that we already encountered the function G in eq. (5.15) of ref. [67] in the case of
identical flavors, i.e. x = a. Eq. (B.15) generalizes the earlier definition to the case of different
flavors, x ̸= a. Eq. (B.14) corresponds to the initial-state contribution in eq. (4.30).

Final-state We proceed with the calculation of the expression in eq. (B.4) for the final-state
case, i.e. i ∈ BN+2,n(m, n). We first consider the action of the operator Cin. It yields〈

SnSmCimCin∆(mn)F ab
LM[. . . , i, . . . |m, n]

〉
= [αs]

ϵ

Γ2(1− ϵ)
Γ(1− 2ϵ)

〈
SmC[in]m∆(m)(2E[in]/µ)−2ϵγ22

z,[in]→in(L[in])F ab
LM[. . . , [in], . . . |m]

〉
.

(B.16)

Eq. (B.16) has the form of an NLO-like expression with the second collinear operator yet
to be applied. The quantities γ22 are defined in eq. (A.20) of ref. [67]. They depend on the
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logarithm L[in] = log
(
Emax/E[in]

)
, where E[in] = Ei + En. Furthermore, in eq. (B.16) we

have left the lists of resolved partons in the arguments of the two FLM functions implicit.
Before applying the second collinear operator, it is convenient to rewrite γ22 in a way

that separates the terms that depend on the energy E[in] from those that do not. Substituting

γ22
z,[in]→in(L[in]) =

(
γ22

z,[in]→in(0) + δ[in]i
T 2

[in]
ϵ

)
− δ[in]i

T 2
[in]
ϵ

(
Emax
E[in]

)−2ϵ

, (B.17)

into eq. (B.16), we obtain

〈
SnSmCimCin∆(mn)F ab

LM[... ,i,...|m,n]
〉
= [αs]

ϵ

Γ2(1−ϵ)
Γ(1−2ϵ)

〈
SmC[in]m∆(m)

[
(2E[in]/µ)−2ϵ

(
γ22

z,[in]→in(0)

+δ[in]i
T 2

[in]

ϵ

)
−(2Emax/µ)−2ϵδ[in]i

T 2
[in]

ϵ

]
F ab

LM[... ,[in],...|m]
〉

.

(B.18)

At this point, we can apply the collinear operator C[in]m, which identifies the clustered parton
[imn] with energy E[imn] = Em/(1 − z) = E[in]/z, where E[imn] = Ei + Em + En. Under its
action, the term in eq. (B.18) multiplying (2E[in]/µ)−2ϵ gives rise to an anomalous dimension
of the type γ42, rather than the NLO-like γ22, due to the additional factor z−2ϵ contained in
E−2ϵ

[in] = z−2ϵE−2ϵ
[imn]. The term in eq. (B.18) that does not contain E[in], on the other hand,

leads to the usual anomalous dimension γ22. Therefore, we find〈
SnSmCimCin∆(mn)F ab

LM[. . . , i, . . . |m, n]
〉
=

[αs]2
ϵ2

〈[(2E[imn]
µ

)−2ϵ Γ2(1− ϵ)
Γ(1− 2ϵ)

]2[(
γ22

z,[in]→in(0) + δ[in]i
T 2

[in]
ϵ

)

× γ42
z,[imn]→[in]m(L[imn])− δ[in]i

T 2
[in]
ϵ

e−2ϵL[imn]γ22
z,[imn]→[in]m(L[imn])

]
F ab

LM[. . . , [imn], . . .]
〉

.

(B.19)

Finally, to simplify the expression in eq. (B.19), we introduce a quantity which is the
final-state counterpart of the G-function defined in eq. (B.15). It reads12

G[imn]
∣∣ f(z),[in]→in

f̃(z),[imn]→[in]m =
[(2E[imn]

µ

)−2ϵ Γ2(1− ϵ)
Γ(1− 2ϵ)

]2[
γ22

f(z),[in]→in(L[imn]) + δ[in]i
T 2

[in]
ϵ

e−2ϵL[imn]

]
×

[
γ42

f̃(z),[imn]→[in]m(L[imn])− γ22
f̃(z),[imn]→[in]m(L[imn])

]
.

(B.20)

Using this quantity, we can finally rewrite eq. (B.16) as

〈
SnSmCimCin∆(mn)F ab

LM[. . . , i, . . . |m, n]
〉
= [αs]2

ϵ2

〈[
Γ[imn],[in]→in Γ[imn],[imn]→[in]m

+ G[imn]
∣∣z,[in]→in
z,[imn]→[in]m

]
F ab

LM[. . . , [imn], . . .]
〉

.

(B.21)
12The final-state G-function has already appeared in eq. (5.21) of ref. [67].
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The expression in eq. (B.21) can now be inserted into eq. (B.4). Summing over the
indices i, m, and n, and relabeling the clustered parton [imn] as i, we obtain the final result

1
2
∑

n

∑
mn

∑
i∈Hf

〈
SmSnCimCin∆(mn)F ab

LM[BN+2,n(m, n)]
〉

= [αs]2
2ϵ2

∑
n

∑
i∈BN,n

〈[
δig

[
Γ2

i,g + 2nf Γi,g→qq̄
(
Γi,q − Γi,g

)
+ Gi

∣∣g
z,g→gg + 2nf Gi

∣∣q
z,g→qq̄

]

+
nf∑

ρ=1

(
δiqρ + δiq̄ρ

)[
Γ2

i,q + Γi,q→gq
(
Γi,g − Γi,q

)
+ Gi

∣∣q
z,q→qg + Gi

∣∣g
z,q→gq

]]
F ab

LM[BN,n]
〉

.

(B.22)

We note that, in order to obtain eq. (B.22), we used the two properties of the G-functions
described in eqs. (5.22, 5.23) of ref. [67]. Combining eq. (B.22) with eq. (B.14) and the
analogous result for the initial-state parton b gives the final formula for the triple-collinear
partitions, shown in eq. (4.30).

C Integrated triple-collinear counterterms

In section 4.2.2 we explained why the integrated triple-collinear terms computed in ref. [75]
need to be modified to accommodate our current setup. The goal of this appendix is to
make the relationship between the two results explicit.

The required triple-collinear contributions read (cf. eq. (4.33))∑
n

∑
i∈H

〈
SmnSnΩ(i)

2 ∆(mn)
[
ΘmnF

ab,DS
LM [m, n] + Fab,✟✟DS

LM [m, n]
]〉

, (C.1)

where the operator Ω(i)
2 is defined as

Ω(i)
2 =

[
Cinθ

(a) + Cmnθ
(b) + Cimθ(c) + Cmnθ

(d)
]
[dpm][dpn]Cmn,i ωmi,ni . (C.2)

The functions FLM[m, n] in eq. (C.1) are given in eqs. (4.4)–(4.7).
We first consider the splitting g∗ → ggg. In this case, only the function F ab

LM[BN+2,n(mg,ng)]
in eq. (4.4) contributes, and we further require that the hard parton i is a final-state gluon.
In this case, the unresolved partons m and n are energy-ordered, and the damping factor
∆(mn) is included. This is identical to what has been done in ref. [75], so that no modifications
are needed. Hence, we write

∑
n

∑
i∈Hf

δig

〈
SmnSnΩ(i)

2 ∆(mn)ΘmnF
ab
LM[BN+2,n(mg,ng)]

〉
=
∑

n

∑
i∈BN,n

δig
[αs]2

ϵ

〈
ΓTC

i,g→ggg F ab
LM[BN,n]

〉
.

(C.3)
Here, Hf is the list of the hard final-state particles in BN+2,n(mg, ng),

ΓTC
i,g→ggg = (Ei/µ)−4ϵϵ FSR5(Ei) , (C.4)

and FSR5 is defined in table 2 of ref. [75].
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Next, we consider the splitting g∗ → gqτ q̄τ . As already discussed in section 4.2.2, this
triple-collinear final-state contribution reads

∑
n

∑
i∈Hf

〈
SmnSnΩ(i)

2 ∆(mn)
nf∑

τ=1

[
δigΘmnF

ab
LM[BN+2,n(m(qτ

, nq̄τ ))] + δiq̄τ F ab
LM[BN+2,n(mqτ , ng)]

+ δiqτ F ab
LM[BN+2,n(mq̄τ , ng)]

]〉
=

∑
n

∑
i∈BN,n

δig
[αs]2

ϵ

〈
2nfΓTC

i,g→gqq̄ F ab
LM[BN,n]

〉
.

(C.5)
The integrated triple-collinear function ΓTC

i,g→gqq̄ is written as

ΓTC
i,g→gqq̄ = (Ei/µ)−4ϵϵ F̃SR4(Ei) , (C.6)

where the function F̃SR4 in eq. (C.6) is related, but is not identical to the function FSR4 in
ref. [75]. The difference is due to the fact that in the current framework we do not employ
the energy-ordering in all FLM functions in eq. (C.5). To match the two calculations, we
multiply the second and third terms on the right-hand side of the first line of eq. (C.5)
with 1 = Θmn + Θnm. This allows us to identify the quantity computed in ref. [75] and
an additional term that reads

−
∑

n

∑
i∈Hf

〈
ΘnmSnΩ(i)

2 ∆(mn)
nf∑

τ=1

[
δiq̄τ F ab

LM[BN+2,n(mqτ , ng)] + δiqτ F ab
LM[BN+2,n(mq̄τ , ng)]

]〉
.

(C.7)
Compared to the integral of the triple-collinear splitting function, this term is simpler to
compute because it contains an operator Sn. Combining FSR4 from ref. [75] with the above
term, we obtain the function F̃SR4 that appeared in eq. (C.6).

The two contributions in eqs. (C.4), (C.6) can be combined in a single term (cf. eq. (4.37))

ΓTC
i,g = ΓTC

i,g→ggg + 2nfΓTC
i,g→gqq̄ , (C.8)

which defines the triple-collinear subtraction term for a final-state gluon leg.
Cases where the mother parton is a quark or an antiquark can be analyzed in a similar

manner. For definiteness, we consider the quark splittings q∗ρ → qρgg and q∗ρ → qρqτ q̄τ , where
qτ can have any flavor, including that of qρ. We can write the term due to the first splitting as

∑
n

∑
i∈Hf

〈
SmnSnΩ(i)

2 ∆(mn)
nf∑

ρ=1

[
δiqρΘmnF

ab
LM[BN+2,n(mg, ng)] + δigF ab

LM[BN+2,n(mqρ , ng)]
]〉

=
∑

n

∑
i∈BN,n

nf∑
ρ=1

δiqρ

[αs]2
ϵ

〈
ΓTC

i,q→qgg F ab
LM[BN,n]

〉
,

(C.9)
where

ΓTC
i,q→qgg = (Ei/µ)−4ϵϵ F̃SR1(Ei) . (C.10)

This time F̃SR1 differs from FSR1 of ref. [75] both due to the use of energy-ordering, and
because the latter was calculated without a damping factor, unlike the term in eq. (C.9).
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The last final-state splitting that we need to consider is q∗ρ → qρqτ q̄τ . In this case, many
contributions come from the terms in eqs. (4.5)–(4.7) that, for simplicity, we do not write.
We collect these terms and find that

ΓTC
i,q→qq′q̄′ = (Ei/µ)−4ϵ ϵ

2
[
FSR3(Ei) + 2nf F̃SR2(Ei)

]
, (C.11)

where the function F̃SR2 can be obtained similarly to F̃SR1, while FSR3 can be taken directly
from ref. [75]. We note that both functions FSR2 and FSR3 were previously defined with
no damping factors but with energy-ordering for all terms. However, for the latter quantity,
one can prove that the two definitions are in fact equivalent. We also note that eq. (C.11)
contains an extra factor 1/2 with respect to eq. (C.10), which arises because this factor
has been incorporated into the definition of FSR1, but not into that of FSR2,3, as can be
seen in table 2 of ref. [75].

Similarly to the gluon case, the two contributions in eqs. (C.10), (C.11) can be combined
in a single term (cf. eq. (4.38))

ΓTC
i,q = ΓTC

i,q→qgg + ΓTC
i,q→qq′q̄′ , (C.12)

which defines the triple-collinear subtraction term for a final-state quark leg. We note that
the contribution for the antiquark final state leg is identical to the one just described, so
that ΓTC

i,q̄ = ΓTC
i,q .

Finally, we consider the initial-state triple-collinear limits. These cases are somewhat
simpler because a) damping factors ∆(mn) always reduce to 1 and b) as reported in table 1 of
ref. [75], energy ordering was only used there for cases with double-soft singularities. This is
identical to what we do in this paper, so that all result of ref. [75] pertinent to initial-state
limits can be used. We reorganize these terms and write the result for leg i = a as

∑
n

〈
SmnSnΩ(a)

2 ∆(mn)
[
ΘmnF

ab,DS
LM [m, n] + Fab,✟✟DS

LM [m, n]
]〉

=
∑

x

∑
n

[αs]2
ϵ

〈
PTC

xa ⊗ F xb
LM[BN,n]

〉
.

(C.13)
The PTC

xy functions have the following properties

PTC
gq̄ρ

(z, Ei) ≡ PTC
gqρ

(z, Ei) ≡ PTC
gq (z, Ei) ,

PTC
q̄ρg (z, Ei) ≡ PTC

qρg (z, Ei) ≡ PTC
qg (z, Ei) ,

PTC
q̄ρq̄ρ

(z, Ei) ≡ PTC
qρqρ

(z, Ei) ≡ PTC
qq (z, Ei) , (C.14)

PTC
q̄ρqρ

(z, Ei) ≡ PTC
qρq̄ρ

(z, Ei) ≡ PTC
qq̄ (z, Ei) ,

PTC
q̄ρqυ

(z, Ei) ≡ PTC
qρq̄υ

(z, Ei) ≡ PTC
q̄ρq̄υ

(z, Ei) ≡ PTC
qρqυ

(z, Ei) ≡ PTC
qq′ (z, Ei) , with q ̸= q′ ,

where quark flavors ρ, v are assumed to be different. In terms of quantities computed in
ref. [75], the functions on the right-hand side of the above equation read

PTC
gg (z, Ei) = (Ei/µ)−4ϵϵ

[
ISR2(z, Ei) +

2nf
2 ISR7(z, Ei)

]
,

PTC
gq (z, Ei) = −(1− ϵ)CF

TR
(Ei/µ)−4ϵϵ ISR8(z, Ei) ,
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Integrated triple-collinear subtraction functions
collected in TripleCollinearSplittings.m

Function Splitting Name in the ancillary
file

Initial-state splitting functions
PTC

gg (z, E) g → ggg∗ +∑
τ (qτ q̄τ )g∗ PTCgg[z_,En_]

PTC
gq (z, E) q → qgg∗ PTCgq[z_,En_]

PTC
qq (z, E) q → ggq∗ +∑

τ (qτ q̄τ )q∗ PTCqq[z_,En_]
PTC

qg (z, E) g → gq̄q∗ PTCqg[z_,En_]
PTC

qq̄ (z, E) q → qqq̄∗ PTCqqb[z_,En_]
PTC

qq′ (z, E) q → qq̄′q′∗ with q ≠ q′ PTCqqp[z_,En_]
Final-state splitting functions

ΓTC
g (E) g∗ → ggg +∑

τ g(qτ q̄τ ) ΓTCg[En_]
ΓTC

q (E) q∗ → qgg +∑
τ q(qτ q̄τ ) ΓTCq[En_]

ΓTC
q̄ (E) q̄∗ → q̄gg +∑

τ q̄(qτ q̄τ ) ΓTCqb[En_]

Table 2. Functions collected in the ancillary file TripleCollinearSplittings.m. The first column
identifies the functions; the second indicates splittings that contribute to each function; the third
provides the names of the functions in the ancillary file. We note that, in the listed splittings, the
sum over the flavor index τ runs over the interval τ ∈ [1, nf ] and accounts for the appearance of nf
prefactors. For initial-state radiation, such an nf factor can only arise if the incoming parton and the
parton entering the hard scattering are the same. Therefore, in the case of the function PTC

qq′ , since
q ̸= q′, no contribution proportional to nf arises.

PTC
qg (z, Ei) = − TR

(1− ϵ)CF
(Ei/µ)−4ϵϵ ISR9(z, Ei) ,

PTC
qq (z, Ei) = (Ei/µ)−4ϵϵ

[
ISR1(z, Ei) +

2nf
2 ISR3(z, Ei) + ISR5(z, Ei) + ISR4(z, Ei)

]
,

PTC
qq̄ (z, Ei) = (Ei/µ)−4ϵϵ

[
ISR6(z, Ei) + ISR4(z, Ei)

]
,

PTC
qq′ (z, Ei) = (Ei/µ)−4ϵϵ ISR4(z, Ei) . (C.15)

The functions ISR1...9 are listed in table 1 of ref. [75].
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