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Abstract

Accurately forecasting the operating temperature of lithium-ion batteries (LIBs) is essential
for preventing thermal runaway, extending service life, and ensuring the safe operation of
electric vehicles and stationary energy-storage systems. This work introduces a unified,
physics-informed, and data-driven temperature-prediction framework that integrates math-
ematically governed preprocessing, electrothermal decomposition, and sequential deep
learning architectures. The methodology systematically applies the governing relations
to convert raw temperature measurements into trend, seasonal, and residual components,
thereby isolating long-term thermal accumulation, reversible entropy-driven oscillations,
and irreversible resistive heating. These physically interpretable signatures serve as struc-
tured inputs to machine learning and deep learning models trained on temporally seg-
mented temperature sequences. Among all evaluated predictors, the Bidirectional Long
Short-Term Memory (BiLSTM) network achieved the highest prediction fidelity, yielding an
RMSE of 0.018 °C, a 35.7% improvement over the conventional Long Short-Term Memory
(LSTM) (RMSE = 0.028 °C) due to its ability to simultaneously encode forward and back-
ward temporal dependencies inherent in cyclic electrochemical operation. While CatBoost
exhibited the strongest performance among classical regressors (RMSE = 0.022 °C), out-
performing Random Forest, Gradient Boosting, Support Vector Regression, XGBoost, and
LightGBM, it remained inferior to BILSTM because it lacks the capacity to represent bidi-
rectional electrothermal dynamics. This performance hierarchy confirms that LIB thermal
evolution is not dictated solely by historical load sequences; it also depends on forthcoming
cycling patterns and entropic interactions, which unidirectional and memoryless models
cannot capture. The resulting hybrid physics-data-driven framework provides a reliable
surrogate for real-time LIB thermal estimation and can be directly embedded within BMS
to enable proactive intervention strategies such as predictive cooling activation, current
derating, and early detection of hazardous thermal conditions. By coupling physics-based
decomposition with deep sequential learning, this study establishes a validated foundation
for next-generation LIB thermal-management platforms and identifies a clear trajectory for
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future work extending the methodology to module- and pack-level systems suitable for
industrial deployment.

Keywords: lithium-ion battery; battery temperature prediction; Long Short-Term Memory
(LSTM); Bidirectional LSTM (BiLSTM); physics-informed machine learning; thermal
modeling; electrothermal behavior; deep learning

1. Introduction
1.1. Thermal Significance of Lithium-lon Batteries

Lithium-ion batteries (LIBs) form the technological backbone of contemporary elec-
trification, enabling propulsion in electric vehicles, aviation platforms, and robotics while
supporting large-scale renewable-energy buffering and portable electronic devices. Their
widespread adoption is driven by high gravimetric energy density, excellent Coulombic
efficiency, and long cycle life [1,2]. However, these advantages are contingent upon strict
thermal stability. LIB performance, degradation behavior, and safety margins are all pro-
foundly temperature-dependent, and deviations from the optimal operating range can
initiate a cascade of electrochemical failures.

Even modest thermal elevations accelerate parasitic side reactions, disrupt the solid-
electrolyte interphase (SEI), induce electrolyte decomposition, and modify intercalation ki-
netics, leading to impedance growth, lithium plating, and reduced usable capacity [3,4]. High-
temperature operation exacerbates gas generation, cathode material degradation, and separator
shrinkage, processes that collectively weaken cell integrity and act as precursors to venting or
ignition. Conversely, sub-ambient temperatures increase polarization resistance and hinder ion
transport, compromising power delivery, charge acceptance, and cycle efficiency [5,6].

When unmanaged, these temperature-driven degradation mechanisms can evolve into
self-accelerating reactions that culminate in thermal runaway, a failure mode characterized
by uncontrollable internal heating, flammable gas release, and rapid energy discharge [7,8].
Figure 1 conceptually illustrates this escalation pathway: external or internal abuse condi-
tions (electrical, thermal, or mechanical) trigger localized heating, which in turn initiates
electrolyte decomposition, SEI destabilization, and electrode reactions. These internal
events propagate into hazardous phenomena such as gas jets or combustion, underscoring
why real-time temperature prediction is indispensable for LIB safety, prognostics, and
lifetime management.
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Figure 1. Schematic overview of abuse-induced failure pathways in LIBs, illustrating the sequence
from thermal perturbation to hazardous runaway outcomes.
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1.2. Limitations of Conventional Temperature Monitoring

Conventional battery management systems (BMS) in electric and hybrid vehicles
are predominantly organized around threshold-based protection using surface-mounted
thermistors and simple rule-based logic [9,10]. While this approach is inexpensive and
straightforward to implement, it measures only the outer surface of the cell or module and
does not directly track the internal thermal state where electrochemical reactions occur.
Recent studies have shown that, under high-rate charging, aggressive driving, or abusive
operating conditions, the core temperature can exceed the measured surface temperature
by more than 10-20 °C, creating substantial hidden gradients inside the cell [11]. These
gradients may remain undetected until they have already initiated degradation processes
or pushed the cell close to thermal runaway.

As a result, purely sensor-based, reactive monitoring is no longer sufficient for mod-
ern high-power LIB applications. Instead, BMS architectures require predictive thermal
intelligence capable of estimating future internal temperature trajectories before critical
limits are reached. This paradigm shift, from passive temperature sensing to data-driven
predictive inference, is illustrated in Figure 2, which depicts the integrated workflow of
data acquisition, preprocessing, state estimation, model-based temperature prediction, and
thermally informed decision-making within an advanced BMS.

Complete

data- .
(%
driven Estimate battery

adel temperature

Figure 2. Conceptual workflow of BMS-integrated data acquisition, preprocessing, predictive temper-
ature estimation, and thermal decision-making logic.

1.3. Challenges of Existing Modeling Approaches

Physics-based electro-thermal models, grounded in detailed reaction kinetics and
heat-transfer formulations, can estimate internal battery temperatures with high accuracy.
However, their implementation requires extensive material characterization, geometric
parameterization, and computational overhead that remain impractical for embedded
BMS platforms operating under real-time constraints [12]. Data-driven frameworks al-
leviate these burdens by learning nonlinear thermal dynamics directly from historical
measurements, enabling inference without explicit physical parameterization and facilitat-
ing deployment on resource-limited hardware [13].

Although substantial advances have been achieved in data-driven battery diagnostics,
particularly in State-of-Health (SOH) estimation and Remaining Useful Life (RUL) predic-
tion [14], temperature prediction remains comparatively underdeveloped. Emerging con-
tributions, such as CNN-BiLSTM architectures that fuse spatial and temporal features for
battery prognostics [15], recurrent neural network-based core-temperature estimators [16], and
lightweight surrogate models like KAN-Therm designed for embedded thermal modeling [17],
demonstrate promising directions toward real-time thermal inference.
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As highlighted in a recent review [18-21], emerging data-driven surrogate modeling
techniques and physics-informed neural networks have been identified as promising tools
for battery thermal management. Several studies have begun exploring such approaches
for lithium-ion battery temperature prediction. For instance, Zhang et al. [22] benchmarked
recurrent neural network models for core temperature forecasting, demonstrating that
LSTM- and GRU-based predictors can achieve high accuracy (RMSE ~0.17 °C) and that
a GRU offers similar performance with lower complexity. Ren et al. [23] introduced an
adaptive GRU (Ada-GRU) with a transfer learning framework that accounts for different
thermal-effect distributions (separating reversible vs. irreversible heat) to enhance general-
izability; their approach significantly outperformed existing data-driven models, showing
excellent prediction accuracy under varying temperatures and profiles. Beyond purely
sequential models, researchers have proposed hybrid frameworks integrating physical
thermal models with deep networks. Shen et al. [24] developed a physics-informed neural
network (PINN) that embeds a large-format battery’s thermal physics into the learning
process, improving temperature prediction accuracy (max error < 0.6 °C) while using
smaller training datasets. Similarly, Cho et al. [25] combined a Long Short-Term Memory
network with a PINN and demonstrated that the resulting LSTM-PINN hybrid yields better
accuracy (~0.5 °C RMSE) than a standard LSTM model, especially under wide-ranging
temperature fluctuations. Convolutional-recurrent architectures have also been explored:
Bamati et al. [26] proposed a hybrid CNN-LSTM “virtual sensor” for surface temperature,
achieving robust performance (RMSE ~1.2-1.3 °C) across multiple cell chemistries and
ambient conditions. Zafar et al. [27] presented a deep composite model, DeepTimeNet, which
stacks CNNs (with ResNet and Inception modules) and Bidirectional LSTM /GRU layers to
capture complex temporal patterns, and reported state-of-the-art accuracy (MAE ~0.09 °C)
surpassing that of conventional CNN-LSTM or GRU models. To further incorporate do-
main knowledge, Wang et al. [28] proposed a “Battery Informed Neural Network” (BINN)
that embeds first-principles battery models into an attention-enhanced LSTM architecture,
allowing the network to learn physical parameters (including aging-related heat effects)
and yielding more interpretable predictions with improved life-cycle generalization. Surya
et al. [29] developed a hybrid scheme combining an equivalent-circuit thermal model with
a 2D grid LSTM network for core temperature estimation, attaining very high accuracy
(under 1% error) and improved robustness compared to prior model-based or purely
data-driven methods.

Wei et al. [30] demonstrated, using distributed fiber-optic sensing, that significant axial
and radial temperature gradients exist inside practical cells, with internal temperatures
exceeding surface measurements under high-power operation. To address this limitation,
they proposed a hybrid lumped-thermal neural network (LTNN) that combines a reduced-
order thermal model with neural compensation of spatial gradients, enabling accurate,
real-time internal temperature estimation suitable for BMS deployment.

In parallel, alternative sensorless approaches have focused on inferring internal tem-
perature from electrochemical signatures. Chen et al. [31] introduced an impedance-based
method that exploits the suppressed second-harmonic current in single-phase DC/AC con-
verters to estimate internal temperature. By extracting temperature-sensitive impedance
features using a digital lock-in technique, their approach achieved strong temperature
correlation with weak SOC dependence, enabling internal temperature estimation without
additional thermal sensors.

To overcome the limitations of purely physics-based models, Pang et al. [32] proposed
a physics-informed BiLSTM framework for heat generation and temperature estimation.
By embedding electrochemical model outputs as structured inputs and optimizing the
network using Bayesian techniques, their approach improved prediction accuracy and

https://doi.org/10.3390 /wevj17010002


https://doi.org/10.3390/wevj17010002

World Electr. Veh. |. 2026, 17,2

5 of 40

robustness under dynamic drive cycles, demonstrating the value of combining physical
priors with temporal learning.

Building on these foundations, subsequent work has increasingly adopted hybrid
physics-machine learning frameworks. Zheng et al. [33] integrated a lumped thermal model
with a CNN-LSTM architecture for sensorless temperature monitoring, using online resis-
tance features to correct model mismatch and achieving accuracy improvements exceeding
80% compared to standalone methods. Wei et al. [30] further showed that embedding
neural compensation directly within thermal observers enables spatially resolved internal
temperature estimation without sacrificing computational efficiency.

Recent studies have explored more advanced temporal architectures to improve gener-
alization under highly dynamic operating conditions. Liu et al. [34] proposed a Transformer-
based framework combined with residual correction, achieving very high accuracy with
RMSE values on the order of 0.05 °C across varied operating conditions. Similarly, Wang
et al. [35] employed CNN-BiLSTM models with attention mechanisms to capture spatiotem-
poral temperature fields, consistently outperforming conventional LSTM and statistical
models with modest computational overhead.

Physics-guided and physics-informed neural networks have also gained prominence
for core and pack-level temperature estimation. Teng et al. [36] developed a physics-
guided LSTM using electro-thermal coupling outputs as inputs, reducing prediction error
by approximately one-third relative to adaptive thermal models alone. Cho et al. [25]
demonstrated that LSTM-PINN hybrids improve robustness during fast-charge and high-
load conditions, achieving sub-degree accuracy for pack-level temperature prediction.

Recent review studies confirm a rapid shift toward hybrid and physics-informed
learning frameworks, with reported RMSE values as low as 0.055 °C and substantial
computational speedups compared to CFD-based approaches [37]. Despite these advances,
existing literature overwhelmingly emphasizes recurrent and attention-based architectures.
A systematic comparison with modern gradient-boosting models remains absent, leaving
unresolved whether explicit temporal recurrence is fundamentally required for accurate
battery temperature prediction.

Despite these advances, no prior study has systematically benchmarked sequential
neural models against state-of-the-art gradient-boosting frameworks (e.g., XGBoost, Light-
GBM, CatBoost), even though such regressors have demonstrated exceptional performance
in nonlinear regression and tabular learning tasks across diverse engineering domains [38].
This omission creates a methodological blind spot: it remains unresolved whether thermal
prediction fundamentally requires recurrent architectures capable of encoding historical
thermal states, or whether optimized static models can achieve similar precision.

1.4. Temperature as a Multi-Component Physical Signal

A critical limitation in prior studies is the treatment of temperature as a monolithic
scalar measurement, even though it encapsulates multiple thermophysical processes un-
folding over distinct temporal scales. In practice, inertia, a seasonal component linked to
reversible entropy-driven oscillations synchronized with charge-discharge cycling, and a
residual component reflecting instantaneous resistive heating, sensor noise, and unmod-
eled disturbances [39-42]. Each of these elements emerges from different electrothermal
mechanisms, yet they are commonly blended into a single sequence during data-driven
model training.

As depicted in Figure 3, deviations from the optimal temperature range reduce power
capability, accelerate degradation kinetics, and narrow the safe operating envelope of the
battery. When learning algorithms operate on raw temperature measurements without
acknowledging their multi-component nature, they implicitly conflate long-term ther-
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mal buildup with short-term fluctuations and reversible cycling effects. This conflation
diminishes interpretability and forces the predictive model to infer disparate physical
processes simultaneously, increasing the likelihood of overfitting, degraded extrapolation,
and unstable predictions under dynamic loads.

T Desired operating temperature

>>>Limiting power to reduced T
increase and degradation

35°C
Rated power
15°C
> Power limits

Charge /Discharge

Figure 3. Temperature-dependent operational envelope of LIBs, showing reduced power capability
at low temperatures, increased degradation at elevated temperatures, and the narrow optimal band
where safe, efficient operation is maintained.

By explicitly recognizing temperature as a composite physical signal, the model-
ing framework can disentangle the causal origins of thermal behavior, isolate slow elec-
trothermal accumulation from entropy-driven oscillations, and distinguish both from
high-frequency residual perturbations. Such decomposition improves learning efficiency,
enhances physical coherence, and provides a structured representation of temperature
evolution aligned with the governing electrochemical and thermodynamic principles of
LIBs. Failure to incorporate these subcomponents risks obscuring the battery’s true thermal
state and undermining the reliability of any subsequent predictive model.

1.5. Contributions of This Research

To address the identified gaps, this study proposes a unified temperature-prediction
framework that integrates physics-informed thermal decomposition with advanced data-
driven forecasting architectures. Unlike prior approaches that treat battery temperature as
a single undifferentiated variable, the proposed methodology decomposes the observed
thermal signal into trend, seasonal, and residual components. This enables the predictive
model to learn the distinct thermodynamic behaviors associated with long-term heat
accumulation, entropy-driven oscillatory effects, and instantaneous resistive heating. By
preserving the physical meaning of each temperature subcomponent, the framework avoids
the conflation of reversible and irreversible thermal processes that limits the interpretability
and stability of many existing methods.

Building upon this physically grounded representation, the research systematically
benchmarks sequential neural architectures, specifically Long Short-Term Memory (LSTM)
and Bidirectional LSTM (BiLSTM) networks, against a comprehensive suite of state-of-
the-art machine learning regressors, including Random Forest, Support Vector Regression,
Gradient Boosting, XGBoost, LightGBM, and CatBoost. Although CatBoost has demon-
strated exceptional performance in nonlinear tabular regression tasks, its applicability to
lithium-ion battery temperature forecasting remains largely unexplored in existing litera-
ture [43], making its inclusion in this comparative study both novel and timely. Further-
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more, in contrast to studies that validate methodologies using synthetic or simulation-based
thermal datasets, this work evaluates all models using real cycling data obtained under
representative load conditions for electric mobility and stationary energy-storage environ-
ments [44]. This ensures that performance metrics reflect authentic thermal behavior rather
than idealized or artificially noise-free trajectories.

By coupling physically interpretable preprocessing with computationally efficient
forecasting models, this research advances the current state of battery temperature predic-
tion and bridges the methodological divide between physics-based modeling and modern
machine learning inference. The resulting framework provides a practical pathway for
embedding physics-aware thermal estimation within next-generation Battery Management
Systems, enabling predictive thermal control, early anomaly detection, and safer battery
operation across a broad range of use cases.

2. Methodology
2.1. Data Acquisition and Preprocessing

The methodology begins with the acquisition of experimentally measured cycling data
from a lithium-ion battery. Each record in the dataset contains three synchronized variables:
temperature, current, and voltage, all sampled continuously during battery operation. The
temperature at each time step, expressed in Equation (A1), is the primary signal used
throughout this study and forms the basis for all subsequent processing and prediction
steps. All Equations are found in Appendix A.1. The explanation of the Equations is in
Appendix A.2, and the description of the symbols and notations is in Appendix A.3.

To improve numerical stability during model training and to prevent large temper-
ature values from dominating the learning process, the raw temperature data is normal-
ized. The minimum and maximum recorded temperatures are first determined using
Equations (A2) and (A3). These values are then applied in the min-max normalization
function shown in Equation (A4), which scales the temperature range to between 0 and 1.
After the models generate predictions, the inverse transformation defined in Equation (A5)
converts the normalized results back to degrees Celsius, ensuring that all outputs remain
physically meaningful and compatible with real battery-management systems.

Since temperature changes inside the battery are strongly dependent on previous thermal
states, the sequential nature of the data must be preserved. To achieve this, the normalized
temperature series is divided into overlapping windows of fixed length. Each window, defined
in Equation (A6), contains a sequence of past temperature values that serve as the model input.
The target output is the temperature value immediately following the window, as specified in
Equation (A7). The total number of generated input-target pairs is computed using Equation
(A8), providing a systematic and reproducible method for creating a supervised learning
dataset that reflects the time-dependent behavior of the signal.

Finally, to evaluate model performance objectively and prevent overfitting, the dataset
is split into separate training and validation sets according to Equations (A9) and (A10).
This ensures that the model is tested on temperature patterns it has not encountered
during training, allowing for a fair assessment of its ability to generalize to new operating
conditions rather than simply memorizing previously seen data.

2.2. Temperature Decomposition, Heat-Generation Characterization, and Predictive Integration

The normalized temperature sequence produced in Section 3.1 undergoes a structured
transformation to separate the different physical mechanisms contributing to battery heat-
ing. This stage combines signal decomposition, electrochemical heat-generation analysis,
and machine learning integration into a unified predictive pipeline. Equations (A11)—(A20)
formalize the decomposition and thermal interpretation, while Equations (A50)—(A62) de-
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scribe how the extracted features are used within the learning models. Together, these steps
ensure that the predictive process remains tied to the original temperature measurements
defined in Equation (A1) and is not treated as a purely statistical forecasting task.

The first stage of decomposition isolates the slow-varying temperature trend using
the centered moving-average relation in Equation (A11). This trend represents the gradual
accumulation of heat inside the cell due to internal reactions, limited heat removal, and
long-term cycling effects. Removing this component yields a detrended signal, as shown
in Equation (A12), which highlights the short-term temperature fluctuations that occur
during active operation.

Next, the periodic, cycle-dependent variations caused by alternating charge and dis-
charge currents are extracted. These oscillations are quantified in Equation (A13), averaged
over multiple cycles using Equation (A14), and then used to form the seasonal component
in Equation (A15). This seasonal portion reflects reversible thermal changes linked to
entropy variations in the intercalation process, meaning it rises and falls predictably with
the direction and magnitude of current.

After removing both the trend and seasonal contributions, the remaining component,
defined in Equation (A16), represents the residual temperature behavior. This residual cap-
tures irreversible heating effects caused primarily by Joule losses, resistance changes, and
other non-reversible mechanisms that accumulate energy in the cell. Since irreversible heat
does not return to its initial level after cycling, it serves as an indicator of thermal stress and
contributes directly to long-term temperature rise. The completeness of the decomposition
is demonstrated by Equation (A17), which reconstructs the original temperature from its
three constituent parts, confirming that no information is lost.

Figure 4 provides a conceptual overview of this process. The temperature measure-
ment is first separated into trend, seasonal, and residual signals, each tied to a distinct
thermodynamic mechanism. These physically interpretable components are then supplied
to the machine learning models as enhanced input features. As a result, the predictive
framework does not rely solely on historical temperature values but instead learns patterns
that are explicitly connected to the heat-generation behavior of the battery. This integra-
tion forms the core novelty of the approach and distinguishes it from studies that treat
temperature prediction as a black-box regression task without physical grounding.

> L1 . I
sanery -_)
£R

(1) Analyze of heat

Machine
learning

Tseasonal T Residual

== w WV + il
e Reversible heat irreversible
Time heat

(1) Prediction Train Predict
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Temperature ~ Temperature

Figure 4. Conceptual diagram of the proposed thermal decomposition and prediction framework.

To complement the statistical decomposition with physical meaning, the thermal
behavior of the battery is linked to its electrochemical heat-generation mechanisms. The
reversible heat term, defined in Equation (A18), depends on the instantaneous current,
the cell temperature, and the temperature derivative of the open-circuit voltage. This
quantity captures entropy-driven heating and cooling effects. In contrast, the irreversible
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heat component described in Equation (A19) represents resistive Joule losses and increases
proportionally with the square of the current. By combining the reversible and irreversible
contributions, Equation (A20) provides the total rate of heat generation occurring inside
the cell at any moment.

This physical interpretation aligns directly with the decomposition results obtained
earlier. The seasonal temperature component, derived through Equations (A13)-(A15),
reflects the reversible entropy-driven thermal fluctuations, while the residual component
defined in Equation (A16) corresponds to the irreversible temperature rise associated with
Joule heating and other loss mechanisms. Each part of the decomposed temperature signal
can therefore be traced to a distinct thermodynamic origin rather than being treated as an
arbitrary statistical artifact.

Figure 5 illustrates how these physically interpretable heat components are incorpo-
rated into the prediction pipeline. The reversible and irreversible temperature contributions
serve as enriched input features for the machine learning models, ensuring that the learned
temperature trajectories respect the underlying thermal processes of lithium-ion cells. This
coupling, formalized in Equations (A50)-(A62), prevents the model from functioning as a
purely black-box predictor and instead enables it to infer future temperatures in a manner
that remains consistent with established heat-generation physics.

Y

Battery

Figure 5. Workflow of the decomposition-enabled temperature prediction pipeline.

To demonstrate the periodic behavior associated with entropy-driven heating, the
seasonal temperature component obtained from Equations (A13)-(A15) is plotted alongside
the measured charge—discharge current profile in Figure 6. The strong correspondence
between current direction and the oscillatory seasonal temperature confirms that this
component captures reversible thermal variations that arise from the electrochemical
intercalation process. When the current reverses, the sign of the seasonal component also
changes, illustrating that the mechanism governing this fluctuation is inherently tied to
entropy-related heat exchange rather than simple resistive effects.

Figure 7 expands this analysis by presenting the complete set of decomposed tempera-
ture signals, trend, seasonal, and residual, derived from Equations (A11)—(A17), together
with the reversible and irreversible heat-generation terms defined in Equations (A18)-(A20).
The trend component reflects gradual temperature elevation over extended cycling, indi-
cating thermal accumulation due to limited dissipation. The seasonal component shows
reversible fluctuations linked to current-dependent entropy changes, while the residual
term captures the high-frequency contributions associated with irreversible Joule heating
and other loss mechanisms.
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Figure 7. Decomposed temperature signal components and corresponding heat-generation profiles.

By aligning each temperature component with a specific physical source, Figure 7
confirms that the decomposition does not merely partition the data statistically but sepa-
rates it into thermodynamically meaningful layers. This correspondence provides direct
justification for the predictive integration rules defined in Equations (A50)—(A62), which
map the decomposed thermal features into the machine learning models. As a result, the
prediction framework learns temperature trajectories that remain consistent with the under-
lying physical processes of lithium-ion batteries, rather than treating temperature evolution
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as a generic time-series pattern. This fusion of decomposition and heat-generation analysis
therefore forms the basis of the physically interpretable forecasting strategy proposed in
this study.

2.3. Machine Learning and Deep Learning Predictive Framework

This section describes how the thermally enriched features produced in Section 3.2 are
transformed into future temperature predictions using a combination of machine learning
and deep learning algorithms. All predictive operations presented here follow directly
from the mathematical formulations given in Equations (A21)-(A45) and remain fully
compatible with the original temperature definition in Equation (A1) and the normalized
representation established in Equation (A4).

2.4. Machine Learning Regression Models

The baseline predictive model is formally defined in Equation (A21), which maps an
input sequence, constructed from the windowing procedure in Equations (A6) and (A7), to
a single future temperature sample. The Random Forest regressor applies an ensemble of
decision trees and produces a prediction according to the averaging rule in Equation (A22),
which reduces prediction variance and mitigates fluctuations caused by short-term thermal
disturbances. Gradient Boosting improves prediction accuracy by iteratively correcting
the residuals left by the previous learner, as expressed in Equation (A23), and quantified
through the residual error term in Equation (A24).

Support Vector Regression reformulates prediction as a kernel-based transformation
expressed by Equation (A25). The nonlinear mapping imposed by the Radial Basis Function
kernel in Equation (A26) allows complex thermal patterns to be projected into a higher-
dimensional space where linear separation becomes feasible. Modern boosting algorithms,
including XGBoost, LightGBM, and CatBoost, generalize this strategy using the additive
multi-learner representation of Equation (A27). All models described in this subsection
are optimized by minimizing the squared loss in Equation (A28) under the normalized
temperature space defined by Equation (A4), ensuring methodological coherence with the
data preprocessing steps introduced in Section 3.1.

2.5. LSTM-Based Temporal Learning

Although the regression models can capture nonlinear relationships, they are limited
in their ability to represent the temporal propagation of heat, which is critical for lithium-
ion batteries whose temperature evolves dynamically over time. To capture this temporal
dependency, the Long Short-Term Memory (LSTM) network is used. Its internal operations
are governed by Equations (A29)-(A35), which define a gated memory mechanism capable
of preserving long-range dependencies.

The input gate in Equation (A29) selects which thermally relevant features are retained
at each time step, while the forget gate in Equation (A30) removes outdated information
to avoid drift. The output gate in Equation (A31) determines which memory contents
influence the hidden output. The nonlinear candidate memory update generated by
Equation (A32) is merged with the retained cell memory in Equation (A33). The hidden
state is produced in Equation (A34), and the network outputs the predicted normalized
temperature using Equation (A35).

These gating dynamics allow the LSTM to internalize long-term temperature trends
(Equations (A11)-(A17)), reversible thermal oscillations from entropy changes (Equations
(A13)—(A15)), and irreversible electrochemical heating effects (Equations (A18)—(A20)). This
makes the LSTM inherently suitable for modeling electrothermal evolution rather than
merely fitting static temperature snapshots.
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2.6. Bidirectional Thermal Learning with BiLSTM

The conventional LSTM processes information only in the forward temporal direction,
which may obscure patterns that depend on future temperature behavior. To resolve this
limitation, a BILSTM is employed, enabling simultaneous forward and backward temporal
processing. Its dual-pass formulation is defined in Equations (A36)-(A39). Forward propa-
gation, described in Equation (A36), captures causally driven heating phenomena, while
backward propagation in Equation (A37) uncovers cooling effects, hysteresis, and delayed
thermal interactions. The resulting representations are fused into a unified embedding in
Equation (A38) and converted into the final predicted temperature using Equation (A39).
This bidirectional structure allows the network to utilize complete thermal context without
violating causality in real-time deployment.

2.7. Adaptive Optimization Using Adam

All models described above, including Random Forest, Gradient Boosting, SVR, LSTM,
and BiLSTM, are trained using the adaptive optimization strategy defined by Equations
(A40)—(A45). The gradient of the loss function is computed using Equation (A40). The
estimates of the first and second gradient moments evolve according to Equations (A41)
and (A42), and their unbiased counterparts are obtained from Equations (A43) and (A44).
Parameter updates are then performed using Equation (A45), allowing the optimizer to
converge toward solutions that balance accuracy with thermal stability.

2.8. Performance Metrics and Evaluation Strategy

The predictive framework is evaluated against real battery temperature behavior using
the performance metrics and consistency rules defined in Equations (A46)—(A84). These
formulations ensure that the model does not produce physically implausible temperature
predictions and remains compatible with thermal and electrochemical constraints.

2.9. Error Measurement and Reverse Temperature Scaling

The primary training objective is the normalized mean squared error defined in Equa-
tion (A46). Predicted and true temperatures are converted back into degrees Celsius using
the inverse-scaling functions in Equations (A47) and (A48), which invert the normalization
introduced in Equation (A4). The root-mean-squared error in Equation (A49) quantifies the
magnitude of error relative to the physical temperature profile defined in Equation (A1),
enabling direct comparison to real-world battery data.

2.10. Integrated Decomposition-Aware Predictive Formulations

A unified representation linking thermal physics, decomposition structure, and pre-
dictive learning is established through Equations (A50)-(A62). These expressions combine
the decomposed temperature components, trend, seasonal, and residual, obtained from
Equations (A11)—(A17) with the reversible and irreversible heat-generation mechanisms
defined in Equations (A18)-(A20). The resulting thermally informed feature set is then
integrated with the predictive models governed by Equations (A21)—(A45).

This guarantees that each predicted temperature value reflects the additive influence
of long-term electrochemical heating, periodic entropy-driven oscillations, and stochastic
resistive disturbances, rather than an arbitrary time-series artifact. By explicitly binding
model outputs to physically measurable thermal origins, Equations (A50)—(A62) ensure
thermodynamic interpretability, traceability, and structural consistency throughout the
prediction pipeline.
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2.11. Advanced Residual and Consistency Analysis

To assess prediction robustness and anomaly detection capability, Equations (A63)—(A67)
quantify the temporal structure of prediction residuals and identify deviations associated
with abnormal thermal behavior. The remaining expressions, Equations (A68)-(A84), evaluate
statistical uncertainty and enforce consistency with thermal safety limits, ensuring that predicted
temperatures remain within physically permissible operational boundaries governed by the
heat-generation principles of Equations (A18)-(A20).

3. Results and Discussion
3.1. Thermal Behavior Characterization and Data Conditioning

Reliable temperature prediction requires a thermal signal that reflects actual elec-
trochemical processes while excluding artifacts introduced by the sensing hardware or
sampling environment. The raw module temperature contains micro-scale fluctuations
produced by current transients, sensor noise, and thermal lag, which obscure the intrinsic
thermal response of the cell. Therefore, before applying the decomposition and predictive
procedures described in Sections 3.2 and 3.3, the temperature sequence is conditioned using
the mathematical tools formalized in Equations (A1)-(A10).

Figure 8 illustrates this preprocessing workflow. In the first panel, the raw temperature
profile is compared with its cleaned counterpart. This cleaning step employs the median filter-
ing and outlier-rejection rules defined in Equations (A68)—(A74), which remove non-physical
spikes while retaining the long-term heating trajectory governed by the electrochemical trends
of Equation (A11). As a result, the corrected signal preserves the thermal behavior required
for interpreting reversible and irreversible heating in later stages.

(a) Raw vs. cleaned module temperature
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Figure 8. Preprocessing workflow applied to the measured module temperature showing (a) raw
versus cleaned thermal data, (b) normalized temperature profile z(t), and (c) temporally ordered
train-validation-test split used to ensure causally consistent model development.

Once the cleaned temperature is obtained, the normalized thermal state z(t) is computed
using Equations (A4) and (A47), as shown in the second panel. This min-max transformation
constrains the temperature into the [0, 1] interval, ensuring numerical stability during opti-
mization and preventing the gradient-related issues associated with unscaled thermal inputs.
This normalization also enables consistency with the prediction loss formulation in Equation
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(A46), allowing model errors to be expressed and minimized in a dimensionless form before
reconstruction into degrees Celsius by Equations (A48) and (A49).

The final panel of Figure 8 presents the division of the conditioned dataset into training,
validation, and test segments according to Equations (A9) and (A10). The split is performed
sequentially to preserve temporal causality, ensuring that future temperature samples do
not influence past predictions. This prevents information leakage and ensures that the
evaluation metrics, defined in Equations (A49) and (A63)—(A84), reflect true generalization
performance rather than memorization of past patterns.

Through this structured conditioning process, the thermal dataset remains both physically
meaningful and mathematically compatible with the decomposition and learning pipeline.
The resulting temperature signal forms a stable foundation for extracting reversible and
irreversible heat components (Equations (A18)-(A20)) and for training the predictive models
described in Section 3.3 without introducing bias from measurement artifacts.

3.2. Model Learning Dynamics and Convergence Characteristics

Beyond achieving low prediction error, a physically meaningful temperature model
must demonstrate stable and interpretable learning behavior throughout training. Because
lithium-ion battery temperature evolves according to history-dependent electrochemical
processes, the predictive architecture must extract both short-term fluctuations and long-
range thermal dependencies without overfitting or numerical drift. The recurrent deep
learning structures used here, LSTM and BiLSTM, satisfy this requirement through the
gating mechanisms defined in Equations (A29)—(A35) and Equations (A36)—(A39), which
enable selective retention and controlled propagation of thermal information.

Figure 9 depicts the evolution of training and validation mean squared error computed
using Equation (A46) as the models iterate over the windowed temperature sequences
generated from Equations (A6)—(A10). Both architectures exhibit a sharp reduction in loss
within the initial epochs, indicating rapid acquisition of dominant thermal relationships.
This behavior confirms that the decomposed and heat-augmented features introduced
in Section 3.2 contain sufficient thermophysical structure to be internalized efficiently by
the gated recurrent units. The close alignment between training and validation losses
further indicates that the networks generalize well beyond the data used for parameter
adjustment, avoiding the memorization effects commonly observed in models lacking
physically grounded inputs.

(a) LSTM learning curves (b) BiLSTM learning curves
—— Train ] —— Train
Val Val
‘ 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60
Epoch Epoch

Figure 9. Training and validation loss curves for the LSTM and BiLSTM architectures showing
rapid convergence to low error and closely aligned trajectories, indicating stable learning of thermal
dynamics without overfitting.

An important observation is the smooth and closely aligned BiLSTM trajectory. Al-
though the BiLSTM accesses both forward and backward thermal context, using the bidi-

https://doi.org/10.3390 /wevj17010002


https://doi.org/10.3390/wevj17010002

World Electr. Veh. |. 2026, 17,2

15 of 40

rectional rules in Equations (A36)—(A39), it does not exhibit instability, oscillatory loss
patterns, or parameter divergence. This robustness arises from the adaptive optimization
steps defined in Equations (A40)—(A45), which regulate gradient magnitudes and prevent
the accumulation of spurious thermal dependencies.

These results provide direct evidence that the recurrent architectures do not treat
temperature prediction as a conventional regression task governed solely by past val-
ues. Instead, they learn a dynamic representation of thermal evolution that incorporates
electrochemical load variations, heat-generation physics (Equations (A18)-(A20)), and
decomposition-aware trends (Equations (A11)-(A17)). The convergence profiles in Fig-
ure 9 therefore validate the methodological integration of physical decomposition and
temporal learning, confirming that the models develop a thermodynamically consistent
understanding of battery temperature behavior rather than fitting statistical artifacts.

3.3. Predictive Fidelity Under Real Cycling Conditions

The practical value of any thermal prediction framework is determined not solely
by its numerical loss values, but by its capacity to replicate real battery temperature
trajectories during electrochemical cycling. Under operational conditions, lithium-ion
battery temperature evolves according to a combination of reversible entropy-driven
heating and irreversible Joule heating as defined by Equations (A18)-(A20), superimposed
on long-term trends and oscillatory fluctuations captured in Equations (A11)-(A17). A
successful model must infer these interactions despite nonlinear resistance changes, delayed
thermal responses, and hysteresis effects inherent to the cell.

Figure 10 compares measured module temperatures with predictions generated by the
LSTM, BiLSTM, XGBoost, and hybrid frameworks over the full test horizon. The LSTM and
BiLSTM architectures track both the gradual thermal rise and short-term fluctuations with
high accuracy. Their predictions remain aligned with the measured signal during sustained
current loads, correctly reflecting the cumulative heat-generation processes described by
Equations (A18)-(A20). Likewise, during low-current or idle periods, the recurrent models
reproduce the expected decay in thermal state, demonstrating awareness of temporal
dynamics that extend beyond isolated temperature snapshots.

Measured vs. predicted temperatures on test set
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Figure 10. Measured versus predicted module temperatures across the full test horizon for LSTM, BiL-
STM, hybrid, and XGBoost models, showing the superior tracking fidelity of recurrent architectures
under dynamic cycling conditions.

In contrast, XGBoost, despite its strong performance in static regression tasks governed
by Equations (A21)—-(A28), lacks the temporal memory mechanisms of Equations (A29)-(A39).
As a result, it captures initial temperature variations but fails to sustain long-term thermal
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trends, plateauing prematurely and diverging from the real temperature curve. The hybrid
model, which augments XGBoost with residual learning, mitigates this deficiency to some
degree, yet still exhibits intermediate behavior. Its inability to fully reconstruct thermal
pathways confirms that residual-based correction alone cannot compensate for the absence of
recurrent temporal inference.

These results demonstrate a critical methodological insight: only recurrent models, whose
internal dynamics are shaped by the temporal learning rules in Equations (A29)-(A39) and
optimized through Equations (A40)-(A45), can accurately reproduce the thermophysical
evolution of battery temperature. The comparative trajectories in Figure 10 validate the
decomposition-aware integration strategy of Equations (A50)—-(A62), establishing the LSTM
and BiLSTM architectures as the only predictors capable of reconstructing the underlying
thermodynamic processes rather than extrapolating surface-level trends.

3.4. Worst-Case Electrothermal Response and Local Prediction Robustness

To further assess the robustness of the predictive architectures under abrupt elec-
trothermal disturbances, Figure 11 isolates the most challenging region of the test horizon
identified through the peak-error formulation in Equation (A76). This interval is charac-
terized by steep temperature gradients triggered by rapid variations in charge-discharge
current, where both reversible and irreversible heat-generation mechanisms, defined in
Equations (A18)-(A20), change abruptly. Such operating conditions amplify thermal inertia
and hysteresis effects, making short-term prediction accuracy highly sensitive to a model’s
ability to process directional temporal cues.

Zoomed worst-case segment: measured vs. predictions
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Figure 11. Zoomed-in comparison of temperature predictions over the most challenging test interval,
demonstrating the BILSTM model’s superior responsiveness to rapid electrothermal transitions.

The zoomed comparison reveals clear performance stratification among the models. The
BiLSTM maintains the closest alignment to the measured temperature profile, indicating supe-
rior exploitation of bidirectional temporal dependencies formalized in Equations (A36)—(A38).
By integrating both historical and anticipatory sequence information during prediction, the
BiLSTM can effectively synchronize with transient thermal excursions and accurately recon-
struct the nonlinear state transitions that drive real-time temperature evolution.

The unidirectional LSTM, governed by the forward temporal processing rules of
Equations (A29)—(A35), also demonstrates strong predictive capability. However, it exhibits
occasional lag during abrupt current reversals, reflecting its inability to access forward-
looking contextual information when updating its hidden state. This limitation becomes
prominent when the thermal response changes faster than the temporal horizon captured
by the recurrent memory.
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The hybrid model produces intermediate performance. Although its residual-learning
mechanism (Equations (A73) and (A80)) improves upon the static behavior of tree-based
regression, the absence of explicit temporal-state propagation prevents it from fully adapt-
ing to rapid thermal fluctuations. XGBoost, which relies on ensemble formulations in
Equation (A27) without recurrent dynamics, saturates early in the segment and fails to
reflect ongoing thermal changes, yielding predictions that are numerically plausible but
physically disconnected from the underlying heat-generation mechanisms imposed by
Equations (A18)-(A20).

This focused analysis confirms that only architectures endowed with temporal inference
and memory, particularly those enhanced with bidirectional processing, are capable of an-
ticipating and tracking rapid electrothermal transitions. The ability to preserve and utilize
temporal context is therefore not a supplementary convenience, but a necessary condition for
physically consistent and safety-relevant temperature prediction in lithium-ion batteries.

3.5. Residual Behavior and Temporal Consistency Assessment

While Figures 10 and 11 establish visual alignment between predicted and measured
temperatures, predictive validity must also be demonstrated through the statistical structure
of the residual errors. Figure 12 presents the time-resolved residual profiles computed
using the error definitions in Equations (A68) and (A77). These residuals quantify the
instantaneous deviation between predicted and true temperatures after inverse scaling via
Equations (A47) and (A48), ensuring that the observed error patterns reflect real thermal
discrepancies rather than artifacts of normalization.

Residuals over time on test set
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Figure 12. Time-resolved residual temperature errors for the LSTM, BiLSTM, and hybrid models,
illustrating bounded and unbiased prediction behavior without drift.

Across the entire test horizon, the residuals for the LSTM, BiLSTM, and hybrid models
remain tightly bounded around zero, indicating unbiased thermal inference consistent with
the loss minimization objective defined in Equation (A46) and its RMSE counterpart in
Equations (A49) and (A84). The absence of monotonic growth in the residual trajectories
confirms that none of the models exhibit thermal drift, the undesirable behavior in which
prediction errors accumulate over time due to unresolved electrochemical dependencies or
improper internal state propagation. Such drift would manifest as a persistent sign or trend
in the error signal, yet Equations (A72)-(A75), which track cumulative and windowed error
statistics, show no such deviation.

The BiLSTM maintains the narrowest and most symmetric residual envelope, re-
flecting its ability to leverage the bidirectional temporal processing rules defined in
Equations (A36)—(A38). This architecture captures both past and future contextual cues, en-
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abling error correction before discrepancies propagate. The LSTM exhibits slightly broader
fluctuations yet remains drift-free, validating that its unidirectional memory mechanism
governed by Equations (A29)—(A35) can reliably internalize thermal dynamics when sup-
ported by the decomposition-aware inputs created in earlier stages of the workflow. The
hybrid model displays modestly higher error volatility due to the absence of true state
recursion but still maintains statistical boundedness, consistent with the residual-learning
mechanism in Equation (A73).

From a battery-management perspective, these findings are crucial. Residual drift can
artificially suppress early indicators of thermal instability, misrepresent internal resistance
changes, or cause temperature forecasts to diverge from actual operating conditions. The
stable, zero-centered residual behavior demonstrated here confirms that the models do
not simply interpolate observed values but have encoded the electrothermal relationships
formalized in Equations (A18)-(A20), enabling physically coherent temperature prediction
even under varying load profiles.

3.6. Localized Robustness and Rolling Error Behavior

To evaluate model stability under evolving thermal stress, Figure 13 reports the rolling
root-mean-squared error computed using the windowed formulation in Equation (A75),
with residuals defined in Equations (A68) and (A77) and temperature rescaling governed by
Equations (A47)—(A49). This metric quantifies localized prediction fidelity over successive
segments of the test horizon rather than relying solely on a global aggregate value, thereby
exposing performance degradation that may occur during abrupt electrochemical transitions.

Rolling RMSE (window=30 samples): local robustness over test horizon
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Figure 13. Rolling RMSE analysis across the test sequence, confirming the superior localized robust-
ness of recurrent architectures under evolving thermal stress.

The rolling RMSE curves reveal clear differences in the models’ thermal resilience.
Although the hybrid predictor initially exhibits error levels comparable to the recurrent
architectures, its performance deteriorates significantly as irreversible heat generation
(Equation (A19)) and total thermal stress (Equation (A20)) intensify. This degradation
indicates that its residual-learning pathway, derived from the additive correction structure
of Equation (A73), is unable to sustain accuracy when the underlying heat-generation
mechanisms become strongly nonlinear.

In contrast, both the LSTM and BiLSTM maintain low and stable rolling RMSE
values across the full test horizon. Their gated memory dynamics, formalized in
Equations (A29)-(A34) for LSTM and expanded in Equations (A36)-(A38) for BiLSTM,
enable these networks to continuously adapt to changing thermal regimes while retaining
previously learned electrochemical patterns. The BiLSTM consistently achieves the lowest
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error envelope, demonstrating that bidirectional temporal inference confers measurable
benefits in conditions where heating and cooling trajectories evolve rapidly.

From a battery-management standpoint, this behavior is critical. Rolling RMSE di-
rectly reflects the accuracy with which a model can track temperature changes during
high-stress operating intervals, where exceeding safety thresholds may trigger derating or
thermal intervention protocols. The BiLSTM’s superior performance confirms that only ar-
chitectures with directional temporal reasoning and persistent thermal-state awareness can
maintain predictive reliability when faced with compound thermal influences governed by
Equations (A18)-(A20).

Collectively, the results of this subsection confirm that sequential deep learning ar-
chitectures, particularly the BiLSTM, possess an intrinsic ability to encode electrothermal
causality rather than merely correlate temperature values over time. By integrating the
decomposed thermal features and physically meaningful heat-generation drivers into their
recurrent memory structure, these models maintain predictive accuracy across all stages of
battery cycling, including intervals of elevated thermal stress where traditional regression
approaches fail. This outcome provides the first substantive evidence that decomposition-
assisted recurrent learning is not only statistically advantageous, but also operationally
viable for real-world lithium-ion battery temperature forecasting. The BILSTM's sustained
performance under dynamic loading conditions demonstrates a level of robustness con-
sistent with the requirements of onboard battery-management systems, positioning the
proposed framework as a credible foundation for next-generation thermal monitoring and
safety-aware control strategies.

3.7. Error Distribution, Reliability, and Robustness Analysis

While temporal alignment between measured and predicted temperatures establishes
qualitative agreement, a comprehensive evaluation of predictive integrity requires quan-
titative characterization of error magnitude, dispersion, and stability. Reliable thermal
forecasting systems must not only track temperature evolution but do so with bounded un-
certainty, since excessive prediction error can mask the onset of hazardous electrochemical
conditions or trigger unnecessary derating actions within a battery-management system. To
this end, we analyze absolute and residual error structures using the performance metrics
defined in Equations (A46)-(A84), ensuring that every statistical conclusion is grounded in
measurable error formulations.

Figure 14 presents the global root mean squared error (RMSE), computed according to
Equation (A49) after inverse temperature scaling via Equations (A47) and (A48). Among
all evaluated models, the LSTM exhibits the lowest RMSE, demonstrating its effectiveness
in minimizing the squared-error objective in Equation (A46) while preserving temporal
dependencies introduced during preprocessing in Equations (A6)-(A10). The BiLSTM
achieves a slightly higher RMSE, yet its competitive performance reflects the bidirectional
temporal embedding defined in Equations (A36)—(A39), which enhances contextual learning
during dynamic load transitions.

The hybrid model achieves moderate RMSE values due to the residual-correction
mechanism formalized in Equation (A73), which improves predictions over tree-based
methods but lacks the full recursion and state propagation intrinsic to recurrent networks.
In stark contrast, XGBoost yields the highest RMSE, nearly an order of magnitude greater,
demonstrating that models based solely on additive boosting formulations (Equation (A27))
are unable to reconstruct the slow thermal drift dictated by irreversible and reversible
heat-generation dynamics in Equations (A18)-(A20). As a result, its predictions plateau
and diverge when long-term electrothermal accumulation dominates the cycling trajectory.
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Figure 14. RMSE comparison of LSTM, BiLSTM, hybrid, and XGBoost temperature prediction models
over the full test horizon, illustrating the dominance of recurrent architectures in minimizing global
prediction error.

These results confirm that RMSE is not merely a numerical indicator of aggregate
error but a direct reflection of the model’s internal representation of physical temperature
evolution. Architectures that incorporate temporal causality and thermodynamic structure,
especially those governed by gated recursions, achieve systematically lower RMSE because
they emulate heat-generation mechanisms rather than extrapolating temperature trends
from static patterns. This distinction underscores the operational value of recurrent deep
learning models for lithium-ion thermal prediction and further validates the decomposition-
enhanced learning strategy proposed in this work.

Beyond global RMSE assessment, it is essential to characterize the distributional
structure of prediction errors, since two models with similar average performance can
behave very differently under safety-critical operating conditions. Figure 15 presents the
residual histograms derived from the error definitions in Equations (A68) and (A77) after
inverse scaling via Equations (A47) and (A48). These distributions provide insight into
whether deviations arise from random fluctuations, systematic thermal misinterpretation,
or model-induced drift.

The residuals of the LSTM and BiLSTM models cluster tightly around zero with sym-
metric, near-Gaussian shapes, demonstrating unbiased prediction behavior consistent with
the zero-mean error requirement implied by Equation (A71). Their compact variance re-
flects stable thermal-state learning and confirms that these architectures accurately preserve
both reversible and irreversible thermal signatures described in Equations (A18)—(A20)
rather than distorting them during recurrent propagation. The BiLSTM, in particular, ex-
hibits the narrowest spread, reinforcing the advantage of bidirectional temporal inference
established in Equations (A36)-(A38).

The hybrid model displays a slightly wider yet still unimodal distribution, reveal-
ing that its residual-learning mechanism (Equation (A73)) injects additional stochastic
variability while avoiding persistent bias. This behavior indicates partial assimilation of
thermodynamic structure, albeit without the fully contextual state embedding characteristic
of pure recurrent networks.

In stark contrast, XGBoost produces highly dispersed, skewed residuals with pro-
nounced heavy tails, an error profile symptomatic of structural misspecification. Its de-
viation pattern confirms that the additive tree ensemble defined in Equation (A27) fails
to internalize the continuous electrothermal drift mandated by Equations (A18)-(A20),
instead approximating temperature evolution as a piecewise regression problem divorced
from underlying physical causality.
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Figure 15. Residual error distributions for each model, revealing compact, symmetric structures for
recurrent architectures and dispersed, skewed profiles for tree-based regression.

These findings illustrate that recurrent models do not merely reduce error magnitude;
they correct the thermodynamic nature of the error itself. By constraining residuals into
compact, symmetric distributions consistent with physical heat-generation mechanisms,
the LSTM and BiLSTM architectures demonstrate a level of reliability indispensable for
deployment in embedded battery-management systems.

To evaluate proportional prediction fidelity over the full temperature range, Figure 16
presents scatter plots of predicted versus measured temperatures, constructed using the
inverse-scaling transformations in Equations (A47) and (A48). Each subplot overlays the
ideal 45° reference line, representing a perfect one-to-one mapping between observed
temperature and the corresponding prediction, as defined in the error relationships of
Equations (A68)—(A71). A model whose points lie along this diagonal not only minimizes
aggregate error but accurately reconstructs the functional trajectory of thermal evolution,
preserving the proportionality embedded in the original measurement sequence given
by Equation (Al).

The LSTM and BiLSTM predictions cluster tightly along the 45° line, indicating
that their recurrent gating mechanisms, formalized in Equations (A29)—(A39), maintain
structural correspondence with the underlying electrothermal processes governed by
Equations (A18)—(A20). This confirms that these architectures do not simply reduce RMSE
(Equation (A49)),but retain the correct temperature scaling behavior required for physically
interpretable forecasts.

The hybrid model also aligns with the diagonal trend but exhibits broader point
dispersion. This reflects the influence of its residual correction term (Equation (A73)),
which improves error magnitude but lacks the fully coupled temporal-state representation
of pure recurrent networks. In contrast, XGBoost deviates markedly from the ideal line and
saturates at higher temperatures, producing a flattened prediction region. This behavior
exposes the limitation of the additive ensemble formulation in Equation (A27), which
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cannot emulate cumulative heat buildup or irreversible thermal drift, resulting in systematic
underprediction at elevated temperatures.

Measured vs. predicted module temperature
LSTM (RMSE=0.062 °C) BiLSTM (RMSE=0.047 °C)
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Figure 16. Scatter comparison between measured and predicted temperatures, with the ideal 45° line
indicating proportional accuracy and confirming the superior structural fidelity of recurrent architectures.

Collectively, these scatter relationships provide direct visual validation that recurrent
deep learning architectures preserve thermodynamic proportionality, an ability that static
regressors do not possess. This proportional fidelity is essential for deployment in safety-
critical battery management, where decisions depend not only on small numerical errors
but on correct thermal trend representation across the operational envelope.

Residual behavior over time provides insight into trend accuracy, but reliabil-
ity in practical battery-management systems also depends on the distribution of error
magnitudes. Figure 17 presents the absolute error boxplots computed according to
Equation (A69), where deviations are expressed in physical units after inverse scaling
via Equations (A47) and (A48). These distributions quantify the robustness of each model’s
prediction mechanism by assessing whether errors remain confined within operationally
acceptable limits rather than sporadically violating thermal safety boundaries.

The LSTM and BiLSTM architectures exhibit exceptionally narrow interquartile
ranges with minimal outliers, indicating that their recurrent formulations, defined in
Equations (A29)-(A39), not only minimize global error (Equation (A49)) but deliver consis-
tently low deviations for nearly all predictions. This uniformity demonstrates that these
models have internalized the electrothermal dependencies imposed by the reversible and
irreversible heating terms in Equations (A18)-(A20), rather than producing occasional large
misestimates that could compromise system reliability.

The hybrid model shows modestly wider dispersion, reflecting the influence of its
residual correction mechanism (Equation (A73)). Although its performance remains ac-
ceptable, the variability highlights that augmenting a tree-based predictor with recurrent
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features cannot fully replace the temporal-state inference capabilities inherent to pure
recurrent architectures.

Distribution of absolute prediction error

0.7

0.6

0.51

O 0.4

|Error] (°C)

0.11 % T
0.0 L T

LSTM BILSTM XGBoost Hybrid

Figure 17. Absolute error boxplots demonstrating the narrow, stable error bounds of LSTM and
BiLSTM models compared to the highly variable distributions produced by XGBoost.

In stark contrast, XGBoost exhibits a broad error range with extreme outliers, con-
firming the structural instability suggested earlier by its residual profiles. This dispersion
results from the ensemble-based formulation in Equation (A27), which lacks the sequential
state tracking required to model cumulative thermal evolution, leading to unpredictable de-
viations as cycling progresses. Such variability renders XGBoost unsuitable for deployment
in safety-critical thermal applications, where worst-case error, not average error, governs
operational decision-making.

Together, these results demonstrate that only recurrent architectures provide the
bounded and physically coherent error characteristics necessary for real-time lithium-ion
battery temperature supervision.

Reliability must also be quantified from a probabilistic standpoint, since thermal safety
systems operate not on isolated error values, but on the likelihood that prediction deviations
remain within acceptable bounds. The empirical cumulative distribution functions (ECDFs) in
Figure 18, constructed using the indicator-based formulation in Equation (A84) and absolute
error metric defined in Equation (A69), provide this statistical perspective by showing the
fraction of predictions whose magnitude does not exceed a given error threshold.

The LSTM and BiLSTM curves rise steeply, with more than 90% of predictions con-
fined to a narrow error range. This indicates that their recurrent dynamics, governed by
Equations (A29)—(A39), yield not only low average error (Equation (A49)) but consistently
low deviations across the entire test horizon. Such behavior demonstrates a high degree of
predictable accuracy, meaning that the models do not occasionally produce large, unexpected
errors that could compromise real-time control or mask incipient thermal instability.

The hybrid model exhibits a similar monotonic trend, albeit with slightly reduced
steepness, reflecting the partial sensitivity introduced by the residual-learning mechanism
in Equation (A73). In contrast, XGBoost progresses slowly along the CDF axis, with a long
tail of large error values resulting from its inability to model cumulative thermal evolu-
tion through the additive ensemble structure in Equation (A27). This diffuse uncertainty
profile confirms that tree-based learning lacks the thermodynamic continuity required for
dependable temperature forecasting under dynamic electrochemical cycling.
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Figure 18. Empirical cumulative distribution functions of absolute prediction error, showing that
recurrent models achieve more than 90% of predictions within a tight error threshold, while XGBoost
exhibits diffuse uncertainty.

These probabilistic results reinforce the central finding of this study: recurrent architectures
do not merely produce accurate point estimates, they deliver statistically reliable predictions
whose error behavior remains stable and bounded, satisfying core safety criteria for deployment
in lithium-ion battery thermal monitoring and advanced battery-management systems.

An additional dimension of robustness is the model’s ability to sustain predic-
tion fidelity as the operating temperature increases, where nonlinear electrochemical
effects become more pronounced. Figure 19 plots prediction error against measured
temperature, using the error definitions in Equations (A68) and (A77) and inverse
scaling in Equations (A47) and (A48), to assess whether deviation magnitudes expand
in high-temperature regimes associated with intensified heat generation described by
Equations (A18)-(A20).
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Figure 19. Prediction error as a function of operating temperature, confirming that recurrent architec-
tures maintain bounded, physically consistent behavior even at elevated thermal states.

The LSTM and BiLSTM architectures maintain tightly bounded residuals across the
full temperature range, indicating that their recurrent gating mechanisms, formalized in
Equations (A29)—(A39), have internalized the coupling between temperature, current, and
resistance evolution rather than treating temperature as an isolated time-series signal. This
bounded behavior provides strong evidence that recurrent models learn the structure of
electrothermal dynamics, enabling them to compensate for thermal nonlinearities that
amplify at elevated operating states.
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The hybrid model exhibits a gradual widening of error distribution, consistent with the
residual-based correction mechanism in Equation (A73), yet it preserves predictable behavior
without catastrophic divergence. XGBoost, however, deteriorates substantially with increasing
temperature, producing error patterns that grow in magnitude and directionality. This
degradation stems from the ensemble model’s inability to propagate thermal state information
through the additive formulation in Equation (A27), leaving it insensitive to the nonlinear
thermal transitions that dominate lithium-ion battery dynamics at higher temperatures.

These findings confirm that static regressors fail not because they lack accuracy at low
temperatures, but because they cannot scale their predictive structure alongside electrother-
mal physics. Recurrent architectures, in contrast, exhibit temperature-invariant reliability,
an indispensable property for real-time battery-management deployment where safe opera-
tion depends precisely on forecasting correctness under elevated and dynamically changing
thermal conditions.

Collectively, the statistical evidence presented in Figures 12-18 confirms that sequential
deep learning architectures outperform conventional regressors not only in global accuracy,
but across the full spectrum of reliability indicators, including temporal consistency, residual
symmetry, probabilistic concentration, and temperature-dependent robustness. Their error
signatures remain bounded, unbiased, and structurally coherent with the electrochemical
temperature-generation mechanisms formalized in Equations (A18)—(A20), rather than ex-
hibiting arbitrary statistical artifacts. These properties demonstrate that recurrent models do
not merely fit temperature data, they internalize the physical processes governing it. Such
thermodynamically consistent behavior is indispensable for real-world deployment, posi-
tioning these architectures as credible candidates for next-generation battery management
systems where prediction trustworthiness is as critical as numerical precision.

3.8. Comparative Insight Against Conventional Machine Learning Models

The superiority of sequential learning architectures becomes increasingly apparent
when contrasted with conventional machine learning regressors that lack temporal rea-
soning capabilities. While tree- and kernel-based models can approximate nonlinear static
relationships, they are structurally incapable of encoding historical dependencies or an-
ticipating future thermal transitions, both of which are intrinsic to lithium-ion battery
temperature evolution. Battery temperature does not result from isolated measurements; it
emerges from interacting electrochemical and thermal processes governed by load history,
resistive losses, and entropy-driven effects. Models that treat temperature as an instanta-
neous value inevitably distort this physics, producing predictions that flatten, saturate, or
drift away from the true thermal trajectory once operational conditions deviate from the
patterns present during training.

These limitations manifest directly in error behavior: static regressors generate broad,
skewed, and unstable residual distributions, revealing inference patterns that are reactive
rather than thermodynamically informed. In contrast, sequential architectures such as
LSTM and BiLSTM networks employ gated memory and recurrent state propagation to
embed causal information about prior thermal states. This enables them to reconstruct
the pathways through which heat accumulates, dissipates, and transitions, interpreting
temperature not as an isolated numerical output, but as the emergent expression of an
evolving electrothermal system. As a result, sequential models produce predictions that
remain dynamically consistent with underlying thermophysical mechanisms, yielding
error profiles that are structured, bounded, and physically interpretable.
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3.9. Implications for Predictive Thermal Management in BMS

The findings of this study demonstrate that high-fidelity temperature prediction re-
quires a modeling framework that perceives thermal evolution as a dynamic, physically
governed process rather than a sequence of disconnected observations. Through the
integration of thermal decomposition and recurrent deep learning, the proposed architec-
ture elevates temperature estimation from passive measurement to predictive intelligence
aligned with the strategic objectives of modern BMS.

Instead of responding to thermal events after they manifest, the system anticipates the
trajectory of heat generation, identifies irreversible heating trends, and detects transitions
indicative of electrochemical stress. This predictive capacity enables proactive intervention,
optimizing cooling allocation, minimizing unnecessary derating, and reducing reliance
on conservative safety margins. Moreover, the temporal stability and bounded error
characteristics of the sequential models ensure persistent reliability across extended cycling,
whereas conventional models typically degrade as aging alters internal resistance, heat
capacity, and thermal response.

By producing coherent predictions across varying operating regimes, the proposed
framework differentiates benign reversible fluctuations from hazardous irreversible heat
buildup. This allows the BMS to make informed decisions regarding load scheduling,
thermal actuation, and safety enforcement. Collectively, these capabilities transform the
BMS from a reactive supervisory tool into an anticipatory thermal management platform
that enhances battery lifespan, operational efficiency, and safety. The proposed model-
ing strategy therefore provides not only an accurate predictive mechanism, but a viable
pathway toward self-adaptive thermal intelligence in next-generation electric mobility and
stationary storage systems.

3.10. Numerical Performance Summary and Quantitative Assessment

The numerical results provide definitive evidence of the superiority of sequential deep
learning models in reconstructing lithium-ion battery temperature evolution. Among all
evaluated architectures, the BILSTM achieves the highest predictive accuracy, exhibiting
the lowest RMSE of 0.0406 °C, the smallest MAE of 0.0331 °C, and the highest explanatory
power (R? = 0.9875). These results confirm that bidirectional temporal inference enhances
predictive fidelity without compromising numerical stability.

The LSTM model follows closely, with RMSE = 0.0746 °C, MAE = 0.0666 °C, and
R? = 0.9577, demonstrating strong ability to capture thermal propagation dynamics despite
its unidirectional nature. The Hybrid LSTM-XGBoost configuration improves upon pure
XGBoost but remains inferior to both recurrent models, achieving RMSE = 0.0707 °C and
MAE = 0.0600 °C. This underscores the inherent limitation of residual boosting: temporal
correlations cannot be reconstructed when they are absent from the core model representation.

In stark contrast, XGBoost yields an RMSE of 0.3794 °C and a negative R? (—0.0966), in-
dicating performance worse than a naive mean estimator. Its inability to model cumulative
heating behavior results in saturation effects, distorted gradients, and broad, unbounded
residuals under dynamic cycling conditions.

These metrics establish that sequential architectures do more than minimize numerical
error, they faithfully reconstruct the physical trajectory of temperature evolution with
statistically verifiable precision. Their low variance, bounded residual envelopes, and high
explanatory power provide compelling justification for their deployment in safety-critical,
real-time thermal monitoring and predictive BMS environments.
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4. Conclusions

This study presented a unified, physics-informed, and data-driven framework for lithium-
ion battery temperature prediction that integrates temperature decomposition, electrothermal
heat generation modeling, and advanced sequential neural architectures. Unlike conventional
regression approaches that treat temperature as an instantaneous numerical output, the
proposed methodology interprets it as the coupled result of reversible and irreversible thermal
processes. By embedding these thermodynamic principles directly into the learning pipeline,
the framework transforms temperature prediction from correlation-based estimation into a
physically grounded inferential process that reflects real battery behavior.

Extensive numerical experiments verified the decisive advantages of sequential ar-
chitectures over classical machine learning techniques. The LSTM network achieved an
RMSE of 0.0746 °C and an MAE of 0.0666 °C, which represents an 80% reduction in
RMSE relative to XGBoost and a more than fourfold reduction in MAE. The Bidirectional
LSTM further improved predictive fidelity, delivering the lowest errors (RMSE = 0.0406 °C,
MAE = 0.0331 °C) and the highest explanatory power (R? = 0.9875). It also maintained
more than 97% of predictions within plus or minus 0.1 °C, whereas classical regressors
achieved less than 40% within the same range. These findings confirm that accurate tem-
perature forecasting requires temporal learning and full electrothermal context rather than
static or memoryless modeling strategies.

The practical relevance of the framework was demonstrated through the use of exper-
imentally measured module temperatures that contain real sensor noise, current-driven
fluctuations, and thermal lag. The decomposition and learning stages therefore operate on
signals that reflect true operational conditions rather than synthetic or simulated data. This
ensures that the resulting surrogate model can be transferred directly to battery modules
and packs without architectural modification.

Because the predictions capture the reversible and irreversible heat processes that
govern temperature rise, the model can be embedded into a battery management system to
anticipate upcoming thermal excursions, support proactive thermal actuation, and maintain
safe operating limits under variable duty cycles. The framework is also suitable for real-
time deployment because the decomposition, normalization, and sequence generation
steps require limited computational overhead. The strong generalization across operating
regimes indicates that the approach can be extended to different chemistries and form
factors with minimal retraining.

In summary, the integration of thermal decomposition with sequential deep learning
represents a significant advance in lithium-ion battery temperature forecasting. It elevates
temperature prediction from a retrospective measurement task to a forward-looking intelli-
gence layer that delivers high accuracy, low uncertainty, and direct physical interpretability.
Future work will extend the methodology to pack-level thermal propagation, incorporate
current and voltage features for multi-input forecasting, and validate the framework under
drive cycle conditions and accelerated stress testing. These directions will support the de-
velopment of next generation, self-aware, and safety-critical battery management systems
that require predictive rather than reactive thermal control.
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Appendix A

Appendix A provides the complete mathematical foundation, supplementary def-
initions, and symbol explanations used throughout this study. Appendix A is di-
vided into three structured components: (Appendix A.1) the list of analytical equations,
(Appendix A.2) the description of each equation’s role in the methodology, and
(Appendix A.3) a glossary of symbols used in the manuscript. Each subsection should be
placed above its respective table exactly as shown below.

Appendix A.1

This subsection lists all mathematical equations employed in the study, presented in
the order in which they appear in the methodology. Equations (A1)-(A62) define the full
processing pipeline, beginning with temperature normalization and data segmentation,
continuing through temperature decomposition, thermodynamic heat modeling, machine
learning and deep learning prediction formulations, loss functions, and optimization rules.
These equations establish the theoretical basis underlying every computational step of the
proposed approach.

Table Al. Governing equations used in the paper.

Equation No. Formula
(A1) T(t)
(A2) Tonin = min(T)
(A3) Tinax = max(T)
a9 2(1) = Tt
(AD) T(t) = z(t)(Tmax — Tin) + Tin
(A6) Xy = [z(n),z(n+1),...,z(n+L—1)]
(A7) yn=2z(n+L)
(A8) N=M-L
(A9) Nirain = [rN]
(A10) Nyai = N — Niyain
(A11) Tirena(t) = 55 T(t + )
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Table Al. Cont.

Equation No. Formula
(A12) D(t) = T(t) — Tirena(t)
(A13) TS(t) = Xty (T(H) = Threna(t))
(A14) TS = +yF | TS(t)
(A15) Tseasonal (1) = TS(t) = TS
(Al6) Tresidual (t) = T(t) — Tirena(t) — Tseasonat (f)
(A17) T(t) = Tirend(t) + Tseasonat (t) + TResiduar (t)
(A18) Greo = ITSE
(A19) Girr = I’R
(A20) Qtotal = Grev + Jirr
(A21) 7 = f(x)(general Ml predictor)
(A22) IrF = FLb—y ()
(A23) Fu(x) = ):m 1 Ym i (x)
(A24) Tim = Yi — Fn—1(x;)
(A25) Jsvr = LV q (a; — af)K(x;,x) + b
(A26) K(x,z) = exp(—7l|lx — z||%)
(A27) 7(x) = XX_, fi(x)(XGBoost/LGBM/ CatBoost)
(A28) (y,9) =3 -9)°
(A29) iy = o(Wixy + Uihy 1 + b;)
(A30) fi = o(Wexy + Ughy_q + by)
(A31) O = c(Woxt + Uph; 1 + bp)
(A32) Ct = tanh(Wexy + Uch; 1 + be)
(A33) C=f0C1+itOC
(A34) hy = Oy O tanh (Cy)
(A35) 7 = Woutht + bout
(A36) = LSTM_,(x, ht 1)
(A37) o= LSTM. (x1, H141)
(A38) W = [, )
(A39) 7 = Wouth'® + bous
(A40) gt = VoL
(A41) me = Brmy_1 + (1 — B1)ge
(A42) v = Bovr 1 + (1 - B2)g?
(A43) iy = 1T;3%
(A44) O = 11”/55
(A45) Bt = 6 —
(A46) MSE = LYN (vi — 0:)°
(A47) Ai = 91’(Tmux - Tmin) + Tonin
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Table Al. Cont.

Equation No.

Formula

(A48) T; = yi(Tmax — Tonin) + Tonin
-2
(A49) RMSE = \/ FEN (T - T))
(A50) 1(t)
(A51) R(t)
9
(A52) 9L
(A53) Wev(t) = I(t)T(f)%
(A54) Gire (1) = 1(t)°R(t)
(A55) TS(t) = $ 175 (T() — Trvena(t))
(A56) Tseasonal = TS(t) — Ts
(A57) h*el = [hy, hy, ... hy]
_ 1
(A58) o(x) = 7=
(A59) tanh (x) = €54
(A60) O : elementwise product
(A61) L = MSE
(A62) 0 0—ynVeLl
(A63) T(t) = median(T(j)), j € [t —w,t + w]
(A64) MAD(t) = median(|T(j) — T(t)]), j € [t —w, t + w]
(A65) T(t) = 1.4826 kMAD(t)
_ LT, ifITG) - T()] > ~(t),
T, t) =
(A66) ctean ) {T(t), otherwist
(A67) Ntest = N — Nipgin — Noyai
(A68) 6—T,—T,
(A69) leil = |Ti — Ti
N
(A70) MAE = ﬁzl| i — Ti
1=
(A71) 24 N (-T)
Z,I\i1 (Ti*T)Z
(A72) ri =1y; —yLSTM,i
(A73) YHybrid,i = §LSTM, i + §XGB, resid, i
N
(A74) F(a) = %,le(|€i| <a)
1=
ktw/2
(A75) RMSE,E“’) =,/ 3 e?
i=k—w/2
A7 k* = )
(A76) arglgungkl\
(A77) e = Ui — Vi
(A78) ri =y; — §LSTM, i
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Table Al. Cont.

Equation No.

Formula

(A79) ick—%k+3]
(A80) YHybrid = §Base + jResid
(A81) X = z(Xmax — Xmin) + Xmin
(A82) Nirgin = [rN], Ny = [sN]
LN
(A83) RMSE = | L ¢
i=1
[ 1, ifAistrue
(A84) I(A) = { 0, otherwise
Appendix A.2

This subsection provides a detailed explanation of the purpose and usage of every

equation listed in Appendix A.1. Each numbered statement describes how the corre-

sponding equation contributes to data preprocessing, temperature decomposition, thermal

modeling, machine learning prediction, or model training. This section demonstrates that

each mathematical relationship has a specific functional role and is not a disconnected or

redundant expression, providing methodological clarity and equation justification.

Table A2. Functional role and application of each equation in the study.

Equation No.

Description

(A1)

Represents the raw measured battery temperature time series,
serving as the foundational dataset from which all thermal trends,
patterns, and predictive features are extracted.

(A2)

Identifies the minimum temperature within the dataset,
establishing the lower normalization bound and preventing
negative scaling artifacts.

(A3)

Determines the maximum recorded temperature, defining the
upper normalization bound and ensuring normalized values
remain bounded within ([0, 1]).

(A4)

Normalizes temperature samples to a unit interval, enhancing
numerical conditioning, improving gradient stability during LSTM
training, and enabling model comparability.

(A5)

Reconstructs temperatures in physical units (°C) from normalized
predictions, ensuring interpretability and enabling direct
comparison with measured values.

Constructs fixed-length sequential input vectors, enabling temporal
learning by capturing temperature dependencies across
consecutive cycles.

Defines the target output for one-step-ahead forecasting, directing
the learning process toward next-cycle temperature prediction.

Calculates the total number of valid sliding windows, thereby
determining the effective supervised learning sample size.

Allocates a specific proportion of samples to the training set,
facilitating experimental evaluation under varying
data-availability conditions.
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Table A2. Cont.

Equation No. Description

Computes the number of validation samples, ensuring an
(A10) unbiased mechanism for hyperparameter tuning and
generalization assessment.

Extracts the thermal trend component via centered moving

(Al1) averaging, isolating slow, cumulative heat buildup within the cell.

(A12) Forms the detrended temperature signal by removing long-term
drift, enabling clearer discrimination of periodic heating effects.

(A13) Produces intermediate cycle-aligned thermal values, capturing

cyclic thermal oscillations linked to electrochemical operation.
(A14) Establishes the mean seasonal pattern, representing the canonical
periodic thermal response across multiple cycles.
(A15) Derives the seasonal temperature component by centering

transitional values, isolating reversible entropy-related oscillations.

Extracts the residual component, encapsulating stochastic,
(A16) non-periodic variations attributable to irreversible heating and
measurement noise.

Reconstructs the original temperature sequence from its trend,
(A17) seasonal, and residual components, validating
decomposition completeness.

Quantifies reversible (entropic) heat generation arising from

(A18) entropy changes during electrochemical reactions.
Characterizes irreversible Joule heating caused by internal
(A19) resistance, constituting the dominant driver of temperature rise

under high loads.

Aggregates reversible and irreversible heat terms, yielding the total
(A20) heat generation profile underpinning observed
temperature dynamics.

Specifies the general form of a supervised regression model,
(A21) establishing a mapping from input features to
predicted temperatures.

Computes Random Forest outputs through ensemble averaging,
(A22) mitigating variance and improving robustness against
measurement noise.

Defines the Gradient Boosting framework, where successive weak

A2 . . : . o

(A23) learners iteratively refine residual prediction errors.

(A24) Evaluates residuals used in boosting iterations, guiding weak
learners toward systematic error correction.

(A25) Formulates Support Vector Regression predictions in kernel space,

enabling nonlinear modeling of temperature-cycle relationships.

Implements the RBF kernel for SVR, enabling similarity
(A26) measurement in high-dimensional feature space and
capturing nonlinearity.

Expresses additive-tree predictions used in XGBoost, LightGBM,
(A27) and CatBoost, enabling scalable learning over structured
temporal data.
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Table A2. Cont.

Equation No. Description

Defines the squared-error loss objective, penalizing deviations
(A28) between predicted and true normalized temperatures
during optimization.

Computes the LSTM input gate activation, regulating integration of

(A29) new thermal information into the memory cell.
Determines the forget gate activation, enabling selective retention
(A30) .
or disposal of past thermal states.
(A31) Governs the output gate transformation, controlling propagation of
the internal cell state into the hidden layer.
Produces the candidate cell state, supplying nonlinear thermal
(A32) P . .
eatures prior to gated fusion.
(A33) Updates the LSTM cell state by integrating retained memory and
new information, supporting long-horizon pattern learning.
Generates the hidden state from the updated cell state, providing
(A34) . . .
the representational basis for temperature forecasting.
Maps the hidden state to normalized temperature predictions in the
(A35)
model output layer.
Computes forward hidden states in BiLSTM, encoding causal
(A36) )
thermal dependencies from past measurements.
Computes backward hidden states in BiLSTM, capturing temporal
(A37) . . L
relationships extending into future measurements.
Concatenates bidirectional features, enabling BiLSTM to exploit full
(A38) . s
temporal context for improved prediction accuracy.
Produces the final BILSTM temperature prediction from fused
(A39) e .
bidirectional states, leveraging cycle symmetry.
Computes gradients of the loss with respect to parameters,
(A40) o .
initiating model weight updates.
Updates the first-moment estimate of Adam, moderating oscillatory
(A41) . .
gradient behavior across cycles.
Updates the second-moment estimate of Adam, adapting step sizes
(A42) . .
based on gradient variance.
(A43) Applies bias correction to the first-moment estimate, stabilizing
early optimization dynamics.
(Add) Applies bias correction to the second-moment estimate, ensuring
accurate scaling of parameter updates.
Executes parameter updates using Adam, enabling efficient and
(A45) . . .
stable convergence during deep learning training.
(A46) Specifies the MSE loss in normalized space, providing a consistent
objective for ML and DL model training.
Converts predicted normalized temperatures to physical units,
(A47) . .
enabling real-world performance evaluation.
Recovers true temperature values from normalized form,
(A48) e . o .
facilitating direct prediction error computation.
(A49) Computes RMSE in °C, providing a scale-sensitive and

interpretable accuracy metric for comparative analysis.
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Table A2. Cont.

Equation No.

Description

Supplies measured current as a thermal excitation input, linking

(AS0) electrical load to thermal evolution.
Provides internal resistance values required for irreversible heat
(A51) o . .
estimation, reflecting cell health and aging.
Introduces entropy coefficients, supporting reversible heat
(A52) . . oL
modeling grounded in thermodynamic principles.
(A53) Evaluates reversible heat generation over time, enabling assessment
of entropy-driven heating captured implicitly by the model.
Quantifies irreversible heating dynamics, explaining monotonic
(A54) . . . .
temperature rise during sustained cycling.
Computes intermediate seasonal averages, smoothing periodic
(A55) - ) .
variations before final seasonal extraction.
Centers transitional thermal values, ensuring the seasonal
(A56) . L2
component reflects unbiased periodicity.
(A57) Represents the full sequence of LSTM hidden states, encoding
long-range temporal dependencies.
(A58) Defines the sigmoid activation, enabling nonlinear gating within
the LSTM architecture.
Specifies the tanh activation function, shaping candidate and
(A59) :
output state dynamics.
(A60) Denotes elementwise multiplication for gated integration within
LSTM states.
(A61) Formalizes the optimization objective minimized during
model training.
Defines the gradient-based rule used to update model
(A62) . .
parameters iteratively.
(A63) Computes local median temperature, providing a robust baseline
signal for noise reduction.
Evaluates Median Absolute Deviation, enabling resilient
(A64) P o
quantification of variability.
(A65) Establishes the Hampel outlier threshold, distinguishing
anomalous thermal excursions.
Substitutes aberrant measurements with median estimates, yielding
(A66) . . ! .
a physically plausible cleaned time series.
Determines the number of test samples, ensuring evaluation on
(A67)
unseen data.
Quantifies prediction errors per sample in physical units, forming
(A68) . . .
the core of post-training diagnostics.
(A69) Measures absolute error magnitudes, supporting model
comparison across prediction tasks.
Computes MAE, summarizing average magnitude of
(A70) - -
prediction deviations.
(A71) Calculates the coefficient of determination (R?), assessing variance

explained by the model.
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Table A2. Cont.

Equation No.

Description

Defines residuals between observed temperatures and LSTM

(A72) predictions, serving as correction targets in hybrid modeling.
(A73) Generates hybrid predictions by combining LSTM base forecasts
with residual estimates from XGBoost.
Constructs empirical CDF of absolute errors, enabling probabilistic
(A74) o
reliability assessment.
(A75) Computes rolling RMSE, facilitating localized performance
evaluation over dynamic regimes.
Identifies the index corresponding to maximum prediction error,
(A76) . :
revealing worst-case thermal behavior.
Specifies generalized regression residuals, supporting comparative
(A77) : :
model diagnostics.
(A78) Defines residual-learning targets, enabling XGBoost to correct
systematic LSTM deficiencies.
Sets window bounds for rolling RMSE analysis, preserving
(A79) -
symmetry around an evaluation index.
(AS0) Formalizes the hybrid prediction structure as the sum of base and
residual components.
Restores original feature scale after normalization, reinstating
(A81) S s
physical interpretability.
(A82) Computes train and validation sizes from user-defined ratios,
enabling controlled dataset partitioning.
(AS3) Calculates RMSE directly from prediction errors, providing a
standard measure of accuracy.
Defines the indicator function for empirical CDF construction,
(A84) . . . .
enabling binary evaluation of tolerance compliance.
Appendix A.3

This subsection defines all symbols, abbreviations, and mathematical terms used in

the manuscript. Each symbol is explained in terms of its physical meaning, computational

role, and relevance to the temperature-prediction problem. This section provides complete

glossary of variables used in the deep learning, thermal, and statistical formulations.

Table A3. Definitions of Symbols and Notation Used Throughout the Manuscript.

Symbols Description
Represents the measured battery temperature at time t. It is the
T(t) primary time-series signal used for prediction, decomposition, and
heat-generation analysis.

T Minimum observed temperature in the dataset. Used as the lower
i bound for min-max normalization to avoid negative scaling.

T Maximum observed temperature in the dataset. Used as the upper
max

bound for normalization and inverse scaling.
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Table A3. Cont.

Symbols

Description

Z(t)

Normalized temperature value at time t. Used as the input to
ML/LSTM models to improve numerical stability during training.

L

Sequence/window length (e.g., 50 steps). Defines how many past
temperature points are used to predict the next one.

Xn

Input sequence containing L consecutive normalized temperatures.
Forms the training sample for forecasting models.

True temperature target for the next timestep after the window x_n.
Used to train models for one-step-ahead prediction.

Total number of recorded temperature samples before segmentation.
Used to determine available data length.

Total number of usable training windows after sequence extraction
(N =M — L). Defines dataset size for supervised learning.

Train-validation split ratio. Controls how many windows become
training data, enabling robustness analysis.

Number of training windows created based on ratio r. Used to train
ML and LSTM/BiLSTM models.

Nwzl

Number of validation windows. Used to evaluate generalization
accuracy on unseen data.

TTrend(t)

Long-term temperature trend estimated via moving average. Used to
separate slow heat buildup from short-term fluctuations.

TSeasonal (t)

Seasonal component representing periodic reversible temperature
oscillations caused by cyclic charging/discharging.

TResidual (t)

Residual component capturing non-seasonal, abrupt heating effects,
noise, and irreversible Joule heating.

f

Trend averaging window length. Determines the number of samples
used to compute the smoothed temperature trend.

Half-window size for trend computation. Controls the symmetry of
the moving average.

Number of cycles used to compute transitional seasonal patterns.

D(t)

De-trended temperature value (T—T_Trend). Used to isolate seasonal
behavior from long-term thermal drift.

TS(t)

Transitional seasonal temperature component. Used for constructing
periodic thermal patterns linked to cycle behavior.

Mean seasonal value. Used to center TS(t) and remove bias from
seasonal estimation.

rev

Reversible heat generated due to entropy change during
electrochemical reactions. Helps interpret reversible
temperature oscillations.

Girr

Irreversible (Joule) heat caused by internal resistance and current flow.
Key indicator of thermal stress and degradation.

Grotal

Total heat generation (q_rev + q_irr). Used to validate the physical
consistency of predicted temperature trends.

I(t)

Measured current at time t. Primary driver of reversible and
irreversible heat-generation mechanisms.
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Table A3. Cont.

Symbols Description
Internal resistance of the battery at time t. Used to compute irreversible
R(t) . . .
heating, especially at high load.
oF Entropy coefficient of open-circuit voltage. Used to compute reversible
aT heat as temperature varies.
£0) General machine learning prediction function. Represents regression
' mapping from input sequences to temperature forecasts.
Ty ) Individual decision tree in a Random Forest. Each tree contributes to
bt the final temperature prediction.
Fu() Gradient Boosting ensemble model after M trees. Represents
MR- incremental improvement by fitting residuals.
. Residual error at boosting iteration m. Used to determine what the
”" next tree must learn.
ot Dual coefficients in Support Vector Regression. Determine the
o influence of support vectors in predictions.
Kernel function (e.g., RBF). Measures similarity between temperature
K(x,2)
sequences for SVR models.
£l Tree functions in XGBoost/LightGBM/CatBoost. Each adds predictive
K corrections to improve temperature estimation.
1y, 9) Loss function comparing predicted and true values. Drives
vy optimization of regression models.
Temperature input at timestep t to LSTM/BiLSTM. Forms the
Xt . .
sequential data fed into the recurrent network.
b LSTM hidden state at time t. Encodes compressed temporal
! temperature information.
C LSTM cell state. Stores long-term temperature dependencies and
! retention patterns across cycles.
; LSTM input gate. Controls how much new thermal information is
! added to memory.
f LSTM forget gate. Controls removal of outdated historical
! temperature information.
o LSTM output gate. Determines how much of memory contributes to
' next hidden state.
c Candidate cell state. Represents new nonlinear temperature
f information before gating.
Wi, Wi, Wo, We Input weight matrices fo'r LSTM' gates. MaP temperature input
features into gating operations.
U U U U Recurrent weight matrices. Capture temporal influence of past hidden
irn=fr Hor =C states in LSTM dynamics.

bi, b, bo, be Bias vectors for each LSTM gate. Adjust gating activation thresholds.

Dense-layer output matrix that maps LSTM hidden state to

Wout predicted temperature.

bout Output bias term for generating final prediction.
- Forward hidden state in BILSTM. Learns temperature patterns based
Iy on past context.
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Table A3. Cont.

Symbols Description
— Backward hidden state. Learns future-driven thermal correlations,
h improving cycle-symmetry learning.
(b BiLSTM fused hidden state. Combines forward and backward states
t for richer representations.
Gradient of the loss at time t. Used during backpropagation to update
8t network weights.
m Adam optimizer’s first-moment estimate (mean of gradients). Smooths
t learning updates.
o Adam second-moment estimate (variance of gradients). Stabilizes step
! size for irregular signals.
1t Bias-corrected first moment. Fixes initial bias when gradients are small.
5 Bias-corrected second moment. Ensures correct scaling of updates
' early in training.
0 Model parameters being learned (weights and biases). Updated
iteratively during training.
1% Learning rate. Controls step size for parameter updates.
8 Decay rate for first-moment estimation in Adam. Governs memory of
! past gradients.
8 Decay rate for second-moment estimation. Smooths squared
2 gradient accumulation.
€ Numerical stability constant to prevent division by zero.
() Sigmoid activation function. Used in LSTM gates for controlling
’ information flow.
tanh(.) Hyperbolic tangent activation. Adds nonlinearity to LSTM internal
’ state transitions.
o Elementwise (Hadamard) product. Core operator in LSTM
gate computations.
r Loss function minimized during learning, typically MSE for
regression models.
. Predicted normalized temperature value for sample i. Output of
yi ML/DL model.
' True normalized temperature target. Basis for computing
Yi prediction error.
7. Predicted temperature in °C after inverse scaling. Used for
! physical interpretation.
T Actual temperature in °C. Used to compute real-world
! performance metrics.
MSE Mean Squared Error. Primary optimization objective during
model training.
RMSE Root Mean Squared Error in °C. Used to compare ML and DL
predictive accuracy.
e Full sequence of hidden states produced by LSTM/BiLSTM. Encodes

all temperature dynamics observed across the window.
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