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Predictive epidemic modeling can enhance situational awareness during emerging and
seasonal outbreaks and has received increasing interest in recent years. A common
distinction is between nowecasting, which corrects recent incidence data for reporting
delays, and forecasting, which predicts future trends. This paper presents an integrated
system for nowcasting and short-term forecasting of hospitalizations from severe acute
respiratory infections (SARI) in Germany (November 2023-September 2024). Motivated
by facilitating multi-model forecasting collaborations, we propose a modular approach in
which a statistical nowcasting model is run centrally, and its output is provided as input
to various data-driven forecasting methods. We apply this approach to a seasonal time
series model, a gradient boosting approach, and a neural network. These are moreover
combined into an ensemble approach, which achieves the best average performance. The
resulting forecasts are overall well-calibrated up to four weeks ahead, but struggled to
capture the unusual double peak that occurred during the test season. The presented ret-
rospective results are key developments for ongoing and future collaborative real-time
forecasting of respiratory diseases in Germany.
© 2026 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cramer et al. 2022) and mpox (e.g., Bleichrodt et al. 2024).
Disease forecasting is a broad field, and three main types

Predictive modeling of infectious diseases has received
considerable attention in recent years, fueled by the pub-
lic health crises of COVID-19 (e.g., Bracher et al. 2021,
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of predictive modeling tasks can be distinguished (Reich
et al. 2022, see Fig. 1).

e Nowcasting is the statistical correction of recent
data points that are yet incomplete and subject to
delayed additions. Nowcasts, hence, refer to recent
rather than upcoming infection dynamics, but are
predictive in that they anticipate data revisions and
reveal current trends.

o Short-term forecasts are unconditional predictions
about the future course of an epidemic. These are
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Fig. 1. Distinguishing nowcasting, short-term forecasting, and scenario modeling of infectious diseases.

feasible only for short time periods, with appropri-
ate prediction horizons depending on the type of
indicator to predict.

e Scenario projections are used to make statements
about possible longer-term developments, but are
conditional on explicit assumptions that may or may
not correspond to the future conditions encountered
in the real world. For instance, scenarios may elu-
cidate possible epidemic trajectories under various
intervention strategies.

While scenario modeling has a somewhat different
focus and purpose, nowcasting and short-term forecast-
ing boil down to the same task: generating probabilistic
statements about disease incidence at various points in
time. For all three tasks, multi-model approaches have
been found particularly suitable (Reich et al., 2022). The
presence of multiple distinct models enables more realis-
tic assessments of the predictive uncertainty and can be
the basis for ensemble forecasts, which have often been
found to be more robust (see e.g., Cramer et al. 2022).

In the United States, multi-model forecasting in collab-
orative Forecast Hubs was established in the early 2010s,
most prominently for seasonal influenza (Reich et al,
2019). In many other countries, such systems were first
implemented during the COVID-19 pandemic (Funk et al.
2021, Bracher et al. 2021, Paireau et al. 2022, Sherratt
et al. 2023). To preserve the capacities built during the
pandemic, these efforts now face the challenge of tran-
sitioning to routine operations in a seasonal rather than
an emerging disease setting (see, e.g., Fi et al. 2025). This
raises multiple challenges, but also offers the opportunity
to revise and refine previous approaches. The present pa-
per proposes a multi-model prediction system for severe
acute respiratory infections (SARI) in Germany, which is
the backbone of a new operational forecasting platform
(see Section 5). Guided by our application setting, we
focus on three aspects that, in combination, constitute the
novelty of our contribution.

Firstly, post-COVID-19 forecasting efforts need to adapt
to different, coarser data streams (Mathis et al., 2024), of-
ten with less timely reporting. Unlike predecessors, which
focused either on nowecasting (Wolffram et al., 2023)
or forecasting (Bracher et al., 2021), the new platform
integrates both tasks, a novelty for collaborative efforts.
Previous Forecast Hubs circumvented the need for now-
casting by aggregating incidence counts according to the

date of report rather than, e.g., symptom onset. This, how-
ever, blurs recent trends and is poorly motivated from an
epidemiological standpoint. Alternatively, the most recent
data points can be removed entirely (see e.g., Paireau et al.
2022), but this implies discarding valuable information.

Secondly, while the COVID-19-related efforts in Ger-
many were based on symptom-specific indicators in an
acute outbreak setting, we deal with syndromic indi-
cators in a seasonal context. Rather than mechanistic
compartmental models, we therefore explore a range of
phenomenological approaches to capture short-term de-
pendencies and seasonal variation (see e.g., Albrecht et al.
2024, Brooks et al. 2018 for related work). We cover
conceptually diverse modelling paradigms by considering
a seasonal count time series model (Bracher & Held,
2022), a gradient boosting approach (Ke et al., 2017), and
a neural network (Chen et al., 2023). These are moreover
combined into an ensemble and compared to flat-line and
seasonal benchmark models.

Lastly, we face the difficulty that the COVID-19 pan-
demic not only increased the overall respiratory disease
burden but also altered the dynamics of other respira-
tory diseases (see, e.g., Buchholz et al. 2023). This is
true for the years 2020-2022, when the associated non-
pharmaceutical interventions largely stopped the spread
of other respiratory diseases, as well as for the following
period, when the immunity landscape was considerably
different from earlier years. We will compare different
approaches to using historical data from these periods for
model fitting.

All challenges are addressed with collaborative multi-
model forecasting in mind. As nowcasting and the neces-
sary handling of multiple data versions impose significant
overhead on participating forecasting teams, we develop
a modular system in which the nowcasting task is split
off, and nowcasts from a simple nowcasting model are
provided via the Hub infrastructure. These can then be fed
into diverse forecasting models. Moreover, this modular
approach enables detailed diagnostics of how different
approaches to handling reporting delays affect predictive
performance. While the current evaluation is retrospec-
tive, the platform has transitioned to real-time opera-
tions in Fall 2024, and a prospective evaluation study
for multiple surveillance indicators has been preregis-
tered (Bracher & Wolffram, 2024).
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Related works in the literature include the pre-COVID-
19 works by Brooks et al. (2018) and Osthus et al. (2019),
who combine nowcasts based on auxiliary data streams
(rather than partial observations) with prediction models.
Approaches to handle delayed reporting have been dis-
cussed by Ma et al. (2024) and De Nicola et al. (2022), who
evaluate point predictions, and by Beesley et al. (2022)
and Charniga et al. (2024), who consider probabilistic
forecasts.

We find all our forecasting models to be well-calibrated
for total weekly hospitalization incidences (coverage of
95% prediction intervals mostly between 90% and 95%).
In the age-stratified setting, only the ensemble achieves
nominal coverage, while some individual models drop to
around 80% coverage. We note, however, that these cov-
erage levels are achieved with relatively wide uncertainty
intervals surrounding peak weeks, and there are difficul-
ties in dealing with the double peak occurring in the test
season. All three models considered outperform simple
baseline models, though the differences are not consis-
tently statistically significant across lead times. Similar
to previous studies, the ensemble approach achieves the
best overall performance in terms of the weighted interval
score. Including a nowcasting step improves forecasts
relative to a procedure that simply discards the most
recent data point. Indeed, the loss in forecasting perfor-
mance relative to a hypothetical setting in which the data
are not subject to reporting delays is minor. This leads
us to recommend incorporating nowcasting steps into
infectious disease forecasting systems.

The remainder of the paper is structured as follows.
Section 2 provides background information on SARI hos-
pitalizations in Germany. In Section 3, we define the now-
casting and forecasting targets and present the methods
employed for both tasks. Particular attention will be paid
to how to feed nowcast information into forecasting mod-
els while accounting for the uncertainties that arise. In
Section 4, we evaluate the resulting probabilistic fore-
casts visually and with a variety of metrics. Section 5
concludes with a discussion and a brief outlook. All results
in this paper can be reproduced using the publicly avail-
able replication package at https://github.com/dwolffram/
replication-sari-forecasting.

2. The SARI hospitalization incidence
2.1. Definition and description

Respiratory disease activity in Germany is monitored
by a multitude of surveillance systems, including manda-
tory reporting schemes and virological and syndromic
surveillance (Goerlitz et al.,, 2021). In the present paper,
we focus on the incidence of hospitalization for severe
acute respiratory infections (SARI). Since fall 2014, data on
such hospitalizations have been collected in the ICOSARI
system operated by the Robert Koch Institute (RKI; Buda
et al. 2017, Tolksdorf et al. 2022). They are publicly acces-
sible via the RKI GitHub repository (https://github.com/
robert-koch-institut/SARI-Hospitalisierungsinzidenz). The
SARI hospitalization incidence is a syndromic indicator,
i.e., the case definition is based on the symptoms pa-
tients present rather than laboratory testing for a given
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pathogen. Specifically, a set of ICD-10 diagnostic codes
(JO9-]J22) is used, see Buda et al. (2017) for details. Data
collection is carried out via a sentinel system comprising
roughly 70 hospitals across 13 of the 16 German federal
states. The system covers around 6% of all hospitalizations
occurring in Germany. Based on information on the catch-
ment population covered by the sentinel sites, the SARI
hospitalization incidence per 100,000 inhabitants can be
estimated. Estimates at a weekly resolution (with weeks
starting on Mondays) are available both unstratified (00+)
and by six age groups (0-4, 5-14, 15-34, 35-59, 60-79,
80+). In this paper, we rescale the estimated incidence to
absolute count values.

The pooled and age-group-wise incidence time series
for the period 2014-2024 are displayed in Fig. 2 (see
Supplementary Figures S2 and S3 for descriptive plots
of the autocorrelation functions). Seasons we consider
substantially affected by the acute phase of the COVID-19
pandemic are delimited by dashed vertical lines. Colors
indicate the split into training, validation, and test peri-
ods, see Section 4.2.4 for details. Especially, in the age
groups 05-14, 15-34, and 35-59, the test season displays
rather unusual patterns, with consistently high incidences
even in late spring and summer. In the very young and
the elderly, this is less pronounced. Because these age
groups have higher absolute numbers, the pooled inci-
dence shown in the left panel exhibits a more typical
seasonal pattern.

2.2. Data revisions and reporting delays

Like many epidemiological indicators, the SARI hospi-
talization incidence is subject to retrospective data revi-
sions. Typically, the numbers are corrected upwards as
additional hospitalizations are reported with a delay. To
assess the impact of reporting delays, archives of histor-
ical data snapshots are necessary. The public RKI GitHub
repository contains such snapshots back to the data re-
lease on 28 September 2023. Before this date, PDF reports
were made available, which enabled the reconstruction
of snapshots at the aggregate level back to early 2023
(though not for the different age groups).

As illustrated in the left panel of Fig. 3, reporting delays
lead to an artificial dip at the end of the real-time inci-
dence time series. Once data points have been completed
over the following weeks, this dip disappears, and the ac-
tual trend becomes visible. For the SARI data, corrections
become largely negligible after three weeks. The right
panel shows the completeness of the data, zero to four
weeks after the initial release, by data release week. It
can be seen that, on average, initial data releases contain
roughly 75% of the hospitalizations (or, put differently,
initial values are corrected upwards by roughly a third).
Initial reporting completeness fluctuates somewhat over
time. Between Christmas and New Year, no releases occur,
so all hospitalizations from this period are reported with
a delay.
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Fig. 2. Time series of weekly SARI hospitalizations in Germany, 2014-2024. Colors indicate the split of the data into training, validation, and test
data; see details in Section 3.4.2. The portion labeled “COVID-19" is only included in the training set for part of our model specifications. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Left: Illustration of data revisions in the SARI hospitalization incidence. Time series available on different dates are shown in different colors,
overlaid with more complete data in black. A continued upward trend in the revised data replaces the apparent downward trend in the initial data
versions. Right: Completeness of SARI hospitalization data zero to four weeks after the first release, per week (2023-2024). In alignment with the
nowcasting target definitions (see Section 3), we consider only delays up to four weeks. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

2.3. Auxiliary data

Some of the considered forecasting models use an
auxiliary data set on weekly outpatient consultations for
acute respiratory infections (ARI). These are based on a
separate sentinel network of general practitioners, and
data collection is likewise coordinated by the Robert Koch
Institute (Goerlitz et al., 2021). The ARI time series shows
seasonal patterns similar to those of SARI. Visual inspec-
tion reveals that it sometimes leads by a short time differ-
ence, which may make it a helpful predictor. More details
on this data set are provided in Supplement B, and a
visualization is shown in Figure S1.

3. Methods
3.1. Definition of the nowcasting and forecasting tasks

Nowcasting addresses the statistical correction of re-
porting delays as described for the SARI data in Sec-
tion 2.2. Forecasting concerns the future epidemiological
development and thus time points for which not even
partial data is currently available.

We now generate weekly nowcasts and forecasts for
the period from 16 November 2023 through 12 September
2024, following the data release schedule on Thursdays.
We skipped Thursday, 28 December 2024, as there was

no data release available. This test period is highlighted
in red in Fig. 2. Counting from the day of data release
(Thursday), the week ending on the preceding Sunday
is indexed as horizon or lead time 0 weeks. Nowcasts,
i.e., corrections of available preliminary data for, e.g., re-
porting delays, are produced for weeks —3 through 0.
Forecasts are generated for horizons 1 through 4. All
predictions are generated for the total weekly number
of SARI hospitalizations at the national level (aggregated
across all ages) and stratified by age group. We note that
the available SARI hospitalization incidence is an estimate
(see the previous section). In practice, we neglect any un-
certainty associated with these estimates and treat them
as the observable prediction target.

In the presence of data revisions, the definition of the
prediction targets requires specific care. Based on expe-
rience from previous work (Wolffram et al,, 2023), we
define the final data version against which both nowcasts
and forecasts are evaluated via a maximum reporting
delay of D 4 weeks. For each week, the respective
data point used in the evaluation is thus set to the value
available after four weeks of revisions (i.e., as published
four weeks after the first data release containing a value
for the respective week). This definition has the advantage
of providing a well-defined target, with all observations in
the evaluation period given the same amount of time for
revisions. It is, however, unusual in that the time series
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used for evaluation is not identical to any specific public
data release.

For each nowcast or forecast horizon, we collect pre-
dictive quantiles at levels 2.5%, 10%, 25%, 50%, 75%, 90%,
and 97.5%. This storage format corresponds to that of
various Forecast Hubs established during the COVID-19
pandemic (Cramer et al., 2022; Wolffram et al., 2023).

3.2. Evaluation metrics

The primary evaluation metric is the weighted interval
score (WIS, Bracher et al. 2021), which can be expressed
as a sum of pinball losses. For quantiles q1, g, ... qx at
levels 11 < 7, < --- < ¢ € (0, 1) and an observed value
y it is given by

K
LA Y) = ;2 x (1{y < g} =) x (G =),

WIS(q1, . ..

where 1 denotes the indicator function. In our applica-
tion, we use the previously mentioned levels 2.5%, 10%,
25%, 50%, 75%, 90%, 97.5%. We note that an alternative
definition via so-called interval scores exists (hence the
name; see Bracher et al. 2021). This display allows for a
decomposition into components for forecast dispersion,
overprediction, and underprediction, which we will use
to enhance the interpretability of performance summary
plots.

The WIS is negatively oriented, meaning that lower
values are better. It can be seen as a probabilistic ex-
tension of the absolute error and approximates the com-
monly used continuous ranked probability score (CRPS,
Gneiting et al. 2005). It is a proper scoring rule, thus
incentivizing honest forecasting. Significance of score dif-
ferences is assessed using Diebold-Mariano tests (Diebold
& Mariano, 2002).

As a secondary performance metric, we use absolute
errors of predictive medians to assess the quality of point
forecasts. To assess forecast calibration separately, the
empirical coverage proportions of predictive 50% and 95%
prediction intervals are reported. These are given by the
fraction of instances in which a prediction interval with a
given nominal coverage contained the observed value.

Lastly, we complement our evaluation with an applica-
tion of the recently proposed Rank Graduation Accuracy
measure (RGA; Giudici and Raffinetti 2025). RGA is based
on comparisons between the ranks of predicted and ob-
served values and generalizes the commonly used area
under the Receiver Operating Characteristic (ROC) curve
to quantitative prediction targets. Intuitively, the RGA
summarizes the concordance between the rank structure
of the observations and point predictions. RGA values are
contained in the unit interval, with a value of 1 indicat-
ing perfect rank concordance. Details on this metric are
provided in Supplement D.

3.3. Nowcasting method and the coupling of nowcasting and
forecasting

We separate the nowcasting and forecasting steps and
use a separate nowcasting model that provides input to
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several forecasting models. While it may seem desirable
to integrate nowcasting directly into each forecasting
method, in practice, this is often hard to accommodate
and requires considerable effort for participants in col-
laborative projects. We therefore split off the nowcasting
from the forecasting task.

For nowcasting, we employ a chain-ladder-type
method. It is based on the simpleNowcast method first
discussed in Wolffram et al. (2023, Supplementary Section
E) and has in the meantime been implemented in the
R package baselinenowcast (Johnson et al., 2025). It
combines a straightforward multiplication factor scheme
with a parametric approach to estimate predictive un-
certainty from past nowcast errors. Despite its simplicity,
the approach showed performance comparable to more
sophisticated approaches in Wolffram et al. (2023). In
the present application, we need to adapt the original
approach from daily to weekly data releases, which sim-
plifies the technique because the data release and now-
cast/forecast schedules now share the same frequency.
The simple format of the nowcast technique allows us to
handle limited or missing information on strata of the full
sample that characterize our data.

3.3.1. Point nowcast

Denote by X;4,d = O,...,D the number of hos-
pitalizations for week t which are added to the record
with a delay of d weeks. In our applied setting, a delay
d = 0 means that a hospitalization from the week end-
ing on a given Sunday was already included in the data
release from the following Thursday. Note that we only
consider hospitalizations reported up to D weeks (in our
application, D = 4). We now denote by

d
Xi<a =) Xui
i=0

the number of hospitalizations reported for week t with
a delay of at most d weeks, implying that X; = X; <p.
Conversely, ford < D

D
Xisa= Y Xui

i=d+1

is the number of hospitalizations still missing after d
weeks.

In the following, we write X; etc. for a random variable,
x; for the corresponding observation, and X; for an esti-
mated/imputed value. The hospitalizations per week and
the reporting delay, as available at a given data release
time t*, can be arranged into a reporting triangle, as shown
in Table 1.

We consider data as available in week t* and aim to
obtain point nowcasts Xy, Xy« 1, ...X+_py1, i.e., for all
observations which in week t* are still incomplete. We
start by setting

Xer 1 = Xpr g X O

with a multiplication factor
N

A 21:1 Xex—i1

th==x ,
Zi:l Xex—i,0
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Table 1
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Illustration of the reporting triangle for time t* and D = 4. Quantities known at time t* are shown in black and set
bold for better visual distinction, yet unknown quantities are shown in gray.

week d=0 d=1 d=2 d=3 d=14 total
1 X1,0 X1,1 X1,2 X1,3 X1,4 X1
2 X2,0 X21 X222 X23 X2,4 X2
t* =5 Xpe_5,0 Xpe_5,1 Xpe_5,2 Xpe_5,3 Xpv_5,4 Xpx_5
t*—4 Xt+_4,0 Xp+_4,1 Xp+_4,2 Xp+_4,3 X+ 4,4 Xex_q
t*—3 Xe_3,0 Xe+_3,1 Xex_3,2 Xer_33 Xtr-3.4 Xpr_3
t*—2 Xer-2,0 Xpr 2,1 Xpx 22 Xe<-2.3 Xee 2.4 Xpx 2
tr—1 Xp+_1,0 X+ 1,1 Xex_1,2 Xex_13 Xex_1.4 Xer 1
t* X+ 0 Xe 1 Xi+ 2 X+ 3 Xe* 4 Xt

obtained from N preceding rows of the triangle. Here, the
user chooses the estimation window size N < t* to re-
strict the estimation to relatively recent data. In practice,
we use N = 15, implying that snapshots from at least the
last 15 weeks are needed. Following the same principle,
we compute

N
b, — Dima Xer—i2
27 N
Zi:z Xer—i,<1
and use it to impute
Rexp = Rex <1 X 6
Rpr_12 = Xpe_1,<1 X 0.
Here, we use the X+ ; imputed in the first step to compute
)A‘t*,gl = X+ 0+ )A(t*J.

The same procedure is applied to all other missing values
in the reporting triangle, which we fill from left to right
and from bottom to top.

Ford =0, ..., D—1, we then sum over relevant entries
of the imputed reporting triangle to obtain point nowcasts

D
Xtx—d,>d = E Xex—d,i

i=d+1
for the hospitalizations from week t* — d that are still to

be reported. Point nowcasts for the total numbers result
as

Xpx—d = Xe—d,<d + Xt*—d,>d-

A slightly more formal explanation of how this relates
to the estimation of a delay distribution from censored
observations can be found in Wolffram et al. (2023). We
note that this scheme would require some adaptations to
handle zeros in the reporting triangle, but none occur in
our setting.

3.3.2. Nowcast uncertainty

We now describe how to extend these point nowcasts
to probabilistic nowcasts based on past nowcast errors.
To this end, we need to slightly extend the notation and
write

Ree_a(5™), Rer_g -a(S), etc.

for nowcasts referring to week s* — d and generated
based on data as available in week s*. As the uncertainty

in the nowcasts stems only from hospitalizations yet to
be added to the record, we focus on Xs_g -4(s*) in the
following.

Again, consider the generation of nowcasts in week
t*. To quantify the prediction uncertainty we start by
computing Xe«_g -q(s*) for s* = t* — D,...,t* — M and
d=0,...,D—1.In practice, we use M = 15. Note that to
perform these computations, data snapshots from at least
N 4+ M (i.e., 30) past weeks are needed.

For each horizond = 0, ..., D—1 we then assume that

X _a,>d | Xge_g,>a(s*) ~
NegBin[mean = Xg+_4 -4(s*) + 0.1, disp = /4]

independeptly for each s* = t* — D,...,t* — M. An
estimate 4 for the dispersion parameter is obtained via
maximum likelihood inference. The addition of a small
value of 0.1 serves to ensure well-definedness of the neg-
ative binomial distribution if X+ _4 - 4(s*) = 0. In practice,
we add a small tweak to also include partial observations
from s* = t* — 1,...,t* — D + 1, see Wolffram et al.
(2023) for details. Our nowcast distribution for Xp_g -4 is
then simply

NegBin[mean = X+_g - 4(t*) 4+ 0.1, disp = I/Afd].

The corresponding distribution for the total count X«
results from shifting this distribution by the known count
Xtx—d, <d-

We note that if x; o = 0 for a given week, i.e., there are
no initial releases, we remove the respective row from the
reporting triangle. This helps catch weeks like Christmas,
when data releases are paused.

We chose this straightforward methodology because
it is straightforward to adapt to the particularity of the
nowcasting task at hand. In practice, we encounter the
problem that historical data snapshots are only available
for the total SARI hospitalization incidence, but not the
age-stratified time series (see Section 2.2). To nonetheless
produce stratified nowcasts, we assume that the reporting
delay distribution is identical across strata. The param-
eter estimates 6#;,...,0p are thus estimated from the
pooled reporting triangles. The estimated overdispersion
parameters vy, ..., ¥p_1 are likewise borrowed from the
pooled fits.

3.3.3. Coupling of nowcasting and forecasting
For coupling the nowcast with the forecasting models,
we propose the following model-agnostic approach to
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Fig. 4. Illustration of coupling between nowcasting and forecasting. A set of nowcast sample paths (blue lines in the grey shaded area) is generated.
Each of these is fed into a forecasting model to obtain predictive distributions for horizons 1-4. Results are then aggregated into overall forecast
distributions via a linear pool (right panel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

propagate nowcast uncertainty into forecasts (illustrated
in Fig. 4). We note that a similar scheme has been used
by Brooks et al. (2018).

1. Generate nowcast distributions for horizons —3
through 0 using a separate nowcasting model. For
each horizon, quantiles at K = 39 levels, 0.025, 0.05,
...,0.95,0.975, are generated.

2. Translate these into 39 sample paths by assembling
the predictive quantiles at identical levels for the
four horizons.

3. Feed each of these paths into the employed fore-
casting model to generate predictive distributions
for horizons 1 through 4 (depending on the method,
these are samples or parametric distributions).

4. Combine these predictive distributions by aggregat-
ing samples or averaging probability mass functions
with linear pooling.

Step 2 is arbitrary in a sense as the distributions our
nowcasting model returns for the various horizons are
purely univariate, and nothing is known about the de-
pendence structure. However, in practice, the corrections
at horizons —3 through —1 are minor and unlikely to
have a significant impact on predictions. It is therefore
not crucial how exactly the nowcast paths are formed. To
empirically verify that this is indeed the case, we reran
one of the forecasting methods discussed in the next sec-
tion (hhh4) using randomly arranged rather than ordered
paths. Similarly, we assess whether Vincentization, rather
than the linear pool, yields comparable results, as the
latter is also applicable to models that produce only quan-
tile forecasts. Results on these variations are available in
Section 4.2.3.

3.4. Forecasting methods

As an individual pathogen does not cause SAR], it is not
straightforward to model its dynamics mechanistically
using classic compartmental (SIR-type) models. However,
the SARI indicator is characterized by strong autocorre-
lation and, at least until the COVID-19 pandemic, rela-
tively stable seasonal patterns. It is therefore common

to employ non-mechanistic statistical and machine learn-
ing models to such indicators (e.g., Albrecht et al. 2024,
Mathis et al. 2024). In the following, we present a suite
of such approaches. While the array of available mod-
elling options is vast, we selected options that reflect
a natural progression in complexity from parsimonious
statistical modeling to “classic” machine learning (in our
case, gradient boosting) and ultimately to a deep learning
approach. Two of our approaches also exploit multivariate
patterns across age groups (such as respiratory diseases
often spreading from younger to older age groups) and
information in auxiliary data streams.

3.4.1. Endemic-epidemic modeling: hhh4

The endemic-epidemic or hhh4 model (after the asso-
ciated function in the R package surveillance, Meyer
et al. 2017) is a seasonal count time series model tailored
for infectious disease surveillance data. It has previously
been used to predict the incidence of numerous diseases,
including norovirus disease (Bracher & Held, 2022), vis-
ceral leishmaniasis (Nightingale et al., 2020), and COVID-
19 (Robert et al., 2024). While, in principle, it can reflect
dependence structures across space or age groups, in our
setting, a simple univariate formulation for each stratum
proved most robust. Denoting the incidence value (as
absolute count value) in week t by X;, the model is then
defined as

X; | past ~ NegBin(mean = A;, disp = ) @)
D
At = v + ¢ X Z WaXe—g-
d=1

Here, the negative binomial distribution is parameter-
ized by its mean A; and an overdispersion parameter .
Following (Bracher & Held, 2022), we use geometrically
decaying weights wg, while accounting for yearly seasonal
variation via time-varying parameters. In the model for
the pooled time series, we used the standard formulation

v = o + BY) x sin(27t/52.25) + ¥ x cos(2xt/52.25)
¢ = o' + B9 x sin(2wt/52.25) + P x cos(2rt/52.25).

For the age-stratified forecasts, we further simplified this
model by removing the intercept term v; (i.e., setting it
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to zero). Even during the training period, retrospective
forecasts from models including the intercept did not
adapt well to changes in incidence magnitude compared
to earlier seasons. Especially in the age groups 05-14 and
35-59, this led to forecasts that were poorly aligned with
the preceding data points. Removing the intercept could
mitigate this to a large degree.

Inference is conducted using maximum likelihood, and
predictions are obtained in a simple plug-in manner. Pre-
dictive first- and second-moments can be computed ana-
lytically for all forecast horizons (Bracher & Held, 2022),
and matching negative binomial distributions are used to
obtain quantiles.

The model fits are updated each week using all avail-
able historical data (or, in a sensitivity analysis, excluding
seasons strongly affected by the COVID-19 pandemic).
Note that this also includes the corrected data points
generated in the nowcasting step (see Section 3.3). Unlike
the methods described in the two following subsections,
no validation set is required, meaning that the distinction
between the green and blue sections in Fig. 2 is not
relevant here. No additional data inputs are used other
than the SARI incidences.

As an additional time series benchmark that builds
on related work on COVID-19 case numbers by Agosto
et al. (2021), we apply a log-linear Poisson autoregressive
model. In its original form, which we refer to as Agostol,
it is defined as

X; | past ~ Pois(\;)
log(Ae) = v+ ¢ x log(X;—1 + 1)+ 0 x log(ri—1).

We also propose and use an extended version of Agosto1l
where we combine a conditional negative binomial distri-
bution as in (1), with the log-linear mean structure

log(At) = v+ ¢ x log(X;—1 + 1)+ 6%
log(At—1) + B x sin(2wt/52.25) 4+ y x cos(2wt/52.25),

thus accounting for seasonality. We refer to this model as
Agosto2 in the following. We fitted both model variants
using the R package tscount (Liboschik et al., 2017).

3.4.2. Gradient boosting: LightGBM

LightGBM (Light Gradient Boosting Machine) is a gra-
dient boosting framework designed for high-performance
machine learning tasks (Ke et al., 2017). It builds decision
tree ensembles sequentially, where each tree corrects the
errors of the previous ones, enabling the model to capture
complex patterns in the data. Its ability to efficiently
handle large datasets, categorical variables, and missing
values makes it versatile for a wide range of applica-
tions. In time series forecasting, LightGBM can effectively
model relationships within multivariate data and incorpo-
rate exogenous variables. In the M5 forecasting competi-
tion (Makridakis et al., 2022), the model ranked among
the top performers for predicting retail sales across mul-
tiple products and stores.

For our analysis, the model was retrained each week
using available historical data and implemented in a mul-
tivariate fashion, allowing simultaneous prediction of all
targets (i.e., across different age groups and the national
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level). Weekly ARI numbers (see Supplement B) were
included as a covariate. In addition to the lagged values of
these two time series (covering the previous eight weeks),
the calendar week and the month of the subsequent week
were incorporated as input features. The last few ob-
servations that would remain incomplete in a real-time
setting were excluded from the training process. They
were subsequently replaced by nowcast paths to compute
the forecasts as described in Section 3.3.

Concerning hyperparameter selection, we adopted a
two-stage strategy, which we implemented and recorded
in the experiment tracking system Weights and Biases
by Biewald 2020. In the first stage, we performed a ran-
dom search to efficiently explore the high-dimensional
parameter space and identify regions associated with
good predictive performance. This approach enabled us to
circumvent exhaustive evaluation of unpromising param-
eter combinations and to concentrate subsequent analy-
ses on a more relevant subset. In the second stage, we
conducted a systematic grid search over the refined hy-
perparameter ranges documented in Supplementary Ta-
ble S1 to evaluate the most promising configurations thor-
oughly. The inclusion of the ARI covariate and the use of
data from the COVID-19 period (see also Section 3.5) were
part of the hyperparameter tuning, which resulted in the
inclusion of both. The best-performing configurations are
summarized in Supplementary Table S2. To reduce com-
putational requirements, the model was trained once on
the training dataset and evaluated across all dates in the
validation period (highlighted in green and blue in Fig. 2).
Due to the non-deterministic nature of the training pro-
cess, we trained with ten different random seeds. We av-
eraged the forecasts from these models (i.e., the predictive
quantiles at each level) to obtain more robust results.

3.4.3. Deep learning model: TSMixer

The TSMixer architecture, as introduced in Chen et al.
(2023), is a fully connected neural network specifically
designed for time series forecasting. It utilizes a sequential
mixing layer strategy that enables the model to capture
both temporal dependencies and cross-feature interac-
tions. As illustrated in Fig. 5, the mixing layers are applied
sequentially: first across the time dimension to model
temporal patterns and then across the feature dimen-
sion to capture relationships between different variables.
This approach allows the model to learn complex, non-
linear relationships within the time series data. Compared
to transformer-based models, TSMixer often exhibits a
simpler architecture, making it more computationally ef-
ficient and easier to train. Despite its relative simplic-
ity, TSMixer has demonstrated competitive performance
across a wide range of time series forecasting bench-
marks, suggesting that its sequential mixing-layer strat-
egy is a practical approach for modeling temporal data.
The model’s ability to handle multivariate time series, as
well as its potential to incorporate exogenous variables,
makes it a versatile tool for a range of time series forecast-
ing applications, including infectious disease forecasting
in our setting.

The implementation, tuning, and training scheme
follows that of LightGBM as described in the previous
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Fig. 5. Illustration of the TSMixer architecture, which is designed by stacking multi-layer perceptrons (MLPs). The mixing layers are applied
repeatedly across time and feature dimensions to model both temporal patterns and interdependencies.

subsection. The optimized hyperparameter settings are
summarized in Supplementary Table S3. As a relevant
difference, we note that for TSMixer, hyperparameter
tuning suggested removing the ARI input feature.

3.5. Variations of component models

Applying the models described in the previous sections
requires many analytical choices, especially for the more
complex LightGBM and TSMixer approaches. The pri-
mary settings were chosen by detailed hyperparameter
tuning (Supplementary Tables S1-S3). For three aspects
we consider particularly interesting, however, we report
results based on alternative specifications. Firstly, we vary
whether and how nowcasts are fed into the forecasting
models (see Section 4.2.3 for details). Secondly, we vary
how seasons affected by the acute phase of the COVID-19
pandemic are handled (see classification in Fig. 2), either
including or excluding them from model fitting. Lastly, we
assess the extent to which the addition of auxiliary data
on acute respiratory infections (ARI) improves predictive
performance. As mentioned before, while hyperparameter
tuning for LightGBM indicated that the ARI covariate
should be included, the opposite was true for TSMixer.
The primary specifications of the two models thus differ.

3.6. The mean ensemble and reference models

For the Ensemble, the predictive quantiles were ob-
tained as the arithmetic means of the individual forecasts’
quantiles from the member models (LightGBM, TSMixer,
and hhh4). This direct approach, also referred to as Vin-
centization, has been widely studied and employed in both
statistics (Genest, 1992; Grushka-Cockayne et al,, 2017)
and machine learning (Shchur et al.,, 2023). We favor it
over other methods, such as the linear pool, which are
not applicable when only a few predictive quantiles are
available. As the present analysis serves as a blueprint for
a collaborative platform with quantile-based submissions
(see Section 5), we work with this constraint and thus
opt for the Vincentization approach. We note that a pos-
sible extension is weighted ensemble averaging, which
has been explored previously for nowcasts (Amaral et al.,
2025) and forecasts (e.g., Tsang et al. 2024). In particu-
lar, adaptive stacking techniques may help account for

temporal variation in model performance (McAndrew &
Reich, 2021).

We note that while ensemble models have often been
found to outperform their individual members (e.g., Cramer
et al. 2022) and are thus generally considered supe-
rior to individual models, this is not a mathematical
necessity. For many combinations of ensembling pro-
cedures and scoring rules, however, results imply that
the ensemble will always beat the average of the scores
achieved by its member models; the case of the Vincen-
tization ensemble and weighted interval score is covered
by Grushka-Cockayne et al. (2017).

To put the performance of the different models into
perspective, we apply two simple reference models.

e Persistence is an adaptation of a last-observation-
carried-forward prediction to our setting with re-
porting delays. The predictive mean for horizons 1
through 4 is obtained as the predictive mean of
the nowcast distribution at horizon 0. A predictive
distribution is obtained as a negative binomial dis-
tribution with this mean value, and a dispersion pa-
rameter estimated via maximum likelihood from the
15 most recent pairs of predictive means and obser-
vations (all obtained using the respective previous
data snapshots).

e Historical is a simplistic model that considers
only past seasonal patterns. A predictive distribution
for a given calendar week is obtained by collecting
all available historical values for that week and the
two neighboring weeks, and then fitting a negative
binomial distribution.

Note that the reference models are not included in the
mean ensemble.

4. Results

4.1. Visual and qualitative inspection of nowcasts and fore-
casts

Before turning to a formal evaluation summarizing
overall performance in the next section, we provide an
explorative graphical assessment of nowcasts and fore-
casts. Fig. 6 shows nowcasts and forecasts for the total
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Fig. 6. Selected nowcasts and ensemble forecasts for the total SARI hospitalization incidence (pooled across age groups) at different forecast times.
To avoid overplotting, we show the time series twice, overlaying it with predictions issued at different times in the two panels. Figures covering all

forecast dates are available in Supplementary Figure S4.

SARI hospitalization incidence (pooled across age groups)
issued by the Ensemble at nine different time points.
To avoid overplotting, we use two separate panels and
display the remaining time points in a set of Supplemen-
tary Figures (S4). A detailed illustration of the nowcasts
is shown in Supplementary Figure S5. In Fig. 6, most
nowcasts (blue) are closely aligned with the completed
data versions (black), but in some cases discrepancies
remain (e.g., for the second nowcast in the left panel).
The nowcasting also successfully prevents forecasts from
following spurious downward trends resulting from re-
porting delays. Forecasts are mostly well-aligned with
the later-observed trends, except for the first weeks of
2024 (see the right panel). Here, the ensemble prediction
implies that the peak has already occurred, failing to
predict the second and higher peaks. Such double peaks
in close succession did not happen in any of the previous
years, making this aspect hard to predict solely from data.
The uncertainty intervals of nowcasts and forecasts are of
adequate width to nonetheless cover the observed values
in most instances. Especially around the peak, however,
they become very wide, making forecasts less informative
in these periods.

On average over time, all models, except the Persis-
tence baseline, capture the qualitative seasonal patterns
well. This can be seen from the respective values of the
rank-based RGA measure in Table 2. All models except
Persistence achieve RGA values close to the optimal
value of one, with only minor differences between mod-
els. Our interpretation of these results is that the seasonal
structure of the SARI time series is sufficiently stable to
make it reasonably easy to get the rank structure across
weeks right. The more challenging task lies in predicting
the magnitude of the SARI curve, which can vary from
year to year.

Selected predictions from individual models across
age groups are displayed in Fig. 7. As discussed in Sec-
tion 2.1, age group 15-34 displayed unusual patterns in
the 2023/24 season. Unlike in previous years, incidence
remained relatively high throughout the spring and sum-
mer. The LightGBM model struggles to adapt to this
difference and continues to predict a decline towards the
usual levels (a similar pattern occurs with TSMixer). The
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Table 2

RGA values for the total SARI hospitalization incidence (pooled across
age groups, separately per prediction horizon). This corresponds to sets
of n = 48 predictions and observations. As the point predictions, we
used the predictive medians from our different models.

Model Horizon 1 Horizon 2 Horizon 3  Horizon 4
Ensemble 0.970 0.961 0.951 0.951
LightGBM 0.967 0.952 0.935 0.926
TSMixer 0.959 0.939 0.923 0.920
hhh4 0.970 0.957 0.948 0.940
Persistence 0.964 0.940 0.912 0.883
Historical 0.956 0.960 0.962 0.966

hhh4 model, with its simple autoregressive structure, is
better able to handle this shift in magnitude. The diffi-
culties of LightGBM and TSMixer are also inherited by
the Ensemble. Similar patterns are also found for age
group 05-14, and to a lesser degree for ages 35-59, while
the remaining age groups have more typical seasonal
courses. However, Fig. 7 also illustrates some strengths of
LightGBM and TSMixer, particularly at the national level
(00+) and for older age groups (e.g., 80+). These models
accurately capture the sharp decline following the second
peak, whereas hhh4 tends to produce more pessimistic
forecasts.

4.2. Formal forecast evaluation

4.2.1. Aggregate-level nowcasts and forecasts

We complement the visual assessment with a more
formal evaluation of forecast calibration and score-based
performance. Fig. 8 summarizes the performance for the
total hospitalization incidence (pooled across age groups).
Average WIS (across forecast dates) and the coverage
fractions for the 50% and 95% prediction intervals are
displayed stratified by nowcast/forecast horizon. Surpris-
ingly, average scores increase with the horizon (i.e., per-
formance decreases). For horizons 1 through 4, all models
outperform the Persistence and Historical baseline
models (except for TSMixer at horizon 1). The Ensemble
outperforms all individual models at all horizons, but the
margin over LightGBM and hhh4 is slim at short horizons
(and indeed, most score differences are not statistically
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Fig. 7. Selected nowcasts and forecasts for the aggregate level 00+ and age groups 15-34 and 80+. To avoid overplotting, predictions for only five
forecast times are shown. Figures covering all forecast dates are available for the Ensemble in Supplementary Figure S4.

significant; see below). Interestingly, for horizon 4, this
flips, and the TSMixer model achieves performance close
to the ensemble. The decomposition of the WIS indicates
that LightGBM and TSMixer tend to underpredict, and
that the ensemble inherits this tendency (this seems to
be driven by the fact that the second peak was not antic-
ipated, as well as the unusually high incidences of some
age groups late in the season; see previous subsection).
The hhh4 and nowcasting models have more balanced
components.

A summary plot aggregating results across horizons is
available in Supplementary Figure S6 (left panel). While
the Ensemble again has a little edge, the three-member
models LightGBM, TSMixer, and hhh4 are roughly on
par. Concerning the interval coverage rates (bottom panel
in Fig. 8), all models apart from the Historical base-
line achieve close-to-nominal coverage. Displays of cal-
ibration and average scores stratified by quantile level
are available in Supplementary Figures S10 and S11. The
relative performance of models is consistent across quan-
tile levels, except for LightGBM, which shows a drop in
performance at higher quantiles.

As detailed in Supplementary Figure S12, Diebold-
Mariano tests (cited in Diebold and Mariano 2002,
implemented in Leeuwenburg et al. 2024) indicate that
the observed score differences are mostly not significant.
While the Ensemble has significantly better performance
than the Historical baseline at all horizons, differences
to the Persistence baseline are only significant for
certain combinations of competing model and horizon
(e.g., hhh4 and LightGBM at horizon 2). This may reflect
that the DM test often has low power in small to moderate
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sample sizes, especially when tests are performed against
naive baseline models (Coroneo & lacone, 2025).

The performance of the variations Agostol and
Agosto2 of the hhh4 model is displayed in Supplemen-
tary Figure S9. The modest results for the simplistic
Agostol indicate that it is important to account for
seasonality and overdispersion. Specifically, the Poisson
assumption of Agosto1l yields overly narrow prediction
intervals, leading to its performance even falling behind
both baseline methods. When augmenting the model with
a negative binomial distribution and sine/cosine terms for
seasonality (Agosto2), performance is practically equiv-
alent to that of hhh4.

4.2.2. Age-stratified nowcasts and forecasts

Fig. 9 summarizes average results for age-stratified
nowcasts and forecasts. The results for average WIS are
broadly consistent with those discussed in the previous
section, with the ensemble again performing best across
horizons and the individual models outperforming the
baseline models in almost all cases. The LightGBM and
TSMixer models again tend to underpredict, while the
hhh4 model features the most dispersed predictions.

The WIS stratified by age group (and aggregated by
horizon), depicted in Fig. 10, reveals that the aforemen-
tioned downward bias in LightGBM and TSMixer pri-
marily originates from the age groups 05-14, 15-34, and
35-59. This can be attributed to the unusually high SARI
incidence during the evaluation period (Fig. 2), which
did not follow the typical seasonal decline, as discussed
previously. The score-based evaluation also confirms that
the hhh4 model performs particularly well in these age
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Fig. 8. Top: Average WIS values (bars) and absolute errors (diamonds) achieved by different models for the total SARI hospitalization incidence. The
average WIS scores are decomposed into components for overprediction, underprediction, and forecast spread. Bottom: Empirical coverage rates of
50% and 95% prediction intervals.

groups (in the 15-34 group, even slightly outperforming In terms of interval coverage (bottom panel of Fig.
the Ensemble). By contrast, the machine learning ap- 9), we observe that the nowcasts for horizons —1 and
proaches had an edge in forecasting older age groups, 0 are considerably overconfident. This is likely a conse-
potentially because they could leverage trends in younger quence of the fact that only a few historical snapshots of
age groups as leading indicators for older ones. age-stratified data were available, meaning that stratified
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Fig. 9. Top: Average WIS values (bars) and absolute errors (diamonds) achieved by different models for the age-stratified SARI hospitalization
incidence. The average WIS scores are decomposed into components for overprediction, underprediction, and forecast spread. Bottom: Empirical
coverage rates of 50% and 95% prediction intervals.

nowcasts had to be based on aggregate-level snapshots the Ensemble forecast is well-calibrated across horizons
(see Section 3.3). The forecasts from the LightGBM and and interval levels. This can be explained by the fact
to a lesser degree TSMixer models are somewhat over- that, when using Vincentization, the ensemble prediction
confident, too. This is not surprising given that the fore- intervals have an average length equal to the member
casting models take the nowcast as an input. Remarkably, intervals. If the ensemble intervals are centered around
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Fig. 10. Average WIS (bars) and absolute errors (diamonds) by age group, aggregated over forecast dates and horizons. Average scores are decomposed
into components for overprediction, underprediction, and forecast spread.

a more accurate central tendency (as is often the case),
interval coverage rates will tend to increase.

4.2.3. Integration of nowcasts and forecasts

For each forecasting method, we investigate the impact
of integrating nowcasts into forecasts and assess the per-
formance of the chosen implementation approach. Thus,
instead of including nowcast distributions as described in
Section 3.3, we apply three alternative strategies.

(i) Firstly, we simply ignore the delay problem and use
uncorrected incomplete data points to initialize our
forecasting models (“Naive”).

(ii) Secondly, we discard the last available observation

and use only largely stable observations, as is com-

mon in the literature (Paireau et al, 2022). We
still apply the nowcasting procedure to the previ-
ous weeks, but this makes little practical difference

(“Discard”).

Lastly, we base forecasts on the final versions of

the latest data points, i.e., assess how much fore-

casts would improve if the reporting system were
free of delays. This is a hypothetical setting and
not an approach that could be applied in real time

(“Oracle™).

(iii)

Fig. 11 summarizes the performance for the total SARI
hospitalization incidence when using the four consid-
ered ways of handling recent data points. Our proposed
method of including the latest data point with a now-
cast correction (“Coupling”) yields improvements over
using uncorrected data (“Naive”) or discarding this data
point (“Discard”). This holds especially for short horizons,
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where forecast initialization is most relevant. In fact, for
the hhh4 model, the “Discard” version even works slightly
better for horizons 3 and 4. Somewhat surprisingly, when
providing forecast models with the final values of recent
data points (“Oracle”) rather than nowcasts, performance
does not always improve. While hhh4 does, the other
models show minor performance deterioration at some
horizons. A possible explanation is that initializing the
models LightGBM and TSMixer with a nowcast distri-
bution rather than the correct value increases forecast
dispersion, thereby improving calibration. Corresponding
results for age-stratified predictions are shown in Supple-
mentary Figure S8 and are in good agreement with the
aggregate-level results.

To assess whether our choice to obtain different sam-
ple paths by ordering the quantiles per week affects the
results, we reran the “coupling” approach for hhh4 using
randomly arranged paths. As shown in Supplementary
Figure S9, the resulting scores remain virtually unchanged
(model denoted hhh4-Shuffle). Moreover, we assessed
performance when using quantile averaging rather than
the linear pool to combine forecasts from different now-
cast paths. This is relevant for models that only issue pre-
dictive quantiles rather than full predictive distributions
(the linear pool is obviously not available in this case),
as shown in Supplementary Figure S9 (model denoted
hhh4-Vincentization), this, too, makes little differ-
ence in practice.

4.2.4. Handling of the acute phase of the COVID-19 pan-
demic and inclusion of ARI data

Finally, we study how the handling of the COVID-
19 period and auxiliary data on ARI consultations affect
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Fig. 11. Comparison of forecast performance on the aggregate level resulting from different strategies to handle incomplete recent data. “Coupling” is
our main approach described in Section 3.3, i.e., feeding the full nowcast into forecasting models. “Discard” corresponds to discarding the most recent
(i.e., most incomplete) data point and treating it like an additional value to be predicted. “Naive” uses the time series as is (with yet incomplete
values). “Oracle” is a hypothetical setting where the final versions of the most recent data points are used. It thus enables us to assess the impact
of reporting delays on forecast quality. As in previous figures, the bars show WIS, and the diamonds show absolute errors.

the predictive performance of each forecasting method
(see Section 3.5). In each setting, the ML models were
retrained with hyperparameters optimized explicitly for
that setting. As before, due to the non-deterministic na-
ture of the training process, we trained with 10 different
random seeds and averaged the forecasts from these mod-
els (i.e., the predictive quantiles at each level) to obtain
more robust results.

Supplementary Figure S9 summarizes the effect of ex-
cluding data from the COVID-19 period in the training set
as well as from using ARI incidences as an auxiliary data
stream for LightGBM and TSMixer. Discarding the data
from the COVID-19 period led to a slight deterioration
in performance for hhh4 and LightGBM. The TSMixer
model was very poorly behaved when applied to a re-
duced data set excluding the COVID-19 period, indicating
that our full time series may already be near the lower
end of this method’s data requirements.

The inclusion of the auxiliary time series on outpa-
tient consultations for ARI was not beneficial; see Supple-
mentary Figure S9. For LightGBM, where hyperparame-
ter tuning suggested including the ARI data, excluding it
yielded essentially identical performance on the test set.
In the case of TSMixer, where the covariate was excluded
based on the hyperparameter tuning, the performance
drop when including it was rather substantial in the test
set.
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5. Discussion and conclusions

We presented and evaluated a multi-model system
for nowcasting and short-term forecasting of hospital-
izations from severe acute respiratory infections (SARI)
in Germany. We addressed this in a modular fashion,
generating nowcasts in a separate step and subsequently
feeding them into the forecasting models. For short fore-
cast horizons, this led to improvements over a more
straightforward approach that used the most recent data
points uncorrected or simply discarded them. Compared
with simple baseline forecasting methods, the three mod-
els considered showed improved performance across lead
times, though the observed differences were not consis-
tently statistically significant. Similar to previous efforts,
we found that a combined ensemble prediction improved
upon individual models. Forecasts were generally well-
calibrated in terms of interval coverage fractions, but
in some models, as well as the ensemble, we observed
noteworthy biases in some age groups. In these instances,
the machine learning models LightGBM and TSMixer
seemed to overfit historical patterns, while the more
straightforward statistical approach hhh4 performed bet-
ter. In age groups where the seasonal course was closer
to historical patterns, however, this model had weaker
relative performance.
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The good probabilistic calibration of almost all consid-
ered models represents a marked difference from results
achieved in recent years for COVID-19 cases or deaths
(see e.g., Bracher et al. 2021, Cramer et al. 2022). This is
undoubtedly not due to a sudden improvement in fore-
casting capacities, but due to the higher predictability
of seasonal disease dynamics. Unlike in COVID-19 fore-
casting, social dynamics and intervention measures were
unlikely to be major drivers during the test period. Also,
reporting practices were considerably more stable than
for most COVID-19 indicators.

Our analyses of forecast performance across horizons
and age groups indicate that our three stand-alone mod-
els have differing strengths and weaknesses. This ensem-
ble diversity is often considered a key feature of good
ensemble performance (DelSole et al., 2014). Especially
during the COVID-19 pandemic, collaborative forecasting
projects featured considerably more models (the largest
effort likely being Cramer et al. 2022 with more than 100
models). This level of effort is unrealistic and undesirable
outside of times of major crisis. How many models need
to be run to achieve robust ensemble performance is
currently under research. Fox et al. (2024) recommend
using four to seven models and find that the gain from ad-
ditional models diminishes quickly. In future operational
use of our system (see below), two more independently
run models will be included for SARI hospitalizations. We
hope this will further enhance the ensemble’s robustness,
while keeping the required effort at a sustainable level.

In the present work, we consider only SARI hospi-
talizations at the national level, with age stratification.
Unfortunately, it is currently not feasible to analyze these
data at a regional level. Coverage by sentinel hospitals
varies considerably across the 16 German states, with
several of them not covered at all (Buda et al., 2017).
State-level estimates are thus not released by RKI. Also, it
was not feasible to run a validation on a longer test period,
which would have strengthened the generalizability of
our results. The reason is that vintage data snapshots were
unavailable for earlier time periods, preventing us from
studying the integration of nowcasting and forecasting
during those periods.

The presented work serves as a blueprint for the
RESPINOW Hub (http://respinowhub.de/), an operational
disease nowcasting and forecasting system. Launched in
Fall 2024, the Hub covers multiple prediction targets
(including the outpatient ARI consultation incidence dis-
cussed in Section 2.3 and mandatory case reporting of
several respiratory diseases). A follow-up study on the
real-time performance of different models across indica-
tors has been preregistered (Bracher & Wolffram, 2024).

This follow-up study will enable us to address one
of the significant weaknesses of the present project: the
risk of hindsight bias. While we made considerable efforts
to manage historical data versions correctly and avoid
using data that would not have been available in real
time, the development and evaluation of prediction mod-
els are iterative processes. Implicitly, some knowledge of
the test set’s characteristics may thus have diffused into
our forecasting approaches.
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Another limitation of our approach is that we consider
only one aggregate syndromic indicator, thereby limit-
ing the applicability of mechanistic (SIR-type) models.
These may be more proficient at predicting tipping points
due to the depletion of susceptibles, even when seasonal
patterns differ from previous years. A promising recent
development is that the Robert Koch Institute has started
releasing stratified data on SARI hospitalizations caused
by COVID-19, seasonal influenza, and RSV. In future years,
pathogen-specific mechanistic models can thus be ap-
plied. Such a stratified approach may ultimately also lead
to improved forecasts of the total SARI hospitalization
incidence.

Data and code availability

All results in this paper can be reproduced using the
publicly available replication package at https://github.
com/dwolffram/replication-sari-forecasting that contains
all data and code.
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