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 a b s t r a c t

Predictive epidemic modeling can enhance situational awareness during emerging and
seasonal outbreaks and has received increasing interest in recent years. A common
distinction is between nowcasting, which corrects recent incidence data for reporting
delays, and forecasting, which predicts future trends. This paper presents an integrated
system for nowcasting and short-term forecasting of hospitalizations from severe acute
respiratory infections (SARI) in Germany (November 2023–September 2024). Motivated
by facilitating multi-model forecasting collaborations, we propose a modular approach in
which a statistical nowcasting model is run centrally, and its output is provided as input
to various data-driven forecasting methods. We apply this approach to a seasonal time
series model, a gradient boosting approach, and a neural network. These are moreover
combined into an ensemble approach, which achieves the best average performance. The
resulting forecasts are overall well-calibrated up to four weeks ahead, but struggled to
capture the unusual double peak that occurred during the test season. The presented ret-
rospective results are key developments for ongoing and future collaborative real-time
forecasting of respiratory diseases in Germany.

© 2026 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Predictive modeling of infectious diseases has received 
considerable attention in recent years, fueled by the pub-
lic health crises of COVID-19 (e.g., Bracher et al. 2021, 
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Cramer et al. 2022) and mpox (e.g., Bleichrodt et al. 2024). 
Disease forecasting is a broad field, and three main types 
of predictive modeling tasks can be distinguished (Reich 
et al. 2022, see Fig.  1).

• Nowcasting is the statistical correction of recent 
data points that are yet incomplete and subject to 
delayed additions. Nowcasts, hence, refer to recent 
rather than upcoming infection dynamics, but are 
predictive in that they anticipate data revisions and 
reveal current trends.

• Short-term forecasts are unconditional predictions 
about the future course of an epidemic. These are 
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Fig. 1. Distinguishing nowcasting, short-term forecasting, and scenario modeling of infectious diseases.
 

feasible only for short time periods, with appropri-
ate prediction horizons depending on the type of 
indicator to predict.

• Scenario projections are used to make statements 
about possible longer-term developments, but are 
conditional on explicit assumptions that may or may 
not correspond to the future conditions encountered 
in the real world. For instance, scenarios may elu-
cidate possible epidemic trajectories under various 
intervention strategies.

While scenario modeling has a somewhat different 
focus and purpose, nowcasting and short-term forecast-
ing boil down to the same task: generating probabilistic 
statements about disease incidence at various points in 
time. For all three tasks, multi-model approaches have 
been found particularly suitable (Reich et al., 2022). The 
presence of multiple distinct models enables more realis-
tic assessments of the predictive uncertainty and can be 
the basis for ensemble forecasts, which have often been 
found to be more robust (see e.g., Cramer et al. 2022).

In the United States, multi-model forecasting in collab-
orative Forecast Hubs was established in the early 2010s, 
most prominently for seasonal influenza (Reich et al., 
2019). In many other countries, such systems were first 
implemented during the COVID-19 pandemic (Funk et al.
2021, Bracher et al. 2021, Paireau et al. 2022, Sherratt 
et al. 2023). To preserve the capacities built during the 
pandemic, these efforts now face the challenge of tran-
sitioning to routine operations in a seasonal rather than 
an emerging disease setting (see, e.g., Fi et al. 2025). This 
raises multiple challenges, but also offers the opportunity 
to revise and refine previous approaches. The present pa-
per proposes a multi-model prediction system for severe 
acute respiratory infections (SARI) in Germany, which is 
the backbone of a new operational forecasting platform 
(see Section 5). Guided by our application setting, we 
focus on three aspects that, in combination, constitute the 
novelty of our contribution.

Firstly, post-COVID-19 forecasting efforts need to adapt
to different, coarser data streams (Mathis et al., 2024), of-
ten with less timely reporting. Unlike predecessors, which 
focused either on nowcasting (Wolffram et al., 2023) 
or forecasting (Bracher et al., 2021), the new platform 
integrates both tasks, a novelty for collaborative efforts. 
Previous Forecast Hubs circumvented the need for now-
casting by aggregating incidence counts according to the 
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date of report rather than, e.g., symptom onset. This, how-
ever, blurs recent trends and is poorly motivated from an 
epidemiological standpoint. Alternatively, the most recent 
data points can be removed entirely (see e.g., Paireau et al.
2022), but this implies discarding valuable information.

Secondly, while the COVID-19-related efforts in Ger-
many were based on symptom-specific indicators in an 
acute outbreak setting, we deal with syndromic indi-
cators in a seasonal context. Rather than mechanistic 
compartmental models, we therefore explore a range of
phenomenological approaches to capture short-term de-
pendencies and seasonal variation (see e.g., Albrecht et al.
2024, Brooks et al. 2018 for related work). We cover 
conceptually diverse modelling paradigms by considering 
a seasonal count time series model (Bracher & Held, 
2022), a gradient boosting approach (Ke et al., 2017), and 
a neural network (Chen et al., 2023). These are moreover 
combined into an ensemble and compared to flat-line and 
seasonal benchmark models.

Lastly, we face the difficulty that the COVID-19 pan-
demic not only increased the overall respiratory disease 
burden but also altered the dynamics of other respira-
tory diseases (see, e.g., Buchholz et al. 2023). This is 
true for the years 2020–2022, when the associated non-
pharmaceutical interventions largely stopped the spread 
of other respiratory diseases, as well as for the following 
period, when the immunity landscape was considerably 
different from earlier years. We will compare different 
approaches to using historical data from these periods for 
model fitting.

All challenges are addressed with collaborative multi-
model forecasting in mind. As nowcasting and the neces-
sary handling of multiple data versions impose significant 
overhead on participating forecasting teams, we develop 
a modular system in which the nowcasting task is split 
off, and nowcasts from a simple nowcasting model are 
provided via the Hub infrastructure. These can then be fed 
into diverse forecasting models. Moreover, this modular 
approach enables detailed diagnostics of how different 
approaches to handling reporting delays affect predictive 
performance. While the current evaluation is retrospec-
tive, the platform has transitioned to real-time opera-
tions in Fall 2024, and a prospective evaluation study 
for multiple surveillance indicators has been preregis-
tered (Bracher & Wolffram, 2024).
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Related works in the literature include the pre-COVID-
19 works by Brooks et al. (2018) and Osthus et al. (2019), 
who combine nowcasts based on auxiliary data streams 
(rather than partial observations) with prediction models. 
Approaches to handle delayed reporting have been dis-
cussed by Ma et al. (2024) and De Nicola et al. (2022), who 
evaluate point predictions, and by Beesley et al. (2022) 
and Charniga et al. (2024), who consider probabilistic 
forecasts.

We find all our forecasting models to be well-calibrated
for total weekly hospitalization incidences (coverage of 
95% prediction intervals mostly between 90% and 95%). 
In the age-stratified setting, only the ensemble achieves 
nominal coverage, while some individual models drop to 
around 80% coverage. We note, however, that these cov-
erage levels are achieved with relatively wide uncertainty 
intervals surrounding peak weeks, and there are difficul-
ties in dealing with the double peak occurring in the test 
season. All three models considered outperform simple 
baseline models, though the differences are not consis-
tently statistically significant across lead times. Similar 
to previous studies, the ensemble approach achieves the 
best overall performance in terms of the weighted interval 
score. Including a nowcasting step improves forecasts 
relative to a procedure that simply discards the most 
recent data point. Indeed, the loss in forecasting perfor-
mance relative to a hypothetical setting in which the data 
are not subject to reporting delays is minor. This leads 
us to recommend incorporating nowcasting steps into 
infectious disease forecasting systems.

The remainder of the paper is structured as follows. 
Section 2 provides background information on SARI hos-
pitalizations in Germany. In Section 3, we define the now-
casting and forecasting targets and present the methods 
employed for both tasks. Particular attention will be paid 
to how to feed nowcast information into forecasting mod-
els while accounting for the uncertainties that arise. In 
Section 4, we evaluate the resulting probabilistic fore-
casts visually and with a variety of metrics. Section 5 
concludes with a discussion and a brief outlook. All results 
in this paper can be reproduced using the publicly avail-
able replication package at https://github.com/dwolffram/
replication-sari-forecasting.

2. The SARI hospitalization incidence

2.1. Definition and description

Respiratory disease activity in Germany is monitored 
by a multitude of surveillance systems, including manda-
tory reporting schemes and virological and syndromic 
surveillance (Goerlitz et al., 2021). In the present paper, 
we focus on the incidence of hospitalization for severe 
acute respiratory infections (SARI). Since fall 2014, data on 
such hospitalizations have been collected in the ICOSARI
system operated by the Robert Koch Institute (RKI; Buda 
et al. 2017, Tolksdorf et al. 2022). They are publicly acces-
sible via the RKI GitHub repository (https://github.com/
robert-koch-institut/SARI-Hospitalisierungsinzidenz). The 
SARI hospitalization incidence is a syndromic indicator, 
i.e., the case definition is based on the symptoms pa-
tients present rather than laboratory testing for a given 
3

pathogen. Specifically, a set of ICD-10 diagnostic codes 
(J09–J22) is used, see Buda et al. (2017) for details. Data 
collection is carried out via a sentinel system comprising 
roughly 70 hospitals across 13 of the 16 German federal 
states. The system covers around 6% of all hospitalizations 
occurring in Germany. Based on information on the catch-
ment population covered by the sentinel sites, the SARI 
hospitalization incidence per 100,000 inhabitants can be 
estimated. Estimates at a weekly resolution (with weeks 
starting on Mondays) are available both unstratified (00+) 
and by six age groups (0–4, 5–14, 15–34, 35–59, 60–79, 
80+). In this paper, we rescale the estimated incidence to 
absolute count values.

The pooled and age-group-wise incidence time series 
for the period 2014–2024 are displayed in Fig.  2 (see 
Supplementary Figures S2 and S3 for descriptive plots 
of the autocorrelation functions). Seasons we consider 
substantially affected by the acute phase of the COVID-19 
pandemic are delimited by dashed vertical lines. Colors 
indicate the split into training, validation, and test peri-
ods, see Section 4.2.4 for details. Especially, in the age 
groups 05–14, 15–34, and 35–59, the test season displays 
rather unusual patterns, with consistently high incidences 
even in late spring and summer. In the very young and 
the elderly, this is less pronounced. Because these age 
groups have higher absolute numbers, the pooled inci-
dence shown in the left panel exhibits a more typical 
seasonal pattern.

2.2. Data revisions and reporting delays

Like many epidemiological indicators, the SARI hospi-
talization incidence is subject to retrospective data revi-
sions. Typically, the numbers are corrected upwards as 
additional hospitalizations are reported with a delay. To 
assess the impact of reporting delays, archives of histor-
ical data snapshots are necessary. The public RKI GitHub 
repository contains such snapshots back to the data re-
lease on 28 September 2023. Before this date, PDF reports 
were made available, which enabled the reconstruction 
of snapshots at the aggregate level back to early 2023 
(though not for the different age groups).

As illustrated in the left panel of Fig.  3, reporting delays 
lead to an artificial dip at the end of the real-time inci-
dence time series. Once data points have been completed 
over the following weeks, this dip disappears, and the ac-
tual trend becomes visible. For the SARI data, corrections 
become largely negligible after three weeks. The right 
panel shows the completeness of the data, zero to four 
weeks after the initial release, by data release week. It 
can be seen that, on average, initial data releases contain 
roughly 75% of the hospitalizations (or, put differently, 
initial values are corrected upwards by roughly a third). 
Initial reporting completeness fluctuates somewhat over 
time. Between Christmas and New Year, no releases occur, 
so all hospitalizations from this period are reported with 
a delay.

https://github.com/dwolffram/replication-sari-forecasting
https://github.com/dwolffram/replication-sari-forecasting
https://github.com/dwolffram/replication-sari-forecasting
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https://github.com/robert-koch-institut/SARI-Hospitalisierungsinzidenz
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Fig. 2. Time series of weekly SARI hospitalizations in Germany, 2014–2024. Colors indicate the split of the data into training, validation, and test 
data; see details in Section 3.4.2. The portion labeled ‘‘COVID-19’’ is only included in the training set for part of our model specifications. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Left: Illustration of data revisions in the SARI hospitalization incidence. Time series available on different dates are shown in different colors, 
overlaid with more complete data in black. A continued upward trend in the revised data replaces the apparent downward trend in the initial data 
versions. Right: Completeness of SARI hospitalization data zero to four weeks after the first release, per week (2023–2024). In alignment with the 
nowcasting target definitions (see Section 3), we consider only delays up to four weeks. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
2.3. Auxiliary data

Some of the considered forecasting models use an 
auxiliary data set on weekly outpatient consultations for 
acute respiratory infections (ARI). These are based on a 
separate sentinel network of general practitioners, and 
data collection is likewise coordinated by the Robert Koch 
Institute (Goerlitz et al., 2021). The ARI time series shows 
seasonal patterns similar to those of SARI. Visual inspec-
tion reveals that it sometimes leads by a short time differ-
ence, which may make it a helpful predictor. More details 
on this data set are provided in Supplement B, and a 
visualization is shown in Figure S1.

3. Methods

3.1. Definition of the nowcasting and forecasting tasks

Nowcasting addresses the statistical correction of re-
porting delays as described for the SARI data in Sec-
tion 2.2. Forecasting concerns the future epidemiological 
development and thus time points for which not even 
partial data is currently available.

We now generate weekly nowcasts and forecasts for 
the period from 16 November 2023 through 12 September 
2024, following the data release schedule on Thursdays. 
We skipped Thursday, 28 December 2024, as there was 
4

no data release available. This test period is highlighted 
in red in Fig.  2. Counting from the day of data release 
(Thursday), the week ending on the preceding Sunday 
is indexed as horizon or lead time 0 weeks. Nowcasts, 
i.e., corrections of available preliminary data for, e.g., re-
porting delays, are produced for weeks −3 through 0. 
Forecasts are generated for horizons 1 through 4. All 
predictions are generated for the total weekly number 
of SARI hospitalizations at the national level (aggregated 
across all ages) and stratified by age group. We note that 
the available SARI hospitalization incidence is an estimate 
(see the previous section). In practice, we neglect any un-
certainty associated with these estimates and treat them 
as the observable prediction target.

In the presence of data revisions, the definition of the 
prediction targets requires specific care. Based on expe-
rience from previous work (Wolffram et al., 2023), we 
define the final data version against which both nowcasts 
and forecasts are evaluated via a maximum reporting 
delay of D = 4 weeks. For each week, the respective 
data point used in the evaluation is thus set to the value 
available after four weeks of revisions (i.e., as published 
four weeks after the first data release containing a value 
for the respective week). This definition has the advantage 
of providing a well-defined target, with all observations in 
the evaluation period given the same amount of time for 
revisions. It is, however, unusual in that the time series 
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used for evaluation is not identical to any specific public 
data release.

For each nowcast or forecast horizon, we collect pre-
dictive quantiles at levels 2.5%, 10%, 25%, 50%, 75%, 90%, 
and 97.5%. This storage format corresponds to that of 
various Forecast Hubs established during the COVID-19 
pandemic (Cramer et al., 2022; Wolffram et al., 2023).

3.2. Evaluation metrics

The primary evaluation metric is the weighted interval 
score (WIS, Bracher et al. 2021), which can be expressed 
as a sum of pinball losses. For quantiles q1, q2, . . . qK  at 
levels τ1 < τ2 < · · · < τK ∈ (0, 1) and an observed value 
y it is given by

WIS(q1, . . . , qK ; y) =
1
K

K∑
k=1

2× (1{y < qk}−τk)× (qk−y),

where 1 denotes the indicator function. In our applica-
tion, we use the previously mentioned levels 2.5%, 10%, 
25%, 50%, 75%, 90%, 97.5%. We note that an alternative 
definition via so-called interval scores exists (hence the 
name; see Bracher et al. 2021). This display allows for a 
decomposition into components for forecast dispersion, 
overprediction, and underprediction, which we will use 
to enhance the interpretability of performance summary 
plots.

The WIS is negatively oriented, meaning that lower 
values are better. It can be seen as a probabilistic ex-
tension of the absolute error and approximates the com-
monly used continuous ranked probability score (CRPS,
Gneiting et al. 2005). It is a proper scoring rule, thus 
incentivizing honest forecasting. Significance of score dif-
ferences is assessed using Diebold–Mariano tests (Diebold 
& Mariano, 2002).

As a secondary performance metric, we use absolute 
errors of predictive medians to assess the quality of point 
forecasts. To assess forecast calibration separately, the 
empirical coverage proportions of predictive 50% and 95% 
prediction intervals are reported. These are given by the 
fraction of instances in which a prediction interval with a 
given nominal coverage contained the observed value.

Lastly, we complement our evaluation with an applica-
tion of the recently proposed Rank Graduation Accuracy 
measure (RGA; Giudici and Raffinetti 2025). RGA is based 
on comparisons between the ranks of predicted and ob-
served values and generalizes the commonly used area 
under the Receiver Operating Characteristic (ROC) curve 
to quantitative prediction targets. Intuitively, the RGA 
summarizes the concordance between the rank structure 
of the observations and point predictions. RGA values are 
contained in the unit interval, with a value of 1 indicat-
ing perfect rank concordance. Details on this metric are 
provided in Supplement D.

3.3. Nowcasting method and the coupling of nowcasting and 
forecasting

We separate the nowcasting and forecasting steps and 
use a separate nowcasting model that provides input to 
5

several forecasting models. While it may seem desirable 
to integrate nowcasting directly into each forecasting 
method, in practice, this is often hard to accommodate 
and requires considerable effort for participants in col-
laborative projects. We therefore split off the nowcasting 
from the forecasting task.

For nowcasting, we employ a chain-ladder-type
method. It is based on the simpleNowcast method first 
discussed in Wolffram et al. (2023, Supplementary Section 
E) and has in the meantime been implemented in the 
R package baselinenowcast (Johnson et al., 2025). It 
combines a straightforward multiplication factor scheme 
with a parametric approach to estimate predictive un-
certainty from past nowcast errors. Despite its simplicity, 
the approach showed performance comparable to more 
sophisticated approaches in Wolffram et al. (2023). In 
the present application, we need to adapt the original 
approach from daily to weekly data releases, which sim-
plifies the technique because the data release and now-
cast/forecast schedules now share the same frequency. 
The simple format of the nowcast technique allows us to 
handle limited or missing information on strata of the full 
sample that characterize our data.

3.3.1. Point nowcast
Denote by Xt,d, d = 0, . . . ,D the number of hos-

pitalizations for week t which are added to the record 
with a delay of d weeks. In our applied setting, a delay 
d = 0 means that a hospitalization from the week end-
ing on a given Sunday was already included in the data 
release from the following Thursday. Note that we only 
consider hospitalizations reported up to D weeks (in our 
application, D = 4). We now denote by

Xt,≤d =

d∑
i=0

Xt,i

the number of hospitalizations reported for week t with 
a delay of at most d weeks, implying that Xt = Xt,≤D. 
Conversely, for d < D

Xt,>d =

D∑
i=d+1

Xt,i

is the number of hospitalizations still missing after d
weeks.

In the following, we write Xt etc. for a random variable, 
xt for the corresponding observation, and x̂t for an esti-
mated/imputed value. The hospitalizations per week and 
the reporting delay, as available at a given data release 
time t∗, can be arranged into a reporting triangle, as shown 
in Table  1.

We consider data as available in week t∗ and aim to 
obtain point nowcasts x̂t∗ , x̂t∗−1, . . . x̂t∗−D+1, i.e., for all 
observations which in week t∗ are still incomplete. We 
start by setting
x̂t∗,1 = xt∗,0 × θ̂1

with a multiplication factor

θ̂1 =

∑N
i=1 xt∗−i,1∑N ,
i=1 xt∗−i,0
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Table 1
Illustration of the reporting triangle for time t∗ and D = 4. Quantities known at time t∗ are shown in black and set 
bold for better visual distinction, yet unknown quantities are shown in gray.
 week d = 0 d = 1 d = 2 d = 3 d = 4 total  
 1 x1,0 x1,1 x1,2 x1,3 x1,4 x1  
 2 x2,0 x2,1 x2,2 x2,3 x2,4 x2  

 
.
.
.

.

.

.
.
.
.  

 t∗ − 5 xt∗−5,0 xt∗−5,1 xt∗−5,2 xt∗−5,3 xt∗−5,4 xt∗−5 
 t∗ − 4 xt∗−4,0 xt∗−4,1 xt∗−4,2 xt∗−4,3 xt∗−4,4 xt∗−4 
 t∗ − 3 xt∗−3,0 xt∗−3,1 xt∗−3,2 xt∗−3,3 xt∗−3,4 xt∗−3  
 t∗ − 2 xt∗−2,0 xt∗−2,1 xt∗−2,2 xt∗−2,3 xt∗−2,4 xt∗−2  
 t∗ − 1 xt∗−1,0 xt∗−1,1 xt∗−1,2 xt∗−1,3 xt∗−1,4 xt∗−1  
 t∗ xt∗,0 xt∗,1 xt∗,2 xt∗,3 xt∗,4 xt∗  
obtained from N preceding rows of the triangle. Here, the 
user chooses the estimation window size N < t∗ to re-
strict the estimation to relatively recent data. In practice, 
we use N = 15, implying that snapshots from at least the 
last 15 weeks are needed. Following the same principle, 
we compute

θ̂2 =

∑N
i=2 xt∗−i,2∑N
i=2 xt∗−i,≤1

and use it to impute

x̂t∗,2 = x̂t∗,≤1 × θ̂2

x̂t∗−1,2 = xt∗−1,≤1 × θ̂2.

Here, we use the ̂xt∗,1 imputed in the first step to compute

x̂t∗,≤1 = xt∗,0 + x̂t∗,1.

The same procedure is applied to all other missing values 
in the reporting triangle, which we fill from left to right 
and from bottom to top.

For d = 0, . . . ,D−1, we then sum over relevant entries 
of the imputed reporting triangle to obtain point nowcasts

x̂t∗−d,>d =

D∑
i=d+1

x̂t∗−d,i

for the hospitalizations from week t∗ − d that are still to 
be reported. Point nowcasts for the total numbers result 
as

x̂t∗−d = xt−d,≤d + x̂t∗−d,>d.

A slightly more formal explanation of how this relates 
to the estimation of a delay distribution from censored 
observations can be found in Wolffram et al. (2023). We 
note that this scheme would require some adaptations to 
handle zeros in the reporting triangle, but none occur in 
our setting.

3.3.2. Nowcast uncertainty
We now describe how to extend these point nowcasts 

to probabilistic nowcasts based on past nowcast errors. 
To this end, we need to slightly extend the notation and 
write

x̂s∗−d(s∗), x̂s∗−d,>d(s∗), etc.

for nowcasts referring to week s∗ − d and generated 
based on data as available in week s∗. As the uncertainty 
6

in the nowcasts stems only from hospitalizations yet to 
be added to the record, we focus on x̂s∗−d,>d(s∗) in the 
following.

Again, consider the generation of nowcasts in week 
t∗. To quantify the prediction uncertainty we start by 
computing x̂s∗−d,>d(s∗) for s∗ = t∗ − D, . . . , t∗ − M and 
d = 0, . . . ,D−1. In practice, we use M = 15. Note that to 
perform these computations, data snapshots from at least 
N + M (i.e., 30) past weeks are needed.

For each horizon d = 0, . . . ,D−1 we then assume that
Xs∗−d,>d | x̂s∗−d,>d(s∗) ∼

NegBin[mean = x̂s∗−d,>d(s∗) + 0.1, disp = ψd]

independently for each s∗ = t∗ − D, . . . , t∗ − M . An 
estimate ψ̂d for the dispersion parameter is obtained via 
maximum likelihood inference. The addition of a small 
value of 0.1 serves to ensure well-definedness of the neg-
ative binomial distribution if x̂s∗−d,>d(s∗) = 0. In practice, 
we add a small tweak to also include partial observations 
from s∗ = t∗ − 1, . . . , t∗ − D + 1, see Wolffram et al. 
(2023) for details. Our nowcast distribution for Xt∗−d,>d is 
then simply

NegBin[mean = x̂t∗−d,>d(t∗) + 0.1, disp = ψ̂d].

The corresponding distribution for the total count Xt∗

results from shifting this distribution by the known count 
xt∗−d,≤d.

We note that if xt,0 = 0 for a given week, i.e., there are 
no initial releases, we remove the respective row from the 
reporting triangle. This helps catch weeks like Christmas, 
when data releases are paused.

We chose this straightforward methodology because 
it is straightforward to adapt to the particularity of the 
nowcasting task at hand. In practice, we encounter the 
problem that historical data snapshots are only available 
for the total SARI hospitalization incidence, but not the 
age-stratified time series (see Section 2.2). To nonetheless 
produce stratified nowcasts, we assume that the reporting 
delay distribution is identical across strata. The param-
eter estimates θ̂1, . . . , θ̂D are thus estimated from the 
pooled reporting triangles. The estimated overdispersion 
parameters ψ̂0, . . . , ψ̂D−1 are likewise borrowed from the 
pooled fits.

3.3.3. Coupling of nowcasting and forecasting
For coupling the nowcast with the forecasting models, 

we propose the following model-agnostic approach to 
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Fig. 4. Illustration of coupling between nowcasting and forecasting. A set of nowcast sample paths (blue lines in the grey shaded area) is generated. 
Each of these is fed into a forecasting model to obtain predictive distributions for horizons 1–4. Results are then aggregated into overall forecast 
distributions via a linear pool (right panel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
,

propagate nowcast uncertainty into forecasts (illustrated 
in Fig.  4). We note that a similar scheme has been used 
by Brooks et al. (2018).

1. Generate nowcast distributions for horizons −3
through 0 using a separate nowcasting model. For 
each horizon, quantiles at K = 39 levels, 0.025, 0.05
. . . , 0.95, 0.975, are generated.

2. Translate these into 39 sample paths by assembling 
the predictive quantiles at identical levels for the 
four horizons.

3. Feed each of these paths into the employed fore-
casting model to generate predictive distributions 
for horizons 1 through 4 (depending on the method, 
these are samples or parametric distributions).

4. Combine these predictive distributions by aggregat-
ing samples or averaging probability mass functions 
with linear pooling.

Step 2 is arbitrary in a sense as the distributions our 
nowcasting model returns for the various horizons are 
purely univariate, and nothing is known about the de-
pendence structure. However, in practice, the corrections 
at horizons −3 through −1 are minor and unlikely to 
have a significant impact on predictions. It is therefore 
not crucial how exactly the nowcast paths are formed. To 
empirically verify that this is indeed the case, we reran 
one of the forecasting methods discussed in the next sec-
tion (hhh4) using randomly arranged rather than ordered 
paths. Similarly, we assess whether Vincentization, rather 
than the linear pool, yields comparable results, as the 
latter is also applicable to models that produce only quan-
tile forecasts. Results on these variations are available in 
Section 4.2.3.

3.4. Forecasting methods

As an individual pathogen does not cause SARI, it is not 
straightforward to model its dynamics mechanistically 
using classic compartmental (SIR-type) models. However, 
the SARI indicator is characterized by strong autocorre-
lation and, at least until the COVID-19 pandemic, rela-
tively stable seasonal patterns. It is therefore common 
7

to employ non-mechanistic statistical and machine learn-
ing models to such indicators (e.g., Albrecht et al. 2024, 
Mathis et al. 2024). In the following, we present a suite 
of such approaches. While the array of available mod-
elling options is vast, we selected options that reflect 
a natural progression in complexity from parsimonious 
statistical modeling to ‘‘classic’’ machine learning (in our 
case, gradient boosting) and ultimately to a deep learning 
approach. Two of our approaches also exploit multivariate 
patterns across age groups (such as respiratory diseases 
often spreading from younger to older age groups) and 
information in auxiliary data streams.

3.4.1. Endemic-epidemic modeling: hhh4
The endemic-epidemic or hhh4 model (after the asso-

ciated function in the R package surveillance, Meyer 
et al. 2017) is a seasonal count time series model tailored 
for infectious disease surveillance data. It has previously 
been used to predict the incidence of numerous diseases, 
including norovirus disease (Bracher & Held, 2022), vis-
ceral leishmaniasis (Nightingale et al., 2020), and COVID-
19 (Robert et al., 2024). While, in principle, it can reflect 
dependence structures across space or age groups, in our 
setting, a simple univariate formulation for each stratum 
proved most robust. Denoting the incidence value (as 
absolute count value) in week t by Xt , the model is then 
defined as
Xt | past ∼ NegBin(mean = λt , disp = ψ) (1)

λt = νt + φt ×

D∑
d=1

wdXt−d.

Here, the negative binomial distribution is parameter-
ized by its mean λt and an overdispersion parameter ψ . 
Following (Bracher & Held, 2022), we use geometrically 
decaying weights wd, while accounting for yearly seasonal 
variation via time-varying parameters. In the model for 
the pooled time series, we used the standard formulation

νt = α(ν)
+ β (ν)

× sin(2π t/52.25) + γ (ν)
× cos(2π t/52.25)

φt = α(φ)
+ β (φ)

× sin(2π t/52.25) + γ (φ)
× cos(2π t/52.25).

For the age-stratified forecasts, we further simplified this 
model by removing the intercept term ν  (i.e., setting it 
t
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to zero). Even during the training period, retrospective 
forecasts from models including the intercept did not 
adapt well to changes in incidence magnitude compared 
to earlier seasons. Especially in the age groups 05–14 and 
35–59, this led to forecasts that were poorly aligned with 
the preceding data points. Removing the intercept could 
mitigate this to a large degree.

Inference is conducted using maximum likelihood, and 
predictions are obtained in a simple plug-in manner. Pre-
dictive first- and second-moments can be computed ana-
lytically for all forecast horizons (Bracher & Held, 2022), 
and matching negative binomial distributions are used to 
obtain quantiles.

The model fits are updated each week using all avail-
able historical data (or, in a sensitivity analysis, excluding 
seasons strongly affected by the COVID-19 pandemic). 
Note that this also includes the corrected data points 
generated in the nowcasting step (see Section 3.3). Unlike 
the methods described in the two following subsections, 
no validation set is required, meaning that the distinction 
between the green and blue sections in Fig.  2 is not 
relevant here. No additional data inputs are used other 
than the SARI incidences.

As an additional time series benchmark that builds 
on related work on COVID-19 case numbers by Agosto 
et al. (2021), we apply a log-linear Poisson autoregressive 
model. In its original form, which we refer to as Agosto1, 
it is defined as
Xt | past ∼ Pois(λt )
log(λt ) = ν + φ × log(Xt−1 + 1) + θ × log(λt−1).

We also propose and use an extended version of Agosto1
where we combine a conditional negative binomial distri-
bution as in (1), with the log-linear mean structure
log(λt ) = ν + φ × log(Xt−1 + 1) + θ×

log(λt−1) + β × sin(2π t/52.25) + γ × cos(2π t/52.25),

thus accounting for seasonality. We refer to this model as
Agosto2 in the following. We fitted both model variants 
using the R package tscount (Liboschik et al., 2017).

3.4.2. Gradient boosting: LightGBM
LightGBM (Light Gradient Boosting Machine) is a gra-

dient boosting framework designed for high-performance 
machine learning tasks (Ke et al., 2017). It builds decision 
tree ensembles sequentially, where each tree corrects the 
errors of the previous ones, enabling the model to capture 
complex patterns in the data. Its ability to efficiently 
handle large datasets, categorical variables, and missing 
values makes it versatile for a wide range of applica-
tions. In time series forecasting, LightGBM can effectively 
model relationships within multivariate data and incorpo-
rate exogenous variables. In the M5 forecasting competi-
tion (Makridakis et al., 2022), the model ranked among 
the top performers for predicting retail sales across mul-
tiple products and stores.

For our analysis, the model was retrained each week 
using available historical data and implemented in a mul-
tivariate fashion, allowing simultaneous prediction of all 
targets (i.e., across different age groups and the national 
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level). Weekly ARI numbers (see Supplement B) were 
included as a covariate. In addition to the lagged values of 
these two time series (covering the previous eight weeks), 
the calendar week and the month of the subsequent week 
were incorporated as input features. The last few ob-
servations that would remain incomplete in a real-time 
setting were excluded from the training process. They 
were subsequently replaced by nowcast paths to compute 
the forecasts as described in Section 3.3.

Concerning hyperparameter selection, we adopted a 
two-stage strategy, which we implemented and recorded 
in the experiment tracking system Weights and Biases
by Biewald 2020. In the first stage, we performed a ran-
dom search to efficiently explore the high-dimensional 
parameter space and identify regions associated with 
good predictive performance. This approach enabled us to 
circumvent exhaustive evaluation of unpromising param-
eter combinations and to concentrate subsequent analy-
ses on a more relevant subset. In the second stage, we 
conducted a systematic grid search over the refined hy-
perparameter ranges documented in Supplementary Ta-
ble S1 to evaluate the most promising configurations thor-
oughly. The inclusion of the ARI covariate and the use of 
data from the COVID-19 period (see also Section 3.5) were 
part of the hyperparameter tuning, which resulted in the 
inclusion of both. The best-performing configurations are 
summarized in Supplementary Table S2. To reduce com-
putational requirements, the model was trained once on 
the training dataset and evaluated across all dates in the 
validation period (highlighted in green and blue in Fig.  2). 
Due to the non-deterministic nature of the training pro-
cess, we trained with ten different random seeds. We av-
eraged the forecasts from these models (i.e., the predictive 
quantiles at each level) to obtain more robust results.

3.4.3. Deep learning model: TSMixer
The TSMixer architecture, as introduced in Chen et al. 

(2023), is a fully connected neural network specifically 
designed for time series forecasting. It utilizes a sequential 
mixing layer strategy that enables the model to capture 
both temporal dependencies and cross-feature interac-
tions. As illustrated in Fig.  5, the mixing layers are applied 
sequentially: first across the time dimension to model 
temporal patterns and then across the feature dimen-
sion to capture relationships between different variables. 
This approach allows the model to learn complex, non-
linear relationships within the time series data. Compared 
to transformer-based models, TSMixer often exhibits a 
simpler architecture, making it more computationally ef-
ficient and easier to train. Despite its relative simplic-
ity, TSMixer has demonstrated competitive performance 
across a wide range of time series forecasting bench-
marks, suggesting that its sequential mixing-layer strat-
egy is a practical approach for modeling temporal data. 
The model’s ability to handle multivariate time series, as 
well as its potential to incorporate exogenous variables, 
makes it a versatile tool for a range of time series forecast-
ing applications, including infectious disease forecasting 
in our setting.

The implementation, tuning, and training scheme
follows that of LightGBM as described in the previous 
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Fig. 5. Illustration of the TSMixer architecture, which is designed by stacking multi-layer perceptrons (MLPs). The mixing layers are applied 
repeatedly across time and feature dimensions to model both temporal patterns and interdependencies.
r 
subsection. The optimized hyperparameter settings are 
summarized in Supplementary Table S3. As a relevant 
difference, we note that for TSMixer, hyperparameter 
tuning suggested removing the ARI input feature.

3.5. Variations of component models

Applying the models described in the previous sections 
requires many analytical choices, especially for the more 
complex LightGBM and TSMixer approaches. The pri-
mary settings were chosen by detailed hyperparameter 
tuning (Supplementary Tables S1–S3). For three aspects 
we consider particularly interesting, however, we report 
results based on alternative specifications. Firstly, we vary 
whether and how nowcasts are fed into the forecasting 
models (see Section 4.2.3 for details). Secondly, we vary 
how seasons affected by the acute phase of the COVID-19 
pandemic are handled (see classification in Fig.  2), either 
including or excluding them from model fitting. Lastly, we 
assess the extent to which the addition of auxiliary data 
on acute respiratory infections (ARI) improves predictive 
performance. As mentioned before, while hyperparameter 
tuning for LightGBM indicated that the ARI covariate 
should be included, the opposite was true for TSMixer. 
The primary specifications of the two models thus differ.

3.6. The mean ensemble and reference models

For the Ensemble, the predictive quantiles were ob-
tained as the arithmetic means of the individual forecasts’ 
quantiles from the member models (LightGBM, TSMixer, 
and hhh4). This direct approach, also referred to as Vin-
centization, has been widely studied and employed in both 
statistics (Genest, 1992; Grushka-Cockayne et al., 2017) 
and machine learning (Shchur et al., 2023). We favor it 
over other methods, such as the linear pool, which are 
not applicable when only a few predictive quantiles are 
available. As the present analysis serves as a blueprint for 
a collaborative platform with quantile-based submissions 
(see Section 5), we work with this constraint and thus 
opt for the Vincentization approach. We note that a pos-
sible extension is weighted ensemble averaging, which 
has been explored previously for nowcasts (Amaral et al., 
2025) and forecasts (e.g., Tsang et al. 2024). In particu-
lar, adaptive stacking techniques may help account for 
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temporal variation in model performance (McAndrew & 
Reich, 2021).

We note that while ensemble models have often been 
found to outperform their individual members (e.g., Crame
et al. 2022) and are thus generally considered supe-
rior to individual models, this is not a mathematical 
necessity. For many combinations of ensembling pro-
cedures and scoring rules, however, results imply that 
the ensemble will always beat the average of the scores 
achieved by its member models; the case of the Vincen-
tization ensemble and weighted interval score is covered 
by Grushka-Cockayne et al. (2017).

To put the performance of the different models into 
perspective, we apply two simple reference models.

• Persistence is an adaptation of a last-observation-
carried-forward prediction to our setting with re-
porting delays. The predictive mean for horizons 1 
through 4 is obtained as the predictive mean of 
the nowcast distribution at horizon 0. A predictive 
distribution is obtained as a negative binomial dis-
tribution with this mean value, and a dispersion pa-
rameter estimated via maximum likelihood from the 
15 most recent pairs of predictive means and obser-
vations (all obtained using the respective previous 
data snapshots).

• Historical is a simplistic model that considers 
only past seasonal patterns. A predictive distribution 
for a given calendar week is obtained by collecting 
all available historical values for that week and the 
two neighboring weeks, and then fitting a negative 
binomial distribution.

Note that the reference models are not included in the 
mean ensemble.

4. Results

4.1. Visual and qualitative inspection of nowcasts and fore-
casts

Before turning to a formal evaluation summarizing 
overall performance in the next section, we provide an 
explorative graphical assessment of nowcasts and fore-
casts. Fig.  6 shows nowcasts and forecasts for the total 
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Fig. 6. Selected nowcasts and ensemble forecasts for the total SARI hospitalization incidence (pooled across age groups) at different forecast times. 
To avoid overplotting, we show the time series twice, overlaying it with predictions issued at different times in the two panels. Figures covering all 
forecast dates are available in Supplementary Figure S4.
SARI hospitalization incidence (pooled across age groups) 
issued by the Ensemble at nine different time points. 
To avoid overplotting, we use two separate panels and 
display the remaining time points in a set of Supplemen-
tary Figures (S4). A detailed illustration of the nowcasts 
is shown in Supplementary Figure S5. In Fig.  6, most 
nowcasts (blue) are closely aligned with the completed 
data versions (black), but in some cases discrepancies 
remain (e.g., for the second nowcast in the left panel). 
The nowcasting also successfully prevents forecasts from 
following spurious downward trends resulting from re-
porting delays. Forecasts are mostly well-aligned with 
the later-observed trends, except for the first weeks of 
2024 (see the right panel). Here, the ensemble prediction 
implies that the peak has already occurred, failing to 
predict the second and higher peaks. Such double peaks 
in close succession did not happen in any of the previous 
years, making this aspect hard to predict solely from data. 
The uncertainty intervals of nowcasts and forecasts are of 
adequate width to nonetheless cover the observed values 
in most instances. Especially around the peak, however, 
they become very wide, making forecasts less informative 
in these periods.

On average over time, all models, except the Persis-
tence baseline, capture the qualitative seasonal patterns 
well. This can be seen from the respective values of the 
rank-based RGA measure in Table  2. All models except
Persistence achieve RGA values close to the optimal 
value of one, with only minor differences between mod-
els. Our interpretation of these results is that the seasonal 
structure of the SARI time series is sufficiently stable to 
make it reasonably easy to get the rank structure across 
weeks right. The more challenging task lies in predicting 
the magnitude of the SARI curve, which can vary from 
year to year.

Selected predictions from individual models across 
age groups are displayed in Fig.  7. As discussed in Sec-
tion 2.1, age group 15–34 displayed unusual patterns in 
the 2023/24 season. Unlike in previous years, incidence 
remained relatively high throughout the spring and sum-
mer. The LightGBM model struggles to adapt to this 
difference and continues to predict a decline towards the 
usual levels (a similar pattern occurs with TSMixer). The
10
Table 2
RGA values for the total SARI hospitalization incidence (pooled across 
age groups, separately per prediction horizon). This corresponds to sets 
of n = 48 predictions and observations. As the point predictions, we 
used the predictive medians from our different models.
 Model Horizon 1 Horizon 2 Horizon 3 Horizon 4 
 Ensemble 0.970 0.961 0.951 0.951  
 LightGBM 0.967 0.952 0.935 0.926  
 TSMixer 0.959 0.939 0.923 0.920  
 hhh4 0.970 0.957 0.948 0.940  
 Persistence 0.964 0.940 0.912 0.883  
 Historical 0.956 0.960 0.962 0.966  

hhh4 model, with its simple autoregressive structure, is 
better able to handle this shift in magnitude. The diffi-
culties of LightGBM and TSMixer are also inherited by 
the Ensemble. Similar patterns are also found for age 
group 05–14, and to a lesser degree for ages 35–59, while 
the remaining age groups have more typical seasonal 
courses. However, Fig.  7 also illustrates some strengths of
LightGBM and TSMixer, particularly at the national level 
(00+) and for older age groups (e.g., 80+). These models 
accurately capture the sharp decline following the second 
peak, whereas hhh4 tends to produce more pessimistic 
forecasts.

4.2. Formal forecast evaluation

4.2.1. Aggregate-level nowcasts and forecasts
We complement the visual assessment with a more 

formal evaluation of forecast calibration and score-based 
performance. Fig.  8 summarizes the performance for the 
total hospitalization incidence (pooled across age groups). 
Average WIS (across forecast dates) and the coverage 
fractions for the 50% and 95% prediction intervals are 
displayed stratified by nowcast/forecast horizon. Surpris-
ingly, average scores increase with the horizon (i.e., per-
formance decreases). For horizons 1 through 4, all models 
outperform the Persistence and Historical baseline 
models (except for TSMixer at horizon 1). The Ensemble
outperforms all individual models at all horizons, but the 
margin over LightGBM and hhh4 is slim at short horizons 
(and indeed, most score differences are not statistically 
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Fig. 7. Selected nowcasts and forecasts for the aggregate level 00+ and age groups 15–34 and 80+. To avoid overplotting, predictions for only five 
forecast times are shown. Figures covering all forecast dates are available for the Ensemble in Supplementary Figure S4.
significant; see below). Interestingly, for horizon 4, this 
flips, and the TSMixer model achieves performance close 
to the ensemble. The decomposition of the WIS indicates 
that LightGBM and TSMixer tend to underpredict, and 
that the ensemble inherits this tendency (this seems to 
be driven by the fact that the second peak was not antic-
ipated, as well as the unusually high incidences of some 
age groups late in the season; see previous subsection). 
The hhh4 and nowcasting models have more balanced 
components.

A summary plot aggregating results across horizons is 
available in Supplementary Figure S6 (left panel). While 
the Ensemble again has a little edge, the three-member 
models LightGBM, TSMixer, and hhh4 are roughly on 
par. Concerning the interval coverage rates (bottom panel 
in Fig.  8), all models apart from the Historical base-
line achieve close-to-nominal coverage. Displays of cal-
ibration and average scores stratified by quantile level 
are available in Supplementary Figures S10 and S11. The 
relative performance of models is consistent across quan-
tile levels, except for LightGBM, which shows a drop in 
performance at higher quantiles.

As detailed in Supplementary Figure S12, Diebold–
Mariano tests (cited in Diebold and Mariano 2002,
implemented in Leeuwenburg et al. 2024) indicate that 
the observed score differences are mostly not significant. 
While the Ensemble has significantly better performance 
than the Historical baseline at all horizons, differences 
to the Persistence baseline are only significant for 
certain combinations of competing model and horizon 
(e.g., hhh4 and LightGBM at horizon 2). This may reflect 
that the DM test often has low power in small to moderate 
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sample sizes, especially when tests are performed against 
naïve baseline models (Coroneo & Iacone, 2025).

The performance of the variations Agosto1 and
Agosto2 of the hhh4 model is displayed in Supplemen-
tary Figure S9. The modest results for the simplistic
Agosto1 indicate that it is important to account for 
seasonality and overdispersion. Specifically, the Poisson 
assumption of Agosto1 yields overly narrow prediction 
intervals, leading to its performance even falling behind 
both baseline methods. When augmenting the model with 
a negative binomial distribution and sine/cosine terms for 
seasonality (Agosto2), performance is practically equiv-
alent to that of hhh4.

4.2.2. Age-stratified nowcasts and forecasts
Fig.  9 summarizes average results for age-stratified 

nowcasts and forecasts. The results for average WIS are 
broadly consistent with those discussed in the previous 
section, with the ensemble again performing best across 
horizons and the individual models outperforming the 
baseline models in almost all cases. The LightGBM and
TSMixer models again tend to underpredict, while the
hhh4 model features the most dispersed predictions.

The WIS stratified by age group (and aggregated by 
horizon), depicted in Fig.  10, reveals that the aforemen-
tioned downward bias in LightGBM and TSMixer pri-
marily originates from the age groups 05–14, 15–34, and 
35–59. This can be attributed to the unusually high SARI 
incidence during the evaluation period (Fig.  2), which 
did not follow the typical seasonal decline, as discussed 
previously. The score-based evaluation also confirms that 
the hhh4 model performs particularly well in these age 
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Fig. 8. Top: Average WIS values (bars) and absolute errors (diamonds) achieved by different models for the total SARI hospitalization incidence. The 
average WIS scores are decomposed into components for overprediction, underprediction, and forecast spread. Bottom: Empirical coverage rates of 
50% and 95% prediction intervals.
groups (in the 15–34 group, even slightly outperforming 
the Ensemble). By contrast, the machine learning ap-
proaches had an edge in forecasting older age groups, 
potentially because they could leverage trends in younger 
age groups as leading indicators for older ones.
12
In terms of interval coverage (bottom panel of Fig. 
9), we observe that the nowcasts for horizons −1 and 
0 are considerably overconfident. This is likely a conse-
quence of the fact that only a few historical snapshots of 
age-stratified data were available, meaning that stratified 
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Fig. 9. Top: Average WIS values (bars) and absolute errors (diamonds) achieved by different models for the age-stratified SARI hospitalization 
incidence. The average WIS scores are decomposed into components for overprediction, underprediction, and forecast spread. Bottom: Empirical 
coverage rates of 50% and 95% prediction intervals.
nowcasts had to be based on aggregate-level snapshots 
(see Section 3.3). The forecasts from the LightGBM and 
to a lesser degree TSMixer models are somewhat over-
confident, too. This is not surprising given that the fore-
casting models take the nowcast as an input. Remarkably, 
13
the Ensemble forecast is well-calibrated across horizons 
and interval levels. This can be explained by the fact 
that, when using Vincentization, the ensemble prediction 
intervals have an average length equal to the member 
intervals. If the ensemble intervals are centered around 
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Fig. 10. Average WIS (bars) and absolute errors (diamonds) by age group, aggregated over forecast dates and horizons. Average scores are decomposed 
into components for overprediction, underprediction, and forecast spread.
a more accurate central tendency (as is often the case), 
interval coverage rates will tend to increase.

4.2.3. Integration of nowcasts and forecasts
For each forecasting method, we investigate the impact 

of integrating nowcasts into forecasts and assess the per-
formance of the chosen implementation approach. Thus, 
instead of including nowcast distributions as described in 
Section 3.3, we apply three alternative strategies.

(i) Firstly, we simply ignore the delay problem and use 
uncorrected incomplete data points to initialize our 
forecasting models (‘‘Naive’’).

(ii) Secondly, we discard the last available observation 
and use only largely stable observations, as is com-
mon in the literature (Paireau et al., 2022). We 
still apply the nowcasting procedure to the previ-
ous weeks, but this makes little practical difference 
(‘‘Discard’’).

(iii) Lastly, we base forecasts on the final versions of 
the latest data points, i.e., assess how much fore-
casts would improve if the reporting system were 
free of delays. This is a hypothetical setting and 
not an approach that could be applied in real time 
(‘‘Oracle’’).

Fig.  11 summarizes the performance for the total SARI 
hospitalization incidence when using the four consid-
ered ways of handling recent data points. Our proposed 
method of including the latest data point with a now-
cast correction (‘‘Coupling’’) yields improvements over 
using uncorrected data (‘‘Naive’’) or discarding this data 
point (‘‘Discard’’). This holds especially for short horizons, 
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where forecast initialization is most relevant. In fact, for 
the hhh4 model, the ‘‘Discard’’ version even works slightly 
better for horizons 3 and 4. Somewhat surprisingly, when 
providing forecast models with the final values of recent 
data points (‘‘Oracle’’) rather than nowcasts, performance 
does not always improve. While hhh4 does, the other 
models show minor performance deterioration at some 
horizons. A possible explanation is that initializing the 
models LightGBM and TSMixer with a nowcast distri-
bution rather than the correct value increases forecast 
dispersion, thereby improving calibration. Corresponding 
results for age-stratified predictions are shown in Supple-
mentary Figure S8 and are in good agreement with the 
aggregate-level results.

To assess whether our choice to obtain different sam-
ple paths by ordering the quantiles per week affects the 
results, we reran the ‘‘coupling’’ approach for hhh4 using 
randomly arranged paths. As shown in Supplementary 
Figure S9, the resulting scores remain virtually unchanged 
(model denoted hhh4-Shuffle). Moreover, we assessed 
performance when using quantile averaging rather than 
the linear pool to combine forecasts from different now-
cast paths. This is relevant for models that only issue pre-
dictive quantiles rather than full predictive distributions 
(the linear pool is obviously not available in this case), 
as shown in Supplementary Figure S9 (model denoted
hhh4-Vincentization), this, too, makes little differ-
ence in practice.

4.2.4. Handling of the acute phase of the COVID-19 pan-
demic and inclusion of ARI data

Finally, we study how the handling of the COVID-
19 period and auxiliary data on ARI consultations affect 
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Fig. 11. Comparison of forecast performance on the aggregate level resulting from different strategies to handle incomplete recent data. ‘‘Coupling’’ is 
our main approach described in Section 3.3, i.e., feeding the full nowcast into forecasting models. ‘‘Discard’’ corresponds to discarding the most recent 
(i.e., most incomplete) data point and treating it like an additional value to be predicted. ‘‘Naive’’ uses the time series as is (with yet incomplete 
values). ‘‘Oracle’’ is a hypothetical setting where the final versions of the most recent data points are used. It thus enables us to assess the impact 
of reporting delays on forecast quality. As in previous figures, the bars show WIS, and the diamonds show absolute errors.
the predictive performance of each forecasting method 
(see Section 3.5). In each setting, the ML models were 
retrained with hyperparameters optimized explicitly for 
that setting. As before, due to the non-deterministic na-
ture of the training process, we trained with 10 different 
random seeds and averaged the forecasts from these mod-
els (i.e., the predictive quantiles at each level) to obtain 
more robust results.

Supplementary Figure S9 summarizes the effect of ex-
cluding data from the COVID-19 period in the training set 
as well as from using ARI incidences as an auxiliary data 
stream for LightGBM and TSMixer. Discarding the data 
from the COVID-19 period led to a slight deterioration 
in performance for hhh4 and LightGBM. The TSMixer
model was very poorly behaved when applied to a re-
duced data set excluding the COVID-19 period, indicating 
that our full time series may already be near the lower 
end of this method’s data requirements.

The inclusion of the auxiliary time series on outpa-
tient consultations for ARI was not beneficial; see Supple-
mentary Figure S9. For LightGBM, where hyperparame-
ter tuning suggested including the ARI data, excluding it 
yielded essentially identical performance on the test set. 
In the case of TSMixer, where the covariate was excluded 
based on the hyperparameter tuning, the performance 
drop when including it was rather substantial in the test 
set.
15
5. Discussion and conclusions

We presented and evaluated a multi-model system 
for nowcasting and short-term forecasting of hospital-
izations from severe acute respiratory infections (SARI) 
in Germany. We addressed this in a modular fashion, 
generating nowcasts in a separate step and subsequently 
feeding them into the forecasting models. For short fore-
cast horizons, this led to improvements over a more 
straightforward approach that used the most recent data 
points uncorrected or simply discarded them. Compared 
with simple baseline forecasting methods, the three mod-
els considered showed improved performance across lead 
times, though the observed differences were not consis-
tently statistically significant. Similar to previous efforts, 
we found that a combined ensemble prediction improved 
upon individual models. Forecasts were generally well-
calibrated in terms of interval coverage fractions, but 
in some models, as well as the ensemble, we observed 
noteworthy biases in some age groups. In these instances, 
the machine learning models LightGBM and TSMixer
seemed to overfit historical patterns, while the more 
straightforward statistical approach hhh4 performed bet-
ter. In age groups where the seasonal course was closer 
to historical patterns, however, this model had weaker 
relative performance.
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The good probabilistic calibration of almost all consid-
ered models represents a marked difference from results 
achieved in recent years for COVID-19 cases or deaths 
(see e.g., Bracher et al. 2021, Cramer et al. 2022). This is 
undoubtedly not due to a sudden improvement in fore-
casting capacities, but due to the higher predictability 
of seasonal disease dynamics. Unlike in COVID-19 fore-
casting, social dynamics and intervention measures were 
unlikely to be major drivers during the test period. Also, 
reporting practices were considerably more stable than 
for most COVID-19 indicators.

Our analyses of forecast performance across horizons 
and age groups indicate that our three stand-alone mod-
els have differing strengths and weaknesses. This ensem-
ble diversity is often considered a key feature of good 
ensemble performance (DelSole et al., 2014). Especially 
during the COVID-19 pandemic, collaborative forecasting 
projects featured considerably more models (the largest 
effort likely being Cramer et al. 2022 with more than 100 
models). This level of effort is unrealistic and undesirable 
outside of times of major crisis. How many models need 
to be run to achieve robust ensemble performance is 
currently under research. Fox et al. (2024) recommend 
using four to seven models and find that the gain from ad-
ditional models diminishes quickly. In future operational 
use of our system (see below), two more independently 
run models will be included for SARI hospitalizations. We 
hope this will further enhance the ensemble’s robustness, 
while keeping the required effort at a sustainable level.

In the present work, we consider only SARI hospi-
talizations at the national level, with age stratification. 
Unfortunately, it is currently not feasible to analyze these 
data at a regional level. Coverage by sentinel hospitals 
varies considerably across the 16 German states, with 
several of them not covered at all (Buda et al., 2017). 
State-level estimates are thus not released by RKI. Also, it 
was not feasible to run a validation on a longer test period, 
which would have strengthened the generalizability of 
our results. The reason is that vintage data snapshots were 
unavailable for earlier time periods, preventing us from 
studying the integration of nowcasting and forecasting 
during those periods.

The presented work serves as a blueprint for the
RESPINOW Hub (http://respinowhub.de/), an operational 
disease nowcasting and forecasting system. Launched in 
Fall 2024, the Hub covers multiple prediction targets 
(including the outpatient ARI consultation incidence dis-
cussed in Section 2.3 and mandatory case reporting of 
several respiratory diseases). A follow-up study on the 
real-time performance of different models across indica-
tors has been preregistered (Bracher & Wolffram, 2024).

This follow-up study will enable us to address one 
of the significant weaknesses of the present project: the 
risk of hindsight bias. While we made considerable efforts 
to manage historical data versions correctly and avoid 
using data that would not have been available in real 
time, the development and evaluation of prediction mod-
els are iterative processes. Implicitly, some knowledge of 
the test set’s characteristics may thus have diffused into 
our forecasting approaches.
16
Another limitation of our approach is that we consider 
only one aggregate syndromic indicator, thereby limit-
ing the applicability of mechanistic (SIR-type) models. 
These may be more proficient at predicting tipping points 
due to the depletion of susceptibles, even when seasonal 
patterns differ from previous years. A promising recent 
development is that the Robert Koch Institute has started 
releasing stratified data on SARI hospitalizations caused 
by COVID-19, seasonal influenza, and RSV. In future years, 
pathogen-specific mechanistic models can thus be ap-
plied. Such a stratified approach may ultimately also lead 
to improved forecasts of the total SARI hospitalization 
incidence.

Data and code availability

All results in this paper can be reproduced using the 
publicly available replication package at https://github.
com/dwolffram/replication-sari-forecasting that contains 
all data and code.
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