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a b s t r a c t

Machine learning approaches are widely used in geosciences. However, one widely available dataset in 
reservoir geology remains underrepresented in published works: petrographic data from classical point-
counting analyses. Such data are widely available for reservoir lithology characterization, often in 
combination with routine core analysis data (porosity and permeability). Since porosity and perme-
ability in siliciclastic rocks are controlled by the detrital and authigenic composition and samples record 
effects of compaction during diagenesis, these datasets are often linked to assess reservoir quality 
controls.
Datasets from six wells, covering four regions and two large reservoir lithologies in central Europe, 

the Permian Rotliegendes and Triassic Buntsandstein, were used to apply machine learning to the 
petrographic and reservoir quality data to predict porosity and permeability. Predictions are based on 
point-counting data including detrital and authigenic phases, optical porosity, grain-to-IGV (GTI) and 
grain-to-grain (GTG) coating coverages, and granulometry. For both regression tasks, a Random Forest 
and a Support Vector Regression machine learning model were implemented, with performance 
compared and the best model selected based on coefficient of determination (R 2 ) and error metrics. 
Porosity predictions using a Random Forest algorithm yielded an R 2 of 0.92, a mean average error (MAE) 
of 1.25%, and a root mean square error (RMSE) of 1.56%. Permeability predictions of real-scale perme-
ability using Support Vector Regression gave an R 2 of 0.85, MAE of 29.4 mD, RMSE of 68.3 mD, and a 
range-based normalized RMSE of 8.76% (real-scale). Log-transformation of measured and predicted 
permeability resulted in a more representative R 2 of 0.83, MAE of 0.21, and RMSE of 0.24, reflecting its 
log-normal distribution. Predictions are acceptable despite the limited dataset, which reduces operator 
bias by using curated data. This machine learning approach may simultaneously unlock another un-
derstanding of reservoir quality controls based on SHapley Additive exPlanations (SHAP) value plots. 
Further training of such models on cored reservoir sections can improve understanding of which 

detrital and authigenic mineral phases influence reservoir properties. Trained models could also 
potentially evaluate reservoir properties from cuttings, which, like well logs, are more continuous than 
cores while allowing diagenetic interpretation based on petrographic analysis.
© 2026 Sinopec Petroleum Exploration and Protection Research Institute. Publishing services by Elsevier 
B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Machine learning approaches have widely been applied to the 
geological subsurface in the past years (Bergen et al., 2019;

Karpatne et al., 2019; Dramsch, 2020). Their applications include 
well log analysis and derivation of physical rock properties (Mishra 
et al., 2022; Ore and Gao, 2023), pore classification (Yang et al., 
2025), porosity and permeability assessment during drilling (Sun 
et al., 2021), seismic interpretation (Wrona et al., 2018), and 
facies classification (Dubois et al., 2007; Duarte et al., 2023). Some 
reservoir-relevant data, such as porosity, permeability, or lithol-
ogy/facies, can be derived from well logs using machine learning 
and are already applied in reservoir geology (Wood, 2020; Rahimi
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and Riahi, 2022; Zanganeh Kamali et al., 2022; Abbas et al., 2023). 
However, underlying diagenetic factors relating to the develop-
ment of reservoir quality differences are not well addressed. This is 
largely related to the input data being geophysical logs, which can 
indicate some (but not all) mineral phases present in a lithology. 
Therefore, an understanding of diagenetic reservoir quality con-
trols cannot be accurately addressed and still relies on the inte-
gration of petrographic and petrophysical data. Simultaneously, 
machine learning approaches are applied to assess petrographic 
sample suites and derive the mineralogical composition, porosity 
distribution, capillary pressure curves, or their relation to petrof-
acies (Rubo et al., 2019; Tang et al., 2020; Saxena et al., 2021; 
Johnson et al., 2022; Duarte et al., 2023; Yu et al., 2023; Esmaeili 
et al., 2024). However, petrographic data is already widely avail-
able for reservoir lithologies around the globe and can be linked to 
available porosity and permeability datasets. While well logs 
cannot completely capture detrital and authigenic minerals, and 
current petrographic image-based machine learning approaches 
do not yet distinguish the effect of different mineral textures and 
the presence of certain minerals at grain interfaces, petrographic 
point-counting data can bridge that gap. Leveraging this resource 
through machine learning (as a data science application) could 
reduce drilling costs while maintaining insight into reservoir 
quality and its controls. Using machine learning approaches and 
applying them to available legacy datasets may be a suitable tool 
to extend their applicability to other aspects of reservoir geology, 
especially in light of the energy transition and an extended 
geothermal or storage utilization of fractured and porous reservoir 
rocks.
Standard reservoir quality analyses still rely mostly on petro-

physical (routine and special) core analysis data in conjunction 
with macroscopic and microscopic analyses, as well as correlation 
to well log measurements (Ajdukiewicz and Lander, 2010; Rider 
and Kennedy, 2011; Worden et al., 2018). Gained information on 
depositional environments and observed mineral distributions, 
textures, and their paragenetic relations aid in assessing control-
ling factors on reservoir quality.
In this study, we develop a workflow that integrates quantita-

tive petrographic point count data with supervised machine 
learning to predict porosity and permeability. The workflow con-
sists of assembling standardized petrographic and petrophysical 
datasets, defining the petrographic input features, and comparing 
two regression models: a Random Forest model and a Support 
Vector Regression model for porosity and permeability prediction. 
The models are optimized through hyperparameter tuning and 
evaluated using k-fold cross validation to ensure robust perfor-
mance despite the limited dataset size. The two best-performing 
models are then selected to discuss model performance and 
geological controls. Therefore, SHapley Additive exPlanations 
(SHAP) values are used to interpret how individual petrographic 
attributes influence the predictions (Lundberg and Lee, 2017). If 
these effects on model predictions are combined with geological 
reasoning, they may uncover yet unknown reservoir quality 
controls.
If a suitable calibration can be achieved, such models could also 

be used to gain porosity and permeability estimates from petro-
graphic samples prepared from e.g., cutting material obtained 
from lithologies on which the model is trained. Leveraging this 
untapped potential via machine-learning based data science may 
in future enable lower-cost drilling, while gaining comparable 
insights into reservoir quality and related controlling factors. This 
data can also be used in combination with well log data, which is 
mostly available along extended well sections, to optimally utilize 
all available data and material provided during drilling. This 
approach may be applied to reservoir systems across the world, if

suitable calibration data is available.

2. Materials and methods

2.1. Geological input data

To test the applicability of machine learning on petrographic 
and petrophysical reservoir quality data, we selected a dataset 
covering core material from six wells (four wells from three re-
gions targeting the Triassic Buntsandstein in southern Germany, 
two wells from one region targeting the Permian Rotliegendes in 
Northern Germany) (inset in Fig. 1a) (Monsees et al., 2020; Busch 
et al., 2022, 2024, 2025). The four sampled regions represent the 
western part of the Upper Rhine Graben [URG, Well A + B (Bunt-
sandstein)], the eastern part of the URG [Well C (Buntsandstein)], 
the eastern shoulder of the URG [Well D (Buntsandstein)], and the 
Southern Permian Basin (Well A + B (Rotliegendes)] (inset in 
Fig. 1a). The overall dataset comprises 157 samples, covering a 
porosity range of 0–20% and a permeability range of 0.0001 mD to 
780 mD (Fig. 1b). The porosity distribution across the four regions 
shows that well A + B (Buntsandstein) have the highest porosities, 
with one identified outlier, while well C exhibits the lowest 
porosity values (Fig. 1b). Well C (Buntsandstein) did not provide 
any permeability data, therefore the range of porosity values from 

that sample series is just highlighted in Fig. 1b. All utilized data is 
provided in supplementary materials 1.
The sandstone classification according to Folk (1980) reveals 

that samples from all studied wells fall into the subarkose, sub-
litharenite, lithic arkose, feldspathic litharenite, or litharenite 
classes (Fig. 1a). We selected these datasets, as they were analyzed 
by the same two petrographers maintaining comparability by 
utilizing the same comparator charts during data acquisition. They 
are also the only datasets continuously assessing grain coating 
coverages by different illite morphologies (radial and tangential) 
at different grain interfaces, which have been shown to affect 
reservoir properties (Heald, 1955; Heald and Larese, 1974; Pittman 
et al., 1992). Furthermore, they cover a wide range of present-day 
burial depths (400–4720 m TVD), to assess the model performance 
in relation to different present-day burial depths. However, as the 
degree of compaction and cementation recorded in the sandstones 
is a function of the burial history, and some samples were rela-
tively uplifted to their paleo maximum burial depths, the present-
day burial depth does not correlate to specific reservoir qualities in 
the studied samples. This is especially relevant for samples with 
the shallowest present-day burial depths [well D (Buntsandstein)], 
which have among the lowest average porosity and permeability 
of the studied samples. Furthermore, the effect of varying vertical 
effective stress histories (as recorded by the IGV) and thermal 
exposure and associated fluid-rock interaction (as recorded by 
contents of e.g., authigenic quartz and illite) are recorded in the 
individual rock microstructure assessed during point-counting to 
prepare the original input data. To test the robustness of the model 
we also use samples from two lithological groups from different 
arid fluvio-eolian depositional systems having different prove-
nance areas during the Triassic and Permian, respectively.
The dataset comprises petrographic data (detrital and authi-

genic phases, optical porosity, GTI and GTG coating coverages, 
granulometry data) and petrophysical data (porosity and perme-
ability) (supplementary materials I).

2.2. Machine learning setup

To assess whether porosity or permeability data are required to 
predict either of the other properties, they were included in the 
model setup, and their effect on model outcome is discussed.
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Further information on sample material and data can be gained 
from the original source publications. In total, the dataset contains 
62 features with porosity and permeability designated as the 
target variables for the models.
At first, the dataset was randomly split into a training-

validation set (80%) and a test set (20%) using sample wise shuf-
fling. Due to the limited number of the datapoints and wells, well 
wise splitting was not enforced in this study. We employed 
Random Forest (RF) and Support Vector Regression (SVR) models 
to predict porosity and permeability and chose the best-
performing for a more detailed assessment.
The employed RF model (Breiman, 2001) is an ensemble-based 

method that constructs multiple decision trees and averages their 
outputs (Cracknell and Reading, 2013; Bergen et al., 2019). RF is 
well suited for this study because it captures nonlinear relation-
ships, interactions between features, and noise in high dimen-
sional datasets. Hyperparameters including the number of 
estimators, maximum tree depth, minimum samples required to 
split a node, and minimum samples per leaf were optimized using 
Bayesian hyperparameter optimization (Brochu et al., 2010), 
evaluated through 5-fold cross validation. Cross validation per-
formance was assessed using the coefficient of determination (R 2 ) 
as the objective metric.
SVR is a variant of support vector machines (Bergen et al., 2019) 

which identifies a hyperplane that maximizes the margin between 
predictions and an epsilon-insensitive tube (Cracknell and 
Reading, 2013; Shahnas et al., 2018). SVR is chosen as it can 
effectively captures relationships in small sample sets, where the 
number of features may exceed the number of samples (scikit-
learn User Guide, 2025). One of the key drawbacks of Support 
Vector Machine algorithms is the increase in training time with an 
increase in samples (Guido et al., 2024). While this may not 
drastically affect this proof-of-concept study with a limited 
number of samples, this may affect larger sample suites. Hyper-
parameters including the regularization parameter (c), the insen-
sitive loss width ( 3), the kernel type (linear vs. radial basis
function), and the kernel scale parameter (ɣ) were optimized using 
Bayesian hyperparameter optimization with 3-fold cross

validation. For this dataset, which includes 123 permeability 
samples spanning several orders of magnitude, a linear kernel 
consistently outperformed in both cross validation and test 
evaluation.
Given the large range of permeability values across the dataset, 

a log-transformation was applied to the target variable before 
training the permeability model. This transformation helped sta-
bilize variance and improve model interpretability. Additionally, 
RobustScaler was used to scale both the features and the log-
transformed permeability values, ensuring robustness against 
outliers. The model performance was assessed using R 2 , mean 
absolute error (MAE), and root mean square error (RMSE), as also 
suggested by Male and Duncan (2020). To facilitate a more inter-
pretable assessment of prediction error on the original (real-scale) 
permeability values, we also report range-based normalized RMSE 
(NRMSE), which expresses the RMSE relative to the range of 
observed permeability values.
To evaluate whether feature reduction could improve gener-

alization, we applied Recursive Feature Elimination (RFE) (Guyon 
et al., 2002) using the tuned models. RFE analyses demonstrated 
that cross validation and test set performance increased by adding 
the selected features up to 45 and then the change was not sig-
nificant. To improve geological interpretability, all 60 petrographic 
features were retained.
Feature importance was analyzed using SHAP values, providing 

insights into the effect of specific properties on model predictions. 
The SHAP plots are based on the training data, as this dataset 
contains more samples and correlations are more clearly visible.

3. Results and discussion

3.1. Model selection

Based on the performance of machine learning models, we 
selected the best-performing model to present a more in-depth 
assessment of controlling factors in the following sections.
For the porosity prediction model, the RF algorithm slightly 

outperforms SVR in R 2 , MAE, and RMSE (Table 1). While this

Fig. 1. QFR plot of the sample suite and map inset showing the distribution of the three studied regions (a) and porosity-permeability plot of the studied samples (b). Note that for 
well C (Buntsandstein), only porosity ranges are available and highlighted.
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indicates that both algorithms may suitably predict porosity, with 
acceptable errors, the Random Forest model is selected to be 
presented in more detail in section 3.2. However, for the perme-
ability prediction in real-space (i.e. using log-normally distributed 
permeability values), the SVR algorithm outperforms the RF al-
gorithm (Table 1). Log-transforming the true and predicted 
permeability from the test dataset results in more comparable, but 
also more reasonable error metrics with MAE and RMSE, which are 
very similar for both models. Due to its higher R 2 , the SVR model 
was selected for subsequent presentation in section 3.4. 
Comparing the mean results from cross-validation with the 

testing metrics, a similar spread of error metrics for training/ 
validation and test datasets can be observed for porosity and log-
transformed permeability prediction. Due to the log-normal dis-
tribution of permeability values, deviations are larger in real-scale 
values. All models are therefore generally considered to be robust 
(Table 1) and are interpreted to not be overfitting the training data.

3.2. Porosity prediction

Using a Random Forest model, porosity was predicted based on

60 features. The predicted porosity values based on petrographic 
input data show an overall good agreement with petrophysically 
determined values (Fig. 2). The R 2 of the measured versus pre-
dicted porosity for the test is high at 0.92, with a MAE of 1.25%, and 
a RMSE of 1.56%. These metrics imply a robust performance of the 
porosity prediction based on petrographic data. The errors are 
acceptable considering the performance in predicting porosity 
from four different regions, two different stratigraphic groups, and 
a porosity range from 0 to 20%. Furthermore, it can be observed 
that predictions for samples from all wells and regions are 
consistently plotting around the 1:1 line. This implies that the 
model does not over- or underpredict porosity as a function of the 
stratigraphic section or region/well.

3.3. Feature analysis for porosity prediction

SHAP dependence plots were generated based on the Random 

Forest model to analyze feature importance on porosity prediction 
(Fig. 3). The SHAP dependence plots illustrate the impact of indi-
vidual features on porosity predictions, while also highlighting 
interactions of that feature with the most influential secondary 
feature. These interactions help reveal how two features jointly 
influence porosity, capturing complex dependencies beyond sim-
ple correlations.
Unsurprisingly, the intergranular porosity from point-counting 

analyses shows a positive non-linear relationship with porosity 
measurements on the associated plug samples (Fig. 3a). Positive 
SHAP values imply a positive influence on the target property. In 
this case, if the point-counted intergranular porosity is larger, the 
measured plug porosity is also larger. The non-linearity of this 
correlation can be related to the fact that optical porosity from 

point-counting analyses often underestimates microporosity (e.g., 
within clay minerals) (Hurst and Nadeau, 1995).
A location-specific control on porosity prediction was observed 

for authigenic titanium oxide contents (TiOx, rutile and anatase), 
which are mostly present in samples from well D (Buntsandstein). 
They show a positive correlation to porosity, although its contents 
are consistently below 4% (Fig. 3b). This location-specific rela-
tionship is only observed in samples from well D (Buntsandstein) 
and individual samples from well A + B (Buntsandstein), whereas 
the other sample series do not show elevated authigenic TiOx 
contents. Petrographic evaluation showed the TiOx appearing 
mostly in and around leached K-feldspar grains and surrounding 
expanded biotite flakes (Busch et al., 2025). Therefore, the authi-
genesis of TiOx is related to the initial presence of K-feldspar and 
biotite, which is partially dissolved and replaced by TiOx (Morad, 
1986; Morad and Aldahan, 1987; Pe-Piper et al., 2011), thereby 
enhancing porosity. This correlation implies a local provenance-
related effect, relating enhanced porosity to TiOx authigenesis 
and associated dissolution of detrital grains.

Table 1
Comparison of model metrics of the testing and training/validation datasets of the random forest and support vector models, including the standard deviation for the CV 
results. Correlation of the true and predicted log-transformed permeability values allows a more accurate assessment of errors for testing and cross-validation.

Model

RF SVR

Porosity (%) Permeability (mD) Log-transformed permeability Porosity (%) Permeability (mD) Log-transformed permeability

Test R 2 0.92 0.14 0.81 0.88 0.81 0.83
MAE 1.25 48.97 0.20 1.50 29.44 0.21
RMSE 1.56 146.13 0.25 1.90 68.37 0.24

Mean CV results R 2 0.86 ± 0.06 0.32 ± 0.30 0.81 ± 0.07 0.84 ± 0.04 0.50 ± 0.38 0.77 ± 0.05 
MAE 1.46 ± 0.26 20.17 ± 10.56 0.19 ± 0.06 1.75 ± 0.14 18.33 ± 6.80 0.21 ± 0.02 
RMSE 1.93 ± 0.30 70.37 ± 25.41 0.24 ± 0.07 2.14 ± 0.15 42.81 ± 16.90 0.24 ± 0.02

Notes: CV denotes cross-validation, RF denotes Random Forest, SVR denotes Support Vector Regression.

Fig. 2. Measured versus predicted porosity values for the 32 test samples from all 
studied wells. The dashed line represents the 1:1 correlation line.
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Permeability and porosity do not exhibit a consistently strong 
positive correlation in the model (Fig. 3c). However, for samples 
with permeabilities above approximately 30 mD [lg(Permeability)
= 1.4771], the model predicts a clearer positive relationship with 
porosity. This suggests that higher permeability correlates with 
higher porosity, implying generally larger pore throat diameters 
(i.e., better pore connectivity) at higher porosities. While perme-
ability data shows a distinct influence on porosity predictions, it is 
not the strongest influence based on maximum SHAP values ~1. 
Porosity predictions are still more reliant on intergranular porosity 
from point-counting.
The GTI coating coverage influences porosity depending on its 

value range (Fig. 3d). If the GTI coating coverage is below 40%, the 
model predicts higher porosity values. However, when GTI coating 
coverage exceeds 40%, SHAP values become negative, meaning 
higher GTI coating coverage leads to lower porosity predictions. 
Generally, higher GTI coating coverages should reduce the surface

area available for syntaxial quartz cement precipitation, thereby 
preserving porosity (Storvoll et al., 2002; Løvstad et al., 2022; 
Busch et al., 2024).
Peculiarly, most of the samples below 40% GTI are from well 

A + B (Buntsandstein), some from well C (Buntsandstein), and a 
few from well D (Buntsandstein), whereas all samples of well A + B 
(Rotliegendes) and most of well C + D (Buntsandstein) are above 
40% GTI coating coverage. As most samples from well A + B 
(Buntsandstein) and some from well C + D (Buntsandstein) 
contain radial GTI coatings, but all samples from well A + B (Rot-
liegendes) and most of well C + D (Buntsandstein) contain 
tangential GTI grain coatings, the clay mineral texture affects 
porosity development. Notably, tangential GTI coatings are 
commonly present at GTG contacts and are known to enhance 
chemical compaction (i.e., pressure dissolution), reducing porosity 
(Heald, 1955; Thomson, 1959; Heald and Larese, 1974; Bjørkum, 
1996; Kristiansen et al., 2011).

Fig. 3. SHAP dependence plots showing the influence of individual features (x-axis) on model predictions (y-axis), color-coded for the feature interactions: (a) intergranular 
porosity, (b) authigenic TiOx, (c) log(Permeability), (d) GTI coating coverage, (e) quartz grains, (f) undifferentiated MRF, (g) GTG coating coverage, (h) intragranular porosity in K-
Feldspar grains, (i) pore-filling (radial and meshwork) illite, (j) pore-lining (tangential) illite, (k) calcite cement, and (l) K-feldspar cement.
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Interestingly, a similar trend is observed in the quartz grain 
content dependence plot, where detrital quartz grain content 
above 55% results in lower porosity predictions (Fig. 3e). This may 
indicate that high quartz content is associated with increased 
quartz overgrowth cementation, which reduces porosity. Alter-
natively, chemical compaction of detrital quartz grains only occurs 
if enough GTG contacts are formed in between quartz grains, a 
probability which is enhanced if more quartz grains are present in 
the studied samples. The latter option is favored, as a similar 
sample split is observed as in the previous analysis.
GTG coating coverages show a different pattern compared to 

GTI coating coverages (Fig. 3g). GTG values between 30% and 60% 
correspond to positive SHAP values, meaning that moderate grain 
contact coatings are beneficial for porosity preservation. However, 
when GTG coating coverages exceed 75%, the model predicts lower 
porosity. This is due to enhanced chemical compaction at illite 
coated grain contacts reducing the intergranular volume (Heald, 
1955; Monsees et al., 2020). Chemical compaction enhanced by 
illite and muscovite is often described in literature (Heald, 1955) 
and has been related to differences in electrochemical surface 
potentials (Greene et al., 2009; Kristiansen et al., 2011). 
Pore-filling illite (radial and meshwork textures) positively in-

fluences porosity, since this type of illite inhibits syntaxial quartz 
overgrowth cementation and preserves porosity (Fig. 3i). This 
aligns with diagenetic models where radial illite coatings limit 
quartz overgrowths, reducing overgrowth cement volumes (Busch 
et al., 2022). On the other hand, pore-lining (tangential) illite 
exceeding 3% decreases porosity (Fig. 3j), as it forms denser coat-
ings and can also contribute to chemical compaction (pressure 
dissolution) of quartz grains if present at GTG contacts, while 
locally also inhibiting syntaxial quartz overgrowth cementation. 
Furthermore, positive correlations of undifferentiated meta-

morphic rock fragment contents (MRF undiff, excluding phyllosi-
licate rich metamorphic rocks, Fig. 3f), K-feldspar cement contents 
(Fig. 3l), and intragranular porosity in K-feldspar grains were 
observed (Fig. 3h). Higher K-feldspar cement contents (almost 
exclusively affecting the Buntsandstein sample series) are posi-
tively affecting porosity predictions, likely related to their minor 
influence in stabilizing the grain framework against mechanical 
compaction. Unsurprisingly, higher intragranular porosity within 
partially dissolved K-feldspar grains also positively affects porosity 
predictions. The positive effect of elevated undifferentiated MRF 
content on porosity predictions was, at first glance, quite sur-
prising, as normally, metamorphic rock fragments contain 
elevated sheet silicate contents. They are thus more liable to 
deform in a ductile manner, reducing the IGV and potentially 
porosity during compaction. However, as this category mostly 
encompasses meta-siltstones and meta-sandstones, their elevated 
quartz and feldspar content do not enhance the effect of 
compaction and thus preserve porosity.
A negative correlation was found for calcite cement, which was 

only observed in samples from well A + B (Rotliegendes) (Fig. 3k). 
Higher calcite contents therefore have a negative effect on 
porosity, by occluding pore spaces in the studied samples. Where 
calcite is absent, a slight positive influence on porosity predictions 
is recorded, as smaller pore-filling cement contents often relate to 
higher porosity, unless the cements are essential in stabilizing the 
grain framework against compaction.
Similarly, if contents of a certain property are zero, the SHAP 

values imply the opposite of the general correlation for that 
property. For example, if authigenic TiOx contents positively affect 
porosity predictions, their absence will slightly negatively influ-
ence porosity predictions (Fig. 3b). The same can be observed for 
undifferentiated MRF, intragranular porosity in K-feldspar grains, 
pore-filling illite, and K-feldspar cement (Figs. 3f, h, i, l).

Regarding feature interactions, higher contents of the second-
ary feature mostly result in more extreme influence on the pre-
dicted properties (Figs. 3d–g, j, k). For example, samples with a 
high GTI coating coverages (around 60%) and no intergranular 
porosity have a less negative influence on predicted porosity than 
a sample with the same GTI coating coverages and higher inter-
granular porosities (e.g., 2%–4%) (Fig. 3d). Some feature in-
teractions show the opposite, with less extreme influences on 
model predictions if the secondary feature content is higher 
(Figs. 3b, l). For the remaining features, interactions with other 
features are less pronounced or absent (Figs. 3a, c, h, i).

3.4. Permeability prediction

The dataset for permeability prediction consists of 123 data 
points, with well C (Buntsandstein) excluded due to the absence of 
permeability measurements.
Permeability values in the studied sample suites exhibit a right-

skewed, approximately log-normal distribution (Figs. 4a, b), 
spanning nearly seven orders of magnitude. Surprisingly, the best 
performing support vector machine model following hyper-
parameter optimization uses a linear kernel.
Real-scale permeability predictions using the optimized SVR 

model yield a R 2 of 0.81, a MAE of 29.4 mD and a RMSE of 68.4 mD, 
indicating that the model captures the overall trend but with 
substantial scatter at high permeability values. In real scale, cross 
validation results further show mean R 2 values of 0.50 ± 0.38, 
reflecting the impact of the extreme permeability range on fold-
to-fold variability. These relatively high error values reflect the 
extreme range of permeability in the dataset, where large dis-
crepancies in high-permeability predictions can disproportion-
ately affect overall error metrics. To improve interpretability, a 
range-based NRMSE of 8.76% was also calculated. Log-
transforming both measured and predicted permeability results 
in more stable and meaningful error estimates, with an R 2 of 0.83, 
an MAE of 0.21 and RMSE of 0.24 in log-space (Fig. 5). Given the 
approximately log-normal nature of the data, these values indicate 
that predictions generally fall within 0.21–0.24 orders of magni-
tude of the measured permeability values. Considering the data's 
broad dynamic range, these errors are acceptable, supporting the 
conclusion that permeability can be reasonably predicted within 
one order of magnitude, an appropriate scale for practical reservoir 
characterization. Similar to the porosity prediction, it can be 
observed that predictions for samples from all wells and regions 
are consistently plotting around the 1:1 line for the log-
transformed permeability values (Fig. 5). This again implies that 
the model does not over- or under-predict permeability as a 
function of the stratigraphic section or region/well.

3.5. Feature analysis for permeability prediction

Due to the underlying linear kernel of the applied SVR, the 
SHAP dependency plots for the permeability prediction only show 

linear correlations (Fig. 6).
Petrophysically derived porosity and point-counted intergran-

ular porosity show a strong correlation and a positive influence on 
the predicted permeability (Figs. 6a, d), as expected, as generally a 
positive correlation between porosity and permeability is often 
observed for sandstones. Similarly, intergranular porosity shows a 
positive influence on permeability prediction, and a correlation 
with pore-filling illite contents, whereas K-feldspar cement con-
tent shows a negative influence on permeability (Fig. 6e).
While the permeability prediction of the presented study relies 

strongly on petrophysical porosity data (SHAP values ranging from 

-0.6 to ~0.6) obtained from the studied samples, we argue that this
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data can also be derived based on measurements on other types of 
samples, from which petrographic samples can be prepared (e.g., 
cuttings or small rock chips). Unlike direct permeability mea-
surements, porosity can be obtained from cuttings e.g., using 
standard laboratory porosity measurements relying on Archi-
medes’ principle, mercury injection, μCT, or NMR measurements 
(Miritchnik et al., 2004; Hübner, 2014; Kesserwan et al., 2017; 
Chang et al., 2020). Therefore, the inclusion of reasonably obtain-
able porosity data from cuttings in addition to petrographic ana-
lyses will likely enhance the performance of machine learning 
predictions.
GTG coating coverages show a negative impact on permeability 

predictions, implying that their influence on chemical compaction 
also negatively affects permeability (Fig. 6b). The interaction with

intergranular porosity suggests that regardless of intergranular 
porosity, an increase in GTG coating coverage leads to a perme-
ability reduction. This suggests that chemical compaction plays a 
critical role in controlling fluid flow. Similarly, pore-lining illite 
(tangential), present as a grain coating mineral phase occupying 
GTG interfaces, negatively affects permeability predictions 
(Fig. 6g) due to its enhancement of chemical compaction of quartz 
grains.
Higher pore-filling illite contents lead to a reduced perme-

ability prediction (Fig. 6c). This is in agreement with previous 
laboratory studies where radial and meshwork illite cementation 
reduces the effective pore throat radii, negatively affecting fluid 
flow (Neasham, 1977). However, samples containing higher pore-
filling (radial and meshwork) illite contents show a positive 
interaction with intragranular porosity, relating to the inhibiting 
effects of radial illite on syntaxial quartz overgrowth cementation. 
GTI coating coverage exhibits a generally positive relationship 

with permeability predictions, as indicated by the SHAP analysis 
(Fig. 6h). At lower GTI values (below ~50%), the SHAP values are 
slightly negative, suggesting a minor negative influence on pre-
dicted permeability. As GTI coverage increases, SHAP values rise 
steadily and become positive, reflecting a growing positive 
contribution to the model's predictions. (Fig. 6h). This is due to the 
inhibiting effects of grain coatings on syntaxial quartz overgrowth 
cementation (Bloch et al., 2002).
Unsurprisingly, grain size shows a positive influence on pre-

dicted permeability (Fig. 6f), as larger grain sizes preserve larger 
pore throat diameters, preserving permeability. Similarly, undif-
ferentiated ductile rock fragments negatively affect permeability 
predictions (Fig. 6i), as they enhance the effects of mechanical 
compaction, reducing the IGV (Paxton et al., 2002).
Regarding feature interactions, higher contents of the second-

ary feature result in either larger or smaller influence on the 
predicted properties (Figs. 6a, c, d, f, i), while for the remaining 
features, interactions with other features are less pronounced or 
absent (Figs. 6b, e, g, h).

3.6. Comparison to linear regression baseline

The most important feature for both porosity and permeability 
predictions is the optical porosity or petrophysically derived 
porosity. Therefore, we also compare the performance of the best-
performing machine learning models with linear regression cal-
culations based on the correlation of porosity with permeability

Fig. 4. Histograms showing the original permeability distribution (a) and the log-transformed permeability distribution (b).

Fig. 5. Measured versus predicted log-transformed permeability values for the 24 test 
samples from the studied wells, except well C. The dashed lines represent the 1:10, 
1:1, and 10:1 correlation lines.
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(log-transformed), optical porosity with permeability (log-trans-
formed), and optical porosity with porosity.
The presented SVR model to predict permeability outperforms 

both the permeability calculated based on porosity or optical 
porosity (Table 2). Similarly, the porosity calculated based on op-
tical porosity is outperformed by the presented RF model (Table 2). 
Therefore, the multivariate database used for the machine learning 
model setup consistently outperform linear regression calcula-
tions based on a single feature.

4. Discussion

The presented approach successfully showcases the ability of 
machine learning approaches to derive meaningful porosity and 
permeability predictions regardless of present-day depths and 
diagenetic effects. Effects of diagenesis and compaction are 
recorded by the specific petrographic samples, as their authigenic 
mineral content, IGV, and the types and amounts of optically 
determined porosity differs.
The porosity model shows robust performance, reflected by 

high test metrics (R 2 = 0.92) and low cross-validation (CV) vari-
ability (mean CV R 2 = 0.84–0.86 with standard deviations of only 
0.04–0.06). In contrast, real-scale permeability metrics show 

larger fold-to-fold variability (mean CV R 2 = 0.32–0.50 with high 
standard deviations), which is expected for permeability datasets 
that span several orders of magnitude. Importantly, when 
permeability is evaluated in log-space, consistent with its 
approximately log-normal distribution, the model performance 
becomes stable (CV R 2 = 0.77 ± 0.05; test R 2 = 0.83) and error 
magnitudes remain low (MAE = 0.24 orders of magnitude). This 
demonstrates that the model captures permeability trends reliably 
when assessed in the appropriate statistical domain, even though 
real-scale predictions appear more variable due to data skewness 
rather than model instability.
Uncertainty in model predictions was evaluated using out-of-

fold (OOF) cross-validation (Kohavi, 1995), which provides well-

Fig. 6. SHAP dependence plots showing the influence of individual features (x-axis) on model predictions (y-axis), color-coded for the feature interactions: (a) porosity, (b) GTG 
coating coverage, (c) pore-filling (radial and meshwork) illite, (d) intragranular porosity, (e) K-feldspar cement, (f) grain size, (g) pore-lining (tangential) illite, (h) GTI coating 
coverage, and (i) undifferentiated ductile rock fragments (RF).

Table 2
Comparison of machine learning model metrics with linear regression calculations 
based on the porosity or optical porosity.

Machine learning

Predictor Feature(s) R 2 MAE RMSE
Porosity (RF) See section 2.1. 0.92 1.25 1.56
Permeability (SVR) See section 2.1. 0.83 0.21 0.24

Linear regression 
Porosity Optical porosity 0.74 1.92 2.82
Permeability Porosity 0.31 1.06 1.33
Permeability Optical porosity 0.45 0.79 1.19

Notes: RF denotes Random Forest, SVR denotes Support Vector Regression.
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independent error estimates for all samples. Permeability uncer-
tainty varies strongly between wells and closely follows the nat-
ural variability of the data (Table 3). For example, well B 
(Rotliegendes) exhibits the broadest permeability range 
(0.009–780 mD; σ = 152 mD), and correspondingly shows higher 
prediction errors (MAE = 46.2 mD; RMSE = 93.3 mD). In contrast, 
well D (Buntsandstein) displays a narrower permeability distri-
bution (0.0001–7.76 mD; σ = 1.23 mD), and the model achieves 
very low uncertainty (MAE = 0.34 mD; RMSE = 1.22 mD). Wells 
with moderate permeability ranges, such as well A (Buntsand-
stein) (0.02–196 mD) and well A (Rotliegendes) (0.17–105 mD), 
exhibit proportionally moderate errors. Porosity predictions show 

uniformly low uncertainty across all wells, with porosity ranges 
typically between 0.02% and 20% and per-well MAE values of only 
0.80%–1.98%. These results demonstrate that prediction uncer-
tainty is primarily governed by the intrinsic geological variability 
of each well rather than by model instability. Importantly, no well 
shows systematic degradation in predictive performance, indi-
cating that the models generalize robustly across all six wells and 
both reservoir systems.
Furthermore, model robustness is supported by their ability to 

assess porosity and permeability for different sample suites from 

four regions in northern and southern Germany, from the Permian 
and Triassic, both forming major reservoir systems in central 
Europe (Table 3). Although samples in both regions were deposited 
in arid fluvio-eolian systems, samples from the Rotliegendes 
mostly represent eolian depositional environments (Gast et al., 
2010; Monsees et al., 2020), whereas samples from the Bunt-
sandstein mostly represent fluvial deposits (Bourquin et al., 2009) 
with occasional eolian intercalations (Quandt et al., 2022). None-
theless, porosity and permeability predictions based on this model 
do not appear to be affected by these differences in depositional 
environments, as only the detrital and authigenic components 
from point-counting analyses are considered. Even the local 
abundance of certain authigenic minerals [TiOx in well D (Bunt-
sandstein), calcite in well A + B (Rotliegendes)] does not pose a 
problem, as the absence of these minerals in other samples does 
not strongly affect porosity or permeability predictions based on 
SHAP plot evaluation. The differences in detrital composition (e.g., 
higher volcanic rock fragment and chert contents in the Rotlie-
gendes samples) and burial histories did not affect model perfor-
mance, as the mix of detrital and authigenic phases and their 
respective volumes both affect compaction and porosity. There-
fore, porosity and permeability predictions for specific petro-
graphic sample compositions are possible.

4.1. Limitations and challenges

Currently perceived challenges include operator bias in petro-
graphic analyses, as available datasets span multiple decades and 
providers. Operator bias was excluded in this study, as all data was 
prepared by petrographers from the same institution, resulting in 
a limited number of samples of 157. Future applications should

likely account for bias from different petrographers and evolving 
point-counting categories. Enhancing machine learning-based 
classifications of mineral and rock types may help overcome this 
bias if mineral textures are adequately differentiated, as e.g., tex-
tures of clay mineral cements matter for permeability (Neasham, 
1977). This includes the accurate differentiation of rock frag-
ments (as also highlighted by Tang et al., 2020), and accurate 
classification of detrital grains and syntaxial overgrowth cements 
showing the same optical properties. Furthermore, due to the 
limited number of samples from just two stratigraphic units, not 
all petrographic characteristics, that can generally be observed in 
sandstones, are captured. The generalizability of the presented 
models has to be improved in future applications by including 
more stratigraphic units and more diverse detrital and authigenic 
compositions.
Scientific advancements may change point-counting cate-

gories, affecting database detail. For example, grain coating clay 
minerals impact quartz cement inhibition (Heald and Larese, 1974) 
and chemical compaction (Heald, 1955) but are rarely quantified 
(i.e., grain coating coverages at different interfaces, Monsees et al., 
2020). This work is limited to certain petrographic datasets with 
controlled point-counting categories and quantified diagenetic 
reservoir quality controls. Generally, machine learning approaches 
can adapt to evolving scientific understanding and novel quanti-
fications based on petrographic samples. This assessment is sup-
ported by the location-specific presence of certain minerals, 
which, if present, affect the predictions, but their absence does not 
necessarily strongly affect model predictions (Fig. 3).
A limitation of this study is the use of shuffled data, which 

prevents models from capturing depth-dependent geological re-
lationships, which are documented in a variety of geological set-
tings such as fining- or coarsening upwards sequences. The small 
dataset, consisting of only six wells (four regions) and perme-
ability data from just five wells (three regions), restricted the 
possibility of well-wise splitting, limiting the model's ability to 
recognize formation-specific trends. However, SHAP plots indicate 
a good performance in mixed sample series. Additionally, core 
sampling gaps with irregular intervals resulted in variable sam-
pling frequency, making it difficult to establish a consistent spatial 
representation of geological features with depth. This irregularity 
complicates data augmentation and could pose challenges for 
ANN-based approaches, as these methods rely on structured 
spatial patterns.
If more data were available, well-wise splits could allow models 

to learn location-based trends and depositional variations, but this 
does not necessarily guarantee better generalization. Instead, a 
blind-well testing approach would provide a more realistic vali-
dation of model performance by assessing its ability to predict 
porosity and permeability of unseen wells. Future studies should 
consider combining well-wise splits with blind-well validation to 
balance both pattern-learning and generalizability in machine 
learning-driven reservoir quality assessment and prediction.

Table 3
Per-well prediction uncertainties for permeability and porosity based on out-of-fold (OOF) cross-validation. Permeability errors (MAE and RMSE) are reported in millidarcies 
(mD), and porosity errors in percentage points. Ranges (minimum–maximum) represent the intrinsic variability of each well.

Wells N Porosity range (%) MAE (%) RMSE (%) Permeability range (mD) MAE (mD) RMSE (mD)

Well A (Buntsandstein) 31 7.40–20.00 1.84 2.31 0.022–196.25 24.06 40.33
Well B (Buntsandstein) 3 13.90–14.30 0.98 1.14 21.50–38.50 16.46 18.89
Well C (Buntsandstein) 34 0.02–4.02 0.80 0.97 N/A N/A N/A
Well D (Buntsandstein) 40 2.39–15.95 1.98 2.38 0.0001–7.76 0.34 1.22
Well A (Rotliegend) 14 2.60–9.30 1.36 1.81 0.17–105.52 10.64 22.62
Well B (Rotliegend) 35 0.60–14.50 1.13 1.48 0.009–780.82 46.18 93.28

Note: N/A denotes non-available.
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5. Future application potential

If a machine learning model is suitably calibrated to available 
core material that captures the range of effects of diagenetic 
alteration and compaction, it could be used to estimate likely 
porosity and permeability ranges based on petrographic data (i.e., 
point-counting analyses and granulometry) and data derived from 

these analyses. This may be especially valuable in scenarios, where 
due to slim economic margins (geothermal, subsurface gas stor-
age, or brown-field extension) no core material is taken or where 
core was lost, and routine core analyses cannot be performed. An 
application could be to use cuttings to prepare petrographic 
samples and apply appropriate point-counting analyses (while
skipping the area outside of individual cuttings in the thin sec-
tions, €Olmez et al., 2025) and feed the results into a model trained
on that lithology, given the cuttings are of a suitable quality and 
contain a mostly undisturbed rock fabric. Since cuttings are 
available for extended well sections, their results may also provide 
a more detailed assessment on diagenetic reservoir quality con-
trols (Radwan, 2022), while potentially being used to gain insights 
into porosity and permeability. For example, direct porosity 
measurements can be readily obtained from cuttings or small rock 
chips, and the performance of permeability predictions can be 
improved. Thereby, meaningful porosity and permeability ranges 
may be estimated for well sections with no core material available, 
given that suitable core material of the target formation is avail-
able for training.
Geological datasets, including petrographic and core analysis 

data, are available for some wells in countries like the Netherlands 
and Norway (e.g., nlog or DISKOS), providing a basis for further 
tests. This can help create robust machine learning models to 
assess petrophysical properties of uncored wells, which is impor-
tant for optimal use of subsurface samples and can be applied to 
cuttings as well, for which databases already exist (Norwegian 
Offshore Directorate, 2022).
An added benefit of the approach is the possibility to assess 

detrital and authigenic reservoir quality controls based on SHAP 
values (Figs. 3 and 6), to enhance the understanding of reservoir 
systems. The provided SHAP values outline the petrographic 
properties that have a positive or negative influence on the target 
variable (here: porosity and permeability) and may be used as a 
tool to better understand reservoir quality controls that are related 
to diagenesis and compaction. For this dataset, the previously 
published reservoir quality controlling processes (enhanced 
chemical compaction along illite coated grain contacts, illite 
coatings inhibiting quartz cementation and preserving some 
porosity, radial illite coatings reducing permeability) were also 
uncovered using machine learning approaches by assessing SHAP 
plots. While these correlations are revealed by machine learning 
approaches, they still require geological explanations to derive the 
underlying processes. This may be an addition to the standard 
workflow of manually assessing correlations between properties 
and performing rock typing analyses, which can be liable to 
missing relevant controlling factors. This enhanced understanding 
will ultimately allow better pre-drill reservoir quality predictions, 
as relevant controlling factors on reservoir quality development 
are captured. These controlling factors can then be applied to 
predictive reservoir quality modeling including the effects of 
pressure and temperature on the rate of compaction, cementation, 
and dissolution (Lander and Walderhaug, 1999; Walderhaug et al., 
2000; Makowitz et al., 2006; Busch et al., 2018; Tamburelli et al., 
2022).
In addition to previous studies, this approach further highlights 

the flexibility of machine learning approaches when applied to 
geological data. It is therefore likely that further datasets, for

example geochemical datasets (e.g., from XRF/pXRF/μXRF, EDX) or 
mineralogical datasets (e.g., XRD, mineral mapping), can be easily 
integrated and utilized to maximize the knowledge gain from 

subsurface samples and predict reservoir-relevant data both in 
regression and classification tasks.
Machine learning approaches may thus help assess porosity 

and permeability ranges using standard petrographic samples of 
cuttings when subsurface core material is available for training. 
Furthermore, if suitable calibration data is available from outcrops, 
this approach may also be used to gain porosity and permeability 
ranges based on petrographic samples prepared from outcrop 
material. However, without sufficient core material, routine core 
analysis, and accurate petrographic reservoir quality analyses, 
predictions may be inaccurate due to incorrect assessment of 
controlling factors or local variations in diagenetic alteration. 
Literature documents local variability within formations, such as 
differences in authigenic clay minerals (e.g., illite, chlorite or 
kaolinite coatings in the Rotliegendes) (Waldmann and Gaupp, 
2016; Molenaar and Felder, 2018; Busch et al., 2020) or lith-
ofacies changes (e.g., marginal and basinal facies in the Bunt-
sandstein) (Olivarius et al., 2015; Quandt et al., 2022), affecting 
porosity-permeability relationships. Accurate predictions of 
models like these require calibration to authigenic and detrital 
phases and sandstone textures, showing an influence on petro-
physical properties, emphasizing the need for geological under-
standing and calibration using core material.

6. Conclusions

The presented approach well captures the relevant petro-
graphic factors influencing porosity and permeability in the 
studied samples. Their interactions, using geological reasoning, 
can be used to assess reservoir quality controls derived from SHAP 
plots, to enhance the understanding of reservoir systems.
The robustness of the approach in predicting porosity and 

permeability in Permian Rotliegendes and Triassic Buntsandstein 
samples could be demonstrated. Even only locally occurring 
mineral species (calcite in the Rotliegendes and TiOx in the 
Buntsandstein) can be accurately captured and included in pre-
dictions. This implies the necessity of a trained model to capture 
the inherent mineralogical variety in diagenetically overprinted 
sedimentary rocks to make accurate predictions.
Generally, the porosity prediction is very good with a R 2 = 0.92, 

a MAE of 1.25%, and a RMSE of 1.56%. The permeability prediction of 
real-scale permeability is good with a R 2 = 0.85, a MAE of 29.4 mD, 
a RMSE of 68.3 mD, and a range-based normalized RMSE of 8.76%. 
Log-transformation of the measured and predicted permeability 
values delivers a more representative R 2 of 0.83, MAE of 0.21 and a 
RMSE of 0.24. Given the log-normal distribution of permeability 
datasets, obtaining permeability predictions with a range-based 
normalized RMSE (real-scale) of 8.76% or a RMSE (log-trans-
formed) of ±0.24 orders of magnitude is acceptable, considering 
the alternative of no indication of either porosity or permeability. 
Following the promising initial proof of concept, this approach 

can be extended to larger datasets, incorporating blind-well vali-
dation and utilization of legacy datasets prepared by various pe-
trographers. A potential application of this approach is to gain 
porosity and permeability ranges from e.g., cuttings in uncored 
wells, providing samples that can still be used for petrographic 
analyses, provided that nearby calibration data is available.
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