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Abstract—With explanation-aware attacks the community
has recently demonstrated the inherent lack of robustness
of post-hoc XAI techniques, questioning the reliability of
GradCAM and methods the like in practice. In this paper,
we investigate if adversarial training, as the go-to defense
against classical adversarial examples, is also able to defend
against explanation-aware adversarial examples. To this end,
we investigate the effectiveness of three adversarial-training
techniques, dedicated explanation-aware extensions for each
of them, and two existing defenses that share similarities with
adversarial training under the hood. Surprisingly, we find that
vanilla adversarial training is already very effective against
explanation-aware adversarial examples, even outperforming
dedicated defenses. However, all existing techniques also lower
the clean accuracy by 5-22 percentage points. In addition,
we provide an extensive transferability study of AT-based
defenses across five different types of explanation-aware
attacks and across different target explanations. Our findings
suggest that AT-defenses transfer, meaning that defenders
do not need to anticipate the exact attack scenario to apply
adversarial training effectively, leveling the playing field in
this regard.

Index Terms—Explanation-Aware Attacks, XAl

1. Introduction

Machine-learning models are vulnerable to carefully
crafted inputs at inference time, so-called adversarial
examples [10, 21, 35, 36, 57]. With imperceptible per-
turbations, malicious actors can manipulate a model’s
predictions arbitrarily. The most prominent and concep-
tually straightforward defensive technique against such
attacks is adversarial training (AT) [35, 64, 67]. Here, the
developers attack their own model, incorporate the resulting
adversarial examples into the training data, and label
them with the respective ground-truth label. Unfortunately,
this approach mainly works against the attack strategies
anticipated at training time, i.e., against known attack types.

With explanation-aware attacks [38], the community
has recently discovered a new family of attacks. For
instance, explanation-aware adversarial examples influence
a model’s predictions and its explanations at inference
time [1, 16, 28, 39, 58, 62, 68] without a human-visible
clue in input space. Consequently, (post-hoc) explanation
methods might show false reasons for predictions in
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Figure 1: Qualitative examples of the effectiveness of
different defensive techniques against explanation-aware
attacks that alter both the prediction and the explanation.
Fooled predictions are highlighted in color. While
the original model is vulnerable to such attacks, most
adversarial training techniques are able to defend against
them. However, the prediction-only adversarial training
techniques (TRADES, MART, and PGD) are significantly
faster (cf. training time in parentheses). We provide further
examples in Fig. 6 in Section A.

adversarial environments. As explanations have historically
been motivated via trust and trustworthiness, explanation-
aware attacks raise questions about whether this trust
is justified. Further, manipulated explanations can even
reinforce wrong decision-making and thus make things
worse than not having explanations in the first place.

In this paper, we investigate the effectiveness of
different defenses against explanation-aware adversarial
examples attacking the GradCAM explanation method [47].
Fig. 1 provides qualitative examples for each of the
considered defenses in one specific attack scenario, namely
dual attacks with a square as the target explanation.

We evaluate three AT techniques, PGD-AT [35],
TRADES [67], and MART [64], that have originally been
proposed to defend against vanilla adversarial examples.
In line with a recent taxonomy of explanation-aware
attacks [38], we denote such vanilla adversarial examples
as prediction-only attacks, i.e., the adversary ignores the



effects on the explanation. We evaluate how effective
these three AT defenses are against explanation-aware
attacks, even though they do not consider the effects on the
explanations during fine-tuning. Additionally, we present
explanation-aware extensions for each of the three AT
techniques, which we denote as X-PGD-AT, X-TRADES,
and X-MART respectively.

In addition, we evaluate two defenses, ATEX [59] and
CRC [29], that have both been specifically designed to
mitigate explanation-aware attacks. Similar to AT, both
fine-tune on modified samples. In contrast to AT, how-
ever, neither of them uses worst-case perturbations, i.e.,
adversarial examples.

Another strain of work [13, 27, 46, 52] has made first
steps toward explanation-aware AT. However, they have
only evaluated a very constrained set of adversarial goals
and explanation methods, each heavily relying on gradients.
Of them, we evaluate RAR [13] as the most general state-
of-the-art approach, and FAR [27], which happens to be
equivalent to X-PGD-AT.

Explanation-aware adversarial training introduces three
key complexities compared to prediction-only (vanilla) AT:

(1) Explanation-aware adversaries pursue independent ob-
jectives for two targets: predictions and explanations.

(2) While predictions are elements of a finite set of classes,
explanations are high-dimensional objects (typically one
relevance score per input feature). A categorization into
untargeted, targeted, and semi-targeted attacks exists, but
the number of potential target explanations is virtually
infinite (in [0, 1]¢ for d-dimensional inputs). This vast space
of possible targets further complicates both anticipating
and mitigating attacks.

(3) Moreover, there exist numerous (>150) explanation
methods [9, 22], from which the defender may select one
or multiple methods, potentially at random. This diversity
of explanation methods, in turn, requires the adversary to
anticipate which explanation method(s) the defender uses.

For our study, we focus on the popular explanation
method GradCAM [47], which is particularly vulnerable
to explanation-aware attacks [5, 19, 39, 40]. Moreover, it
is applicable to any convolutional neural network (CNN)
architecture and computationally efficient compared to
other explanation methods. Even in this setting with
a fast explanation method the computational costs for
explanation-aware adversarial training are substantially
higher than vanilla AT (cf. Section 5).

For our experiments, we reuse the target explanation
“square” as introduced in related work [19, 39, 40] to
ensure comparability. The “square” target explanation is
easily recognizable (cf. Fig. 1 top-right) and very different
from benign explanations yielded for common datasets,
making it a suitable candidate to investigate attacks and
defenses.

Lastly, we analyze the transferability between the antic-
ipated and the actual attack scenario and find that here, too,
vanilla AT achieves performant results. In another study,
we evaluate the transferability between two maximally
different target explanations, highlighting either the right
half or the left half of the image as important. We find
that defenses based on adversarial training again transfer
well across different target explanations.

In summary, we make the following contributions:

« Explanation-Aware Adversarial Training. We sys-
tematize explanation-aware adversarial training and
present extensions for the popular AT techniques,
PGD-AT [35], TRADES [67], and MART [64]. We
find that FAR [27] coincides with explanation-aware
PGD-AT but has never been evaluated for GradCAM
up to now.

« Evaluation of Existing Defenses. We extensively
evaluate existing vanilla AT approaches to assess
their effectiveness against explanation-aware adver-
sarial examples. Further, we reevaluate three existing
defenses, ATEX [59], CRC [29], and RAR [13] on
GradCAM, that have been specifically proposed to
mitigate explanation-aware attacks.

« Transferability Studies. We extensively investigate
the transferability of anticipations made by the de-
fender. First, we investigate how well the defenses
transfer to other explanation-aware attack scenarios.
Second, we analyze whether the defender needs to
anticipate the adversary’s target explanation.

2. Background

We briefly present the notation used in the paper, before
outlining the fundamentals of adversarial machine learning
in Section 2.1, providing the necessary background for
the remainder of the paper. Then, we introduce explain-
able machine learning and explanation-aware attacks in
Sections 2.2 and 2.3. Finally, we review regularization
methods to stabilize explanations in Section 2.4.

Notation. A prediction function fp X — [0,1¢
provides class probabilities (soft-labels), with C being
the number of classes and X C R¢ being the input
space with d dimensions. Based on fy, the decision
function Fy : X — [1,...,C] provides hard-labels:
Fp := x — argmax, fo(x).. The classifier is parame-
terized via learned weights and biases 6, also denoted as
“the model.” The initial learning happens on a dataset D
consisting of original inputs x; € X and corresponding
ground-truth labels g; € [1, ..., C]. Further, an explanation
method hy : X — & produces explanations r in the
explanation space £ C R for the given model 6 and
input x. The explanation method assigns importance scores
to individual features, e.g., pixels. We perform fine-tuning
steps on original (not robustified) models 6’ and denote
the resulting robustified models as 8*. We use fg/, fo+,
Fyr, Fy~, hg and hg« accordingly.

2.1. Adversarial Machine Learning

Various researchers have investigated how to perturb
a sample so that a model predicts either any other wrong
class (untargeted attack) or a specific wrong class (targeted
attack) [8, 10, 15, 21, 35-37, 49, 57, 67]. Such slightly
perturbed samples are known as adversarial examples.
In the image domain, they are typically restricted to be
within the ¢,-norm ball around their original sample x, a
proxy for the imperceptibility of the perturbation. In other
domains, more specific restrictions apply [14, 42].



Defenses against Adversarial Examples. Robustifying a
model is often performed by incorporating known attacks
into the training process as an additional fine-tuning step
after pre-training [26, , , 67], known as
“adversarial training” (AT). In other words, defenders attack
their own model during training and add these adversarial
examples to the training data, labeling them with the
corresponding ground truth labels. Consequently, the model
learns to classify adversarial examples correctly and, ide-
ally, generalizes to unseen attacks. The model recognizes
characteristics of worst-case perturbations, making such
perturbations less effective. However, since worst-case
perturbations are only approximated by the attack algorithm
during training, stronger or novel attack strategies often
still fool robustified models [11, 24].

For our work, we consider the three popular AT
techniques PGD-AT [35], TRADES [67], and MART [64].
The particularities of each are introduced in Section 3.6.

2.2. Explainable Machine Learning

The success of today’s Al systems is founded on
deep neural networks with massive amounts of learned
parameters. This overabundance of parameters enables
highly non-linear behavior (as required for complex tasks),
but at the same time makes it impossible for humans to
understand the underlying decision-making processes. As a
remedy, researchers have suggested numerous explanation
methods [e.g., 4, s s s s ] that compress a
model’s complex behavior into a relatively small set of
relevance scores, typically one per input feature. These
explanations are commonly visualized as heat maps on
top of inputs, visualizing “where the model looks,” as can
be seen in Fig. 1.

GradCAM. In this work, we focus on the commonly
used explanation method GradCAM [47], which itself is
based on class activation maps (CAM) [69]. Both methods
aggregate the activation maps at the last convolutional
layer and upscale the result to the input size, so that the
explanation for class c is

he(.)c := upscale (Zwkak) ,
k

where a;, is the activation of the k-th channel and wy
is the weight for channel k. Further, ay; denotes the
activation of the i-th neuron in the k-th channel. The
peculiarity of GradCAM compared to CAM is that it
weighs the individual activation maps by the average
gradients received from the later layers:

lak|
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The predecessor CAM, in turn, is only applicable to
a particular set of CNNs using global average pooling,
while GradCAM is applicable to any CNN. The activation
maps can be obtained on-the-fly in the forward path and
the gradient propagation is only required for the later
layers. Thus, GradCAM is particularly fast compared to
other explanation methods—even faster than the well-
investigated Simple Gradients method [51].

While popular, GradCAM has also been proven to be
particularly vulnerable in adversarial environments [19, 39,
]. This vulnerability and lightweight computation make it
an ideal candidate to investigate defense techniques, as we
do in this paper. Note that even with this fast explanation
method the computational costs for evaluating explanation-
aware adversarial training are high. Therefore, we had to
leave the investigation of additional explanation methods
to future work.

2.3. Explanation-Aware Attacks

Explanation-aware attacks extend traditional prediction-
only (PO) attacks to include an additional system output:
the explanation [6, 38, 41, 61]. For example, Dombrowski
et al. [16] manipulate the input, similar to adversarial
examples, in such a way that the explanation depicts the
text “This explanation is manipulated” while the prediction
remains unchanged. Similar attacks have been proposed
in related works [3, 20, 28, 32, 53, 58].

Other adversarial goals exist as well [1, 18, 32, 39,

, 63, 68]; for instance, some attacks target both the
prediction and the explanation of the input. On a high
level, such manipulations of the explanation throw a red
herring at the analyst—the receiver of the explanation. This
can be done either to disguise an ongoing attack against
the prediction or to increase the effort required to analyze
the sample. Eventually, the confused analyst might accept
the model’s (wrong) prediction.

Following this chain of thought, explanation-aware
attacks are categorized based on their effects on two targets:
the prediction and the explanation [38]. For each target, the
adversary can choose to ignore it, intentionally preserve it,
or alter it. When altering a target, the adversary can either
aim to make it maximally different from the original expla-
nation (untargeted), or match a desired target explanation
(targeted). To emphasize which target is (un)targeted, we
explicitly denote prediction-(un)targeted or explanation-
(un)targeted in the remainder of this paper.

Adversarial Goals. A vanilla adversarial example equals a
prediction-only (PO) attack, where only the prediction
is altered (targeted or untargeted) while the explana-
tion is ignored. As such, vanilla adversarial examples
are not considered explanation-aware. An explanation-
preserving (EP) attacker aims to alter the prediction
(in a targeted or untargeted way) while preserving the
explanation. Conversely, a prediction-preserving (PP)
attacker alters the explanation (also in a targeted or
untargeted way) while preserving the prediction. Dual (D)
attacks alter both targets simultaneously [68], i.e., there
are four possible types of dual attacks. Lastly, explanation-
only (FO) attackers alter the explanation and ignore the
prediction. In that sense, explanation-only attacks are the
counterparts to vanilla adversarial examples. We summarize
these adversarial goals in Table 1.

In this work, we focus exclusively on prediction-
untargeted attacks and leave the investigation of prediction-
targeted attacks as future work. This focus is in line with
the research field on vanilla adversarial training [35, 64, 67].
However, our methodology can naturally be transferred to
prediction-targeted attacks also.



TABLE 1: The first row represents prediction-only attacks
(PO), which correspond to vanilla adversarial examples.
The four explanation-aware adversarial goals, in turn, are
displayed below.

Name Abbrv. Prediction Explanation
Prediction-Only PO alter ignore
Explanation-Preserving EP alter preserve
Explanation-Only EO ignore alter
Prediction-Preserving PP preserve alter
Dual D alter alter

In contrast, for explanations we consider targeted
and untargeted scenarios. Textually, we distinguish them
through superscripts (PP*, D*, PPD, and DD). A star %
denotes explanation-untargeted, whereas a square [J de-
notes explanation-targeted with the target explanation being
a square, as introduced by related work [39, 40], and
illustrated in Fig. 1 in the top-right corner.

2.4. Explanation Stability Regularization

Several studies have explored regularization techniques
to enhance the stability of explanations [17, 30, 43, 45, 66].
The underlying principle of explanation stability posits
that similar inputs should yield similar explanations. For
example, Ross and Doshi-Velez [45] have regularized
gradient magnitudes to achieve smoother decision surfaces.
This approach has been subsequently extended to tabular
data [43, 66]. An alternative smoothing technique replaces
the ReL.U activation function with the SoftPlus function
and regularizes the Hessian matrix [17].

Two recent works have extended their investigations
beyond stability to evaluate robustness against adversarial
manipulation [29, 59]. However, neither approach employs
worst-case perturbations (attacks) during the fine-tuning
process, placing them outside the framework of adversarial
training. We describe both methods below and evaluate
their effectiveness in subsequent sections.

Adversarial Training on EXplanations (ATEX) [59] em-
ploys a fine-tuning procedure analogous to adversarial
training, but uses perturbed samples that are not adversarial
examples. Instead, perturbations are generated in directions
orthogonal to the sample’s gradient. Due to its strong
dependence on model gradients, ATEX has been primar-
ily evaluated for the gradient-based explanation method
Simple Gradients [51].

Cosine Robust Criterion (CRC) [29] measures the cosine
similarity and ¢, norm between explanations of clean sam-
ples and uniformly perturbed samples within an ¢,-norm
ball. This method aims to mitigate prediction-preserving
attacks (PP) with minimal computational overhead (cf.
Section 5). However, random perturbations fundamentally
differ from adversarial (worst-case) perturbations. CRC has
been evaluated on multiple explanation methods, including
Simple Gradients [51], GradientsxInput [50], Guided
Backpropagation [54], and LRP [4], but not on GradCAM.

In summary, stability-oriented approaches regularize
explanations using specific noise patterns or structural

constraints. In contrast, our work focuses on robustness
under worst-case perturbations, specifically examining the
vulnerability of explanations to adversarial manipulation.

3. Explanation-Aware Adversarial Training

Early works on adversarial training have already for-
malized the defender’s problem as a nested optimiza-
tion problem, where the inner maximization represents
the adversary and an outer minimization represents the
defender [26, s ]. However, they have evaluated
relatively weak adversarial strategies to approximate the
attack samples. Similarly, current defensive approaches for
explanation robustness rely on specifically crafted [1] or
random perturbations [59] rather than strong adversarial
attacks. PGD adversarial training [35] considers the same
nested optimization, but uses effective adversarial examples
for the inner maximization.

Adversarial training to counter explanation-aware ad-
versarial examples has experienced a similar progression
from using weak approximations of attacks [I, 59] to
strong adversarial strategies [ 13, 27, 46, 52]. We investigate
the effectiveness of these variants, generalize them to
explanation-aware adversarial training, and implement it
in different manifestations in line with well-established AT
variants against prediction-only (PO) attacks [35, 64, 67].

We begin this section by introducing the core idea be-
hind explanation-aware adversarial training in Section 3.1,
before providing a general formalization in Section 3.2.
Then, in Section 3.3, we provide a brief overview of the
involved distance metrics, before introducing metrics to
evaluate the robustness of a single model in Section 3.4.
Section 3.5 introduces how explanation-aware adversarial
examples are generated. After that, we detail our extensions
to the three well-established adversarial training methods:
PGD-AT, TRADES, and MART in Section 3.6. Finally,
we introduce how RAR [13] works and how it relates to
our formalization in Section 3.7.

3.1. Core Idea

Explanation-aware adversarial training is surprisingly
straightforward. Instead of training on prediction-only
adversarial examples (PO), we fine-tune the model on
explanation-aware adversarial examples. In this work, we
evaluate five goals: EP, PPD, PP*, DB, and D*.

Penalizing Bad Explanations. Using explanation-aware
adversarial examples is not enough, though. “Bad” explana-
tions need to be penalized during the defensive fine-tuning
step. Fortunately, many explanation methods, including
GradCAM, are differentiable, and it is sufficient to compare
two explanations in the loss function using a differentiable
distance metric dg in explanation space £, making the loss
function explanation-aware.

Ground-Truth Explanations. Similar to vanilla AT, which
relies on ground-truth labels, our extensions would require
ground-truth explanations. Unfortunately, human-provided
annotations are rarely available, and it is an ongoing debate
whether “ground-truth explanations” exist at all [7]. Using
human-provided annotations as ground-truth explanations
could force the model to learn on the basis of our



human ontology, which, in principle, is not desired. For
the sake of simplicity, we instead want the robustified
model’s explanations of clean samples to remain similar
to the original model’s explanations of the same clean
samples. These clean explanations then serve as the desired
explanations in the adversarial training scheme.

3.2. A Formalization of Explanation-Aware AT

Adversarial training is defined as a nested optimiza-
tion problem, where an inner maximization represents
the adversary and an outer minimization represents the
defender [26, 34, 35, 48]:

max L(0,x+ 6, y)] ,

min [E [
0 (x,y)eD

where L represents a general loss function (e.g., the cross-
entropy loss) that is minimized over a number of fine-
tuning steps. In each iteration, the algorithm first attacks
the current model 6 by solving the inner maximization and
then updates the model’s parameters through a gradient-
descent step. While PGD-AT uses the same loss in the inner
maximization and the outer minimization, TRADES [67]
introduces a second regularization term for the outer mini-
mization, and MART [64] extends the outer minimization
further. Strictly speaking, in those newer methods the inner
and the outer loss functions thus are different.

In our work, this differentiation between the inner loss
function and the outer loss function is crucial. Therefore,
we denote the inner maximization loss function as L and
the outer minimization loss function as L:

min  E [E(H,x—f—mng(G,x—i—&y),y)} .

0 (x,y)eD
We are particularly interested in settings where either the
inner loss L or the outer loss £ is explanation-aware,
or both. For instance, the outer minimization loss is
explanation-aware for our explanation-aware extensions
of PGD-AT, TRADES, and MART, while the outer mini-
mization loss of the respective original works is not. The
inner maximization, in turn, is explanation-aware for all
considered adversarial goals except for PO, which equals
vanilla adversarial examples.

3.3. Distance Metrics d¢

In the next paragraphs, we will regularly compare two
explanations with a generic distance measure dg. This
function dg can be any differentiable distance function in
the explanation space £ . In our experiments, we use the
mean squared error (MSE). Others have also experimented
with the cosine similarity [64], the £5 and the ¢; norm [64],
Pearson correlation coefficient (PCC), and the structural
similarity index (SSIM) [40, 65]. In Section A, we provide
additional evaluations with the PCC and SSIM metrics, and
we illustrate differences between these metrics in Fig. 7.

3.4. Metrics for a Single Model

We now describe the metrics used to evaluate a model’s
robustness. For its predictive performance, we measure the
clean top-1 accuracy (Acc®@") on benign samples and the
robust top-1 accuracy (Acc™) on adversarial examples.

The explanation robustness is evaluated with the following
three key metrics:

1) Explanation Forgeability, measuring how close ma-
nipulated explanations come to the target explanation.

2) Fooling Rate as the fraction of successfully fooled
explanations via thresholds on the forgeability.

3) Explanation Vulnerability, indicating how much an
attacker can make manipulated explanations deviate
from their original explanation.

All metrics are formalized on the basis of clean samples x
and (implicitly) their corresponding adversarial examples,
which we denote as x.

Explanation Forgeability (@@89). The distance between
the manipulated explanation and the adversary’s target
explanation is measured as:

E, |de (o ), x")

X,

Forg := (

This metric measures directly how well the adversary
can reach the chosen target explanation rt. Note that, for
explanation-untargeted adversaries (PP*,D*) the forge-
ability is undefined as there exists no target explanation r'.
Fooling Rate (@3Y). As the interpretation of distance
measures, such as the MSE, is difficult, we augment the
forgeability metric with the fooling rate (F'R) [19]. For a
given threshold 7, the fooling rate is determined as

FRy:= E

xep |:1dg(h9(5c),r‘)<‘r

We establish the thresholds 7 individually for each
target explanation through an empirical user study. To
determine appropriate thresholds, we sample explanations
from randomly selected test samples using two models
with distinct robustness characteristics: one original (non-
robustified) model and one ATEX-robustified model.'
Seven independent annotators classify each explanation as
either “close to the target explanation” (fooled) or “too
distant from the target explanation” (not fooled).

We assess the inter-annotator reliability using Fleiss’s
Kappa, obtaining high agreements: x = 0.7318 for the
square target explanation, x = 0.6976 for the right-
half target, and x = 0.4452 for the left-half target (cf.
Section 6.1). The ground-truth label for each explanation
is determined via majority voting across the seven an-
notations. Subsequently, we conduct a receiver operating
characteristic (ROC) analysis across threshold values in the
range [0.02,0.20] with increments of 0.001, selecting the
threshold that maximizes the geometric mean of the true
positive rate (sensitivity) and true negative rate (specificity):

7 := argmax /TPR(t) - TNR(t) .
t

The selected thresholds are 0.084 for the square target
explanation, 0.141 for the right half, and 0.132 for the
left half. Note that the fooling rate is in addition to the
explanation forgeability, and that many existing works do
not provide fooling rates at all [25, 39, 40].

1. The selection of ATEX is motivated by its high variance in
explanation forgeability, which ensures a representative distribution of
samples across the robustness spectrum.



Explanation Vulnerability (§@1). The explanation vulnera-
bility measures how much the explanations of adversarial
examples deviate from the clean samples’ explanations. As
such, the vulnerability is particularly useful for evaluating
explanation-untargeted attacks. It is defined as

E [dg(hg(i),hg(x))} .

(xw')

Vulg =

3.5. Explanation-Aware Adversarial Examples

Explanation-aware adversarial examples are generated
by optimizing bi-objective loss functions, consisting of
a prediction loss Lpq and an explanation loss Leypl,
combined with a weighting factor ~:

L:(l_’Y)'Lpred""’y'Lexpl .

We discuss the prediction loss part Ly,cq in further detail
in Section 4.2, and summarize the loss functions of the
individual adversarial goals in Table 2. Note that we
present them once with the distance metric and once
formalized using the metrics described above. Observe
how the forgeability is applied for explanation-targeted
attacks, while the vulnerability is used for explanation-
untargeted attacks.

To optimize the loss function we use projected gradient
descent (PGD) [35] as an attack algorithm:

xU*D = proj (x(i) —n- sgn(qu)L)) ,
Be (x)

where 7 is the learning rate, projg (4 is the projection
onto the /,-ball of radius e around the original sample
x, and sgn(-) is the sign function. We always limit the
ly-norm by e = 8/255 = 0.031. For the PO attacks a
learning rate of 7 = 2/255 = 0.0078 is used as suggested
by related work [35]. The PGD attack algorithm is used
for all attacks in this work.

3.6. Our Explanation-Aware AT Extensions

In the following, we introduce our explanation-aware
extensions for the three commonly used AT techniques
PGD-AT [35], TRADES [67], and MART [64]. The three

TABLE 2: Explanation-aware attack scenarios and their
loss functions, once complete and once in terms of our
metrics as defined above.

Att. Loss Function

PO Lpred

gp  (1=7) Lyrea +7 - de(ho(X), ho(x))
(1 —=7) - Lprea +7 - Vulg

ppo (1 =7) (1= Lprea + 7 - de(ho (), 1)
(1 =) (1= Lprea) + - Forg

ppr (1=7) - (1= Lprea) + =7 - de(ho(X), ho (%))
(I =7) (1= Lprea) + g7 - Vulo

po (L=7) Lorea + - de (ho (%), r')
(1 =) Lprea + - Forg

p* (1=7) Lyrea + =7 - de(ho(X), ho(x))
(1 =7) " Lprea + =7 - Vulg

build up on each other, i.e., each extending over the
previous by adding another aspect to the loss. We extend
the underlying ideas of each addition to explanations.

X-PGD-AT. Madry et al. [35] have evaluated the idea of
adversarial training with sufficiently strong attacks using
the cross-entropy loss of the adversarial examples:

Lpap—ar = CE(fo(X),9)

They directly penalize differences between the model’s
predictions on adversarial examples and the respective
ground-truth labels. Applying this principle to explana-
tions, we minimize the distance between the adversarial
explanations and the corresponding original explanations:

Lx_pap—aT =LpPGD-AT
+ Ae - dg(hg(X), hor(x)) -

The trade-off between predictions and explanations can
be adjusted by the hyperparameter A\, (e for explanation).
Interestingly, X-PGD-AT is equivalent to FAR [27]when
generalized for GradCAM.

X-TRADES. Zhang et al. [67] exploit the fact that there
exists a trade-off between the robustness and the natural
accuracy of the resulting model [60]. Hence, the prediction
error can be decomposed into the sum of the natural
classification error and a boundary error, where the first is
the probability of misclassifying a clean sample and the
latter is the probability that a correctly classified sample
is close enough to the decision boundary and thus can
be successfully attacked. TRADES [67] weighs these two
errors by a factor A\, (p for prediction):

Lrrapes = CE(fo(x),y) + Ap - KL(fo(x)]|fo(X)) ,

where KL is the Kullback-Leibler divergence.

We apply this intuition to explanations by adding
two loss terms for explanations. The first term penalizes
the distance between benign explanations in the current
model hg(x) and the original explanations hg (x). The
second term formalizes the distance between the benign
and manipulated explanations:

Lx_1rADES =LTRADES
+ Ae,1 - de (ho(x), hor (x))
-+ >\e,2 ~de (hg(X), hg(f()) .

X-MART. Wang et al. [64] have further distinguished be-
tween misclassified clean samples and correctly classified
clean samples by applying different weighting factors for
both sets of samples. The loss function is as follows:

Lyarr =BCOE(fo(%),y)

+ X - KL(fo(x)|[fo(%)) - (1 = fo(x)g)
where BCE is the binary cross-entropy loss and fp(x) is
the soft-label of the ground-truth class g. The importance
of the Kullback-Leibler divergence K L is now weighted

by the model’s inverse probability of the ground-truth class.
We extend this concept to explanations as follows:

Lx MART = LMART
+Ae,1 - de (ho(X), hor (x))
+Ae,2 - de (ho(x), ho(X))
(1 = de(ho(x), hor (x))) -



3.7. Reformulation of Related Work

In addition to formulating new adversarial training
regimes, we draw connections to related work as well.
Generalizing RAR [13] shows the similarity to X-TRADES.
Note that it is not equivalent, though.

Robust Attributional Regularization (RAR) [/3] im-
proves the robustness of Integrated Gradients explanations
IG(-,-) [56] through the following loss function:

Lrar =CE(fo(X),7)
+ Ae - |IG(x,%)|]1 -

Here, IG(x,%) is the Integrated Gradients explanation
of the adversarial example x with respect to the original
sample x. Specifically, /G (x,%) is defined as the path
integral of the gradients along a line path from x to X.
The authors argue that Integrated Gradients attributes the
changes between the loss at x and at x to the input features.

To transfer this idea to other explanation techniques,
we take the difference between the two explanations:

Lrar =CE(fo(X),9)
+ Ae - de (ho(x), ho(X))

which is equivalent to the X-TRADES loss function with
Ae,1 set to 0.

Also, we observe that this research strain comes with
stability in mind. The explanations of clean samples and
adversarial examples should be equivalent. This approach
does not ensure that the explanations are useful. The loss
can be optimized by producing fixed constant explanations
for all samples. The explanation-aware loss term is indepen-
dent of the original explanation hg/(x). All our extensions,
in turn, consider the original explanations and hence force
the model to keep its explanations for clean samples.

A similar aspect becomes apparent in the evaluation.
While our evaluation considers all combinations of original
model/manipulated model and clean sample/adversarial
example (cf. Section 4), related work [13, 27, 46, 52] has
focused on the vulnerability of the explanations and not
investigated how much their defensive measure changes
the explanations from the original model. In other words,
related work has only evaluated metrics on the basis of
one model.

4. Evaluation

We describe our experimental setup in Section 4.1 and
present a preliminary study to concretize the attack strategy
in Section 4.2. Once we have established the best attack
strategy this way, we introduce our experiment design in
Section 4.3. In Section 4.4, we describe additional metrics
to quantify the success of the defenses and then discuss
the results in Section 4.5.

4.1. Experimental Setup

Similar to most work in this area, we focus on the
image domain [13, 27, 29, 35, 59, 64, 67]. In particular,
we choose the common CIFAR-10 dataset [31], consisting
of 50,000 training images and 10,000 test images of
32 x 32 colored pixels each. We further divide the training

data into 40,000 training images and 10,000 validation
images for our hyperparameter optimization. We normalize
the data and apply a random horizontal flip as a data
augmentation when training the original models. In line
with related work [39, 40], we choose ResNet20 [23] as
the model architecture.

As we will outline in Section 5, explanation-aware
adversarial training is extremely computationally expensive.
Therefore, we had to limit the scope of our evaluation to
this simple dataset and architecture. Nevertheless, we are
positive that our findings generalize to larger datasets and
model architectures, and we encourage future work to
verify this hypothesis.

4.2. Prediction-Untargeted Attacks

Most explanation-aware attacks either preserve the pre-
diction (PP) [3, 16, 17, 20, 28, 32, 46, 53, 58, 59], or aim
for a specific target class in the case of dual (D) [68] and
explanation-preserving attacks (EP) [68], i.e., the attack
is prediction-targeted. Note again that we use the terms
prediction-targeted and prediction-untargeted to emphasize
that we mean the predictions and not the explanations that
may be targeted or untargeted, respectively. On the other
hand, works on vanilla adversarial training mostly consider
only prediction-untargeted attacks [35, 64, 67]. Hence, we
also adopt the prediction-untargeted setting for dual attacks
(D) and explanation-preserving attacks (EP) but provide
an easy adaptation in our artifacts to evaluate the prediction-
targeted attacks as well. In the other attack scenarios (PO,
PPS, and PP*) the prediction is preserved.

Attack Strategies. Prediction-targeted attacks usually mini-
mize the cross-entropy toward an adversary-chosen target
class y':

(x,0,€) = x+ argmin CE(fp(x+0),y") .
& s.t. |8|<e
Prediction-untargeted attacks, in turn, maximize the cross-
entropy toward the ground-truth label (cf. Section 3.2):

(x,0,€) = x+ argmax CE(fp(x+9),7) .
§ s.t. |8]<e

By design, the cross-entropy grows higher the more
confident the model becomes. This leads to an overwhelm-
ing effect of the prediction loss over the explanation loss.
Fooling the explanation thus fails, while the confidence
in the wrong prediction increases. Our extensive hyperpa-
rameter study yields no satisfying results with this trivial
attack strategy.

As a remedy we propose two alternative strategies:

(1) Random. We pick a wrong target class (s ¢) at random
and run prediction-targeted attacks against this class.

(2) Highest Wrong. We select the incorrect class (# %)
with the highest probability score as the target class, i.e.,
often the second most-likely class.

Results. We extensively optimize hyperparameters for 1,000
trials on 2,000 test samples for all strategies against three
pre-trained models 6,. The best-performing hyperparam-
eters are then evaluated on the complete test set. As
shown in Table 3, the highest-wrong strategy performs



TABLE 3: Comparison of the three different attack strate-
gies for DY, D*, and EP and the CIFAR-10 dataset.

Goal Algorithm Acc™P(]) (@) )
Trivial 0.127 0.03 0.102 0.04 0.226 o0.07
DD Random 0.008 0.00 0.018 0.02 0.976 0.01

Highest WI’OIlg 0.0000.00 0.0130.00 0.9930.00
Goal Algorithm Acc™(]) /1)

Trivial 0.628 0.03 0.028 0.04 —
FP Random 0.009 0.00 0.001 0.00 -
Highest Wrong 0.0000.00 0.0010.00 —

Trivial 0.104 0.01 0.215 .07 -
D~ Random 0.008 0.00 0.3450.05 -
Highest Wrong 0.0000.00 0.339 0.0s  —

best, while the trivial approach fails completely. Note that
in this table, we make an exception and highlight the
best results from the attacker’s perspective rather than
the defender’s. Additional details on these findings are
presented in Section B. Based on these results, we use the
highest-wrong strategy for all prediction-untargeted and
explanation-aware attacks for the remainder of this work,
i.e., for EP, DY, and D* attacks.

4.3. Experiment Design

We train three ResNet20 models [23], which we denote
as original models 0. Each original model 6, achieves a
clean top-1 accuracy (Acc®®) of at least 91.57 %. The
hyperparameters are optimized for each explanation-aware
inference-time attack (EP, ..., D*) and for each of the
three original models independently. We fix the number
of PGD iterations during fine-tuning to N = 200 and
optimize the weighting factor v and the learning rate 7.
The best parameters are used during adversarial training.

For each of the three original models ¢, and each
adversarial goal, we execute all explanation-aware AT
approaches, including RAR. Each hyperparameter search
consists of 30 trials for 3 epochs for X-PGD-AT and RAR,
and is implemented using the framework optuna with
the GridSampler. To account for the additional hyper-
parameters in X-TRADES and X-MART, we optimize
these methods for 60 trials instead.

From these initial trials, we select the configurations
on the Pareto front of the relevant metrics and fine-tune
the models for additional 3 epochs. This two-step process
reduces computational costs (cf. Section 5) while still
allowing for thorough hyperparameter optimization. The
best hyperparameters are then selected according to a
weighted sum of all relevant metrics (cf. Table 11).

In addition, we fine-tune three models per vanilla
AT technique (PGD-AT, TRADES, and MART) with
prediction-only (PO) attacks for 10 epochs as suggested
in the original papers. The PO attacks are executed with
N =T and n = 2/255 as suggested by prior work [35].

The non-AT defense strategies (ATEX and CRC) are
fine-tuned for 200 epochs instead of 3 epochs, using the
hyperparameters for the CIFAR-10 dataset of the original
publication [29]. For CRC, the hyperparameters have been
reported for the ResNet20 architecture.

—— Robust Accuracy MSE Forgeability

1073

5 10 20 50 100 200 500
Attack iterations

Fiéure 2: Convergence analysis of attack strength for the
D= attack scenario as a function of PGD iterations. The
solid line represents the robust accuracy (left y-axis), while
the dashed line denotes the MSE-based forgeability
metric (right y-axis). The robust accuracy exhibits earlier
saturation compared to the forgeability measure, which
necessitates the use of more iterations for explanation-
aware attacks.

For our evaluation, we optimize the hyperparameters
of each explanation-aware inference-time attack again
for each robustified model, i.e., we assume white-box
adversaries. In other words, the hyperparameters are always
optimized for the model at hand. In contrast to the fine-
tuning, though, we invest more PGD iterations (/N = 500)
for the final evaluation. The number of iterations is chosen
through a preliminary convergence study presented in
Fig. 2. The figure shows that the robust accuracy saturates
rather quickly while the explanation forgeability requires
>200 iterations to converge.

Eventually, we report average values across the respec-
tive three models together with corresponding standard
deviations in smaller font size. We provide further de-
tails on our experiment design and our hyperparameter
optimizations in Section C.

4.4. Metrics to Compare Two Models

To quantify the adverse effects of defensive fine-
tuning on explanations of clean samples, we introduce
two additional metrics that compare explanations between
the original model #’ and the corresponding robustified
model 6*. To motivate this approach, consider a model
that produces identical explanations regardless of the input:
while such a model would achieve a perfect vulnerability
score, its explanations would be practically meaningless.
This crucial aspect has been largely overlooked in prior
work [13, 27, 46, 52].

Explanation Fidelity ( ). The explanation fidelity mea-
sures how much the explanations of clean samples x
differ between the original model 6’ and the corresponding
robustified model 6*:

Fidg g == E
(x,)eD

[dg(hg/ (x), ho- (x))] .

Intuitively, the fidelity assesses how much the clean
explanations suffer from the applied defensive technique.

Explanation Deviation ( ). The explanation deviation
compares the clean explanations in the original model with
the manipulated explanations in the robustified model:

Devy g = B de (hor (%), ho- (%)



TABLE 4: Summary of metrics to evaluate one model
(blue) and to compare two models with each other ( ).

Metric Formula

Forgeability Forg
Fooling Rate F' Ry
Vulnerability Vulg

Fidelity
Deviation

0(X),r")]
(ho (%), rt><r}

= E(x,-)eD (
(ha (%), ho(x))]
(ho
(ho

= ]E(x,-)ED

[de
[Lag(
= ]E(x,-)ED [dg
[de
[de

Fidg/,g* = ]E(x,-)ED
De’l)glyg* = ]E(x,-)eD

(%), hox (x))]
(%), ho- (X))]

The explanation deviation thus combines the effects of
the explanation fidelity, i.e., how much the explanations
change between models for clean samples, and the vul-
nerability/forgeability of the robustified model, i.e., how
much the explanation can be manipulated.

Table 4 summarizes the metrics from Section 3.4 in
the upper part and the metrics from Section 4.4 in the
lower part.

4.5. Results

Our core results are presented in Fig. 3, with each of
the six rows corresponding to a distinct adversarial goal.
The quantitative results associated with this figure are
detailed in Table 14 within Section A, which also provides
results for alternative distance measures, specifically PCC
and SSIM, presented in Table 15.

Prediction-Only Attacks (PO) manipulate predictions while
ignoring explanations. Both vanilla AT variants and
explanation-aware extensions are substantially effective
against such PO attacks. The robust accuracy increases
from 0% in the non-robustified models to above 32.8 %
for X-TRADES, and exceeds 40 % for the remaining AT
techniques. Our empirical results for vanilla AT methods
align with those reported in the original publications for
both clean and robust accuracy metrics.

As anticipated, explanation-aware variants exhibit de-
graded performance relative to their vanilla counterparts
when evaluated against PO attacks, manifesting in reduced
clean and robust accuracy. Nevertheless, the relative rank-
ing among the three approaches remains consistent across
both vanilla and explanation-aware variants.

The specialized defense mechanisms ATEX and CRC
prove least effective against PO attacks, yielding only
marginal improvements in robust accuracy, which remains
below 10 %. This outcome is not surprising, as neither
ATEX nor CRC explicitly protects predictions.

Explanation-Preserving Attacks (EP) alter the predictions
while the explanations are preserved. Thereby, an on-
going attack against the predictions can be disguised
from explanation-based analysis. For such EP attacks,
we observe similar trends as already seen for PO attacks.
Both vanilla AT and explanation-aware extensions achieve
comparable performance across all evaluated metrics. EP
attacks, hence, do not appear more challenging to defend
against than PO attacks. ATEX and CRC fail to improve
the robust accuracy and are also not substantially superior
in the other metrics, except for ATEX, which maintains a
high clean accuracy.

Prediction-Preserving Attacks (PP) manipulate only the
explanations while keeping the predictions unchanged.
The most pronounced performance differences emerge
in the context of these PP attacks. For the PP" attack
scenario, X-PGD-AT, X-MART, RAR, ATEX, and CRC
prove ineffective, exhibiting high fooling rates and low
forgeability. The remaining methods (PGD-AT, TRADES,
MART, X-TRADES) demonstrate superior performance,
with PGD-AT, TRADES, and MART achieving a fooling
rate of 0%. These three methods induce only minimal
alterations to the clean explanations, as evidenced by their
low fidelity scores (< 0.047) and low vulnerability values
(< 0.013). Similar trends are observed for PP* attacks.
While X-PGD-AT, X-MART, RAR, ATEX, and CRC fail to
prevent manipulation of explanations, PGD-AT, TRADES,
and MART consistently achieve strong results with low
vulnerability (< 0.023) and low fidelity (< 0.047). As
expected, the robust accuracy of all methods approaches
100 % for PP attacks, since the adversary optimizes toward
the ground-truth label.

Dual Attacks (D) aim to simultaneously manipulate both
predictions and explanations. In both D attack scenar-
ios, the robust accuracy of explanation-aware variants is
consistently lower than that of their vanilla counterparts.
The explanation-aware variants also exhibit slightly worse
forgeability compared to vanilla AT methods. The special-
ized methods ATEX and CRC demonstrate the weakest
performance against D attacks.

Overall Assessment. Across all scenarios, ATEX con-
sistently outperforms CRC. Notably, the AT techniques
surpass both ATEX and CRC in nearly all metrics and
attacks. Surprisingly, vanilla AT techniques frequently even
outperform their explanation-aware counterparts. Addition-
ally, vanilla methods offer lower complexity and are more
extensively studied in the literature. Our explanation-aware
extensions achieve superior performance only in terms of
clean accuracy, regularly exceeding 80 % (see Table 5 and
Table 6). Based on these results, we state our core finding:

Core Finding #1: Vanilla AT techniques are superior
in defending against explanation-aware adversarial
attacks compared to specialized defense mechanisms.

5. Cost Analysis

Explanation-aware adversarial training incurs substan-
tially higher computational costs compared to vanilla
adversarial training. The complete replication of our ex-
perimental evaluation requires approximately 16,320 GPU
hours on NVIDIA A100 GPUs.

We now present a comparative analysis of the com-
putational costs across the investigated defense methods.
Fig. 4 illustrates the wall-clock time requirements for
each approach, measured on a dedicated AMD Ryzen 9
5900X 12-Core processor equipped with two NVIDIA RTX
3090Ti GPUs. The total execution time comprises three
components: adversarial example generation ( 123 ), model
training time ( ¥4 ), and auxiliary operations ( []). For both
vanilla AT and explanation-aware AT methods, adversarial
sample generation is parallelized across both GPUs. The
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Figure 3: The results of the five existing defenses and the explanation-aware extensions. Clean accuracy (Acc®®a"), robust
accuracy (Acc™), and fooling rate (@) are with respect to the left y-axis while forgeability (€@&9), vulnerability
(@), fidelity (€51ED), and deviation (€8X5%) are with respect to the right y-axis. Table 14 contains the quantitative

results to this figure.

explanation-aware approaches exhibit approximately 6-fold
computational overhead compared to vanilla AT when
utilizing 200 PGD iterations, with this disparity further
increasing for 500 iterations. This performance degradation
is attributable to two primary factors: (1) the increased
complexity of generating explanation-aware adversarial
examples necessitates additional iterations, and (2) each
iteration requires explicit computation of the explanation
method and back-propagation of the explanation loss.

Results. The vanilla AT techniques demonstrate the lowest
computational overhead. CRC exhibits only moderately
elevated computational costs relative to vanilla AT. The
explanation-aware AT methods incur substantially higher

computational expenses, with wall-clock times up to 6
times greater than their vanilla counterparts. This over-
head is predominantly concentrated in the generation
of explanation-aware adversarial samples. Also, ATEX
incurs particularly high computational costs, exceeding 750
seconds per epoch. The substantial computational burden
of ATEX is primarily attributable to its sample generation
procedure, which precludes parallelization across GPUs.

Core Finding #2: Vanilla AT techniques are computa-
tionally substantially less expensive than explanation-
aware adversarial training and its variants.



TABLE 5: The model utility results of the explanation-aware AT methods.

Defense Accclean Accclean Accclean Accclean

PO 0.6960.00 0.0510.04 0.7830.01 0.0350.03 0.7020.00 0.0690.04 0.6960.00 0.0510.04
EP 0.7500.01 0.0450.04 0.8030.01 0.0400.03 0.7160.02 0.0710.05 0.7630.00 0.0510.04
ppY 0.7100.05 0.0990.04 0.8810.01 0.0450.04 0.8350.01 0.0950.04 0.8710.01 0.0930.04
pp* 0.7590.0s 0.1250.05 0.8530.01 0.0380.02 0.8360.00 0.0740.04 0.8150.0s 0.1200.05
DU 0.7780.02 0.0370.03 0.8140.00 0.0410.03 0.8040.00 0.0370.03 0.8210.01 0.0380.03
D~ 0.7640.02 0.0450.03 0.8180.01 0.0410.03 0.7510.02 0.0470.03 0.8000.01 0.0480.03

(a) X-PGD-AT (b) X-TRADES (c) X-MART (d) RAR

TABLE 6: The model utility results of the vanilla AT
methods, CRC, and ATEX.

Defense Accelean

PGD-AT 0.7610.00  0.0440.04
TRADES 0.7980.01  0.0360.03
MART 0.7460.00  0.0470.04
CRC 0.7720.03  0.1080.05
ATEX 0.8780.01  0.0500.03

Training

ﬂ Sample Generation [] Other

s T
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wall time [s]

Figure 4: Computational costs, in wall time in seconds. For
each evaluated approach the total time is split in the amount
of time required for generating attack samples, the actual
training, and other functionality. For explanation-aware AT
methods, the displayed data is for the DU attacks with
200 (left bars) and 500 PGD iterations (right bars). Other
attack scenarios yield similar results, while higher PGD
iterations increase the computational costs proportionally.

6. Transferability Studies

Explanation-aware adversarial training requires the
defender to anticipate the attacker’s goal and their target
explanation. In this section, we investigate what happens if
one of those two assumptions is broken, i.e., we investigate
if a certain transferability can be observed with respect to
the adversarial goal or the target explanation.

We first investigate the transferability between adver-
sarial goals in Section 6.1. Thereafter, in Section 6.2, we
analyze the transferability between two maximally different
target explanations.

6.1. Goal Transferability

Tables 7 and 8 show how training against a specific
adversarial goal affects the robustness to other adversarial
goals. Notably, the clean accuracy (Acc®'®™) and the fidelity
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Figure 5: Transferability analysis of our three explanation-
aware extensions for different target explanations. The
clean accuracy (Acc®®"), robust accuracy (Acc™P), and
the fooling rate are with respect to the left y-axis, while the
rest is with respect to the right y-axis. The corresponding
quantitative results are presented in Table 13 and 16.

remain constant across all attack scenarios, independent of
the investigated real attack scenario and are thus reported
in the Tables 5 and 6. When training on PO or EP attacks,
the resulting models are robust against both, their antici-
pated attack scenario and other scenarios. While training on
PO attacks yields slightly better results for explanations,
note that the accuracy of models trained on these attacks is
significantly lower. The same holds true for training with
EP attacks; however the differences for explanations and
accuracy are smaller. For PP attacks (PPD and PP™), the
fine-tuning does not improve the robust accuracy for not-
anticipated attack scenarios. This result is not surprising
since PP attacks do not manipulate the predictions. Our
hyperparameter search for the explanation-aware variants
(except for X-TRADES) does not yield satisfying results
for PP attacks. This finding is again reflected in the
transferability results. However, the explanation robustness
of models trained with X-TRADES on PP attacks does
not transfer to other attack scenarios. In particular, ppY
models are not robust against D* attacks. We observe
that training on either DY or D* yields similar robust
accuracies against both D attacks.

Opverall, the explanation robustness transfers well across
different attacks, indicating that, regardless of the attack
anticipated, the explanations are generally robust to manip-
ulation. This finding is also in line with our observations for
vanilla AT in Fig. 3, where standard AT methods perform
well or even superior for explanation-aware attacks.



TABLE 7: Transferability analysis of explanation-aware defenses across distinct adversarial goals. The best performance
is emphasized in bold font, evaluated from the defender’s perspective relative to the actual attack scenario (column one).
This table presents all attack scenarios without target explanations; consequently, the explanation forgeability metric and
fooling rates are omitted. Explanation-targeted scenarios are detailed in Table 8. For prediction-only attacks (PO), the

adversary disregards explanations; therefore, the and

columns contain no bold emphasis.

Accrob

Acc™

0.475002 0.048 005 0.077 0.04
0.458 002 0.054 006 0.083 0.0s
0.217 002 0.087 005 0.107 004
0.216 002 0.076 005 0.086 0.04
0.380 002 0.028 003 0.047 0.03
0.446 002 0.038 005 0.058 0.04

0.4090.02 0.043 005 0.061 0.04
0.390 002 0.046 005 0.063 0.04
0.085 001 0.080 004 0.122 0.05
0.121 002 0.123 006 0.158 0.5
0.343 002 0.028 003 0.046 0.03
0.372 002 0.040 004 0.057 0.04

0.356 002 0.024 004 0.069 0.04
0.382001 0.019 004 0.071 005
0.134 001 0.036004 0.097 0.04
0.138 001 0.031 003 0.076 0.04
0.295 002 0.013 002 0.0400.03
0.358 002 0.015 003 0.049 0.03

0.278 002 0.019003 0.054 004
0.343002 0.015 002 0.052 0.04
0.003 00 0.008 001 0.094 0.04
0.001 00 0.005 001 0.121 0.0s
0.283 002 0.013 002 0.041 003
0.305 002 0.017 003 0.051 003

0.916 001 0.021 0.04 0.063 0.04
0.936 001 0.023 004 0.061 0.04
0.996 00 0.104 007 0.140 006
0.995 00 0.098 007 0.117 0.06
0.987 00 0.017 003 0.0350.03
0.962 001 0.016003 0.041 0.03

0.945 001 0.026 004 0.0430.04
0.968 00 0.0230.04 0.046 0.03
0.998 00 0.235 007 0.212 0.07
1.000 00 0.294 008 0.256 007
0.991 00 0.028 004 0.044 003
0.986 00 0.031 004 0.052 0.04

Att. Def.  Acc™ AccroP
PO 0.410002 0.043 005 0.061 0.4  0.328 0.02 0.016 0.02 0.044 0.03
EP 0.398 002 0.040 005 0.058 004  0.365 0.02 0.023 0.03 0.048 003
PO PPY 0.162 002 0.079 004 0.123 003 0.096 001 0.038 004 0.054 0.04
PP*  0.129 003 0.125 006 0.165 0.5 0.208 002 0.025 002 0.045 0.03
po 0.326 001 0.033 003 0.045 003 0.362 002 0.023 003 0.048 0.03
D* 0.340 002 0.042 004 0.053 0.4  0.3730.02 0.020 0.03 0.047 0.03
PO 0.279 002 0.018003 0.054 004  0.220 0.02 0.007 0.01 0.0390.03
EP 0.367001 0.012 002 0.047 003 0.3180.02 0.009 001 0.043 0.03
EP PPY  0.002 00 0.006 001 0.101 004 0.029 001 0.017 003 0.053 0.04
PP*  0.000 00 0.004 001 0.125 00s  0.147 002 0.011 001 0.039 0.2
po 0.257 002 0.012 0020.041003  0.290 0.02 0.009 0.01 0.044 0.03
D* 0.274 002 0.015 002 0.048 003 0.310 0.02 0.009 0.01 0.043 0.03
PO 0.946 001 0.024 004 0.043 004  0.983 00 0.0130.02 0.0330.03
EP 0.959 001 0.019003 0.037003  0.983 00 0.020 0.03 0.051 003
PpP* PPY 1.00000 0.202 005 0.169 005 0.999 00 0.040 003 0.060 0.4
PP* 1.00000 0.303 008 0.257 007 0.997 00 0.037 004 0.061 0.04
po 0.987 00 0.042 005 0.051 004  0.989 00 0.020 0.03 0.051 0.03
D* 0.980 00 0.039 005 0.051 004  0.988 00 0.021 0.03 0.051 0.03
PO 0.280 002 0.025 004 0.056 004  0.221 0.02 0.0120.02 0.0430.03
EP 0.367001 0.0170030.050004 0.3190.02 0.016 0.02 0.049 0.04
D* PPY 0.003 00 0.216 005 0.195 005  0.030 001 0.068 005 0.087 0.5
PP*  0.001 00 0.319 007 0.276 007 0.150 002 0.051 005 0.071 o.0s
pU 0.259 002 0.046 005 0.061 00s  0.291 0.02 0.020 0.03 0.053 0.04
D* 0.276 002 0.042 005 0.062 o.0s 0.310 002 0.018 003 0.051 0.04

0.355 002 0.027 0.04 0.070 0.04
0.3800.01 0.025 004 0.075 005
0.134 001 0.138 008 0.155 007
0.140 o001 0.127 008 0.137 008
0.297 002 0.021 003 0.0450.03
0.357 002 0.019003 0.052 0.04

0.278 002 0.025 004 0.056 0.04
0.3440020.023003 0.056 0.04
0.005 00 0.271 006 0.245 007
0.002 00 0.316 007 0.281 0.07
0.285 002 0.030 004 0.0520.04
0.306 002 0.033 005 0.060 0.04

(a) X-PGD-AT

(b) X-TRADES

(¢) X-MART

(d) RAR

6.2. Target Explanation Transferability

We investigate how our explanation-aware extensions
depend on the specific target explanation anticipated during
fine-tuning. To this end, we conduct a transferability study
using two maximally different target explanations: one
where the left half is activated and one where the right
half is activated. For both target explanations, we train
three models per defensive approach and visualize the
averaged results in Fig. 5 and report the quantitative results
in Tables 13 and 16 in Section A.

In the top half of the figure, models are trained on
dual attacks with the left-half target explanation; for each
method, the two bars show evaluation against attacks
with the left-half target (first bar) and the right-half target
(second bar). In the bottom half, models are trained on
the right-half target and evaluated on both right-half (first
bar) and left-half (second bar) attacks. If both bars for
a method are similar, this indicates a high transferability
between target explanations.

Across all methods and metrics, we observe that
the transferability is very high: models trained on one
target explanation are also robust against attacks using the
opposite target. This trend holds for all four explanation-
aware adversarial training methods and is consistent across
all evaluated metrics.

Core Finding #3: Robustness gained from adver-
sarial training with one specific target explanation
generalizes to other—even maximally different—
target explanations.

7. Conclusion

We present the first extensive evaluation of adversarial
training (AT) techniques to counter explanation-aware
attacks across all established attack scenarios targeting the
popular GradCAM explanation method. We also evaluate
vanilla AT methods (PGD-AT, TRADES, and MART) as a
simple baseline. Moreover, we introduce new explanation-
aware extensions for TRADES and MART, and show that
FAR is equivalent to the extension of PGD-AT. Further,
we find that CRC and ATEX are ineffective against
explanation-aware attacks that target predictions and expla-
nations, i.e., dual attacks (D). Note that both methods have
been proposed for attacks against explanations only (FO).
RAR, in turn, performs similarly to our explanation-aware
extension of PGD-AT. In particular, both fail to prevent
prediction-preserving (PP) attacks.

Our work reveals that vanilla adversarial training
already provides strong robustness against explanation-
aware attacks, and that the additional effort for explanation-
aware adversarial training yields little to no benefit right
now. With this result, we answer a long-standing question
in the field regarding the necessity of explanation-aware
adversarial training. However, the underlying reasons for
this phenomenon remain unclear and warrant further
investigation. We encourage the community to explore
the relationship between explanations and predictions, and
to analyze which heuristics are exploited by attacks on
explanation methods and why these cannot be leveraged
in adversarially trained models.



Ethical Considerations

The explanation-aware attacks discussed in this work are
already known and explored. Our work does not improve at-
tacks. Instead, we propose and evaluate defenses to counter
those attacks. Our investigation can make Al systems more
robust and trustworthy. However, we emphasize that the
attack surface for manipulating explanations is complex
and not yet fully understood. Overall, we do not expect
our research to have negative effects on third parties.
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Appendix A.
Additional Results

In the following section, we present further results.
Aside from the MSE metric presented in the main paper,
we also provide results for the Pearson Correlation Coeffi-
cient (PCC) and the Structural Similarity Index Measure
(SSIM) [65] as additional distance metrics. In particular,
Tables 14 and 15 contain a summary of the quantitative
results for all methods and attack scenarios, complementing
Fig. 3 in the main paper. Table 13 shows quantitative results
for the transferability across different target explanations,
complementing Fig. 5 in the main paper. In Fig. 6, we
show additional examples of adversarial samples and their
explanations for the different attack scenarios and the
investigated defense methods.

We explore the differences between the three inves-
tigated distance metrics used in our paper. Fig. 7 shows
that similarity rankings of explanations can differ between
the metrics and that a combination of metrics should be
investigated to obtain a more holistic view of the similarity
between explanations.



TABLE 8: Transferability study of explanation-aware defenses across different adversarial goals. The best results are,
again, highlighted in bold according to the defender’s perspective on the actual attack scenario (column one). In this
table, we report the remaining two explanation-targeted scenarios; hence, we report the explanation forgeability metric
and the fooling rates alongside all the other metrics. The non-explanation-targeted scenarios are presented in Table 7.

Att. Def. Acc™® Acc™®
PO 0.943 001 0.002 00 0.191 002 0.018 003 0.045 003 0.981 00 0.004 00 0.1980.02 0.0080.02 0.031002
EP 0.956 00 0.00000 0.200003 0.012003 0.038 003 0.983 00 0.00000 0.162 002 0.008001 0.037 0.02

pp0 ppH 1.000 00 0.999 00 0.022 001 0.065 003 0.146 0.03 1.000 00 0.00200 0.149 002 0.011 002 0.046 004
PP* 1.00000 0.992 00 0.039 002 0.082 003 0.136 0.03 0.998 00 0.029 00 0.134 002 0.012 002 0.039 0.02
pU 0.987 00 0.013 001 0.171 003 0.017 003 0.0360.03 0.987 00 0.00000 0.157 002 0.0080.02 0.038 0.02
D* 0.977 00 0.016 001 0.157 003 0.019 003 0.044 003 0.987 00 0.001 00 0.153 002 0.0080.01 0.038 0.02
PO 0.281 002 0.001 00 0.196 002 0.020 003 0.055 0.04 0.222 002 0.001 00 0.210002 0.0080.01 0.0390.03
EP 0.368001 0.000 00 0.209002 0.014003 0.048 0.03 0.318002 0.00000 0.178 002 0.010 002 0.043 0.03

po ppH 0.002 00 0.997 00 0.020 001 0.074 003 0.155 003 0.030 001 0.001 00 0.156 002 0.032 004 0.062 0.04
PP* 0.001 00 0.973 001 0.042 002 0.092 003 0.143 0.03 0.151 002 0.014 00 0.148 003 0.021 002 0.044 0.02
DU 0.260 002 0.005 00 0.183 003 0.022 003 0.0460.03 0.292 002 0.00000 0.171 002 0.012 002 0.044 0.03
D* 0.276 002 0.005 00 0.170 003 0.023 003 0.051 003 0.311 002 0.00000 0.170 002 0.011 002 0.043 0.03

(a) X-PGD-AT (b) X-TRADES

Att.  Def. Acc™® Acc™®
PO 0.915 001 0.002 00 0.172 003 0.018 004 0.063 0.04 0.944 001 0.002 00 0.192002 0.018 003 0.044 0.03
EP 0.935 001 0.002 00 0.173 003 0.018 004 0.059 0.04 0.967 00 0.00200 0.176 003 0.013 003 0.044 003

ppd ppH 0.997 00 0.692 004 0.069 003 0.041 003 0.111 0.04 1.00000 0.983 00 0.032 002 0.079 003 0.142 0.03
PP* 0.994 00 0.325 002 0.101 003 0.035 003 0.085 0.04 0.999 00 0.986 00 0.040 002 0.080 003 0.137 0.03
DU 0.986 00 0.00000 0.181002 0.008002 0.031002 0.991 00 0.004 00 0.178 002 0.011002 0.035002
D* 0.960 001 0.000 00 0.180 002 0.012 003 0.040 0.03 0.985 00 0.005 00 0.160 002 0.013 003 0.044 0.03
PO 0.356 002 0.001 00 0.175 003 0.024 004 0.069 0.04 0.280 002 0.001 00 0.197002 0.020 003 0.055 0.04
EP 0.382001 0.002 00 0.173 003 0.021 004 0.072 0.04 0.343002 0.000 00 0.185 002 0.017003 0.052 0.04

po ppH 0.135 001 0.530 003 0.084 004 0.068 004 0.116 004 0.003 00 0.962 00 0.034 002 0.093 003 0.146 003
PP* 0.140 001 0.178 002 0.120 004 0.060 004 0.091 0.04 0.003 00 0.964 001 0.041 002 0.092 003 0.144 0.03
Dy 0.295 002 0.000 00 0.192002 0.015002 0.041003 0.285 002 0.00000 0.193 002 0.017002 0.0430.03
D* 0.358 002 0.000 00 0.183 002 0.016 003 0.050 0.03 0.306 002 0.00000 0.174 002 0.021 003 0.052 003

(c) X-MART (d) RAR

Appendix B.
Attack Algorithm Selection

In this section, we provide additional details on the
selection of the attack strategy for explanation-aware
prediction-untargeted attacks (cf. Section 4.2). We conduct
a hyperparameter search for each prediction-untargeted
attack scenario (DY, D*, and EP) to determine the optimal
attack strategy. In particular, we investigate three attack
strategies: trivial, random, and highest-wrong. For each
attack strategy, we search for an optimal combination
of learning rate n and weight + using a grid search
with optuna [2] for 1,000 trials. We select the best
hyperparameters based on the robust accuracy (Acc™) and
the forgeability. Specifically, we use an equally weighted

sum of the respective min-max normalized MSE values.

To measure these metrics, we attack a pre-trained model
on the first 2,000 samples of the test dataset. We use the
best hyperparameters for each attack strategy and scenario

to attack the pre-trained model on the entire test dataset.

Based on these three hyperparameter searches, we select
the highest-wrong strategy as the best strategy.

TABLE 9: Hyperparameters found for the explanation-
aware extensions for each attack scenario.

Attack LR ), AL A2 Attack LR )\, Al )2
PO 0.0200 — - 4.0 PO 0.0500 0.5 1.0 2.0

g DY 00500 - - 1.0 & DY 0.01002.08.01.0
@' D* 0.1000 — - 8.0 2 D*  0.0200 1.0 4.0 0.5
; EP 0.1000 - - 0.5 ; EP 0.0200 1.0 4.0 0.5
PPY 0.0100 - - 1.0 PP 0.0050 0.5 0.5 8.0

PP* 0.0100 — - 1.0 PP* 0.0500 1.0 2.0 4.0

PO 0.0200 - - 1.0 PO 0.0020 1.0 4.0 0.5

DY 0.0100 - - 1.0 = D 0.0005 0.5 2.0 0.5

E D* 0.0100 - - 0.5 § D*  0.0010 0.5 8.0 2.0
EP 0.0200 — — 1.0 3 EP 0.0010 0.5 8.0 2.0
PPY 0.0010 - - 4.0 PPY 0.0005 8.0 2.0 2.0

PP* 0.0050 — — 4.0 PP* 0.0020 4.0 1.0 0.5
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Figure 6: Results of the different defense methods against the D attack scenario for five different images from the
CIFAR-10 test dataset (first column) and their explanations (second column). Complementary to Fig. | in the main

paper, which only shows three examples.
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Figure 7: Visual comparison of the three metrics used in this work: MSE, PCC, and SSIM using sample explanations.
Values for each metric are computed between the shown explanations and the square target explanation, with the leftmost
explanation being the closest to the target. The scales for PCC and SSIM are inverted to allow for better comparison.

Appendix C.
Hyperparameters

The following section provides an overview of the
hyperparameters for the clean training (Section C.1), the
attacks during the fine-tuning with adversarial attacks
(Section C.2), the other hyperparameters of the fine-tuning
processes (Section C.3), and the hyperparameters of the
attacks during the evaluation (Section C.4). Again, we use

optuna [2] in all settings to find the best hyperparameters.

C.1. Clean Pre-Training

To train the clean ResNet20 models [23] on the
CIFAR-10 dataset [31], we use an SGD optimizer with
a momentum of 0.9 and a weight decay of 0.0001 for
200 epochs. The starting learning rate is set to 0.1 and

is reduced by a factor of 10 at epochs 100 and 150.

Additionally, we employ a batch size of 128 and the
standard preprocessing transforms provided by PyTorch
for ResNet models. During training, we evaluate the model
after every epoch and save the best model according to the

clean accuracy (Acc®®") on the validation split. In total,

we train three clean models, which we use as the baseline

for the evaluation and as starting points for defensive
fine-tuning approaches.

C.2. Attack Hyperparameters during Fine-Tuning

For each explanation-aware fine-tuning scenario, we
perform a hyperparameter search to identify the optimal
adversaries to fine-tune against. While the loss terms Lyreq
and Leyp differ for different attack modes, v and the
learning rate 7 used to minimize this loss remain the
only two hyperparameters relevant for searching across
all attacks. The number of iterations N used in the

TABLE 10: Hyperparameters of the attacks used during
fine-tuning. All attacks use € = 0.031.

Attack N n y

PO 7 0.0078 -

EP 200 0.0011 0.9918
pPPY 200  0.0018 0.9912
PP* 200 0.0019 0.9668
DY 200 0.0010 0.9892
D* 200 0.0015 0.9852




optimization process is manually selected to minimize
compute time while preserving attack effectiveness (cf.
Fig. 2). For all explanation-aware attack modes, we run
1000 trials and select the best hyperparameters based on the
equally weighted sum of the robust accuracy (Acc™) and
forgeability according to MSE. To measure these metrics
while saving computational costs, we attack the first 2000
samples in the test dataset. For the PO attack, we employ
the parameters proposed by [35]. The hyperparameters for
all attacks used during fine-tuning are shown in Table 10.
The weighting is done according to Table 12.

C.3. Hyperparameters of the Fine-Tuning

The following paragraphs describe both pre-defined
and searched hyperparameters for the methods used in
this work. These pre-defined hyperparameters for existing
methods are chosen according to the respective original
works. For the explanation-aware extensions, we choose
the same pre-defined hyperparameters as for their vanilla
counterparts. Specifically, these pre-defined hyperparame-
ters include the batch size, the beta smoothing factor, the
number of fine-tuning epochs, and the optimizer. The batch
size is set to 1,000 for all explanation-aware extensions and
to 128 for all other methods. Beta smoothing as introduced
by [16] is set to 3 for ATEX and CRC, and to 8 for all
other methods. The number of fine-tuning epochs is set
to 10 for all methods, except for ATEX and CRC, which
are fine-tuned for 200 epochs. The optimizer used during
fine-tuning is SGD for all methods, except for ATEX and
CRC, which use Adam. These differences between ATEX
and CRC and the other methods stem from the different
choice of hyperparameters in the original works, which
we follow to ensure a fair comparison. To determine the
remaining hyperparameters for the different explanation-
aware extensions used in this work, we run grid searches
for each. Specifically, this includes the learning rate and
the different loss weights \,, AL, and A\2. The grid search
employs the GridSampler from optuna and runs every
combination of predefined hyperparameters to be searched.
The search space is defined logarithmically, spanning from
107° to 5 x 102 for the learning rate and from 0.5 to
8 for Ay, AL, and A\2. For explanation-aware extensions,
we conduct one grid search for each attack mode. This
is necessary due to the different natures of attacks used
during fine-tuning: e.g., while some attack modes maximize
the difference in predictions (e.g., dual attacks), others
minimize this difference (prediction-preserving attacks).
Therefore, the corresponding loss terms of the explanation-
aware extension may have to be weighted differently for
the different attack modes. The model is fine-tuned with
attacks on the training dataset and evaluated with the same
attack scenario on the validation dataset. For evaluation,
the same attack hyperparameters as for fine-tuning are used,
except that the number of attack iterations IV is increased
from 200 during fine-tuning to 500 during evaluation. This
is done to evaluate against stronger attacks and to obtain
a more accurate measure of the model’s robustness. To
save computational costs, we first fine-tune models for 3
epochs for each hyperparameter trial. For the best trials,
we extend fine-tuning for another 3 epochs to determine

the best hyperparameters. The best trials to extend are
selected by optuna, which calculates the Pareto front of

the trials by the given metrics to optimize. To determine
the best hyperparameter combination, we use a weighted
sum of different metrics specified in Table 11. For X-PGD-
AT and RAR, we use 30 trials. Since X-TRADES and
X-MART have more hyperparameters to search, we use
60 trials. The hyperparameters for each method and attack
scenario are listed in Table 9. Note that we do not conduct
hyperparameter searches for ATEX and CRC, and instead
employ the hyperparameters from the original works.

C.4. Attack Hyperparameters during Evaluation

An adversary is generally expected to be able to adapt
themselves to the specific environment they attacks, such
as the specific model. To evaluate the models that were
fine-tuned with the different methods presented in this
work, we conduct a hyperparameter search for each robus-
tified model. These hyperparameter searches use the same
methodology as described in Section C.2. However, we
only run 100 trials for each model instead of 1,000, but use
500 adversary iterations, as we expect the adversary to be
able to use more iterations than the defender. Note that this
hyperparameter search is conducted for each combination
of defense method and attack scenario, representing the
majority of the total computational cost to evaluate our
work. The best learning rate 1 and weight ~ are selected
as described in Section C.2. These hyperparameters are
then used to evaluate the model on the test dataset. Since
in the whole evaluation pipeline we train 435 models and
therefore have to conduct 435 hyperparameter searches,
we do not list the individual hyperparameters here.

TABLE 11: Weights for the hyperparameter searches of the
explanation-aware extension. The arrows indicate whether
a metric should be minimized or maximized.

Attack Accdean  AccreP
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TABLE 12: Weights for the hyperparameter searches of
the attacks. The arrows indicate whether a metric should
be minimized or maximized.

Attack Acc™P Vul
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TABLE 13: Quantitative results for the target transferability of explanation-aware attacks for the MSE metric. Numerical
counterpart to Fig. 5 in the main paper, which only shows bars.

Defense  Attack Acc®®®  Acc'P

O O 0.791001  0.496002 0.002000 0.323010 0.057006 0.047003  0.0710.0s

X-PGD-AT a 0.791001  0.496002 0.010000 0.266009 0.053005 0.047003  0.0740.05
a O 0.810001  0.487003 0.006000 0.284009 0.054006 0.047003 0.07600s

a 0.810001  0.492003  0.007000 0.295010 0.057006 0.047003 0.0700.0s

O O 0.833001  0.556002 0.001000 0.270007 0.027004 0.047003 0.0610.04

X-TRADES a 0.833001  0.570002  0.000000 0.333007 0.027003 0.047003 0.0520.03
a O 0.835001  0.572002  0.000000 0.351007 0.027003 0.045003 0.0510.03

a 0.835001  0.567001  0.002000 0.255007 0.025003 0.045003  0.0570.04

O O 0.841001  0.544002 0.001000 0.304000 0.045005 0.053003 0.0710.04

X-MART a 0.841001  0.545002  0.002000 0.279008 0.04300s 0.053003  0.0700.04
o O 0.843001  0.540002  0.001000 0.298000 0.043005s 0.051003 0.0720.04

a 0.843001  0.537002  0.001000 0.291008 0.042005 0.051003 0.0670.04

O O 0.826001  0.541002 0.002000 0.332010 0.052006 0.051003  0.0690.04

RAR a 0.826001  0.536001  0.007000 0.26800s 0.04700s 0.051003 0.0730.04
a O 0.831001  0.534002  0.002000 0.284009 0.046005 0.051003 0.0750.0s

a 0.831001  0.534002  0.002000 0.317009 0.04900s 0.051003 0.0670.04




TABLE 14: The effectiveness of our investigated defense techniques against explanation-aware attacks for each attack
scenario for the MSE metric. For the PO attack, no bold highlights are used for the vulnerability and the deviation as
PO attackers ignore explanations.

Attack  Defense Accclean Accrob Vul
PGD-AT 0.761001  0.455002 - - 0.035004  0.044004  0.055004
TRADES 0.798001  0.412002 - - 0.034004  0.036003  0.0490.04
MART 0.746001  0.491002 - - 0.035004  0.047004  0.057 0.04
X-PGD-AT 0.696001  0.410002 - - 0.04300s  0.051004  0.0610.04
Q X-TRADES  0.783001  0.3280.02 - - 0.016002  0.0350035  0.0440.03
& X-MART 0.702001  0.475002 - - 0.048005s  0.069004  0.0770.04
RAR 0.696001  0.4090.02 - - 0.04300s  0.051004  0.0610.04
No Defense  0.919001  0.0490.01 - - 0.061000  0.000000 0.0610.00
ATEX 0.878001  0.1060.01 - - 0.032002  0.050003  0.0580.03
CRC 0.772003  0.0990.04 - - 0.116006  0.10800s  0.1040.05
PGD-AT 0.761001  0.350002 - - 0.017003  0.044004  0.0490.04
TRADES 0.798001  0.312002 - - 0.016002  0.036003  0.0430.03
MART 0.746001  0.3800.02 - - 0.017003  0.047004  0.0500.04
X-PGD-AT 0.750001  0.3670.01 - - 0.012002  0.045004  0.0470.03
Q, X-TRADES  0.803001  0.3180.02 - - 0.009001  0.040003  0.0430.03
= X-MART 0.716002  0.3820.01 - - 0.019004  0.07100os  0.0710.0s
RAR 0.763001  0.3430.02 — — 0.015002  0.05T004  0.0520.04
No Defense ~ 0.919001  0.0000.00 - - 0.000000  0.000000  0.0000.00
ATEX 0.878001  0.0260.01 - - 0.008001  0.050003  0.0480.03
CRC 0.772003  0.013002 - - 0.030003  0.10800s  0.1020.04
PGD-AT 0.761001  0.959001  0.003000 0.193002  0.014003  0.044004  0.0400.03
TRADES 0.798001  0.977001  0.003000 0.185003  0.013003  0.036003  0.0320.03
MART 0.746001  0.945001  0.001000 0.196002 0.013003  0.047004  0.0400.03
X-PGD-AT 0.71000s  1.000000  0.999000  0.022001  0.065003  0.099004  0.1460.03
% X-TRADES  0.881001  1.000000 0.002000 0.149002  0.011002  0.045004  0.046004
A X-MART 0.835001  0.997000  0.692004  0.069003  0.041003  0.095004  0.1110.04
RAR 0.871001  1.000000 0983000 0.032002  0.079003  0.093004  0.1420.03
No Defense  0.919001  1.000000 0.998000 0.012000 0.163000  0.000000 0.163000
ATEX 0.878001  0.996001  0.308004  0.114005  0.067004  0.050003  0.0810.04
CRC 0.772003  1.000000 0.384022  0.094003  0.059004 0.108005s  0.1150.03
PGD-AT 0.761001  0.9600.00 - - 0.021003  0.044004  0.0380.03
TRADES 0.798001  0.9800.01 - - 0.023003  0.036003  0.0330.03
MART 0.746001  0.9470.01 - - 0.017003  0.047004  0.0390.03
X-PGD-AT 0.759008  1.0000.00 - - 0.303008  0.125005  0.257 0.07
& X-TRADES  0.853001  0.9970.00 - - 0.037004  0.038002  0.0610.04
A X-MART 0.836001  0.9950.00 - - 0.098007  0.074004  0.1170.06
RAR 0.815003  1.0000.00 - - 0.294008  0.12000s  0.2560.07
No Defense  0.919001  1.0000.00 - - 0.329001  0.000000  0.3290.01
ATEX 0.878001  0.9950.00 - - 0.098005s  0.050003  0.0930.05
CRC 0.772003  1.0000.00 - - 0.175009  0.108005s  0.1860.08
PGD-AT 0.761001  0.351002  0.001000  0.200002  0.019003  0.044004  0.051004
TRADES 0.798001  0.315002  0.000000 0.197002  0.020003  0.036003  0.0450.03
MART 0.746001  0.380002  0.001000 0.199002  0.018003  0.047004  0.0510.04
X-PGD-AT 0.778002  0.260002  0.005000  0.183003  0.022003  0.037003  0.0460.03
O X-TRADES  0.814001  0.292002  0.000000 0.171002  0.012002  0.041003  0.0440.03
_Q X-MART 0.804001  0.295002  0.000000 0.192002  0.015002  0.037003  0.0410.03
RAR 0.821001  0.285002  0.000000 0.193002  0.017002  0.038003  0.0430.03
No Defense  0.919001  0.000000 0.998000  0.010000 0.170000  0.000000 0.1700.00
ATEX 0.878001  0.037001  0.222001  0.128005  0.064004  0.050003  0.0780.04
CRC 0.772003  0.013002  0.311020 0.102003  0.09100s  0.108005s  0.1200.03
PGD-AT 0.761001  0.3500.02 - - 0.023003  0.044004  0.0520.04
TRADES 0.798001  0.314002 - - 0.029004  0.036003  0.0500.04
MART 0.746001  0.3800.02 - - 0.021003  0.047004  0.052004
X-PGD-AT 0.764002  0.276002 - - 0.042005s  0.045003  0.0620.0s
x X-TRADES  0.818001  0.3100.02 - - 0.018003  0.041003  0.051004
_ X-MART 0.751002  0.3570.02 - - 0.019003  0.047003  0.0520.04
RAR 0.800001  0.3060.02 - - 0.03300s  0.048003  0.0600.04
No Defense ~ 0.919001  0.0000.00 - - 0.337001  0.000000 0.3370.01
ATEX 0.878001  0.0300.01 - - 0.09800s  0.050003  0.0980.05

CRC 0.772003  0.0130.02 - - 0.219008  0.108005s  0.2000.08




TABLE 15: The effectiveness of our investigated defense techniques against explanation-aware attacks for each attack
scenario for the two additional metrics PCC and SSIM. For the PO attack, no bold highlights are used for the vulnerability
and the deviation as PO attackers ignore explanations.

Att. Def. Accuracy For
clean robust PCC SSIM PCC SSIM PCC SSIM PCC SSIM
PGD-AT 0.761 001 0.4550.02 - - - 0.748 030  0.592 031 0.727025 0.516022 0.666 027 0.451 023
TRADES 0.798001 0.4120.02 - - - 0.776 027 0.599 020 0.783022 0.578021 0.710 025 0.489 0.2
MART 0.746001  0.4910.02 - - - 0.756 030  0.605 031 0.713025 0.502022  0.647 028  0.436 023
X-PGD-AT 0.696001 0.410002 - - - 0.695 034 0.547 032 0.684027 0.478023 0.624 029 0.416 023
Q X-TRADES 0.783001 0.3280.02 - — — 0.877 019 0.729 024 0.811018 0.590019 0.753 021 0.523 020
& X-MART 0.702001  0.4750.02 - - - 0.640 040 0.517 037 0.538030 0.350021 0.488 031 0.310 021
RAR 0.696001  0.4090.02 - - - 0.695 03¢ 0.548 032 0.685027 0.479023 0.624 0290 0.417 023
No Defense 0.919001 0.0490.01 - - - 0.675 001 0.480 001 1.000000 1.000000 0.675 001 0.480 o.01
ATEX 0.8780.01  0.1060.01 - - - 0.759 019 0.507 018 0.7600.16 0.4230.14 0.689 020 0.400 o.16
CRC 0.772003  0.0990.04 - - - 0.277 033 0.186 019 0.337034 0.209019 0.533 027 0.325 018
PGD-AT 0.761001  0.3500.02 - - - 0.880 020 0.751 025 0.727025 0.516022 0.701 024  0.479 021
TRADES 0.7980.01 0.3120.02 - - - 0.894 017 0.747 023 0.783022 0.578021 0.747 021 0.522 021
MART 0.746001  0.3800.02 - - - 0.884 019  0.758 025 0.713025 0.502022 0.694 024 0.473 021
X-PGD-AT  0.750001 0.3670.01 - - - 0.922 016 0.814 021 0.734024 0.508021 0.724 022 0.492 0.0
Q, X-TRADES 0.803001 0.3180.02 - - - 0.956 008  0.888 012 0.8080.06 0.571017 0.793 016  0.563 0.17
= X-MART 0.716002 0.3820.01 - - - 0.867 026 0.763 027 0.543034 0.364025 0.544 033 0.363 024
RAR 0.763001  0.3430.02 - - - 0.913 015 0.804 020 0.704024 0.496021 0.702 022 0.492 020
No Defense  0.919001  0.0000.00 - - - 0.997 000  0.984 000 1.000000 1.000000 0.997 0.0 0.984 0.0
ATEX 0.8780.01  0.0260.01 - - - 0.931 010 0.770 015 0.7600.16 0.423014 0.758 017 0.449 o0.15
CRC 0.772003  0.0130.02 - - - 0.754 025 0.578 029 0.337034 0.209019 0.353 032 0.220 o.18

PGD-AT 0.761001  0.959001 0.003000 -0.031013 -0.066008 0.892 023 0.806026 0.727025 0.516022 0.750 023 0.543 022
TRADES 0.798001 0.977001 0.003000 0.007 014 -0.048000 0.903 0.19 0.802 023 0.783022 0.578021  0.799 020 0.597 020
MART 0.746001 0.945001 0.001000 -0.0430.12 -0.074008 0.906 021 0.818 025 0.713025 0.502022 0.754 022 0.545 021
X-PGD-AT 0.71000s 1.000000 0.999000 0.931006 0.769 0.0 0.522 016 0.443 016 0.340029 0.124015 0.039 013 -0.0680.10

% X-TRADES 0.881001 1.000000 0.002000 0.135012 0.053 000 0.914 018 0.783 020 0.702028 0.507024 0.678 027 0.458 0.21
A,  X-MART 0.835001 0997000 0.692004 0.641 021 0.459 019 0.695 026 0.563 023 0.417030 0.177019 0.213 025 0.023 0.5
RAR 0.871001 1.000000 0.983000 0.873 010 0.697 014 0.427 020 0.324 018 0.523026 0.2380.17 0.037 015 -0.0650.10
No Defense 0.919001 1.000000 0.998000 0.948 001 0.877 002  0.023 002 -0.053001 1.000000 1.000000 0.023 002 -0.0530.01
ATEX 0.878001 0.996001 0.308004 0.419 028 0.292 023 0.499 020 0.296 025 0.760016 0.4230.14 0.496 024 0.227 0.8
CRC 0.772003 1.000000 0.384022 0.452 023 0.319019 0.526 035 0.396027 0.337034 0.209019 0.127 025  0.041 0.14
PGD-AT 0.761 001 0.9600.00 - - - 0.857 025 0.743 026 0.727025 0.516022 0.775 022 0.563 o021
TRADES 0.7980.01  0.9800.01 - - - 0.863 022 0.728 024 0.783022 0.578021  0.812 0.9 0.606 0220
MART 0.746001  0.947 001 - - - 0.889 022 0.789 025 0.713025 0.502022 0.769 022 0.558 0221
X-PGD-AT  0.75900s 1.0000.00 - - - -0.445037 -0.054012 0.246034 0.127019 -0.125031 -0.0250.14
& X-TRADES 0.853001 0.9970.00 - - - 0.799 021 0.679 022 0.7840.6 0.5280.17 0.692 021 0.453 0.8
A X-MART 0.836001  0.9950.00 - - - 0.518 030  0.428 027 0.565029 0.341021 0.446 032 0.247 020
RAR 0.815003  1.0000.00 - - - -0.397040 -0.040013 0.302032 0.147019 -0.117031 -0.0270.14
No Defense 0.919001  1.0000.00 - - - -0.473001 -0.183000 1.000000 1.000000 -0.473001 -0.1830.00
ATEX 0.8780.01  0.9950.00 - - - 0.484 020  0.261 019 0.7600.06 0.423014 0.529 027  0.280 o.18
CRC 0.7720.03  1.0000.00 - - - 0.223 046 0.227 026  0.337034 0.209019 0.224 036 0.127 018
PGD-AT 0.761001 0351002 0.001000 -0.0620.12 -0.084007 0.862 022 0.733 027 0.727025 0.516022 0.687 025 0.469 022
TRADES 0.798001 0.315002 0.000000 -0.040013 -0.074008 0.864 020 0.714 025 0.783022 0.578021 0.725 023 0.504 022
MART 0.746001 0.380002 0.001000 -0.0560.11 -0.080007 0.877 020 0.751026 0.713025 0.502022 0.687 024 0.467 021
X-PGD-AT 0.778002 0.260002 0.005000 0.010 014 -0.0500.10 0.862 018 0.709 023 0.779020 0.573020 0.714 022  0.496 0.20
O X-TRADES 0.814001 0.292002 0.000000 0.089 007 0.002 006 0.935 010 0.857 015 0.8080.t6 0.563016 0.780 017 0.543 0.17
S X-MART 0.804001 0.295002 0.000000 -0.039007 -0.089005s 0.915012 0.805018 0.777019 0.575019 0.758 018 0.553 0.13
RAR 0.821001 0.285002 0.000000 -0.027009 -0.083007 0.905014 0.774 020 0.779019 0.572019 0.744 019  0.531 019
No Defense 0.919001 0.000000 0.998000 0.959 001  0.895 002 0.006 001 -0.058001 1.000000 1.000000 0.006 001 -0.0580.01
ATEX 0.878001  0.037001 0.222001  0.323 028 0.203 022 0.498 029 0.274 025 0.7600.16 0.4230.14 0.501 024 0.241 0.8
CRC 0.772003 0.013002 0.311020 0.405024 0.284 019 0.262 034 0.176 024 0.337034 0.2090.19 0.099 025 0.040 0.14
PGD-AT 0.761001  0.3500.02 - - - 0.838 024 0.707 028 0.727025 0.516022 0.688 025 0.468 0.2
TRADES 0.7980.01 0.3140.02 - - - 0.823 024  0.669 028 0.783022 0.578021 0.713 024 0.493 0.2
MART 0.746001  0.3800.02 - - - 0.860 022 0.734 027 0.713025 0.502022 0.686 025 0.466 0.2
X-PGD-AT 0.764002 0.2760.02 - - - 0.784 026 0.642 028 0.741022 0.530020 0.673 024 0.462 021
x X-TRADES 0.818001 0.3100.02 - - - 0.913 014 0.823 0138 0.804016 0.553016 0.764 0.5 0.524 .17
_ X-MART 0.751002 0.357 002 - - - 0.893 018 0.783 023 0.711023 0.508020 0.696 022 0.490 o.19
RAR 0.8000.01  0.3060.02 - - - 0.829 023 0.706 026 0.728021 0.511019 0.682 023 0.468 0.19
No Defense  0.919001 0.0000.00 - - - -0.491001 -0.181000 1.000000 1.000000 -0.491001 -0.1810.00
ATEX 0.8780.01  0.0300.01 - - - 0.453 027 0.231 020 0.7600.06 0.423014 0.491 028 0.254 0.17

CRC 0.772003 0.0130.02 - - - -0.040041  0.055 022 0.337034 0.2090.19 0.129 036 0.088 0.17




TABLE 16: Additional results for the target transferability of explanation-aware attacks for the metrics PCC and SSIM.
Complementary to Fig. 5 in the main paper, which only shows the MSE distances.

Def  Att. Accuracy For Vul
clean robust PCC SSIM PCC SSIM PCC SSIM PCC SSIM
O Ll 0.791001 0.496002 0.002000 0.085 035 0.056009 0.668035 0.527031 0.745022 0.522020 0.584028 0.377021
X-P o 0.791001 0.496002 0.010000 0.298 032 0.114011 0.706032 0.543030 0.745022 0.522020 0.578028 0.372021
-PGD-AT
a O 0.810001 0.487003 0.006000 0.230 033 0.099010 0.689033 0.534030 0.745022 0.523020 0.553020 0.359021
a 0.810001 0.492003 0.007000 0.189 033 0.079009 0.670034 0.524031 0.745022 0.523020 0.596028 0.383021
o ¥ 083300 0556002 0.00lo00 0.253026 0.075008 0.846022 0.722025 0.76501s 0.523017 0.657025 0.4460.19
a 0.833001  0.570002 0.000000 -0.000027 0.022006 0.836022 0.720025 0.765018 0.523017 0.710022 0.4730.19
X-TRADES
a Ll 0.835001 0.572002 0.000000 -0.073027 0.007006 0.841022 0.725025 0.781017 0.535017 0.714022 0.4780.19
o 0.835001  0.567001 0.002000 0.306 025 0.088008 0.858021 0.732025 0.781017 0.535017 0.691023 0.4660.19
O L 0.841001 0.544002 0.001000 0.112 031 0.048007 0.734030 0.602020 0.731021 0.491018 0.597026 0.3830.19
X-MART o 0.841001 0.545002 0.002000 0.211 031 0.079008 0.749020 0.6060290 0.731021 0.491018 0.603025 0.3820.19
a U 0.843001 0.540002 0.00lo00 0.143 032 0.06400s 0.747028 0.608025 0.736020 0.499018 0.586026 0.3790.19
a 0.843001 0.537002 0.001000 0.166 030 0.058008 0.753028 0.616028 0.736020 0.499018 0.622025 0.4000.19
O Ll 0.826001 0.541002 0.002000 0.044 034 0.043008 0.701033 0.558031 0.733021 0.503019 0.593027 0.379020
RAR o 0.826001 0.536001 0.007000 0.285 031 0.113011 0.740020 0.576020 0.733021 0.503019 0.585027 0.371020
a L 0.831001 0.534002 0.002000 0.229 031 0.0930.10 0.743020 0.5820290 0.729021 0.503019 0.563028 0.364020
o 0.831001 0.534002 0.002000 0.098 032 0.054008 0.722031 0.573030 0.729021 0.503019 0.614026 0.392020
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