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ABSTRACT
Understanding protein–protein interactions is crucial in the fields of biology and biotechnology, offering insights into cellular

functions and highlighting therapeutic targets. Deep learning (DL) models, particularly convoluted neural networks, have revo-

lutionized biomolecular analysis, yet their success is often tethered to enormous computational costs and reliance on specialized

and time-consuming hardware, creating a significant bottleneck for scientific discovery. More specifically, image-based analysis of

protein–protein interactions requires time-consuming and computationally intensive quantization of complex structural patterns.

In this study, we present an approach for overcoming these computational barriers by leveraging graph theory (GT) and DL

approaches synergistically for efficient and accurate classification of protein interactions. Experimentally, this approach utilized

multiscale structural features extracted from graphs representing polarized light microscope images of protein stains. Prediction

accuracies for categorizing protein binding strengths were as high as 98.67% after feature optimization, including the generation of

new augmented descriptors through simple mathematical operations, input dataset size reduction, and feature selection based on

minimum redundancy maximum relevance algorithms, while also reducing the training time to only 60 s. Our results highlight

the potential for augmenting DL reasoning with GT parametrization, which improves accuracy and reduces training time. These

findings establish a powerful and accelerated alternative to conventional image-based DL for analyzing protein–protein inter-

actions. This approach not only provides a cost-effective and accessible alternative to traditional methods, but also facilitates the

accurate prediction of protein interaction strengths, even for untrained samples.

1 | Introduction

Proteins serve as the essential components in nearly all biological
and biotechnological processes, exhibiting varying degrees of
affinity and specificity. Their functionalities are governed by
intricate regulatory networks of transient protein–protein inter-
actions (PPIs). Predicting and studying PPIs entail using a diverse
array of techniques developed over decades, encompassing
in vitro and in vivo assays. Despite exceptional progress, these
approaches face limitations such as false positives/false nega-
tives, challenges in obtaining protein crystal structures, and
detecting transient PPIs. Experimental methods used to discern

interactions also influence their detectability. To circumvent
these limitations, novel approaches have gained prominence, aid-
ing in the investigation of PPIs [1–9].

The ongoing reduction in the cost of high-throughput experi-
ments, coupled with advancements in novel computational pre-
diction methods, has led to the generation of extensive PPI
datasets. This capability to furnish relatively comprehensive
and dependable collections of PPIs has spurred the creation of
numerous databases, each with distinct objectives and strengths,
aiming to aggregate and consolidate the available data [6]. In our
previous studies, we have demonstrated strong correlations
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between characteristic changes in their respective deposition
stain patterns and trends in the levels of protein–protein inter-
actions [10, 11].

Deep learning (DL)–assisted approaches are well-suited to
describe biomolecular interactions [10, 12, 13]. A recent study
introduced a DL–assisted approach for classifying the binding
affinity of humoral immunoprotein complexes from microscopy
images [11]. In this method, droplet assays were prepared by
mixing immunoglobulin G (IgG) from various species with a
recombinant B-cell superantigen (staphylococcal Protein A) on
hydrophobic polymer substrates; the resulting protein stain pat-
terns were captured via polarized light microscopy (PLM) and
used as input for a convolutional neural network (CNN) analysis.
A pretrained Inception V3 convolution neural network (CNN)
architecture was used to analyze ~23,745 such images, enabling
both species-specific identification of IgG and inference of
their binding affinity levels to Protein A. The DL model achieved
an overall classification accuracy of 81.4% across 36 distinct
IgG:Protein A binding conditions, with the highest predictive
accuracy observed for human IgG (the species exhibiting the
strongest known affinity for Protein A). Notably, the network’s
classification performance was consistent with independent bio-
physical measurements, where its accuracy trends for different
IgG/Protein A mixtures correlated with the binding strengths
determined by circular dichroism (CD) spectroscopy, indicating
that the model’s predictions reflect true protein–protein affinity
differences. The trained CNN algorithm also demonstrated
robust generalization beyond its training data; when challenged
with a novel ligand (Protein G, a different antibody-binding pro-
tein not seen during training), it correctly classified human IgG
binding patterns with ~94% accuracy across various molar ratios.
High-performance outcomes for unfamiliar immunoprotein com-
plexes highlight a model’s ability to capture fundamental features
of antibody–ligand interactions. Overall, this DL framework illus-
trates that image-based analysis of simple protein droplet stains
can serve as a rapid and accurate proxy for evaluating PPI affinities
in the humoral immune system, offering a valuable tool for anti-
body characterization and informing protein engineering or stabil-
ity assessments in complex biological media [11].

In recent years, graph theory (GT) has become a powerful tool for
analyzing intricate structural data, allowing for the extraction of
numerical features that can be conveniently and transparently
applied to machine learning-based classification tasks. Instead
of directly processing graph structures, researchers have focused
on deriving meaningful descriptors from graphs to improve clas-
sification accuracy while reducing computational complexity.
For instance, studies on brain connectivity networks have lever-
aged graph-based feature extraction to classify migraine pathol-
ogy based on MRI images [14]. Similarly, the extraction of GT
and other topological parameters from biological sequences such
as DNA, RNA, and proteins has been facilitated by computa-
tional tools like MathFeature, which applies mathematical
descriptors to enhance classification performance [15]. In tran-
scriptomic data analysis, graph-based approaches have been used
to optimize feature selection from high-dimensional RNA-Seq
datasets, significantly improving classification accuracy by reduc-
ing redundant features [16]. In addition, advanced DL techni-
ques, such as graph convolutional network (GCN)-based
methods, have been used for selecting biologically relevant fea-
tures, ensuring a more interpretable and efficient classification

process [17]. Zhang et al. demonstrated the potential of GT-based
numerical descriptors in enhancing classification performance,
highlighting their applicability in improving diagnostic accuracy
[18]. These studies collectively highlight the growing potential of
graph-theoretic numerical feature extraction in biomedical appli-
cations, offering robust solutions for biological classification
problems.

In this study, we propose augmentation of DL approaches using
the power of GT to quantify the structure of complex structures
that would be intractable or exceedingly costly by other means.
At the core of our approach is the conversion of complex image
data into a more compact, information-dense feature space using
graph-based representations. Rather than analyzing raw pixel
data with computationally demanding CNNs, we transform
the images of multiprotein stains into mathematical graphs.
We then extract key numerical descriptors that capture essential
topological features of the underlying patterns. In validating this
approach, we consider the required time and computational cost
of the training process, required for CNN-based image classifica-
tions. To overcome the limitations of the CNNs within the training
time and computational resources, a novel approach will be
adopted involving the conversion of images to graphs. This
approach was motivated by the intricate, graph-like structures
observed in the captured images from the previous study [11], par-
ticularly regarding the changing morphology of salt crystals under
various protein mixtures and interactions. In Figure 1A,B, the pro-
cedure of obtaining the deposited patterns of Immunoglobulin G
(IgG) complexes on the coated surface is shown. The deposited
patterns were analyzed using PLM shown in Figure 1C. In
Figure 1D, the analysis difference between GT-based neural net-
work and CNN on the images is presented. Given the potential for
enhanced feature extraction and simplified analysis offered by
graph-based representations, the StructuralGT Python package,
originally developed at the University of Michigan [19,20], was
adapted for this study’s specific requirements.

The StructuralGT package leverages principles from graph theory
to convert images into graphs, enabling the extraction of mean-
ingful features pertinent to the underlying structures depicted in
the images [19]. By converting image data of various protein
stains into tabulated numerical features through systematic fea-
ture engineering and assessment of predictor importance, a com-
pact and informative feature set was identified for training a
custom-designed neural network. We then evaluated the perfor-
mance of GT analysis for optimization of time and computational
costs by converting all images into graphs, identifying meaning-
ful features, and training a neural network on the table of fea-
tures as input dataset.

2 | Experimental Section

2.1 | Dataset Source

The image data already available from our earlier work has been
utilized for training, testing, and validation [11]. The dataset
comprises a total of 23,745 PLM images, covering 36 distinct
interaction conditions of dried protein droplet patterns. These
images were captured from IgG complexes of four species (i.e.,
human, rabbit, bovine, and goat) as well as human serum albu-
min (HSA) as the negative control and mixed with recombinant
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Protein A (B-cell superantigen (SAg)) at various molar ratios.
Each droplet was dispensed onto poly(p-xylylene)-deposited glass
substrates, and images of protein stains were obtained using
PLM. More details about the sample preparation, PLM imaging,
and CNN performance evaluation of our earlier work can be
found in the Ref. [11].

2.2 | Graph Features Extraction

Regarding the GT-based analysis of the images, the StructuralGT
python package was used [19, 20]. Using this package and upon
conversion of images to graphs, a comprehensive table of
extracted features was generated (Table 1), encompassing 15
meaningful features for each input setting (in this study).

The PLM images primarily report salt crystal morphologies
formed during the evaporation of buffered protein solutions.
PPIs are therefore not imaged directly. Instead, they influence
the physicochemical state of the solution (e.g., degree of complex-
ation, aggregation propensity, and interfacial behavior), which in
turn modulates heterogeneous nucleation and crystal growth
kinetics during drying [21]. As a result, systematic changes in

the morphology of crystal networks can be explained by changes
in PPI strength. In the graph representation, increasing interac-
tion strength is associated with larger networks (increasing
node and edge counts) but reduced connectivity and ordering
(decreasing density, clustering, global efficiency, and closeness).
These trends are consistent with a transition from compact,
crosslinked crystalline meshes toward more extended, but
sparsely connected and fragmented branched structures.
Therefore, the GT descriptors serve as quantitative morphology-
based proxies for PPI-modulated crystallization behavior,
enabling binding-strength classification without claiming direct
molecular-scale measurement of affinity. The class-averaged
trends of GT descriptors across weak, medium, and strong
PPIs are shown in Supporting Information, Figure S1.

In this process, the images were first converted to grayscale and
then binarized based on predefined input parameters. Using both
the processed grayscale and binary images, final graphical repre-
sentations were constructed, from which relevant features are
extracted. In the image-to-graph conversion process, the selec-
tion of input parameters significantly impacted the quality
and structure of the resulting binary images. Two key parame-
ters, gamma adjustment (γ) and global threshold value (T ),

FIGURE 1 | Formation of protein stains and droplet deposition and drying process. (A) Poly(p-xylylene)-coated glass substrates and an automated

pipetting system were used for dispensing several protein droplets (2 μl) containing different molar ratios of IgG from different species and recombinant

Protein A. (B) Dispensed droplets were dried under controlled environmental conditions. (C) PLM imaging was used to collect all the patterns of the

deposited proteins. (D) The results of image analysis with two different neural networks were compared.
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played a crucial role in determining the characteristics of these
binary images.

Gamma correction (γ) is a nonlinear transformation applied to
grayscale images to adjust brightness and contrast. A lower
gamma value (γ< 1) enhanced darker regions, while a higher
gamma value (γ> 1) suppressed brighter regions [22]. Global
thresholding (T ) is a binarization technique in which a fixed
intensity threshold is applied across the entire grayscale image,
distinguishing foreground from background [22, 23].

The image-to-graph conversion relies on gamma correction (γ)
and global thresholding (T ) to extract structural information
from PLM images at different levels of detail. Lower gamma val-
ues, combined with higher global thresholds, emphasized the
most prominent structural features, yielding graph representa-
tions that highlight dominant aspects of the patterns.
Conversely, increasing γ while reducing T allowed for finer
details to be incorporated into the resulting graphs, preserving
intricate features within the patterns. Given the complexity of
the macroscopic to the microscopic aspects of the observed crys-
talline patterns, rather than optimizing a single γ–T pair, five dis-
tinct parameter settings, γ values (0.9, 1.0, 1.3, 1.5, and 2.5),
corresponding T values (140, 127, 100, 70, and 80), were system-
atically optimized to ensure the most detailed and representa-
tive graph extraction from the images as shown in Figure 2.
Importantly, the final classification performance does not depend
on a specific γ–T setting. GT descriptors are extracted across all
parameter combinations and aggregated prior to feature selection
(explained in the following sections), enabling a multiscale repre-
sentation of the salt crystal networks. This approach reduces sen-
sitivity to preprocessing choices and mitigates overfitting to a
particular binarization condition.

By systematically varying these input parameters across the five
selected settings, a comprehensive range of binary images captur-
ing different levels of detail and complexity within the patterns
were generated. This approach ensured that the resulting set of
features derived from the graph representations encompassed a
broad spectrum of information, from the macroscopic to the
microscopic aspects of the observed patterns. All the images used
in our previous study were used for this purpose. These images
were the patterns of dried droplets of various immunoglobulins
mixed with a B-cell superantigen (SAg) (recombinant Protein A),

which were deposited onto hydrophobic polymer substrates and
the resulting protein stains were imaged using PLM. A compre-
hensive study based on 23,745 images was carried out in the pre-
vious work [11].

2.3 | Augmented Features

To further enhance the neural network’s classification perfor-
mance, additional features were derived from the original GT
descriptors (Table 1) through simple mathematical operations.
Specifically, summation and multiplication were applied to exist-
ing feature values to augment the dataset with new information
that could reveal subtle patterns and relationships. These oper-
ations were chosen for their simplicity and effectiveness in
capturing feature interactions without introducing excessive
complexity. Summation was used to represent cumulative rela-
tionships, effectively capturing overall structural characteristics
of the protein complexes, while multiplication was used to model
interactions and correlations between features [24]. The aug-
mented features were constructed as simple algebraic combina-
tions of physically interpretable GT metrics to capture joint
morphology effects without introducing opaque transformations.
For example, (number of nodes (n)+ number of edges (e)) sum-
marizes overall crystalline skeleton extent and segmentation,
reflecting how much branched structure is present in the salt
crystal network. Multiplying this quantity by the Average
Clustering Coefficient (ACC), Δ × (n + e), yields an “ordered
extent” index that distinguishes extended but sparsely connected
dendritic growth from large, locally crosslinked mesh-like crys-
tallization. This systematic feature augmentation enriched the
dataset and contributed to the improved accuracy of protein–
protein interaction classification without increasing computa-
tional costs. By integrating these derived features with original
graph-theoretic ones, the network gains a more comprehensive
representation, improving its ability to discern patterns and make
accurate predictions. Accordingly, the feature “average clustering
coefficient (ACC)” was selected. ACC in graph theory measures
the fraction of all possible triangles (three-node subgraphs) in a
graph, averaged over all nodes. In protein pattern analysis, this
feature is crucial as it highlights structural variations between
different protein stains, providing a quantifiable measure of

TABLE 1 | Features extracted from an individual image using GT analysis.

Unweighted GT parameter Weighted GT parameter

1 Number of nodes Weighted average degree

2 Number of edges Weighted assortativity coefficient

3 Average degree Width-weighted average betweenness centrality

4 Graph density Length-weighted average closeness centrality

5 Global efficiency Width-weighted average eigenvector centrality

6 Average clustering coefficient —

7 Assortativity coefficient —

8 Average betweenness centrality —

9 Average closeness centrality —

10 Average eigenvector centrality —

All these features are further detailed in Table S1.
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the overall connectivity and efficiency of the graph. This directly
correlates with the structural integrity and interaction patterns of
proteins. Motivated by this fact, we further explored its potential
by incorporating it into the mathematical operations described
previously, namely, summation and multiplication, to derive
additional aggregated features. One approach involved multiply-
ing ACC by the sum of weighted and nonweighted features, cre-
ating composite metrics that encapsulate more structural
information. This method combines the efficiency of the graph

with specific structural attributes, providing a more robust indi-
cator for classification. Another derived feature involved sum-
ming the number of nodes and the number of edges within
graphs. This aggregated feature can reveal more about the
graph’s complexity and density than considering nodes and edges
separately. By combining the number of nodes and edges, the
feature captures both the size and connectivity of the graph,
offering a more comprehensive view of its structure. These aug-
mented features are described in Table 2.

FIGURE 2 | Image-to-graph conversion for GT analysis. Example of an image dataset for modifying and applying five different gamma adjustments

and global threshold values as input parameters to capture intricate details of the given images. Starting from the original PLM image (top), five different

parameter combinations of γ-T are applied. Each column shows the sequential processing steps: From top to bottom: an original PLM image, processed

grayscale images after γ correction, binary images after global thresholding, and final graph representations. The bottom panel illustrates the inverse

relationship between γ adjustment values (green line, left y-axis) and global threshold values (red line, right y-axis) across the five (γ-T ) parameter

settings demonstrated in indices 1–5, showing the systematic variation used to capture different levels of structural detail within the crystalline patterns.
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To assess the contribution of original as well as the new calcu-
lated features to the classification task and to identify the most
informative descriptors for subsequent optimization, a feature
selection process was implemented to all extracted and aug-
mented feature set. Specifically, the minimum redundancy max-
imum relevance (MRMR) algorithm was used to evaluate the
importance of each input feature based on its relevance to the
target classes (36 labels) and redundancy with other features.
This analysis provided a systematic approach for screening

and prioritizing features that contribute most significantly to
the predictive performance of the model. The MRMR feature
selection analysis further supports the physical interpretability
of the proposed framework. As shown in Figure 3, the highest-
ranked predictors are dominated by GT descriptors related
to network size (number of nodes and edges), connectivity
and sparsity (graph density, average degree), local ordering (aver-
age clustering coefficient), and global transport properties (global
efficiency, closeness, and betweenness centrality). Notably, the

FIGURE 3 | Feature selection scores. Scores for the extracted/computed features using an MRMR feature selection algorithm. The green box shows

the selected features with a threshold score of 0.1 or higher. The purple line indicated the 50th percentile in the ranking relative to the entire input

features which includes six augmented features (highlighted in purple), demonstrating their relevance for classification tasks.

TABLE 2 | Augmented features.

New feature

Formula (n = # of nodes, e = # of edges,
subscript w refers to the weighted

feature) Additional description

Sum nodes edges Δ × (n + e) Δ is the average clustering coefficient, the fraction of
neighbors of a node that are directly connected to each other

as well (forming a triangle)

Sum assortativity Δ × (r+ rw) The assortativity coefficient, r, measures similarity of
connections by node degree

Sum degree Δ × (k + kw) k, the degree of a node is the number of edges connected to
that particular node

Sum betweenness
centrality

Δ × (CB + CBw) CB, the betweenness centrality is defined as the number of
shortest paths that pass through a particular node in a graph

Sum closeness
centrality

Δ × (CC + CCw) CC, the closeness centrality is the reciprocal of the average
shortest distance from a node to all other nodes in the graph

Sum eigen vector
centrality

Δ × (x + xw) Eigenvector centrality (x) is a measure of the influence of a
node in a graph.
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augmented composite descriptors are also retained, with all
exceeding the 50th percentile (left side of the purple line) in
the feature importance ranking relative to the entire input fea-
ture set as shown in Figure 3, indicating that joint information on
network extent, local crosslinking, and geometric prominence of
crystal branches is critical for discrimination of interaction
strength. These features are preferred because they exploit sys-
tematic morphology changes in salt crystal networks modulated
by protein–protein interactions, instead of arbitrary or purely sta-
tistical features. Therefore, these features were used for the fol-
lowing classification tasks. The number at the end of the feature
names in Figure 3 is the index related to the input parameter
used for graph construction described previously.

2.4 | Neural Network Design

The MATLAB programming software (Release 2023a, MathWorks
Inc.) was used to develop a neural network tailored for training
and classifying features extracted from graphs. Given that the
input dataset comprised a table consisting of numerical values rep-
resenting each label, a straightforward neural network architec-
ture with 16 layers was deemed suitable for the classification task.

2.5 | Training and Testing of Neural Network

The designed neural network was configured with specific
parameters to ensure efficient and effective training. The training
procedure involved several key steps.

– Neural Network Configuration: The neural network was
configured with a mini-batch size of 128 and a maximum
number of epochs set to 80. The ADAM optimizer was used
as the solver algorithm for optimizing the network’s weights
and biases.

– Activation Function: The activation function used in the
hidden layers of the neural network was the Exponential
Linear Unit (ELU). This choice was based on empirical evi-
dence suggesting that ELU outperformed Rectified Linear
Unit in terms of accuracy during training.

– Validation Set: To assess the performance of the trained
model and prevent overfitting, 10% of the input dataset
was randomly selected to serve as the validation set. This
validation set was disjoint from the training dataset to
ensure unbiased evaluation.

– Testing dataset: For evaluating the performance of the trained
model, the same distinct converted images used in image clas-
sification were used. This consistency ensured an accurate
comparison of the model’s performance across different tasks.

– Feature Selection: The MRMR algorithm was applied to
identify the most effective features for training. Each feature
was assigned an importance score, and features with scores
below the threshold of 0.1 were removed from the dataset to
reduce redundancy and noise.

In addition, to expedite the feature extraction process and mini-
mize computational overhead, a reduced input dataset size was
created by randomly selecting 10% of the initial input dataset.
The training procedure was then repeated using the same archi-
tecture on this reduced dataset.

3 | Results and Discussion

The optimization strategy aimed to minimize training time and
computational cost while maintaining high classification accu-
racy. To achieve this, we leveraged graph theory, a robust math-
ematical framework for analyzing complex structures [19]. The
graph-based representation is not designed to mimic the visual
feature extraction performed by CNNs. Instead, it provides a
mathematical abstraction of the connectivity and organization
of salt crystal networks formed during evaporation, enabling
quantification of morphology features such as branching com-
plexity, fragmentation, and dominance of growth pathways in
different PPI strengths that are difficult to isolate directly from
raw pixel data. Instead of directly utilizing the graphs, we focused
on deriving pertinent numerical attributes that effectively encap-
sulate their topology described previously. These extracted fea-
tures formed the input dataset for the classification model.

3.1 | Neural Network Architecture

A custom-designed neural network was developed to train and
classify the extracted graph features efficiently. The architecture
commenced with a feature input layer tasked with ingesting
the tabular data containing 17,345 rows and 105 columns
([number of graph theory defined meaningful features (15) +
number of new augmented composite features (6)] × number
of input parameters (5)), representing the extracted features.
Subsequently, a batch normalization layer was introduced to nor-
malize the input data, followed by an activation layer to intro-
duce nonlinearity and facilitate feature transformation. A
pivotal early fully connected layer was strategically incorporated
to aid in the categorization process based on the extracted fea-
tures. This layer, with a size of 10 times the number of classes,
played a crucial role in enabling the network to discern patterns
and make informed classification decisions. To refine the classi-
fication process and mitigate the influence of unwanted weights,
a tandem of batch normalization and activation layers was used.
These layers worked synergistically to cleanse the network of any
extraneous information that could hinder accurate classification.
A dropout layer was subsequently introduced to prevent overfit-
ting and enhance the network’s generalization capabilities.
Following this, a second fully connected layer, sized according
to the number of classes, was integrated into the architecture
to further refine the classification process. The architecture cul-
minated with a softmax layer, responsible for converting the
network’s raw output into probability scores corresponding to
each class, and a classification layer for assigning the final class
label. Notably, this architecture diverges from conventional
approaches by incorporating an early fully connected layer,
which proved instrumental in facilitating effective training
and classification. Comparative analyses with other classification
techniques, including support vector machine (SVM), decision
trees, k-nearest neighbor (KNN), and simple regression models,
underscored the superior accuracy achieved by the designed neu-
ral network [14, 25–28].

3.2 | Classification of IgG:Protein A Complexes

Following the development of a custom-designed neural net-
work, the model was used for the classification of extracted
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features derived from protein patterns. Each feature set was
labeled consistently with the image classification task performed
using InceptionV3 CNN to maintain coherence in the classifica-
tion frameworks [11]. Adhering to the same methodological
pipeline for image classification, the network underwent training
and testing using a designated test dataset comprising 3600 image
data sets to assess its performance and generalization capability.

Figure 4 illustrates the resulting confusion matrix obtained from
the feature classification process by the custom-designed neural
network. Notably, the total accuracy achieved was 58.25%, which
marked a decrease compared to the accuracy attained in image
classification (81.42%) in our previous study performed by the
InceptionV3 CNN [11]. The decline in accuracy can be attributed
to the network’s tendency to identify similarities in the strength
of interactions, particularly evident in cases such as rabbit IgG:
Protein A and bovine IgG:Protein A. Further analysis revealed
that rabbit IgG and bovine IgG both exhibited medium strength
of interactions with Protein A, as determined by CD spectroscopy
measurements [11]. While image classification excelled in iden-
tifying the source of IgG, it struggled to discern differences in the
strength of interaction between different IgG species. Conversely,
feature classification enabled more nuanced monitoring of these
similarities in interaction strength.

A transparent yellow box under the magnifier in the confusion
matrix highlights misclassifications stemming from similarities
in interaction strength between IgG from rabbit and bovine
serum and Protein A. In addition, misclassifications were more
prevalent in different molar ratios within each IgG species class,
again reflecting similarities in interaction strength confirmed by
CD spectroscopy analysis in our previous study [11].

The local accuracies of each IgG species image class followed a
consistent trend, with higher accuracies associated with stronger

interaction strengths. Specifically, accuracies of 81.86%, 56.28%,
54.14%, 50.43%, and 44.86% were achieved for IgG from human,
rabbit, bovine, goat, and HSA, respectively, in interaction with
recombinant Protein A.

Training the feature classification neural network required, ~7
minutes. The network excelled in recognizing interaction
strength over molar ratios or protein sources. To leverage this
capability, three main labels were chosen based on relative inter-
action strength: “weak” (goat IgG:Protein A and HSA:Protein A),
“medium” (rabbit IgG:Protein A and bovine IgG:Protein A), and
“strong” (human IgG:Protein A). The single-protein images were
excluded from this revised input dataset because they represent
individual proteins without binding partners, making them irrel-
evant for PPI classification tasks that require evaluation of bind-
ing strength between two or more proteins. Upon relabeling the
features and retraining the network with the same parameters, a
confusion matrix was obtained, as depicted in Supporting
Information, Figure S2. Impressively, a total accuracy of
99.83% was achieved in 6min of training. These results under-
score the high performance of using extracted features derived
from GT algorithms in classifying PPI strengths.

A key bottleneck was the feature extraction process, which
required significant time despite being less than that of the image
classification procedure. To optimize the designed neural network,
efforts focused on reducing the time required for initial feature
extraction and identifying the most effective features for training.

3.3 | Input Dataset Size Reduction

Given the high accuracy achieved in the previous feature classi-
fication (99.83%) shown in Figure S2, a subset comprising 10% of

FIGURE 4 | Confusion matrix of different protein mixtures using a feature classification neural network. The matrix displays predicted class (x-axis)

versus true class (y-axis) for 36 interaction conditions, with numbers indicating sample counts. The additional columns on the right side show the row-

wise classification accuracy and corresponding error rate for each true class, enabling direct comparison of per-class performance. The diagonal blue

boxes indicate correct classifications, while off-diagonal elements in orange shades denote misclassifications between different interaction categories.

Each class contains 100 test samples in this study. The total accuracy of this confusion chart is 58.25%.

8 of 13 Advanced Intelligent Discovery, 2026

 29439981, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aidi.202500225 by Joerg L

ahann - U
niversity O

f M
ichigan L

ibrary , W
iley O

nline L
ibrary on [11/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the input labels was randomly selected and separated for train-
ing. Consequently, instead of working with a table of 13,806 rows
(excluding single protein classes) and 105 columns, a reduced
dataset of 1380 rows and 105 columns was introduced to the neu-
ral network as the input dataset. This reduction aimed to address
potential training inefficiencies arising from unnecessary data
and to streamline the feature extraction process. This input size
reduction was also applied to the test dataset.

In this revised approach, random patterns of different protein
mixtures were utilized for training, without consideration for
protein source or molar ratio, as long as the total mass concen-
tration remained constant. This approach aimed to generalize the
network’s learning beyond specific protein sources or ratios,
facilitating broader applicability.

The resulting confusion matrix, depicted in Figure 5B, achieved a
total accuracy of 99.33% with a reduced training time of only
about 1 min. This significant improvement in both the required
time for feature extraction and training, while maintaining a high
accuracy of prediction, underscores the effectiveness of the opti-
mization strategy.

Since the input dataset size was reduced for feature classification,
a similar approach was applied to image classification to enable
an appropriate comparison between the two methods. The same
procedure involved relabeling the image classes and randomly

reducing the input image dataset (both training and testing) to
10% of the original size. InceptionV3, a pretrained CNN, was uti-
lized for this reduced image classification task. The training pro-
cess for this reduced dataset took, approximately, 8 h, resulting in
a total prediction accuracy of 99.00% (Figure 5A).

By implementing these changes, we can make a direct compari-
son between feature classification and image classification in
terms of training time and accuracy. The reduction in dataset size
significantly improved the efficiency of the feature classification
process, achieving similar high accuracy in a fraction of the
time required for image classification. Moreover, processing a
table of numerical values is not only easier than processing
images, but also allows classification to be performed on simple,
non-GPU-dependent computing systems, reducing the required
training time.

3.4 | MRMR Feature Selection Algorithm

Further optimization can involve selecting the most effective fea-
tures that contribute to the final decision, as mentioned in the
Experimental Section. Several feature selection algorithms are
available, among which MRMR is considered highly effective.
MRMR assigns each input feature a predictor importance score,
indicating its effectiveness in the classification process. In this

FIGURE 5 | Confusion matrix of a reduced-size input dataset for PPI strengths. Randomly, 10% of the input data were selected. (A) Image classifi-

cation using InceptionV3, a pretrained CNN with prediction accuracy of 99.00%. (B) Feature classification using the designed neural network with

prediction accuracy of 99.33%. Both approaches demonstrate excellent performance with minimal misclassifications, primarily occurring between

medium and weak interaction classes.

Advanced Intelligent Discovery, 2026 9 of 13
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study, features with an importance score threshold of 0.1 or
higher were selected, while the others were removed before being
introduced to the neural network. Consequently, 22 out of 105
features were retained. The names of the selected features
(highlighted in the green transparent box) and their importance
scores are shown in Figure 3. Consistent with this design, the
MRMR feature selection algorithm consistently retained descrip-
tors related to network size, connectivity, ordering, and pathway
dominance across γ–T variations. In Figure 3, the numerical suf-
fix appended to each feature name denotes the corresponding
γ–T parameter combination (Index), used for image-to-graph
conversion, with each instance treated as a distinct candidate fea-
ture during selection. This indicates that the selected features
capture robust, intrinsic morphology characteristics of the crys-
tallization patterns rather than artifacts arising from a specific
preprocessing configuration or relying on opaque or arbitrary
descriptors. As a result, the proposed pipeline remains stable
under moderate perturbations of γ and T, providing practical flex-
ibility for application to different imaging setups and stain inten-
sities. The training was conducted using the reduced feature set
(input dataset size reduced previously), and the prediction on the
test dataset followed. The obtained confusion matrix is shown in
Figure 6A, indicating a total prediction accuracy of 98.67% and a
training time of about 1 min. These results confirm that feature
selection algorithms can enhance the performance of feature
classification tasks. Algorithms like MRMR are preferable
due to their efficiency in memory consumption, required time,
performance, and the explainability of the results [29–32].

3.5 | Feature Classification Generalization

To evaluate the performance of the pretrained neural network
(reduced-size dataset with themost effective features) in predicting

unknown samples, the images of human IgG:Protein G complexes
were converted to graphs, and the necessary 22 features deter-
mined by the MRMR algorithm were extracted. The same proce-
dure used for test dataset preparation was followed. Given that
human IgG exhibits a strong interaction with Protein G, all the
images were labeled as “Strong” and introduced to the trained net-
work to observe its classification accuracy for these PPI classes.

The resulting confusion chart for the unknown sample predic-
tion is presented in Figure 6B. The trained neural network accu-
rately categorized 90.07% of the human IgG:Protein G images as
exhibiting a “Strong” strength of interaction. This classification is
consistent with CD spectroscopy measurements done in our pre-
vious study [11]. These results highlight the neural network’s
effectiveness in predicting the interaction strength of previously
unseen samples based on features extracted from biological
graph-like images that are typical for many molecules and tis-
sues, confirming its generalization capability. This successful
classification of the human IgG:Protein G system illustrates a
general deployment protocol for applying trained GT-augmented
models to new protein–ligand combinations. As summarized in
Figure 7, PLM images are first acquired from dried protein mix-
tures and converted into graph representations using the
StructuralGT python package based on the established γ–T
parameter set. GT descriptors are then extracted, augmented
through simple algebraic combinations to generate composite
features, and reduced to a compact, informative feature set via
MRMR-based selection. Finally, the selected features are pro-
vided as input to the pretrained neural network to predict inter-
action strength. Because the model operates on physically
interpretable structural descriptors rather than raw pixel data,
it can be applied to previously unseen protein mixtures without
retraining, provided that the underlying crystallization and pat-
tern formation mechanisms remain comparable.

FIGURE 6 | (A) Confusion matrix for PPI strength using feature a classification with input size reduction and an MRMR feature selection algorithm,

featuring a prediction accuracy of 98.67%. (B) Confusion matrix of human IgG:Protein G class prediction of unknown samples.
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For a comprehensive comparison between image classification
and feature classification, Table 3 summarizes the key parameters
affecting the final performance of each classification method. This
table outlines the required training time and the computational
costs associated with each method, both in their original schemes
and after the optimizations described in previous sections.

We specifically evaluated the training time, accuracy, and compu-
tational cost for both the original and the optimized scheme. The
original training time for image classification was significantly
higher than feature classification. Image classification required
�29 351min (about 20 days) compared to 11,570min (about
8 days) for feature classification for 5 different input parameters
for graph theory analysis. After optimization, the training time
for image classification is reduced to about 480min (8 h), while fea-
ture classification training time is reduced to just 1min. This dem-
onstrates a threefold reduction in total required time for feature
classification compared to image classification. Meanwhile, the
accuracy of the original image classification method (81.42%) is
higher than that of the original feature classification method
(58.25%). After optimization, both methods achieved high accuracy
levels, with image classification reaching 99.00% and feature classi-
fication achieving 98.67%. Importantly, image classification is com-
putationally intensive and heavily dependent on GPU resources,

whereas feature classification significantly reduced computational
costs and did not depend on GPUs, making it more accessible
and feasible for various applications. Both methods benefited from
reducing the training data size to 10% of the original dataset, main-
taining a high accuracy with a smaller dataset, which highlights the
efficiency of the optimization process. Another crucial aspect is that
feature classification maintained high performance without relying
on GPU resources, ensuring consistent results across various com-
puting environments. Image-based classification was performed
using a GPU-accelerated CNN running on an NVIDIA TITAN
RTX (24GB) with an Intel Xeon W-2123 CPU (4 cores), whereas
GT-based feature classification was executed on a CPU-only system
using an AMD Ryzen 7 processor (8 cores) with integrated
Radeon Graphics. This comparison highlights that the GT-based
pipeline achieves comparable or improved performance without
reliance on dedicated GPU acceleration, while CNN-based image
classification requires substantially more specialized hardware.
The two approaches, therefore, differ fundamentally in compu-
tational scaling. CNN-based pipelines scale steeply with dataset
size, image resolution, and network depth, whereas the GT-based
pipeline shifts most computational cost to a one-time feature
extraction step followed by efficient training on a compact tabu-
lar dataset.

FIGURE 7 | Deployment workflow for GT-augmented PPI strength classification. Following GT feature extraction, augmented composite features

are generated using simple algebraic combinations and selected using the MRMR algorithm. The selected feature set is then used by the pretrained

neural network to predict interaction strength.

TABLE 3 | Comparison of image classification and feature classification.

Performance parameter
Image

classification
Feature

classification

Input dataset preparation time (original) 2400min (~2 days) 11 563min (~8 days)

Input dataset preparation time (optimized) 240min 289min

Training time (original) 26 951min (~18 days) 7 min

Training time (optimized) 480 min (8 h) 1 min

Total required time (original) 29 351min (~20 days) 11 570min (~8 days)

Total required time (optimized) 720 min (12 h) 290min (~5 h)

Accuracy (original) 81.42% 58.25%

Accuracy (optimized) 99.00% 98.67%

Computational cost High (GPU dependent) Low (Non-GPU dependent)

GPU model NVIDIA TITAN RTX 24GB Radeon Graphics

CPU model/number of cores Intel Xeon W-2123/4 AMD Ryzen 7/8

Training data size reduction Yes (10% of original size) Yes (10% of original size)

Performance consistency High with GPU High without GPU

Advanced Intelligent Discovery, 2026 11 of 13

 29439981, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aidi.202500225 by Joerg L

ahann - U
niversity O

f M
ichigan L

ibrary , W
iley O

nline L
ibrary on [11/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 | Conclusions

Feature classification emerges as a highly efficient and practical
alternative to image classification, particularly when computa-
tional resources and training time are critical constraints.
The significant reduction in training time, which was 2.5 times
faster than the optimized CNN, and computational cost, combined
with high prediction accuracy as presented in Table 3, underscores
the potential of feature classification for broader applications in
protein interaction analysis and other biological classification
tasks. This optimized approach offers a reliable, cost-effective,
and accessible solution for the classification and screening of bio-
logical images, facilitating advancements in proteomics research
and related fields. This method, implemented using the
StructuralGT python package, transforms images into graphs
and extracts meaningful features for classification.

Overall, these findings taken together suggest that GT-augmented
neural networks present a computationally efficient alternative
to traditional image-based DL methods for pattern analysis,
achieving significant improvements in training and processing
speed while maintaining classification accuracy and mak-
ing advanced pattern recognition tools more accessible in
resource-limited settings.

Future work should focus on extended optimization and
application of this technique, potentially enhancing its utility in
various scientific fields such as proteomics, bioinformatics, and
systems biology. The integration of GT with DL represents a pow-
erful toolset for advancing our understanding and capability in
protein interaction analysis and beyond, for example, interactions
of nanoparticles and proteins as well as nanoparticles and nano-
particles; with both exhibiting direct similarities with PPI. [33, 34].
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Additional supporting information can be found online in the Supporting
Information section. Supporting Fig. S1: The class-averaged trends of
GT descriptors across weak, medium, and strong PPIs. These descriptors
are averaged over the 5 input parameters of training dataset. Supporting
Fig. S2: Confusion matrix of different protein–protein interaction
strengths using feature classification (relabeled). The obtained total
accuracy of prediction is 99.83%. Supporting Table S1: GT parameters
description.
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