KIT | KIT-Bibliothek | Impressum | Datenschutz

Prompt-Augmentation for Evolving Heuristics for a Niche Optimization Problem

Bömer, Thomas 1; Koltermann, Nico; Disselnmeyer, Max ORCID iD icon 1; Dörr, Laura ORCID iD icon 1; Meyer, Anne ORCID iD icon 1
1 Institut für Informationsmanagement im Ingenieurwesen (IMI), Karlsruher Institut für Technologie (KIT)

Abstract:

Combinatorial optimization problems often rely on heuristic algorithms to generate efficient solutions. However, the manual design of heuristics is resource-intensive and constrained by the designer’s expertise. Recent advances in artificial intelligence, particularly large language models (LLMs), have demonstrated the potential to automate heuristic generation through evolutionary frameworks. Recent works focus only on well-known combinatorial optimization problems like the traveling salesman problem and online bin packing problem when designing constructive heuristics. This study investigates whether LLMs can effectively generate heuristics for niche, not yet broadly researched optimization problems, using the unit-load pre-marshalling problem as an example case. Building on the Evolution of Heuristics (EoH) framework, we introduce two prompt augmentation strategies: Contextual EoH (CEoH), which incorporates problem-specific descriptions to enhance in-context learning, and Literature-Based CEoH (LitCEoH), which integrates heuristic insights drawn from domain literature via a novel prompt design. We conduct extensive computational experiments comparing EoH, CEoH, and LitCEoH across a wide range of problem instances. ... mehr


Originalveröffentlichung
DOI: 10.1007/978-3-032-15632-7_12
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Informationsmanagement im Ingenieurwesen (IMI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-15632-7
ISSN: 1865-0929
KITopen-ID: 1000190496
Erschienen in Computational Intelligence – 17th International Joint Conference, IJCCI 2025, Marbella, Spain, October 22–24, 2025, Proceedings, Part I. Ed.: F. Marcelloni
Veranstaltung 17th International Joint Conference on Computational Intelligence (2025), Marbella, Spanien, 22.10.2025 – 24.10.2025
Verlag Springer Nature Switzerland
Seiten 214 - 235
Serie Communications in Computer and Information Science (CCIS) ; 2827
Vorab online veröffentlicht am 28.01.2026
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page