
P
o
S
(
I
C
R
C
2
0
2
5
)
2
6
7

From collider to cosmic rays: Pythia 8/Angantyr
for air shower simulations in CORSIKA 8

Chloé Gaudu,𝑎,∗ Maximilian Reininghaus𝑏 and Felix Riehn𝑐 on behalf of the
CORSIKA 8 collaboration†

(a complete list of authors can be found at the end of the proceeding)
𝑎Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
𝑏Independent researcher, Germany
𝑐Technische Universität Dortmund, August-Schmidt-Straße 4, 44221 Dortmund, Germany

E-mail: gaudu@uni-wuppertal.de

The simulation of extensive air showers is pivotal for advancing our understanding of high-energy
cosmic ray interactions in Earth’s atmosphere. The CORSIKA 8 framework is being developed as
a modern, flexible, and efficient tool for simulating these interactions with a variety of high-energy
hadronic models. We present the ongoing implementation and validation of Pythia 8/Angantyr
within CORSIKA 8. Pythia 8, successfully used in collider physics, provides a detailed and
well-tested treatment of hadronic interactions, while the Angantyr model extends its capabilities
to describe heavy-ion collisions in a consistent manner. With the inclusion of Pythia 8, the
CORSIKA 8 suite now enables further tuning possibilities, improving the exploration of hadronic
interactions in air showers.
In this contribution, we compare the capability of Pythia 8/Angantyr to reproduce fundamental
observables of high-energy particle collisions – inelastic cross-sections and multiplicities – to
that of several established high-energy interaction models in air shower simulations. We further
compare the predictions for key air shower properties, including longitudinal shower development
and muon content, for iron-induced shower.
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Introduction

Accurate modeling of high-energy hadronic interactions is crucial for reliable simulations
of extensive air showers in astroparticle physics. CORSIKA 8 [1–3], the modern successor to
the widely used CORSIKA 7 framework, is designed with modularity and extensibility in mind,
enabling seamless integration of diverse physics models. While existing high-energy interaction
models like EPOS-LHC [5], QGSJet-II.04 [6] and Sibyll 2.3d [4] have been widely used in air shower
simulations, exploring alternative approaches is essential for understanding model-dependent uncer-
tainties. The implementation of Pythia 8 in CORSIKA 8 enables direct comparisons with existing
interaction models and provides a new tool to study hadronic physics in air showers. This effort not
only broadens the range of available models but also facilitates cross-disciplinary synergy between
collider and cosmic ray physics. Previous studies validated the implementation of Pythia 8/Angan-
tyr in CORSIKA 8 using vertical and inclined proton-induced air showers at energies of 1017 and
1017.5 eV [8, 9]. With this work, we extend the analysis to inclined iron-induced air showers.

1. Pythia 8/Angantyr

Unlike established hadronic interaction models such as Sibyll 2.3d and QGSJet-II.04, but
similar to EPOS-LHC, Pythia 8 [7] was originally designed as a general-purpose event generator,
optimized for collider-based environments involving processes like e+e−, pp, pp collisions. Pythia 8
has recently been extended to allow for extensive air shower simulations. While Pythia is known
for its robust description of pp collisions at the LHC, the Angantyr model [10, 11] extends the
capabilities of Pythia to pA and AA systems by constructing these as superpositions of multiple bi-
nary sub-collisions, reminiscent of the Fritiof model [12]. Another handling of nuclear interactions
using the PythiaCascade approach is possible, as discussed in [13].
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Figure 1: Inelastic cross-sections as a function of the momentum in the laboratory frame of the projectile
for proton-proton and proton-air collisions for Pythia 8.315/Angantyr (solid), EPOS-LHC (dashed) and
QGSJet-II.04 (dotted) assuming the air composition to be 78% 14N, 21% 16O, 1% 40Ar, while Sibyll 2.3d
(dash-dotted) uses a simplified 80% 14N to 20% 16O mix. Experimental data taken from [14].
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As part of our efforts to bridge collider and air shower physics, we assess how well these
interaction models reproduce fundamental observables of particle production seen in high-energy
collisions. In Fig. 1 a comparison of the inelastic cross-sections for proton-proton and proton-air
collisions between Pythia 8/Angantyr and the most commonly used models in air shower physics
is shown. The predicted proton-proton cross sections are in close agreement among the models.
While EPOS-LHC and Pythia 8/Angantyr agree within 25 mb (∼ 4%), the difference between
Pythia 8/Angantyr and QGSJet-II.04 increases to as much as 80 mb (∼ 14%) for the proton-air
cross section. This suggests that Pythia 8/Angantyr and EPOS-LHC yield comparable interaction
lengths in air showers, whereas QGSJet-II.04 is expected to produce a first interaction deeper in the
atmosphere.
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Figure 2: Left: dNch/d𝜂 distributions, from 0.2 to 13 TeV, in pp and pp collisions. Experimental measure-
ments are taken from ALICE [15–17] and UA5 [18] (circle markers), and the predictions are from several
interaction models: Pythia 8.315 (solid), EPOS-LHC (dashed), Sibyll 2.3d (dash-dotted) and QGSjet-II.04
(dotted). Inspired by [19]. Upper right: Charged particle multiplicity ⟨Nch⟩ at mid-rapidity (|𝜂 | < 2.5) as a
function of center-of-mass energy

√
𝑠 in pp collisions. Experimental measurements are taken from UA5 [18].

Lower right: Predictions of dE/d𝜂 distribution in pp at 7 TeV collisions.

Charged particle multiplicity at mid-rapidity (|𝜂 | < 2.5), pseudorapidity density, and the energy
density are essential observables in proton-proton collisions for understanding particle production.
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Their energy dependence, particularly the average charged particle multiplicity versus center-of-
mass energy, is shown in Fig. 2. Untuned Pythia 8/Angantyr underestimates the increase of central
charged multiplicity seen by ALICE (Fig. 2, left) and overestimates multiplicities in non-single
diffractive measurements from UA5 (Fig. 2, upper right). The energy flow, a key quantity for air
shower development, shows an unusual double-peak structure (Fig. 2, lower right). Presumably
a reevaluation of the handling of projectile remnants as discussed by [20] could improve the
description.

2. Integration of Pythia 8/Angantyr in CORSIKA 8

The implementation of Pythia 8 in CORSIKA 8 builds upon previous studies [21, 22], with a
recent transition from using PythiaCascade to the Angantyr model, both available in Pythia 8.315
for the treatment of nuclear interactions. A recent feature enables single instances of Pythia and
Angantyr to operate with dynamic switching of the beam system and variable collision energy on
an event-by-event basis. Angantyr treats collisions with nuclear projectiles and/or targets, while
Pythia is responsible for all other collision systems. The treatment of nuclear projectiles and their
fragments within CORSIKA 8 has been implemented specifically for the Angantyr model.

A comprehensive database of total and partial cross sections was compiled to support simu-
lations of particle interactions with the atmosphere using Pythia within CORSIKA 8. The dataset
includes a wide range of projectiles – pions, kaons, protons, neutrons, other long-lived mesons and
baryons, and stable isotopes from 2H to 56Fe – as well as various targets relevant for modeling the
Earth’s atmosphere and comparisons with experimental data, such as protons, 12C, 14N, 16O, and
40Ar, which can be easily extended to allow for any medium.

3. Air shower simulations

We performed simulations of air showers induced by proton and iron primaries, with a primary
energy of 1019 eV, for an inclined geometry (zenith angle of 67◦), using four high-energy interaction
models: Pythia 8.315/Angantyr, EPOS-LHC, Sibyll 2.3d and QGSJet-II.04. The particle tracking
energy thresholds were set at 1 MeV for electrons, positrons, and photons, and 1 GeV for hadrons
and muons. Electromagnetic particles below 10−6 of the primary energy were statistically combined
(thinned) to optimize runtime [23]. The energy threshold for transitioning from the low-energy
model FLUKA [24] to Pythia 8/Angantyr is set at 100 GeV, whereas the CORSIKA 8 default
threshold is ∼80 GeV when employing other high-energy models.

3.1 Shower developement

Air showers develop through a chain of interactions and energy losses through their passage
in the atmosphere, leading to measurable observables, i.e. d𝐸 /d𝑋 , 𝑋max. The number of identified
particles at a given depth, from which the average longitudinal profile ⟨𝑁 (𝑋)⟩ is derived, is shown
in Fig. 3 for the mean e± and 𝜇± profiles as a function of atmospheric depth.

In parallel, the energy deposit profile quantifies the energy released by the shower, mainly
through bremsstrahlung, pair production, and particle decays, serving as a robust estimator of the
shower size and its maximum depth 𝑋max displayed in Fig. 4 (left). The higher inelastic p-air
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Figure 3: Average longitudinal shower profiles of electrons/positrons (left) and muons (right) for inclined
(𝜃 = 67◦) iron-induced 1019 eV air showers using FLUKA as low-energy interaction model, and Pythia
8.315/Angantyr (solid), EPOS-LHC (dashed), Sibyll 2.3d (dash-dotted) and QGSJet-II.04 (dotted) as high-
energy interaction models.

cross-section predicted by Pythia8/Angantyr – about 10% larger than Sibyll2.3d, as shown in Fig. 1,
implies a shorter interaction length and thus a shallower first interaction, contributing to an increase
in 𝑋max relative to Sibyll 2.3d. Given its smaller proton-air cross section (Fig. 1), QGSJet-II.04
would be expected to yield a deeper ⟨𝑋max⟩p, yet its values align with Pythia 8/Angantyr and EPOS-
LHC. This indicates that differences in shower development beyond the first interaction, such as
particle production mechanisms and secondary interactions, play a compensating role that masks
the expected shift from the cross-section alone.
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Figure 4: Average depth of the shower maximum 𝑋max (left) and average depth of the muonic shower
maximum 𝑋𝜇,max for inclined (𝜃 = 67◦) iron-induced 1019 eV air showers.

The muonic shower maximum, 𝑋𝜇,max, marks the depth in the atmosphere where muon pro-
duction peaks. As illustrated in Fig. 4 (right), this observable is sensitive to the mass of the primary
particle: proton-induced showers exhibit deeper 𝑋𝜇,max values than iron-induced ones, reflecting a
more extended hadronic cascade. For 𝑋𝜇,max, the model ordering is consistent between proton and
iron primaries, reflecting intrinsic hadronic model features rather than primary mass. For protons,
Sibyll 2.3d predicts the deepest values of both 𝑋max and 𝑋𝜇,max, indicating common model features
that delay both electromagnetic and hadronic cascades, pushing the shower maxima deeper.
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3.2 Muon puzzle and Pierre Auger measurement

The introduction of Pythia 8/Angantyr into air shower physics is particularly relevant to gaining
further insight into the Muon puzzle – a longstanding discrepancy between simulated and observed
muons, such as those measured by the Pierre Auger Observatory. At a given observer level, the lateral
distribution function describes the spatial spread of particles from the shower core, providing insight
into the shower footprint. The energy spectra of charged particles at this level help characterize both
the energy deposition and the particle composition, offering a deeper understanding of the shower’s
energy profile. The observer level is fixed at an altitude of 1400 m, approximately that of the Pierre
Auger Observatory, and is not projected onto the shower plane. No corrections have been applied
for asymmetry effects arising from this choice of observer plane.
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Figure 5: Median lateral distributions (left) and median energy spectra (right) of muons at Auger height
for inclined (𝜃 = 67◦) iron-induced 1019 eV air showers. The shaded regions indicate the interquartile range
(25%-75%).

Fig 5 illustrates both the lateral distribution function and the energy spectrum of muons at
this observation level. With up to 25% fewer muons near the shower core than Sibyll 2.3d, and
10-15% fewer than EPOS-LHC and QGSJet-II.04, Pythia 8/Angantyr appears less muon-rich at
small distances, though it matches or exceeds the other models at larger distances.Pythia 8/Angantyr
produces roughly 10% fewer muons than Sibyll 2.3d in the 1 GeV to 10 TeV energy range. Similarly,
when compared to EPOS-LHC, Pythia 8/Angantyr is slightly lower (up to 10%) in the 1 to 100 GeV
range but then matches at higher energies, while QGSJet-II.04 produces fewer low-energy muons
(15% less around 1 GeV) but rises above Pythia (∼ 5%) from 100 GeV until the highest muon
energies where fluctuations dominate. Overall, these differences highlight Pythia 8/Angantyr as a
promising target for further tuning efforts to better reproduce the muon content of air showers.

We apply the z-scale approach, originally developed for meta-analyses of muon density
measurements across multiple experiments, to evaluate Pythia in the same context as in earlier
works [25, 26]. The comparison between experimental data and Monte-Carlo simulations is carried
out through the calculation of the z-scale, defined as

𝑧 =
ln ⟨𝑁det

𝜇 ⟩ − ln ⟨𝑁det
𝜇,p⟩

ln ⟨𝑁det
𝜇,Fe⟩ − ln ⟨𝑁det

𝜇,p⟩
(1)

Here, ⟨𝑁det
𝜇 ⟩ refers to the mean measured muon density, and ⟨𝑁det

𝜇,p⟩ (⟨𝑁det
𝜇,Fe⟩) are the predicted

average muon densities for proton (iron) cosmic-ray primaries. The z-scale is designed so that
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measurements consistent with iron primaries yield 𝑧 = 1, and those consistent with proton primaries
yield 𝑧 = 0.

Simulations from Sibyll 2.3d from [27] for the average logarithmic muon content ⟨ln 𝑅𝜇⟩, and
Sibyll 2.3d within CORSIKA 8 for the number of muons 𝑁𝜇, as a function of the average shower
depth ⟨𝑋max⟩, are used as reference to compute a z-scale frame to which both the Auger measurement
and interaction model predictions are translated. For this approach to be valid, all simulations must
be performed under identical conditions – using the same primaries, primary energy, zenith angle,
and particle tracking energy thresholds as the reference Sibyll 2.3d simulations. Fig. 6 displays
this z-scale frame as a function of the average shower depth ⟨𝑋max⟩ where the compatibility of
interaction models with Auger measurement can be discussed.
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Figure 6: Muon density measurements from Auger [27] converted to the z-scale using Sibyll 2.3d as
reference.

As shown in Fig. 6, in its default configuration, Pythia 8.315/Angantyr underestimates the
muon content observed by Auger, highlighting its potential for further tuning efforts.

Pythia 8/Angantyr and EPOS-LHC are close to each other in terms of z-scale for both proton
and iron primaries, with Pythia slightly higher for iron. This can stems from the limited deviations of
EPOS-LHC in the muon energy spectra, while the muon lateral distribution remains within ∼ 10%
of Pythia. The observed differences between QGSJet-II.04 and Pythia from Fig 5 likely underlie
the gap in z-scale between the two models, with QGSJet exhibiting a lower z-scale than Pythia and
consequently deviating further from Auger measurements. By contrast, Pythia 8/Angantyr yields
less muon-rich and slightly shallower showers than Sibyll 2.3d for both proton and iron primaries,
explaining the larger z-scale difference observed between these two models.

Conclusion

We presented a comparison of particle production between Pythia 8/Angantyr and other in-
teraction models. Earlier results [22] are outdated, as the present predictions are obtained with a
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significantly improved model. While Pythia reproduces key features, such as the rise of multiplicity
with energy and overall energy flow, it requires tuning to match data more precisely. The first full
air shower simulations with Pythia 8/Angantyr for iron primaries were also performed, providing
insight into its behavior in extensive air shower development.

Overall, Pythia 8/Angantyr produces ⟨𝑋max⟩ values that lie within the range spanned by the
other models, occupying a region similar to that of EPOS-LHC and between the extremes of Sibyll
2.3d and QGSJet-II.04. For 𝑋𝜇,max, Pythia predicts a shallower muonic shower maximum compared
to EPOS-LHC and Sibyll, though not as shallow as QGSJet. For the muon lateral distribution at
Auger altitude, Pythia 8/Angantyr predicts fewer muons near the shower core compared to the other
models, while matching or exceeding the other models at larger distances. In terms of the muon
energy spectrum at ground, Pythia yields more low-energy muons than QGSJet, but fewer than
EPOS-LHC and Sibyll; at energies above ∼ 100 GeV, it predicts fewer high-energy muons than
QGSJet and Sibyll, while being comparable to EPOS-LHC.

Finally, when comparing to the muon content measured by the Pierre Auger Observatory, we
find that Pythia 8/Angantyr is not compatible with Auger measurements, as it predicts shallower
𝑋max and lower muon content. The next step is to tune Pythia to improve its agreement with
proton-proton and fixed-target measurements, and investigate the resulting impact on air shower
predictions and compatibility with Auger data [28, 29].
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