Machine learning driven reconstruction of cosmic-ray air showers for next generation radio arrays
IceCube-Gen2 collaboration; Koundal, Paras; Abbasi, Rasha; Ackermann, Markus; Adams, Jenni; Agarwalla, Sanjib Kumar; Aguilar, Juanan; Ahlers, Markus; Alameddine, Jean-Marco; Andeen, Karen G.; Ali, Shoukat; Amin, Najia Moureen Binte; Andeen, Karen; Anton, Gisela; Argüelles, Carlos; Ashida, Yosuke; Athanasiadou, Sofia; Audehm, Jan; Axani, Spencer; ... mehrBabu, Rishi; Bai, Xinhua; Balagopal V., Aswathi; Baricevic, Moreno; Barwick, Steven W.; Basu, Vedant; Bay, Ryan; Becker Tjus, Julia; Behrens, Philipp; Beise, Jakob; Bellenghi, Chiara; Benkel, Bruno; BenZvi, Segev; Berley, David; Bernardini, Elisa; Besson, Dave; Bishop, Abigail; Blaufuss, Erik; Bloom, Lucas; Blot, Summer; Bohmer, Michael; Bontempo, Federico 1; Book Motzkin, Julia; Borowka, Jurgen; Boscolo Meneguolo, Caterina; BOSER, Sebastian; Botner, Olga; Bottcher, Jakob; Bouma, Sjoerd; Braun, Jim; Brinson, Bennett; Brisson-Tsavoussis, Zoe; Burley, Ryan T.; Bustamante, Mauricio; Butterfield, Delaney; Campana, Michael; Carloni, Kiara; Cataldo, Maddalena; Chattopadhyay, Sharmistha; Chau, Thien Nhan; Chen, Zheyang; Chirkin, Dmitry; Choi, Seowon; Clark, Brian; Clark, Rogan; Coleman, Alan; Coleman, Peter John Cusack; Collin, Gabriel; Coloma Borja, Diego Alberto; Conrad, Janet; Corley, Rebecca; Cowen, Doug; Deaconu, Cosmin; DE CLERCQ, Catherine; De Kockere, Simon; DeLaunay, James; Delgado, Diyaselis; Desai, Abhishek; Delmeulle, Thomas; Deng, Shuyang; Desai, Abhishek; Desiati, Paolo; de Vries, Krijn; de Wasseige, Gwenhaël; Diaz-Velez, Juan Carlos; DiKerby, Stephen; Dittmer, Markus; Do, Giang; Domi, Alba; Draper, Lincoln; Dueser, Lasse; Dujmovic, Hrvoje; Durnford, Daniel; Dutta, Kaustav; DuVernois, Michael; Egby, Treston; Ehrhardt, Thomas; Eidenschink, Leonhard; Eimer, Anna; Eller, Philipp; Ellinger, Enrico; Elsässer, Dominik; Engel, Ralph 1,2
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)
2 Institut für Experimentelle Teilchenphysik (ETP), Karlsruher Institut für Technologie (KIT)
Abstract:
Surface radio antenna-based measurements of cosmic-ray air showers present significant computational challenges in accurately reconstructing physics observables, in particular, the depth of shower maximum, X$_{max}$. State-of-the-art template fitting methods rely on extensive simulation libraries, limiting scalability. This work introduces a technique utilizing graph neural networks to reconstruct key air-shower parameters, in particular, direction and shower-core, energy, and X$_{max}$. For training and testing of the networks, we use a CoREAS simulation library made for a future enhancement of IceCube’s surface array with radio antennas. The neural networks provide a scalable framework for large-scale data analysis for next-generation astroparticle observatories, such as IceCube-Gen2.
| Zugehörige Institution(en) am KIT |
Institut für Astroteilchenphysik (IAP) Institut für Experimentelle Teilchenphysik (ETP) |
| Publikationstyp |
Proceedingsbeitrag |
| Publikationsdatum |
23.09.2025 |
| Sprache |
Englisch |
| Identifikator |
ISSN: 1824-8039
KITopen-ID: 1000190521 |
| Erschienen in |
Proceedings of 39th International Cosmic Ray Conference — PoS(ICRC2025); Genf, Schweiz, 15.-24.07.2025 |
| Veranstaltung |
39th International Cosmic Ray Conference (ICRC 2025), Genf, Schweiz, 15.07.2025 – 24.07.2025 |
| Verlag |
Scuola Internazionale Superiore di Studi Avanzati (SISSA) |
| Seiten |
Art.Nr: 309 |
| Serie |
Proceedings of Science (PoC) ; 501 |
| Nachgewiesen in |
Scopus OpenAlex Dimensions
|