KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine learning driven reconstruction of cosmic-ray air showers for next generation radio arrays

IceCube-Gen2 collaboration; Koundal, Paras; Abbasi, Rasha; Ackermann, Markus; Adams, Jenni; Agarwalla, Sanjib Kumar; Aguilar, Juanan; Ahlers, Markus; Alameddine, Jean-Marco; Andeen, Karen G.; Ali, Shoukat; Amin, Najia Moureen Binte; Andeen, Karen; Anton, Gisela; Argüelles, Carlos; Ashida, Yosuke; Athanasiadou, Sofia; Audehm, Jan; Axani, Spencer; ... mehr

Abstract:

Surface radio antenna-based measurements of cosmic-ray air showers present significant computational challenges in accurately reconstructing physics observables, in particular, the depth of shower maximum, X$_{max}$. State-of-the-art template fitting methods rely on extensive simulation libraries, limiting scalability. This work introduces a technique utilizing graph neural networks to reconstruct key air-shower parameters, in particular, direction and shower-core, energy, and X$_{max}$. For training and testing of the networks, we use a CoREAS simulation library made for a future enhancement of IceCube’s surface array with radio antennas. The neural networks provide a scalable framework for large-scale data analysis for next-generation astroparticle observatories, such as IceCube-Gen2.


Verlagsausgabe §
DOI: 10.5445/IR/1000190521
Veröffentlicht am 13.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Institut für Experimentelle Teilchenphysik (ETP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 23.09.2025
Sprache Englisch
Identifikator ISSN: 1824-8039
KITopen-ID: 1000190521
Erschienen in Proceedings of 39th International Cosmic Ray Conference — PoS(ICRC2025); Genf, Schweiz, 15.-24.07.2025
Veranstaltung 39th International Cosmic Ray Conference (ICRC 2025), Genf, Schweiz, 15.07.2025 – 24.07.2025
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Seiten Art.Nr: 309
Serie Proceedings of Science (PoC) ; 501
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page