KIT | KIT-Bibliothek | Impressum | Datenschutz

Reconstruction of cosmic-ray properties with uncertainty estimation using graph neural networks in GRAND

Ferriere, Arsene ; Benoit-Levy, Aurelien; Collaboration, Grand

Abstract:

The Giant Radio Array for Neutrino Detection (GRAND) aims to detect and study ultra-high- energy (UHE) neutrinos by observing the radio emissions produced in extensive air showers. The GRANDProto300 prototype primarily focuses on UHE cosmic rays to demonstrate the autonomous detection and reconstruction techniques that will later be applied to neutrino detection. In this work, we propose a method for reconstructing the arrival direction and energy with high precision using state-of-the-art machine learning techniques from noisy simulated voltage traces.

For each event, we represent the triggered antennas as a graph structure, which is used as input for a graph neural network (GNN). To significantly enhance precision and reduce the required training set size, we incorporate physical knowledge into both the GNN architecture and the input data. This approach achieves an angular resolution of 0.14° and a primary energy reconstruction resolution of about 15%. Additionally, we employ uncertainty estimation methods to improve the reliability of our predictions. These methods allow us to quantify the confidence of the GNN predictions and provide confidence intervals for the direction and energy reconstruction.
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190524
Veröffentlicht am 13.02.2026
Originalveröffentlichung
DOI: 10.22323/1.501.0253
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Karlsruher Institut für Technologie (KIT)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 23.09.2025
Sprache Englisch
Identifikator ISSN: 1824-8039
KITopen-ID: 1000190524
Erschienen in Proceedings of 39th International Cosmic Ray Conference — PoS(ICRC2025); Genf, Schweiz, 15.-24.07.2025
Veranstaltung 39th International Cosmic Ray Conference (ICRC 2025), Genf, Schweiz, 15.07.2025 – 24.07.2025
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Seiten Art.Nr: 253
Serie Proceedings of Science (PoC) ; 501
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page