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energies.
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IceTop Advances in Reconstruction

1. Introduction and Detector
When high-energy cosmic rays enter Earth’s atmosphere, they produce cascades of secondary

particles known as extensive air showers (EASs). IceTop, the surface array of the IceCube Neutrino
Observatory, detects these air showers in the PeV to EeV energy range, covering what is thought
to be the transition region from galactic to extragalactic in origin [1]. This work addresses some
of the statistical and systematic limitations of previous spectrum analyses [2, 3], especially at the
highest energies, by introducing a data-driven snow model, improved event selection, and a new
reconstruction for events with a shower core outside of IceTop. These methods lay the groundwork
for a large variety of future analyses in IceTop.

The IceTop array [4] is comprised of 81 “stations”, each containing two tanks (A and B)
equipped with two Digital Optical Modules (DOMs). EASs are detected through the Cherenkov
light produced by charged particles passing through the ice inside the tanks. If both tanks in a
station register a signal, the hits are recorded as Hard Local Coincidence (HLC); a hit is Soft Local
Coincidence (SLC) if only one tank recorded a signal. Signals are calibrated to units of vertical
equivalent muons (VEM). Reconstruction of EAS events employs a maximum-likelihood method.
The expected charge 𝑆 at a distance 𝑟 from the shower axis is modeled with a lateral distribution
function (LDF), in particular: a ‘Double Logarithmic Parabola’ (DLP) [5]:

𝑆(𝑟) = 𝑆ref ·
(
𝑟

𝑟ref

)−𝛽−𝜅 ·log10

(
𝑟

𝑟ref

)
, 𝑟ref = 125 m. (1)

The expected arrival times of the signals—the geometric shape of the shower front—is modeled by
a paraboloid with a Gaussian nose [4]. From these models, the core position and direction of the
shower can be reconstructed, as well as the “shower size”: the signal 𝑆ref measured at the reference
distance 𝑟ref from the shower axis.

Previous analyses used only HLC hits for reconstruction, and chose a reference distance of
125 meters, with 𝑆125 used as a proxy for the primary energy. The reference distance was motivated
by earlier studies with a smaller detector [6], dividing IceTop into Subarrays A and B using one
tank per station. Recently, this technique has been extended to the full-size detector and higher
energies, to study alternative reference distances for air showers with cores located both inside
the IceTop array (contained events) and outside of it (uncontained events). By fitting 𝑆ref and 𝛽

separately for Subarray-A and B across different 𝑟ref values, we identify the distance that minimizes
fluctuations between subarrays. The initial results indicate that the best 𝑟ref at all energies is higher
for uncontained events compared to contained events. Additionally, for both event types, the optimal
𝑟ref increases with energy. This suggests that the most stable 𝑆ref lies near the distance where the
bulk of the signal information is concentrated relative to the shower core. These findings may offer
a more precise approach for LDF reconstruction and subsequently resolution, particularly at higher
energies.

2. Snow
The IceTop tanks were deployed in stages over several years ending in 2011, with each tank

initially installed flush with the snow surface. Since then, wind-blown snow has steadily accumulated
across the array, creating an uneven and time-dependent overburden that varies from tank to tank,
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Figure 1: In-situ snow depths of the tanks in IceTop: a) over the array at one particular time, and b) sampled
over three disparate times.

as illustrated in Fig. 1. This non-uniform snow cover alters the detector response and makes the
reconstruction of air showers inconsistent across different years of data. Attenuation is expected to
depend on the energies of the shower particles, which may itself depend on the shower size and the
distance from the shower’s core. Thus, to achieve a uniform reconstruction across multiple years,
a snow attenuation model must be applicable in a wide range of shower conditions. The previous
model, “RADE–3” [7], is used as a basis for its successor, “RADE–4”.

In this data-driven method, IceTop tank charges from 11 years of data (2011 through 2021) are
collected and binned as a function of multiple parameters: the shower size (𝑆125), the perpendicular
distance of the tank from the shower core (𝑟), and the slant depth through the snow to the tank
(𝑑 = 𝑧snow/cos(𝜃)). Each tank’s charge (𝑆) is normalized by the 𝑆125 of the shower it appears in,
to make a “log-normalized charge”: 𝑆ln = ln(𝑆/𝑆125). Not-hit tanks (𝑆 = 0) are also recorded, in a
specially-designated bin in log-normalized charge. Within each bin of 𝑆125 and 𝑟 , the log-normalized
charges are mapped as a function of snow slant depth. Fig. 2 (left) shows a straightforward example
of such a map; ln(𝑆/𝑆125) decreases at a rate that corresponds to a characteristic attenuation
length 𝜆. At large radii (Fig. 2, center), the situation gets more complicated in two ways: a) the
electromagnetic (EM) charges drop below the tank’s threshold and are recorded as non-hits (𝑆 = 0)
instead of as hits, and b) a second structure appears in the charge distribution, from muons. The
“muon peak” is largely unaffected by snow attenuation. In this work, a series of 2-D histograms—
each such as Fig. 2’s left panels—are fit to a model in which there is both an EM component (with
fraction 𝐹EM) and a muon component (with fraction 1 − 𝐹EM). Both are modeled as Gaussians in
log-normalized charge 𝐺 (𝑆ln, 𝜇, 𝜎). The mean and sigma of the non-attenuating muon component
(𝜇𝜇 and 𝜎𝜇) are constant with snow depth. But 𝜇EM is modeled to fall off with a characteristic
attenuation length 𝜆, and 𝜎EM is modeled to vary linearly with some slope. The detector threshold
is modeled as a sigmoid function 𝑌 with a central position 𝑆thresh and a width of 𝛿. So the function
fit is:

𝑓 (𝑆ln, 𝑑) = (1 − 𝐹EM)𝐺 (𝑆ln, 𝜇𝜇, 𝜎𝜇) + 𝐹EM𝑌 (𝑆ln, 𝑆thresh, 𝛿)𝐺 (𝑆ln, 𝜇EM, 𝜎EM)
where: 𝜇EM = 𝜇EMno snow − 𝑑/𝜆, and 𝜎EM = 𝜎EMno snow + 𝜎EMslope𝑑.

(2)

The number of non-hits at 𝑆 = 0, which is recorded in its own designated bins of the histogram, is
modeled as the number of hits expected to fall below the threshold:

𝑓zeros =
1
2

[
1 + erf

(
𝑆thresh − 𝜇EM

𝜎EM
√

2

)]
. (3)
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Figure 2: Two-dimensional histograms of log-normalized charge vs. snow depth, for two different distances
from the core. Left: at ∼100 meters, the attenuation of the snow can be easily measured. Center: at ∼290
meters, the electromagnetic component drops below the detector threshold, and the non-attenuating “muon
peak” is also visible. Right: A visualization of the 2-D model fitted to the charges in the center figure, with
an EM component (red) and a muon component (green). The effect of a detector threshold (blue) populates
the not-hit (𝑆 = 0) component of the distribution (the lower panels).

The hits and non-hits for the entire 2-D histogram are fitted together. Including the non-hits in
the fitting helps greatly to constrain the relationship between the EM Gaussian and the detector
threshold. Fig. 2 (right) shows a visualization of the various components of this fit (muon, EM, and
threshold), including the non-hits in a separate panel.

Saturation comes into effect at very large charges. For these cases, a modified 𝜇EMsat is
computed (Eq. (4)) as the mean of the saturated distribution, where 𝑆sat is the value of 𝑆ln above
which saturation occurs and 𝐹under is the fraction of the distribution that falls below 𝑆sat.

𝜇EMsat = [−𝜎2
EM𝐺 (𝑆sat, 𝜇EM, 𝜎EM) + 𝜇EM𝐹under] + [(1 − 𝐹under)𝑆sat] . (4)

If the charges are so large that they are saturated at all snow depths, 𝜆 becomes difficult if not
impossible to measure. Therefore, in this regime (the upper left of Fig. 3), 𝜆 is constrained with an
upper limit of 4 meters.

Altogether, each fit has 10 free parameters: 𝜇𝜇, 𝜎𝜇, 𝜇EMno snow , 𝜆, 𝜎EMno snow , 𝜎EMslope , 𝑆thresh, 𝛿,
𝑆sat, and 𝐹EM. Collecting all of the results from many such fits, we can characterize the behavior
of 𝜆, as well as the fraction of the signal which is from the non-attenuating muon peak, both as a
function of 𝑆125 and 𝑟 , as is shown in Fig. 3. Modeling of the muon fraction from these fit results,
and testing the overall model on data from multiple years, are both ongoing efforts. It is expected

Figure 3: 𝜆 as computed for a set of 𝑟 and 𝑆125 ranges.
At the highest energies (i.e., for the largest 𝑆125 and
smallest 𝑟 ranges), statistics are too low to reliably
compute a 2-D fit, hence the white space in the upper-
left.
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that the resulting reconstruction behavior from early years of IceTop data (when snow coverage was
shallow) will match those from later years, across a larger energy range.

3. Contained Events

The quality cuts used for the last published high-energy spectrum analysis in Ref. [2] were
mostly based on topological properties, and they aimed to save events that landed inside the borders
of the array. In previous work and in this work, “containment” of an event is parametrized as the
distance from the center of the array to the shower core, expressed as a fraction of the distance to
the edge of the array in that direction. In this work, new selection criteria have been developed, to
enhance energy resolution and increase the event rate, particularly at high energies.

The first of these new cuts is based on the goodness-of-fit from the timing reconstruction:
𝜒2

time. The cut value itself depends on the event’s total charge, because higher-charge events
typically involve more triggered tanks, potentially resulting in higher values. The second new cut
is based on the ratio of the sum of charges in the outer ring of tanks, to that in the inner array. This
cut is motivated by events with shower cores near the edge of the array, which are only reliably
reconstructed if they also deposit substantial charges in the inner tanks. Like the timing goodness-
of-fit cut, the charge-ratio cut also depends on the total charge; misreconstructed events are often
characterized by a low total charge, motivating stricter cuts for such events and looser cuts for those
with higher total charges.

These new cuts allow future analyses to relax some of the selection criteria that were necessary
in past analyses. For instance, Ref. [2] considered only events from zenith angles of cos(𝜃) > 0.8
and containment < 0.96; in this work, events out to cos(𝜃) > 0.7 and containment < 1.0 are
explored. A comparison of energy bias and resolution between the previous work and the work
presented here is shown in Fig. 4. The updated cuts yield significant improvements in resolution at
the highest energies, while maintaining similar performance at lower energies. Slightly increased
bias and resolution at the lowest energies are attributed to the extended zenith range. Fig. 5
demonstrates a noticeable increase in the event statistics, mainly due to the extension of the zenith
range. In the bottom panel of Fig. 5, one can see that with the zenith range expansion, an increased
rate is expected over the whole energy range. But even when restricting this work to the same
zenith range and containment limits as in the previous analysis, an increased rate is still expected
for the highest energies. Overall, the newly developed cuts provide better energy resolution and

Figure 4: Comparison of the energy bias (top) and
resolution (bottom) between the previous analysis in
Ref. [2] and this work. Both show great improvements
for the new cuts at the highest energies and similar
performance for the lower energies. The slightly in-
creased bias and resolution at the lowest energies are
due to the increased zenith range.
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Figure 5: An increase of event statistics is achieved
by the new selection.
Top: Shows the increase in event rate due to the in-
creased zenith range. Both histograms are weighted to
an H4a flux.
Bottom: The ratio of the rates versus the true en-
ergy shows an increased rate over nearly the whole
energy range. When restricting the zenith range and
the contained area to the smaller values of the previ-
ous analysis for both analyses it is visible that for the
highest energies a rate increase over all zenith ranges
is achieved.

higher event statistics. The absolute cut values will be re-optimized when the updated snow model
becomes available, which may further improve the results. This work presents results from a
Corsika simulation dataset which uses the Sibyll 2.1 interaction model and the snow overburden
corresponding to the year 2012. Comparisons with different interaction models (Sibyll 2.3,
Sibyll 2.3d, EPOS-LHC and QGSJet-II.04) and snow overburdens for other years (2015 and 2018)
yield similar results.

4. Uncontained Events

Previous analyses have required the shower core to land inside the IceTop array, and have been
restricted to zenith angles up to 30°, which limits the statistics available at the highest energies. Air
showers that land outside the IceTop array are of special interest. These events typically have no
saturated tanks even at high energies, and when combined with the in-ice detector, can explore a
larger range of zenith angles. This can help increase statistics and introduce greater variation in the
distance to the shower maximum.

However, reconstructing uncontained events requires new methods. In particular, IceTop-InIce
coincidence events are analyzed. The in-ice detector records signals from highly energetic muon
bundles near the shower axis, providing an anchor for both the shower’s core position and direction.
While the electromagnetic component dominates near the shower core and produces HLC hits in
IceTop, the signal further from the core is dominated by muons, which typically produce SLC hits.
As muons are the primary contributors at large lateral distances, using SLC information becomes
crucial for reconstructing air showers with cores far outside the array. To account for this, a two-
component lateral distribution function (LDF) [8, 9] is employed that fits the charge distribution for
the EM and muonic components separately using HLC and SLC hits. The EM charge distribution
is described by the DLP function (Eq. (1)) with 𝜅 = 0.30264 as determined in Ref. [4]. To account
for a more stable fit of the EM LDF, a larger reference distance of 𝑟EM, ref = 400 m is chosen, as
discussed in Section 1. The muon contribution is based on the Greisen LDF [10]:

𝑆𝜇 = 𝑆𝜇,550

(
𝑟

𝑟𝜇

)−𝛽𝜇
(
𝑟 + 320 m
𝑟𝜇 + 320 m

)−𝛾
, 𝑟𝜇 = 550 m. (5)

Where 𝑆𝜇,550 is the signal strength at a distance of 550 m of the shower core and 𝛽𝜇 and 𝛾 describe
the slope of the muon LDF. Details can be found in Ref. [8]. The reconstruction is performed
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Figure 6: Energy proxy, 𝑆EM,400 (left), and muon number proxy, 𝑆𝜇,550 (right) as a function true energy
and true muon number, respectively. The 2d-histogram shows all simulated events (Sibyll 2.1) weighted to
a H4a cosmic-ray spectrum. The shaded events are excluded in the analysis. The markers show the mean
value for the indicated zenith angles (left) and the complete zenith band (right). The marker color indicates
the primary particle.

within the RockBottom framework [11] and uses a three-step maximum-likelihood method where
the charges and timing of the measured signals are compared to the expected charge and timing
distributions.

Step 1: An overall fit to a single IceTop LDF (𝑆EM and 𝛽EM from Eq. (1)) as well as the track
position and direction (𝑥, 𝑦, 𝜃, 𝜙, 𝑡) is performed, using a combined likelihood from both
IceTop HLC hits and in-ice hit information. 𝑆EM is seeded with a weighted charge summed
over all stations as suggested in Ref. [12].

Step 2: With the track position and direction from Step 1 held fixed, a "two-LDF" IceTop recon-
struction is performed using both HLC’s and SLC’s from IceTop alone. The normalization
and slope of the EM and muonic LDF (𝑆EM, 𝛽EM), (𝑆𝜇, 𝛽𝜇, 𝛾) are fitted.

Step 3: The final step combines the features of Step 1 and Step 2. Information from both IceTop
(HLC’s and SLC’s) and the in-ice detector are used for a combined reconstruction of a
two-LDF model in IceTop and the position and direction of the track. All ten parameters—
(𝑆EM, 𝛽EM), (𝑆𝜇, 𝛽𝜇, 𝛾), and (𝑥, 𝑦, 𝜃, 𝜙, 𝑡) — are fitted simultaneously.

The parameters 𝑆em and 𝑆𝜇 are related to the primary cosmic ray energy and the number of muons,
respectively. Their relationships are shown in Fig. 6. The simulated events are generated using
Corsika [13] with the Sibyll 2.1 hadronic interaction model [14], assuming the H4a cosmic ray flux
model [15]. To ensure reliable in-ice information, only events located outside the 0.9 containment
area of IceTop but within the 0.9 containment of IceCube are considered. Furthermore, events
must show a coincidence between IceTop and IceCube and exceed a total charge of 100 PE in
both detector components independently. To enhance the reconstruction quality, events with a total
charge below 150 PE in HLC hits are excluded. Additional selection criteria are applied based on
the bounds of the parameters 𝛽EM and 𝛽𝜇, as well as a fit quality requirement. Events not passing
these cuts are shown with reduced opacity in Fig. 6. The resulting resolution and bias obtained with
a cubic fit to the mean values are presented in Fig. 7. In the energy range from 107 GeV to 109 GeV,
the energy resolution is below 0.2 in log10 𝐸 . At higher energies, limited statistics reduce reliability.
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Figure 7: Left: Energy bias (upper) and resolution (lower) obtained with a cubic fit to the mean values of
the four zenith angular ranges shown in Fig. 6. Right: Muon number bias (upper) and resolution (lower)
obtained with one cubic fit.

The reconstruction of the muon number shows a better performance in terms of resolution and bias,
and is compatible with the results obtained for contained events, as reported in Ref. [8, 9]. Ongoing
efforts aim to further optimize both bias and resolution. Possible improvements include the use
of a zenith- and distance-dependent conversion function, adjustments to the reference distance,
and tighter selection cuts. These results demonstrate that the reconstruction of uncontained events
is feasible. The selection criteria can be tailored to the specific goals of the analysis and offer
a valuable complement to the well-established reconstruction of contained events—extending the
phase space of reconstructable cosmic rays to larger zenith angles and higher energies.

5. Conclusion
Efforts to enhance IceTop’s measurement of the cosmic-ray spectrum are advancing along

multiple fronts, aiming to increase statistics at the highest energies and reduce systematic uncer-
tainties in that regime. The newly developed snow model allows for a uniform analysis of more than
a decade of data. Improved selection criteria preserve more contained events with higher purity,
while the capability to reconstruct uncontained events expands the accessible zenith range, enabling
future analyses of the energy spectrum and composition of high-energy cosmic rays.
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