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1. Introduction

Over the last few decades, several ground-based experiments in both the northern and southern
hemispheres have observed variations at the level of 10−3 in the arrival direction distribution of
cosmic rays with energies between 1 TeV to several PeVs with high statistical accuracy (see [1] and
references therein). The limited integrated field of view (FoV) of the sky in all of these individual
measurements restricts our ability to characterize the anisotropy in terms of its spherical harmonic
components, as large correlations between terms 𝑎ℓ𝑚 bias the interpretation of the cosmic ray
distributions [2, 3]. In this analysis, we apply the same methods used in [3] to combine data from
the IceCube [4] and HAWC [5] observatories and produce maps with near full–sky coverage to
study arrival direction distributions at different energies.

2. Data

The northern hemisphere data used for this analysis were collected by the HAWC gamma-ray
Observatory over the span of 8 years from May 2015 to May 2023. The data were split into 11
energy bins. In HAWC, the primary energy was estimated using the logarithm of the number of
photomultiplier tubes (PMTs) triggered by each event (log10 𝑁hit), the corresponding reconstructed
shower zenith angle (cos 𝜃reco), and the radial distance from the center of the HAWC array to the
reconstructed shower core location (𝑅core). A four–dimensional histogram including the logarithm
of the true primary cosmic–ray energy (log10 𝐸true) is fit with a B-spline function [6], which provides
a smooth lookup table for the median energy of cosmic rays in a similar way as in [7]. The IceCube
dataset is described in detail in [1], though energy cuts have been adjusted to match the data from
comparable HAWC maps as will be discussed in section 5. Table 1 shows the number of events in
each of the 11 datasets along with the corresponding median energy and rigidity.

Bin Rigidity (TV) HAWC Energy (TeV) IceCube Energy (TeV) Events
0 0.6 1.8 – 33.7 × 109

1 1.1 3.2 – 58.0 × 109

2 2.2 5.6 – 44.2 × 109

3 4.1 10.0 – 33.4 × 109

4 7.4 17.8 10.0 3 × 1011

5 12.5 31.6 14.8 2.9 × 1011

6 23.2 56.2 30.2 1.1 × 1011

7 40.0 100.0 53.4 3.2 × 1010

8 75.5 177.8 310.5 1.9 × 109

9 140.9 316.2 725.3 4.3 × 109

10 280.5 562.3 1716 9.9 × 107

Table 1: Median cosmic–ray primary energy bins used in this analysis, along with corresponding rigidity
according to the GST composition model and number of events for each map.

2.1 Surface Pressure and Solar Dipole

Atmospheric conditions, particularly pressure and temperature, can influence cosmic ray de-
tection rates at observatories like HAWC and IceCube. The HAWC Observatory is located below

2



P
o
S
(
I
C
R
C
2
0
2
5
)
2
4
4

All-Sky Cosmic-Ray Anisotropy Update at Multiple Energies

the shower maximum (𝑋max) for energies around 10 TeV. As a result, an increase in surface pressure
leads to greater atmospheric overburden, attenuating air showers and reducing the event rate. This
anti-correlation is quantified with a barometric coefficient, which we have determined experimen-
tally to be 𝛽 = −0.0086 hPa−1 from local measurements. While many of the pressure variations
are due to weather, there is a bi-diurnal variation caused by a tidal effect from solar heating. This
variation can introduce a spurious signal in the presence of large time gaps in data taking. The data
are weighted to compensate for this effect, leaving minimal residual effects. In contrast, IceCube’s
muon rate is positively correlated with stratospheric temperature and exhibits strong seasonal vari-
ations due to its polar location. Although these atmospheric effects could modulate the Solar dipole
signal, their influence is minor in the case of IceCube (see [8] and references therein).

In addition to this spurious signal, the Earth’s revolution around the Sun produces a faint
Compton-Getting dipole anisotropy [9] with an excess oriented towards the direction of motion in
solar coordinates. The relative rotation of the celestial and solar reference frames over a calendar
year causes interference between the two sources of anisotropy. This dipole has a predictable phase
and amplitude given by

𝛿𝐼

𝐼
=
𝑣(𝑡)
𝑐

[𝛾(𝐸) + 2] cos 𝜉 , (1)

where 𝐼 the cosmic ray intensity, 𝛾(𝐸) the cosmic–ray spectral index, 𝑣(𝑡)/𝑐 the ratio of Earth’s
orbital velocity to the speed of light, and 𝜉 the angle between the cosmic ray particle’s arrival
direction and the direction of Earth’s motion. As with the pressure variations, we can compensate
by weighting each event accordingly. The combined weight, with the pressure correction for event
𝑖, is given by

𝑤𝑖 = 𝑒−𝛽 (𝑝 (𝑡𝑖 )−𝑝0 )
(
1 − 𝑣(𝑡𝑖)

𝑐
[𝛾(𝐸𝑖) + 2] cos 𝜉𝑖

)
, (2)

where 𝑝(𝑡𝑖) is the measured pressure at the time 𝑡𝑖 , 𝑝0 is the baseline average pressure over time, 𝑣(𝑡𝑖)
corresponds to Earth’s orbital speed at time 𝑡𝑖 (obtained from the PAL astronomical library [10])
and 𝛾(𝐸𝑖) is the spectral index at energy 𝐸𝑖 derived from a fit to the measurement of the all-particle
cosmic-ray spectrum by HAWC [11].

3. Relative Intensity

The relative intensity in J2000 equatorial coordinates (𝛼, 𝛿) is obtained by binning the sky into
pixels of size 0.9◦ using the HEALPix library [12]. The residual anisotropy 𝛿𝐼 of the distribution of
arrival directions of the cosmic rays is calculated by subtracting a reference map that describes the
detector response to an isotropic flux

𝛿𝐼 𝑗 =
𝑁 𝑗 − ⟨𝑁 𝑗⟩

⟨𝑁 𝑗⟩
. (3)

This relative intensity gives the amplitude of deviations in the number of counts 𝑁 𝑗 from the
isotropic expectation ⟨𝑁 𝑗⟩ in each pixel 𝑗 .

The isotropic expectation ⟨𝑁 𝑗⟩ and relative intensity are calculated using a likelihood-based
reconstruction method for combined data sets from multiple observatories that have overlapping
exposure regions in the sky. The method is described in [13] and does not rely on detector
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simulations, providing an optimal anisotropy reconstruction and the recovery of the large-scale
anisotropy projected onto the equatorial plane.

4. Statistical Significance

In order to calculate the statistical significance of anisotropy features in the final reconstructed
map, we apply a generalized version ([13]) of the Li–Ma method in [14]. The significance map is
calculated using

𝑆𝑖 =
√

2
(
−𝜇𝑖,on + 𝜇𝑖,off + 𝑛𝑖 log

𝜇𝑖,on

𝜇𝑖,off

)1/2
. (4)

For each pixel 𝑖, we define expected on-source and off-source event counts from neighbor pixels in
a disc of radius 𝑟 centered on that pixel.

Figure 1: One-dimensional projection of relative intensity in the overlapping field of view of IceCube and HAWC. At
48 TeV energies, there is good statistical agreement between both experiments (top right). However at lower and higher
energies (top left and center bottom), the two distributions are not statistically compatible.

5. Combined Anisotropy with IceCube

The overlapping FoV between the two observatories serves as a calibration region. Fig. 1 shows
a one–dimensional projection of the relative intensity as a function of R.A. At 10 TeV energy, the
distributions are qualitatively different but are statistically compatible. At 48 TeV energies, there
is good agreement between both experiments. At 126 TeV, the distributions are not statistically
compatible. According the simulations, the cosmic-ray energy distribution in each bin should be
comparable, however, the mass composition in each of the samples shown in Fig. 2, indicates that
the two detectors have very different sensitivities to each of the mass groups. IceCube data appears
to be dominated by protons and light elements at lower energies than HAWC but becomes heavier
at ∼ 150 TeV.

If we assume that the distribution of arrival directions of cosmic rays is rigidity-dependent
rather than energy-dependent, we can compare the one-dimensional distributions for IceCube and
HAWC at comparable rigidities and using a 𝜒2 test and assess whether we achieve better agreement.
In order to find the optimal IceCube energy cuts to match the rigidity for each HAWC bin, we
perform a scan and use a Kolmogorov-Smirnov test to compare the rigidity distributions assuming
the GSF [16] composition model, as shown in Fig 2. Table 1 shows the median energies and
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Figure 2: Left: mean logarithm of the particle charge Z for cosmic rays detected by IceCube (blue) and HAWC
(red) assuming the Gaisser H3a [15] (dashed) and GSF [16] (solid) composition models. IceCube data is dominated by
protons and light elements at lower energies than HAWC, but becomes heavier above about 200 TeV. Right: Assuming
a rigidity–dependent angular distribution of cosmic rays, we find the most compatible energy bins (top) by sliding an
IceCube energy window of size Δ log10 𝐸 = 0.25 and minimizing the KS test value between rigidity distributions based
on Monte Carlo simulations.

rigidity for each bin. The combined IceCube–HAWC maps are shown in relative intensity (Fig. 3)
and significance (Fig 4) for seven rigidity-driven pairs of energy bins. The smoothing radius
and thresholds are adjusted for higher energy bins to compensate for the decreasing statistics. A
rapid phase transition is observed going from 40 TV to 76 TV consistent with previous individual
measurements [1].

5.1 Angular Power Spectrum

The angular power spectrum (APS) defined as

Cℓ =
1

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|𝑎ℓ𝑚 |2 , (5)

for each value of ℓ, provides an estimate of the significance of structures at different angular scales
of ∼ 180◦/ℓ. In case of full 4𝜋 sky coverage, the multipole moments 𝑎ℓ𝑚 would give complete
representation of the anisotropy. However, partial sky coverage results in large correlations between
coefficients 𝑎ℓ𝑚, biasing results. Fig. 5 shows the pseudo-angular power spectrum for all 11 HAWC
rigidity maps. For maps above 4.1 TV, where we have IceCube–HAWC combined data, we include
the combined angular power spectrum shown in red. The dipole power of the combined map is
consistently larger than in the HAWC-only measurement, as some power is redistributed to higher
𝐶ℓ terms due to correlations in the 𝑎ℓ𝑚 coefficients. The isotropic noise level is driven by the region
with the lowest statistics. In general, the APS has most power distributed to lower ℓ harmonics,
corresponding to larger angular structures (e.g., dipole, quadrupole, etc.) and decreases for larger
ℓ to be drowned in noise. In the case of combined maps, the noise level shown is computed from
the total combined dataset. In some cases, the noise level of the combined maps is lower due to the
increased statistics in the overlapping FoV.
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Figure 3: Relative intensity for 11 HAWC energy bins. Table 1 shows the median energies corresponding to each
bin. The last seven maps correspond to rigidity-matching pairs of energy bins. Combined relative intensity maps are
reconstructed using the maximum likelihood method of Ahlers et al. [13]. A rapid phase transition is observed going
from 40 TV to 76 TV, consistent with previous individual measurements.

6. Conclusions and Outlook

We have presented preliminary results on an updated full-sky analysis of the cosmic-ray
arrival direction distribution with data collected by the HAWC and IceCube observatories with
complementary field of views jointly covering nearly 4𝜋 steradians. With 8 years of data, HAWC
can extend the energy range from previous results [17] to higher energies. We include updated
measurements by HAWC in the energy range between 3.0 TeV and 0.5 PeV, confirming previous
results of an energy-dependent anisotropy in the arrival direction distribution of cosmic rays seen
by other experiments. This analysis – which includes recently published results from IceCube with
12 years of data – is the first all-sky anisotropy study with primary cosmic-ray energies above 10
TeV. The combined maps and their corresponding angular power spectra largely eliminate biases
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Figure 4: Li–Ma significance for 11 HAWC energy bins. Table 1 shows the median energies corresponding to each bin.
The last seven maps correspond to rigidity-matching pairs of energy bins. Smoothing radius and thresholds are adjusted
for higher energy bins to compensate for decreasing statistics.

that result from partial sky coverage. IceCube angular structures appear to evolve faster as a
function of energy than they do for HAWC maps. Monte Carlo studies suggest that the angular
distributions depend on rigidity rather than energy. The best-matching energy bins are consistent
with this hypothesis. Further investigation is needed, including systematic studies that account for
uncertainties in cosmic-ray composition models. We also need to extend this study by including data
from other cosmic-ray observatories in both hemispheres that extend to higher and lower energies.
Some of this work is already underway through various other collaborations.
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