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As part of the upgrade of the Pierre Auger Observatory, known as AugerPrime, the Underground
Muon Detector is being installed in the low-energy extension of the Surface Detector, allowing
for a direct measurement of the muonic component of air showers produced by ultra-high-energy
cosmic rays with energies between 10'%% and 10'° eV. The detector consists of an array of 30 m>
plastic scintillator detectors buried 2.3 m underground near a water-Cherenkov detector. Two
modes of operation are implemented to achieve an extended dynamic range: the binary mode,
conceived for low muon densities, and the calorimetric mode, designed for high muon densities.
In this contribution, we present the current status and improvements in the reconstruction and
performance of this component of AugerPrime.
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1. Introduction

Successfully operating for more than 20 years, the Pierre Auger Observatory is the largest
facility dedicated to the detection of ultra-high-energy cosmic rays (UHECRs). It employs a hybrid
technique for the detection of extensive air showers (EAS) induced by UHECRSs, combining a
Surface Detector (SD) and a Fluoresence Detector (FD). The SD, designed to measure the footprint
of EAS at ground level, spans 3000 km? and is composed of an array of 1660 water-Cherenkov
detectors (WCDs), spaced 1500 m apart (SD-1500) and arranged in a triangular grid. The SD is
complemented by the FD, which consists of 27 fluorescence telescopes arranged at five sites. These
telescopes allow for the measurement of the longitudinal development of EAS during nights with a
low moon fraction and favourable weather conditions.

To extend the sensitivity of the Observatory to smaller energies, two nested, denser arrays are
operative in a smaller part of the SD array. The SD-750, with a spacing of 750 m between the
WCDs, covers 23 km? and is fully efficient for energies above 10! eV. The SD-433, with 433 m
spacing, spans 1.9 km? and allows us to detect EAS above 10'-8 eV. To improve its sensitivity to the
primary mass, the Observatory has recently been upgraded through the AugerPrime initiative [1].
This enhancement includes the addition of scintillator and radio detectors atop the existing WCDs,
the replacements of the WCD electronics and the installation of the Underground Muon Detector
(UMD).

2. The Underground Muon Detector

The UMD, currently being installed within the SD-750 (UMD-750) and SD-433 (UMD-433)
arrays, is designed to provide a direct measurement of the muonic component of EAS. Each UMD
station is positioned near a WCD and buried at a depth of 2.3 meters, shielding the detector from
electromagnetic particles and establishing an effective energy threshold of approximately 1 GeV
for vertical muons. A UMD station consists of three detection modules, each covering an area of
10.5 m? of plastic scintillator. These modules are highly segmented, comprising 64 scintillator
strips—each 400 cm long, 4 cm wide, and 1 cm thick—equipped with wavelength-shifting optical
fibers. The light generated by muons passing through the strips is collected by the fibers and read
out by an array of 64 silicon photomultipliers (SiPMs). The UMD operates in slave mode, acquiring
data only when triggered by the associated WCD.

To extend the dynamic range of the UMD, its modules operate in two complementary modes:
the calorimetric (also known as ADC) mode and the binary mode. The calorimetric mode, designed
for high muon densities, treats the module as a whole independent of detector segmentation. In
this mode, the 64 SiPM signals are summed and subsequently amplified with high- and low-gain
amplifiers. The amplified signals are digitized with two analog-to-digital converters (ADCs) at a
sampling time of 6.25 ns, producing two waveforms of 1024 samples. The number of muons is then
obtained by dividing the charge of these signals by the mean charge of a single vertical muon [2]. On
the other hand, the binary mode relies on detector segmentation and processes each of the 64 SiPM
signals independently. The output of each SiPM is processed by a dedicated channel, producing a
binary trace of 2048 samples, hence its name. In each sample, a “1” or “0” is recorded if the signal
of the SiPM — after some electronic processing — is above or below a discriminator threshold,
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respectively. Muon signals in each bar are identified as a sequence of at least four consecutive “1”’s,
which we refer to as a muon pattern [3]. The main observable for the reconstruction procedure
of the muon lateral distribution function (LDF) in this mode is the activation number, k, which
represents the number of bars presenting a muon pattern in an air-shower event.

In this contribution, we present two improvements introduced in the reconstruction procedure
of the binary mode of the UMD-750. Their impact in the muon LDF fit is assessed using simulations.
In Section 3, we describe the new strategy to fit the shower core position using the data from the
UMD. In Section 4, we introduce a data-driven method to correct for the overcounting introduced
by corner-clipping muons, which are inclined muons that generate muon patterns in two adjacent
segments.

3. Fitting the core position with the UMD

The number of muons in a given detector in an air shower event follows a Poisson distribution
with an expected value u = p(r|p) A cos@, where p(r|p) is the muon density predicted by the
muon LDF model, dependent on a set of parameters p, and evaluated at the distance r from the
detector to the shower axis. Here, A = 10.5 m? denotes the detector area, and 6 is the zenith angle
of the shower.

For a fixed u, the probability distribution of the observable k is given by (see Ref. [2] and
references therein)

64
P(k“l) = ( k )e_#(1+pcc)(€#(]+pcc)/64 _ 1)k’ (1)

where p.c is a quantity necessary to account for corner-clipping muons, as explained in Section 4.
For a measured k, Eq. (1) represents the likelihood L of the detector. The event likelihood £ is
defined as the product of individual detector likelihoods, and its negative logarithm is minimized to
obtain the best-fit LDF parameters j. Due to the sparse detector spacing, the LDF slope cannot be
reliably fitted in most events and is therefore fixed to a parameterized mean value. Only the muonic
shower size p(450)—the LDF evaluated at 450 m and a proxy for the total number of muons—is
fitted. The reference distance of 450 m is chosen to minimize the fluctuations between the signal
predicted by the average LDF used in the reconstruction and the actual, event-specific LDFs, which
vary due to intrinsic shower-to-shower fluctuations.

The arrival direction and core position, needed to compute shower-plane distances for the
UMD, are extracted from the SD reconstruction. Until now, the UMD muon LDF has been fitted
with the core fixed to the SD value, which has two main drawbacks. First, the uncertainty in the
core is not propagated to p(450), leading to underestimated uncertainties. Second, fixing the core
can bias the fit when a detector lies close to the core, where the LDF rises steeply and small shifts
in distance r cause large changes in the expected signal. To avoid this, the core position should be
left free in the UMD fit.

To ensure a good core reconstruction, a fiducial quality cut is applied in the SD reconstruction,
which requires that all neighboring stations of the station with the largest signal are functioning
properly [4]. Such condition could be translated to the UMD modules, allowing to leave the core
free during the UMD fit. However, this would come at the cost of losing too many events, since
the UMD array was growing at varying paces through the years, with deployment still ongoing. To
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Figure 1: Muon LDF fit of a real event with the core fixed (left) and free (right). The dashed line marks the
reference distance of 450 m. The red up-pointing triangle represents saturated detectors, whereas the grey
down-pointing triangles indicate the upper limit of the muon density in detectors with zero muons.

overcome this, a different strategy was employed: we leave the core as a free parameter but we add
an extra factor in the event likelihood that penalizes core positions that are too far from the SD core.
In this way, the fiducial cut can be avoided and the core fited in every event. To this aim, we model
the distribution of the UMD core (x, y) as a bivariate Gaussian whose expected value corresponds
to (xsp, ysp), the core position obtained by the SD, and whose covariance matrix is given by the
covariance matrix of the core coordinates obtained in the SD fit. When taking the logarithm of this
term, a y>-like term is obtained. The event log-likelihood now reads

1
~In L) = = ) InLi(F) + 547, @)

where L corresponds to the likelihood of Eq. (1) and the index i goes over all the UMD modules in
the event. The y? is given by

{ _ 2 _ P
X (x,y) = [(x XSD) +(y ySD) _Zpi(x_xSD)(y_YSD) , 3)

2
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where o, 0y, are the errors in the SD core position and psp corresponds to the correlation
between the SD core coordinates.

In Fig. 1, we show the LDF fit of a real air shower with a core landing near a detector. Fixing
the core (left panel) results in a poor fit, with a reduced y?/dof = 3.3 (p-value = 2 x 10~%) and
an underestimated shower size of p(450) = 0.61 m~2. Allowing the core to vary (right panel)
yields a better fit, with y?/dof = 1.45 (p-value = 7%) and p(450) = 0.97 m~2. A shift of just ~48
meters between the SD and UMD cores leads to a significant change in shower size, highlighting
the importance of treating the core position as a free parameter in the fit. On average, the distance
between the SD and UMD cores is 16 meters, and it is less than 47 meters for 95% of the events.
The impact of leaving the core free during the LDF fit on the shower size estimate was studied
using simulations. We used a library of CORSIKA [5] showers with protons and iron as primary
species, EPOS-LHC [6] as the high-energy hadronic interaction model, an energy of 10'7-3 eV, and
zenith angles of 0°, 12°, 22°, 32°, 38°, and 48°. Detector simulations for both the WCDs and the
UMD were performed using Offline [7], the official software framework of the Observatory. The
simulated signals were then passed through the full reconstruction pipeline, as is done with data.
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Figure 2: Bias in the muon shower size as a function of the secant of the Monte Carlo zenith angle. The
case in which the core is left free (fixed) is indicated with full (empty) markers.
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Figure 3: Left: Geometry of the shower as seen by a UMD module. 6 corresponds to the zenith angle and
A¢ is the azimuth angle of the shower measured relative to the azimuth orientation of the detector. Right:
Sketch of a UMD module with its two halves.

To evaluate the scenario in which the core fit has the greatest impact, we forced all events to have
a detector very close to the core by randomly placing each shower within a 100-meter-wide tile
centered on a UMD station. Each event was reconstructed with the core fixed to the SD core, and
with the core free according to Eq. (2). The bias in each event was obtained by comparing the
p(450) retrieved by the LDF fit to the true value, obtained as the average of the true muon densities
in a set of detectors placed at exactly 450 meters from the core in the simulations. The mean bias
with the core fixed (empty markers) and free (solid markers) as a function of the zenith angle is
shown in Fig. 2 for both primaries. When the core is fixed, the bias for proton (iron) can reach
up to ~50% (~20%) for the most vertical zenith angles. In contrast, the bias is lowered to ~ 20%
(~ 15%) when the core is free.

4. Data-driven corner-clipping correction

Corner-clipping muons are inclined muons that can generate muon patterns in adjacent bars.
They are a source of overcounting and, if not properly accounted for, introduce a bias in the muon
estimator that increases with the zenith angle 6, and as A¢ — the azimuth angle as observed by
the UMD module — becomes more perpendicular to the detector, see left panel of Fig. 3. To
correct for this effect, the previous approach consisted of parameterizing the bias as a function
of the zenith and azimuth angles of the shower, using air shower and full detector simulations.
This simulation-based correction was then applied to the data [8]. Recently, a new method was
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Figure 4: Distribution of Ar for UMD-module panels with only two bars with a muon pattern for simulations
(left) and data (right). The (non-)neighboring case is shown with a histogram with a solid (dashed) line. For
simulations, the neighboring case is divided into the cases in which one (histogram with diagonal hatching) or
two muons (green-filled histogram) were injected. The green down-pointing and black up-pointing triangular
markers correspond to the estimators of the two-muon and single corner-clipping muon cases, respectively
(see text for details).

developed to account for the corner-clipping effect in a data-driven way [9]. This method consists
of estimating the probability that a single muon produces a signal in two adjacent bars — a quantity
we refer to as the single-muon corner-clipping probability, p... Assuming that all muons arriving
at a detector are independent, the number of corner-clipping muons in a detector can be modeled as
a binomial process with a success probability of p... Under this assumption, the expected number
of muons in a detector, u, is replaced by p(1 + p¢c) to account for the larger number of activated
bars generated by corner-clipping muons, leading to Eq. (1) [9].

Considering that when a single muon is injected into one panel of the detector (see right panel
of Fig. 3), either one or two neighboring bars exhibit a muon pattern', we can define p. as

NCC

. 4
N + N ( )

Pcc =
where N, and N; are the number of times two neighboring bars or one bar, respectively, were
activated upon the injection of a single muon. Since counting the number of events in which a
detector had only one bar activated is straightforward, estimating p.. reduces to estimate Nc..

To estimate N.., we need to distinguish whether two neighboring bars are activated by a single
corner-clipping muon or by two different muons. For this reason, we use the timing information
in detectors with only two activated bars. In Fig. 4, we show the distribution of At, the absolute
difference between the start times of the two muon patterns, for the neighboring (blue histogram
with full lines) and non-neighboring (red histogram with dashed lines) cases, both for simulations
(left panel) and data (right panel). For simulations, a discrete library of CORSIKA showers with
proton and iron primaries, energies of 10'7-3, 10'8, and 10'3- eV, and zenith angles of 0° , 12°, 22°,
32°, 38°, and 48° was used. EPOS-LHC was employed as the high-energy hadronic interaction
model. In both data and simulations, a distinctive peak is observed in the neighboring case at small
At, generated by corner-clipping muons producing two neighboring signals almost simultaneously.
In the simulations (left panel), cases where neighboring signals are produced by a corner-clipping

IWe neglect inefficiencies—namely, cases where a muon fails to produce a muon pattern—based on the high efficiency
of 98.5% measured with a single bar [3].
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Figure 5: Estimated single-muon corner-clipping probability for simulations (left) and data (center). To ease
visualization, only a subset of zenith angles are shown. The dashed lines indicate linear fits. For data, the
secant of the center of the zenith angle bin is indicated in the legend. The right panel shows the ratio between
the data and simulations for the most inclined zenith angles, where the discrepancy is largest. To improve
clarity, the markers were slightly shifted horizontally to distinguish between the different zenith angles.

muon or by two different muons are shown as histograms diagonally hatched in black and filled in
green, respectively, confirming that the excess of neighboring signals at small At is indeed due to
corner-clipping muons.

In the absence of corner-clipping muons, the fraction of neighboring signals, Nneigh/(Nneigh +
Nhon-neigh)» is expected to be 6.45%, calculated as the probability of randomly selecting two neigh-
boring bars out of 32. Thus, for a given Az, 6.45% of the neighboring signals is attributed to
the two-muon case, while the remaining fraction is attributed to the corner-clipping case. The
estimated number of two-muon and corner-clipping muon events for each At is shown as a green
down-pointing triangle and a black up-pointing triangle, respectively. In the simulations, the esti-
mators closely follow the true Monte Carlo histograms, validating the method. Summing over all
the corner-clipping cases with Ar/(3.125 ns) < 6, we obtain the total N, which we subsequently
insert in Eq. (4) to estimate p..

By applying this method in bins of 6 and A¢, the angular dependence of p.. can be obtained.
The results are shown in Fig. 5 for simulations (left) and data (center). The same qualitative behavior
is observed in both cases, with the values for simulations being larger than those for data, particularly
at the most inclined zenith angles (see right panel of Fig. 5), indicating that the corner-clipping
effect is overestimated in the simulations. As expected, p.. increases with 8, and for a fixed 6,
it increases as A¢ approaches 90°. For each 6, we parameterize the dependence of p.. by fitting
a linear model in | sin Ag|, displayed as dashed lines in the figure. This result represents the first
observation and quantification of the corner-clipping effect in data.

The difference between data and simulations likely stems from simplifications in the detector
simulation. For instance, the same scintillator-fiber-electronics response—tuned to limited labo-
ratory data—is used for all simulated detectors, overlooking detector-to-detector variations in the
field. Consequently, different strips in the field might respond differently to identical energy depo-
sitions, leading to variations in efficiency and noise levels across the bars, all of which impact the
estimated p..

Lastly, we used the subset of simulations with energy 10'® eV to assess whether the estimated
Pcc 18 useful for correcting the bias introduced by the corner-clipping effect. The muon LDF of each
shower was reconstructed with (Eq. (1), using the linear parameterizations from Fig. 5) and without
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Figure 6: Bias in the muon shower size as a function of the secant of the Monte Carlo zenith angle with
(empty squares) and without (full triangles) the corner-clipping correction.

(Eq. (1) with p.. = 0) the corner-clipping correction. The mean bias in the muonic shower size for
the two cases, as a function of sec fyic, for proton (red) and iron (blue) is shown in Fig. 6. When
no correction is applied, the bias increases with zenith angle as a consequence of corner-clipping
muons. In contrast, the bias remains flat, below ~ 3%, when the correction is applied, indicating
that the estimated p.. successfully reproduces the behavior of the bias.

S. Summary

In this contribution, we presented two improvements recently introduced in the reconstruction
procedure of the binary mode of the Underground Muon Detector of the Pierre Auger Observatory.

The muon shower size is estimated on an event-by-event basis by fitting a lateral distribution
function (LDF) with fixed slope using a maximum likelihood approach. We introduced a new
strategy that adds a penalization term to the event likelihood, allowing the shower core position to
be fitted directly within the UMD LDF reconstruction. This removes the need for a fiducial cut,
which would otherwise reduce statistics, and helps mitigate the bias in the shower size observed in
events with a detector located very close to the core.

Additionally, we presented a data-driven method to correct for corner-clipping muons, based on
the single-muon corner-clipping probability. Simulations show that this probability successfully re-
produces the behavior of the corner-clipping bias, enabling the correction of this effect—previously
addressed only through simulations—using a purely data-driven approach.
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