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The muon content predicted by hadronic interaction models falls short of describing the data from
multiple air shower experiments. This discrepancy, known as the Muon Puzzle, poses significant
challenges for mass composition studies and limits our understanding of the origins and accelera-
tion mechanisms of ultra-high-energy cosmic rays. The recent releases of the EPOS LHC-R and
QGSJET-III models provide a new opportunity to investigate this divergence using a top-down
approach to air shower simulations. This strategy consists of constraining the electromagnetic
component of a simulated air shower by matching its longitudinal profile to that of an observed
air shower. Consequently, any inconsistency found between the simulated and observed signal
in ground particle detectors must originate from a mismatch in the muon content. In the present
work, the top-down analysis is tested on a mock dataset that includes air showers simulated with
EPOS LHC-R at around 10 EeV and reconstructed using the Pierre Auger Observatory framework.
The top-down simulations are performed using QGSJET-III, considering proton, helium, oxygen
and iron nuclei as primary particles. The quality of the method is assessed by comparing the true
difference in muon content between the two models to that derived from the top-down simulations.
Finally, a maximum likelihood estimation accounting for composition is performed to determine
the overall hadronic rescaling required to adjust QGSJET-III in order to match the muon content
of EPOS LHC-R.
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1. Introduction

Monte Carlo simulations of extensive air showers are essential for interpreting data from
ultra-high-energy cosmic-ray (UHECR) experiments — whether in the analysis of arrival directions
[1], the search for neutral messengers [2, 3], or the study of mass composition [4, 5]. Hadronic
interaction models, which describe the interactions and the energy losses of secondary particles in
the atmosphere, are a fundamental cog of the simulation machinery. Over the years, several models
have emerged, using different approaches such as Regge–Gribov theory (QGSJET-II [6]), minĳet
phenomenology (SIBYLL [7]), or parton-based multiple scattering with collective effects (EPOS-
LHC [8]). Despite these efforts, the muon content predicted by these models remains insufficient
to describe experimental data across different energies, zenith angles, and experiments [9, 10]. To
better understand the origin of this discrepancy, we propose a method inspired by the Pierre Auger
Collaboration’s study of vertical air showers observed in hybrid mode, i.e. simultaneously measured
by the surface detector array and by fluorescence telescopes measuring their longitudinal profiles
[11]. The method consists in selecting simulated air shower simulations whose longitudinal profiles
reproduce those of the hybrid data, thereby constraining the electromagnetic component. This
top-down approach enables a direct comparison of the total signals in the ground particle detectors,
where any remaining difference between data and simulation can only be attributed to the muonic
component. In [11], a general muon rescaling factor was derived through a maximum-likelihood
estimation, assuming either a pure proton composition or a mixed composition based on the depth
of maximum shower development 𝑋max measurements. In [12], this approach was tested with more
modern hadronic interaction models and air-shower simulation codes, and applied to a mock dataset
of air showers simulated with the muon-enhanced Sibyll★ model [13], confirming the robustness
of the method. In this work, we present a similar analysis aimed at calculating mass-dependent
rescaling factors by exploiting several mass-sensitive observables. This approach provides insight
into how the muon deficit depends on the primary mass at a given energy, and into the strength of
the muon signal as a mass discriminator observable. This paper is structured as follows. In Section
2, we detail the top-down simulations chain, followed in Section 3 by a description of the mock
dataset and the simulation parameters used to test the method. Section 4 presents the derivation of
the mass-dependent muon rescaling factors, and we conclude with a discussion of the results and
possible follow-ups to improve the overall analysis.

2. The top-down simulation method

For a given shower with energy 𝐸0 and direction (𝜃, 𝜙), the first step in the top-down
simulation chain consists in finding a simulated shower with a similar longitudinal profile, assuming
the same energy and direction within uncertainties. To this end, a primary mass is chosen and sev-
eral thousands of one-dimensional simulations are generated to model only about the longitudinal
development of the shower and thus provides a substantial reduction in computing time. Each simu-
lated shower is reconstructed using fluorescence telescopes software, and reconstructed observables
such as 𝑋max, the calorimetric energy 𝐸cal, and the energy deposited at 𝑋max are compared with
those of the target shower. If all observables agree within their uncertainties, the simulated shower
is retained and a 𝜒2 is calculated by comparing the Gaisser–Hillas fits and measured profiles of
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Figure 1: Muon signal at 1000 m from the shower core 𝑆µ, as a function of the depth of maximum shower
development 𝑋max for the EPOS LHC-R mockup dataset. The primaries found in this dataset are represented
by different colors.

both showers. The parameters of the simulated shower yielding the smallest 𝜒2 are then carried
forward to the next step of the simulation chain, where a full Monte-Carlo simulation is performed
to obtain the particle distribution at ground. At this stage, the shower is reconstructed using both
fluorescence telescopes and surface particle detector software, enabling a direct comparison of
the ground signals between the target and the simulated showers. Finally, the entire procedure is
repeated, selecting a different primary mass for the simulations.

3. Mock dataset and simulation results

In this work, top-down simulations are performed on a mock dataset of air showers
generated with the recently released EPOS LHC-R hadronic interaction model [15]. This model
incorporates collective effects of hadronization processes and shows improved agreement with
experimental data, including the number of muons observed in air showers. The showers in the
mock dataset are simulated with CORSIKA 7.8010 [16] and reconstructed with the Pierre Auger
Observatory’s 1500 m surface array and the fluorescence telescopes software. These showers have
energies between 1018.8 and 1019.2 eV and zenith angle below 60◦. The mock dataset contains 1280
showers, evenly split among proton, helium, oxygen and iron primaries, selected with quality cuts
that ensure well-reconstructed longitudinal profiles. At the Pierre Auger Observatory, the energy
estimator of the surface array is the total signal 𝑆tot at 1000 m from the shower core, expressed
in Vertical Equivalent Muon (VEM). This signal corresponds to the sum of the electromagnetic
and muonic signals, 𝑆EM and 𝑆µ, respectively. Figure 1 shows the distributions of two mass-
discriminating observables, 𝑋max and 𝑆µ, for all considered primary masses, illustrating that, on
average, heavier primaries produce shallower showers with larger muon signals.

Every shower in the mock dataset is then processed through the top-down simulation chain
described in the previous section. For this purpose, we use the same CORSIKA version as was
employed to generate the mock dataset, but select the new QGSJET-III hadronic interaction model
[17] to perform the simulations. Throughout the entire chain, the thinning level is set to 10−6 and
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Figure 2: Left: 𝑋max distribution of iron showers for QGSJET-III hadronic interaction model, around 1019

eV (blue) and 𝑋max distribution of EPOS LHC-R mock dataset showers that could not be matched with
iron showers (orange), following the matching procedure described in Section 2. Right: Difference in
reconstructed 𝑋max between the showers in the mock dataset and that of the best profiles that were matched
to them, considering different simulated primary masses. The mean of each distribution is represented by a
colored dashed vertical lines.

the energy cuts to 0.05, 0.01, 0.001, and 0.001 GeV, for hadrons, muons, electrons and photons,
respectively. These values are low enough to preserve the accuracy of the shower development
while still high enough to significantly reduce the computing time.

As each of the 1280 showers in the mock dataset is run through the first step of the top-down
simulation chain for each considered primaries, we may attempt to match deep proton showers
profiles with those of shallower iron showers. However, showers that are too deep to be reproduced
by iron showers are not matched with that primary, and conversely, very shallow showers are not
matched with proton primaries. This idea is illustrated in the left panel of Figure 2, which shows a
typical 𝑋max distribution of iron showers for the QGSJET-III model around 1019 eV, together with
the 𝑋max values of the showers in the mock dataset that could not be matched with iron shower
profiles. Nevertheless, every shower profile in the mock dataset is reproduced by at least one of the
four simulated primaries. In the right panel of Figure 2, we show the difference in reconstructed
𝑋max between the EPOS LHC-R showers of the mock dataset and that of the best matching profiles
found with QGSJET-III, for all considered primaries. While in some cases, this difference might be
as large as 80 g/cm2, the reconstructed 𝑋max agree within uncertainties due to the selection criteria
applied during that stage. The larger bias observed for simulated iron primaries arises from the
attempt to match a mock dataset containing a large fraction of deep showers with iron showers,
which also exhibit smaller shower-to-shower fluctuations than those initiated by lighter primaries.
As a result, the differences between the 𝑋max values of the mock dataset showers and those of the
matched iron showers are larger and a positive bias is observed, as highlighted by the blue dashed
line. The reversed situation is also observed for simulated proton primaries, although the larger
shower-to-shower fluctuations of proton showers help to significantly reduce the bias.

The full Monte Carlo simulation of the best-matching CONEX shower provides the 𝑆tot

observable, which can then be compared with that of the corresponding shower in the mock dataset.
This comparison is shown in Figure 3. In the left panel, the ratio of 𝑆tot between the mock dataset
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Figure 3: Ratio (left) and difference (right) between the total signal at 1000 meters from the shower core
𝑆tot of the mock dataset showers (EPOS) and that of the matching showers (QGS), for all four simulated
primaries.

showers and their matching counterparts, considering all four primaries, is seen to increase with
zenith angle 𝜃. This trend indicates that the muon signal in the mock dataset grows faster with
𝜃 than in the simulations, while the electromagnetic component does not, confirming a muon
deficit in QGSJET-III simulations relative to EPOS-LHCR. The right panel shows the difference
in 𝑆tot. Since the top-down approach ensures that the electromagnetic component of QGSJET-III
showers matches that of the corresponding mock dataset showers, this difference directly reflects
the discrepancy in the muon signals. Since this discrepancy appears to be roughly constant as a
function of the zenith angle, it indicates a zenith-independent muon excess at ground (the angular
dependence of both hadronic interaction models appears to be similar).

4. Muon rescaling factors

The final output of the top-down simulation chain consists of the total and muon signals,
𝑆

QGS
tot and 𝑆

QGS
µ , at 1000 m from the shower core in the QGSJET-III simulations. Since the mock

dataset is based on EPOS LHC-R simulations, we also have direct access to the muon signal of
the corresponding showers. This allows us to construct the distributions of the muon signal ratio
defined as:

𝑟µ,𝑖 =
𝑆EPOS
µ

𝑆
QGS
µ,𝑖

, (1)

for a simulated primary i — that is, the rescaling factor required for QGSJET-III simulations to
reproduce, on average, the EPOS LHC-R muon signal expectation under the assumption of a pure
composition of primary i. The 𝑟µ,𝑖 distributions for proton and iron primaries are shown by the full
histograms in the left panel of Figure 4, and their means with corresponding errors are reported
in the first row of Table 1. As expected, the largest rescaling factor is obtained for a pure proton
composition, decreasing with increasing primary mass. In practice, for Phase I of the Pierre Auger
Observatory data acquisition, the muon signal of vertical showers around 10 EeV is not directly
measured. Nevertheless, the top-down method allows the computation of the muon rescaling factor
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Figure 4: Left: Distributions of 𝑟µ (filled histograms) and 𝑅µ (solid-line histograms) for proton and iron
primaries. Right: Probability for mock dataset showers to originate from a given primary, based on their
𝑋max values.

without relying on this observable, as described in [12]:

𝑅µ,𝑖 = 1 +
𝑆EPOS

tot − 𝑆
QGS
tot,𝑖

𝑆
QGS
µ,𝑖

. (2)

If the top-down method works as expected, the 𝑟µ,𝑖 and 𝑅µ,𝑖 distributions should be broadly consis-
tent, as illustrated in the left panel of Figure 4 for proton and iron primaries.
Lastly, a maximum-likelihood estimation can also be used to calculate the rescaling factors. Fol-
lowing the method described in [11], we maximize the likelihood function

∏
𝑗

L𝑖, 𝑗 , for a given

primary i, over all events j in the mock dataset, where

L𝑖, 𝑗 =
1

√
2𝜋𝜎𝑖, 𝑗

exp

−
1
2
©­­«
𝑆EPOS

tot, 𝑗 −
(
𝑆

QGS
EM, 𝑗

+ 𝑟µ,𝑖𝑆
QGS
µ,𝑖, 𝑗

)
𝜎𝑖, 𝑗

ª®®¬
2 , (3)

and where 𝜎𝑖, 𝑗 denotes the uncertainties of the different signal components, added in quadrature.
The resulting 𝑟µ,𝑖 values are reported in the third row of Table 1, showing excellent agreement with
the two other methods.

proton helium oxygen iron
⟨𝑟µ⟩ 1.50 ± 0.01 1.37 ± 0.01 1.22 ± 0.01 1.11 ± 0.01
⟨𝑅µ⟩ 1.49 ± 0.01 1.36 ± 0.01 1.20 ± 0.01 1.10 ± 0.01
𝑟µ 1.48 ± 0.01 1.35 ± 0.01 1.19 ± 0.01 1.10 ± 0.01

𝑟µ( 𝑓𝑖 , 𝑋EPOS
max , 𝑆EPOS

µ ) 1.34 ± 0.04 1.28 ± 0.03 1.23 ± 0.03 1.17 ± 0.02
𝑟 true
µ,𝑖 1.28 ± 0.02 1.25 ± 0.01 1.26 ± 0.01 1.27 ± 0.01

Table 1: Summary of the muon rescaling factor computations obtained with the different methods described
in the text.
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The previous muon rescaling factors were obtained under the assumption of pure compositions.
However, since the mock dataset was constructed with equal fractions ( 𝑓𝑖 = 25%) of the four primary
masses, the proton rescaling is overestimated while the iron one is underestimated. Consequently,
we incorporate mass-discriminating observables into the likelihood function so that events in the
mock dataset of a given primary i contribute with higher weight when calculating the rescaling
factor for that primary. This is implemented by multiplying Equation 3 with a probability term that
explicitly depends on the 𝑋max and 𝑆µ values of the showers in the mock dataset, such that

L′
𝑖, 𝑗 ( 𝑓𝑖 , 𝑋EPOS

max, 𝑗 , 𝑆
EPOS
µ, 𝑗 ) = 𝑝𝑖 ( 𝑓𝑖 , 𝑋EPOS

max, 𝑗 , 𝑆
EPOS
µ, 𝑗 )L𝑖, 𝑗 , (4)

where 𝑝𝑖 ( 𝑓𝑖 , 𝑋EPOS
max, 𝑗 , 𝑆

EPOS
µ, 𝑗 ) represents the convolution of the probabilities that a EPOS LHC-R

shower j in the mock dataset is produced by a primary 𝑖, given its 𝑋EPOS
max, 𝑗 and 𝑆EPOS

µ, 𝑗 measurements
(see right panel of Figure 4 for the probability computation based on 𝑋max). Here, we assume that
the 𝑋max and 𝑆µ distributions in QGSJET-III are described by a Gumbel and a log-normal function,
respectively. The results are reported in the fourth row of Table 1, showing that the inclusion of this
probability term shifts the muon rescaling factors, yielding a lower value for protons and a higher
value for iron primaries, as expected. In order to compare these results to the true muon signal
ratios of EPOS LHC-R and QGSJET-III, we must now consider only the top-down simulations
whose primary masses are identical to that of the mock dataset shower they are matching such that
Equation 1 becomes

𝑟 true
µ,𝑖 =

𝑆EPOS
µ,𝑖

𝑆
QGS
µ,𝑖

. (5)

The means of these distributions and their corresponding errors are reported in the last row of
Table 1. The muon rescaling factors obtained from the maximum-likelihood estimation using 𝑋max

and 𝑆µ measurements are consistent with the true rescaling factors within uncertainties, except for
iron primaries, where the value appears to be underestimated. A possible remedy is to apply a cut
on the 𝑋max distribution of the mock dataset to isolate its lower tail. By imposing a cut at 700
g/cm2, we allow for a 5% contamination from other primaries. Repeating the maximum-likelihood
estimation on this subsample yields a muon rescaling factor of 1.25 ± 0.05 for iron primaries, in
much better agreement with the true value. A summary plot is shown in Figure 5.

5. Conclusion

We have introduced a new method to calculate mass-dependent muon rescaling factors
in order to quantify the discrepancy between (mock) data and hadronic interaction models. By
employing a maximum-likelihood estimation and incorporating mass-discriminating observables,
as well as cuts on the 𝑋max distribution, we demonstrated that it is possible to recover the true
rescaling factors between EPOS LHC-R and QGSJETIII. A limitation of the present study is that
the 𝑆µ observable is not easily accessible in real hybrid observations of vertical air showers. Future
work will therefore focus on identifying additional mass-sensitive observables, such as universality
features, the rise time of individual detector signals, or machine-learning approaches applied to
station traces. Furthermore, the method can be extended to estimate the Heitler–Matthews 𝛽

coefficient of air showers [18] and to explore other energy intervals. Ultimately, the next step is
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Figure 5: True (red) and computed (blue) muon rescaling factors for different primary masses. The purple
data point corresponds to the muon rescaling factor of iron after applying a cut on the 𝑋max distribution of
the mock dataset at 700 g/cm2, as described in the text.

to apply this top-down simulation method directly to real hybrid events, thereby testing its full
potential to improve our understanding of the muon content in extensive air showers.
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