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We report on the search for ultra-high-energy neutrinos from the prompt emission of gamma-ray
bursts (GRBs) using Surface Detector (SD) data from Phase I of the Pierre Auger Observatory
(2004–2021). A total of 570 GRBs occur within the most neutrino-sensitive field of view of the
SD, considering both Earth-skimming and downward-going detection channels. For this purpose,
GRB neutrino emission has been modeled using the numerical software NeuCosmA, incorporating
gamma-ray measurements and inferred parameters such as the jet Lorentz factor and the minimum
variability time scale. No neutrino candidates were found, and upper limits were obtained by
stacking the individual GRB neutrino fluences. These limits are complementary to those of
IceCube and ANTARES and provide the strongest constraints on prompt GRB neutrino fluence
above 1018 eV. Additionally, limits on GRB fluence in alternative models of neutrino production
have been derived using Auger data.
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1. Introduction

The sources of Ultra-High Energy (UHE) cosmic rays, although confirmed to be extragalactic
[1], remain unknown. Among them, Gamma-Ray Bursts (GRBs) are promising candidates due
to their extreme energy release over time scales of seconds to minutes. Proposals to explain the
gamma-ray emission from GRBs also predict UHE neutrinos as the result of collisions of accelerated
protons and nuclei with matter and photons in the GRB [2]. Their detection would be a major step
toward identifying UHE cosmic-ray sources and Multimessenger Astronomy. Since no neutrino
candidates were observed at the Pierre Auger Observatory between 1 Jan 2004 and 31 Dec 2021,
we place upper limits on the UHE neutrino fluence from GRBs.

2. Models of prompt neutrino emission from GRBs

Figure 1: The predicted Waxman-Bahcall (WB) neu-
trino fluence for an individual GRB [2], compared to
the fluence obtained for an average GRB with the Neu-
CosmA numerical code (blue line). The yellow region
indicates the energy range where the Pierre Auger Ob-
servatory is sensitive to showers induced by neutrinos.

One of the most popular models for the
gamma-ray emission in GRBs [3] is the fire-
ball model. In this model, the thermal pressure
arising from the central engine drives an ex-
panding fireball through the surrounding mate-
rial. Differences between velocities of shells
of material ejected at different times creates
shocked regions where Fermi-accelerated elec-
trons emit photons through synchrotron radia-
tion, yielding the bulk of the gamma-ray emis-
sion in GRBs. This is the so-called prompt
photon emission.

Neutrinos are thought to be generated by
protons or nuclei, which are also expected to be
Fermi-accelerated in the internal shocks after
collisions with the radiation and matter in the
GRB jet. In the Waxman-Bahcall (WB) pio-
neering model of neutrino production in GRB
[2], neutrinos would be created mainly by the decay of charged pions and muons by photoproduction
processes via the Δ+ resonance p + γ → Δ+ → n + π+ for 1/3 of all cases.

The present work is mainly focused on testing the internal shock model (IS) with UHE neutrinos
beyond the WB analytical picture. For this purpose, we first adopted the numerical estimation
of neutrino fluxes of the ‘Neutrinos from Cosmic ray Accelerators’ (NeuCosmA) software [4, 5].
Using this software, besides neutrinos from the decay of the charged pions through theΔ+ resonance,
contributions from higher-energy resonances, direct t-channel and multipion production are also
considered. Moreover, not only neutrinos from the decay of pions and muons are accounted for, but
also those produced in the decay of neutrons and kaons are included, leading to a neutrino energy
spectrum that differs from the original WB prediction, as depicted in Fig. 1. The spectrum exhibits
a first peak at low energy related to the neutrinos produced in muon decays, a second one related
to the decay of charged pions and a peak at high energy above 1017 eV that can be tracked to the
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decay of kaons, which leads to a higher fluence at energies relevant to the Pierre Auger Observatory.
The adopted version of NeuCosmA simulates GRBs with average shell properties assuming a
representative one-zone collision occurring at the internal shock radius (𝑅IS ∼ 1012−13 cm) .

In the NeuCosmA fireball framework, we only consider pure primary proton spectra with a
power-law of 𝐸−2. However, heavier nuclei may also be synthesized in GRBs, potentially leading
to different predictions for high- and ultra-high-energy neutrino emission [6]. In this work, we addi-
tionally consider alternative GRB emission scenarios that include nuclear cascades, specifically, the
photospheric model, the IS (as described above, but including nuclei), and the internal-collision-
induced magnetic reconnection and turbulence (ICMART) model. A key difference among these
models lies in the characteristic radii at which radiation is efficiently emitted, which in turn de-
termines the photon number density and, hence, the efficiency of neutrino production. In the
photospheric model, the bulk of the radiation is produced in the optically thick region below the
photosphere (𝑅ph ∼ 1011–12 cm), where dissipative processes shape the photon spectrum. The
ICMART model, on the other hand, assumes a Poynting-flux-dominated jet composed of magne-
tized shells that undergo magnetic reconnection upon collision. In this scenario, energy dissipation
occurs at much larger distances (𝑅ICMART ∼ 1015 cm).

3. Neutrino fluence calculation and GRB sample

NeuCosmA normalizes the neutrino fluence for each GRB, using the observed γ-ray fluence,
and requires several input parameters. Firstly, the data obtained from the γ-ray measurements of
satellites, namely the duration of the GRB given by 𝑇90 and the γ-ray fluence in the corresponding
energy band of the detector. It also uses information about the model that best fits the γ-ray spectral
data, in particular the power-law indices (low energy 𝛼, high energy 𝛽) and the energy break (𝐸𝑝).

In addition to this set of parameters, the internal shock radius 𝑅IS and the normalization of the
neutrino fluence obtained through NeuCosmA depend on other relevant astrophysical parameters
that are either measured only for a small fraction of GRBs, or are unknown, such as the redshift,
the minimum variability time scale, and the Lorentz factor of the GRB jet.

The redshift, 𝑧, is usually inferred from GRB afterglow measurements and is a main source
of uncertainty in the estimation of GRB neutrino emission. In the GRB sample used (570 GRBs,
see below), 𝑧 is known for a fraction of 16%. Due to the limited availability of 𝑧 measurements,
probability density functions (PDFs) for 𝑧 are separately estimated for long and short GRBs based
on the redshift distributions of those with known values. A Gaussian kernel density estimation
method is used to infer the PDFs from the distributions. As shown in the left panel of Fig. 2, short
GRBs are typically observed closer to Earth, exhibiting an average redshift ⟨𝑧𝑠⟩ ≃ 0.67, while for
long GRBs ⟨𝑧𝑙⟩ ≃ 2.03. We assume that the inferred PDFs in 𝑧 are representative of the whole
population of observed long and short GRBs, respectively. We note that the subset of GRBs with
measured redshift may be biased towards lower redshifts since afterglow observations -and hence
spectroscopic follow-up- become more challenging for high-𝑧 events. These distributions are used
afterwards to obtain, for each GRB, the average GRB neutrino fluence and its uncertainty band.

The minimum variability timescale 𝑡𝑣 of the GRB photon lightcurve is directly related to the
size of the source and determines the p𝛾 optical depth. It can be inferred using Haar wavelets on
the temporal properties of the lightcurves of each GRB [7]. This parameter is also an important
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Figure 2: Redshift 𝑧 (left) and minimum variability timescale 𝑡𝑣 (right) distributions for all GRBs with
available data. Red for short GRBs and blue for long GRBs. The thick lines correspond to the estimated
PDFs (see text).

source of uncertainty and is only known for about 12% of GRBs in the sample. We use the same
methodology applied for the redshift, constructing PDFs for both long and short GRBs from the
distributions of measured values of 𝑡𝑣 . The resulting PDFs are shown in the right panel of Fig. 2.
The average values of 𝑡𝑣 are different for the two populations of GRBs, ⟨𝑡𝑣⟩ ∼ 37 ms for short GRBs
and ⟨𝑡𝑣⟩ ∼ 0.59 s for long GRBs.

The bulk Lorentz factor Γ of the GRB expanding shells (of the GRB jet) can be estimated
in very bright GRBs through the detection of an early peak in the afterglow optical or in the GeV
lightcurve [8]. For these GRBs, Γ represents the jet Lorentz factor of the ejecta before this transition.
Only 6% of the GRBs in the sample have an estimated value of Γ. Instead of building yet another
PDF, we have estimated Γ for each GRB, taking advantage of an existing empirical correlation [8]
between Γ and the bolometric ([1 keV, 10 MeV]) isotropic equivalent 𝛾-ray luminosity 𝐿iso

Γ = 182
(

𝐿iso

1052 erg · s−1

)0.324
. (1)

We estimate 𝐿iso using a method that accounts for k-corrections, integrating the GRB spectral model
available from databases in the bolometric band. For Swift GRBs, for which only the lower energy
part of the spectrum is measured due to its narrow energy range, the energy break 𝐸𝑝 was estimated
using another empirical correlation between 𝐸𝑝 and the power-law index 𝛼BAT [9].

The fraction of energy carried by the magnetic field with respect to the energy in electrons,
𝐸𝐵/𝐸𝑒, affecting the synchrotron loss time, is unknown, and no method exists so far to probe it. In
this work, we have assumed a log-uniform PDF around equipartition with values from 0.1 to 10.
The same happens with the baryonic loading factor, 𝑓𝑝, representing the energy in the fireball going
into protons with respect to that into electrons. We fix it to a reference value of 𝑓𝑝 = 10 [4].

For each GRB in the sample, an average neutrino fluence is obtained directly with NeuCosmA
using either measured parameters or the means of the corresponding distributions. Then, an
uncertainty band is obtained by simulating 1000 fluences per GRB, sampling the parameters either
within the uncertainties of the measurements if known or from the corresponding PDFs in case
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they are unknown. The parameters of the two empirical relations considered in this work (Γ − 𝐿iso)
and (𝐸𝑝 − 𝛼BAT) are also sampled through PDFs built from likelihoods of the corresponding fits to
propagate the corresponding uncertainty. The fluence uncertainty band is constructed using the 5%
and 95% percentiles in each neutrino energy bin, thereby containing 90% of the simulated fluences.

For the case of the Photospheric, IS and ICMART models with nuclear cascade, a simulation is
not performed as was done with NeuCosmA in the IS with protons only. Instead, and for reference,
we use the neutrino fluences shown in Fig.6 in [6] corresponding to GRB jets loaded with 56Fe
with an 𝐸−2 energy spectrum for the parent nuclei, for fixed values of Γ = 300, 𝑡𝑣 = 0.5 s, time
duration 𝑡dur = 30 s and 𝑧 = 2. We then rescale the fluence on Earth to account for the different 𝑧
and 𝑡dur = T90 (see eq.(4.14) in [6]), so that the number of particles produced per unit volume, time
and per energy interval in the jet rest frame is the same for all GRBs in the sample. Photospheric
and IS models also have nuclei loading factors 𝑓𝐴 = 10, accounting for the fraction of energy in
accelerated nuclei. The ICMART model is expected to be more efficient in accelerating particles
and to have 𝑓𝐴 = 1 from higher values of efficiencies in electron and proton acceleration (see Table
1 in [6]).

The primary GRB dataset for this study was collected from the IceCube tool GRBweb1,
providing a catalog of GRBs combining information from databases from various detectors. A
dataset of 4369 GRBs was initially obtained from which direction, time of detection, γ-ray fluence,
𝑇90 and 𝑧 were extracted when available. Additionally, databases of the Fermi and Swift satellites
were used to extract the parameters of the best fit to the measured γ-ray spectrum. For those GRBs
with no available spectral data, Konus-Wind information was extracted from GCN Circulars.

From this initial sample, we discarded GRBs outside the SD Field of View (FoV), namely,
with zenith angles as viewed from the SD 𝜃 ∈ [75◦, 95◦], as well as those occurring during
dead-time periods of the SD array. We further required each GRB to have a measured γ-ray
spectrum with an available best-fit model that provides the corresponding spectral parameters. We
also discarded GRBs with very high uncertainty in the lower energy power-law index requiring
𝑆(𝛼) < 1. After these cuts, the sample comprises 140 GRBs in the Earth-Skimming (ES) channel
with 𝜃 ∈ [90◦, 95◦] and 430 GRBs in the downward-going (DGH) channel 𝜃 ∈ [75◦, 90◦].

4. Stacking procedure: calculation of limits

The effective area of the Auger SD is obtained by integrating over neutrino energy 𝐸𝜈 , the
SD aperture multiplied by the neutrino cross section for each neutrino flavour (𝑖 = e,µ, τ) and
interaction channel (Charged-Current (CC) & Neutral-Current (NC)), weighted by the neutrino
selection and detection efficiency obtained from Monte Carlo simulations [10]. To calculate the
exposure EGRB to a specific GRB, we integrate the effective area in a time window 𝑇90 starting at
the detection time, taking into account the variation in zenith angle 𝜃 (𝑡) of the GRB. The expected
number of neutrino events per GRB with a flux 𝜙GRB,𝑖 (𝐸𝜈) and interaction type 𝑐 = (CC, NC), is

NGRB,𝑖,𝑐 =

∫ 𝐸max

𝐸min

𝜙GRB,𝑖 (𝐸𝜈) EGRB,𝑖,𝑐 (𝐸𝜈) d𝐸𝜈 . (2)

1GRBweb available at this link GRBweb. FERMIGBRST catalog available at this link Fermi. Swift catalog available
at this link Swift. GCN Circulars available at this link GCN.
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In the case of a GRB occurring in the FoV of the DGH channel, the total number of expected events
is the sum of the individual NGRB,𝑖,𝑐 for all flavours and interaction channels, whereas for a GRB
in the ES channel, only the contribution from τ−CC is relevant. We denote the neutrino flux as
𝜙GRB,𝑖 (𝐸𝜈) = 𝜙0 𝑓GRB,𝑖 (𝐸𝜈), where 𝑓GRB,𝑖 (𝐸𝜈) is a dimensionless function that encodes the energy
dependence of the flux and is different for each GRB and flavour as predicted by NeuCosmA, and
𝜙0 is a normalization factor. The expected number of neutrino events NGRB for the whole sample
is the sum of all GRBs in the ES and DGH channels. Taking the Feldman-Cousins factor of 2.44
for an observation of 0 neutrinos with 0 background assumed, we can constrain 𝜙0 at 90% C.L.

𝜙0 =
2.44∑︁

DGH GRB

∫ 𝐸max

𝐸min

𝑓GRB(𝐸𝜈) EDGH
GRB (𝐸𝜈) d𝐸𝜈 +

∑︁
ES GRB

∫ 𝐸max

𝐸min

𝑓GRB,τ(𝐸𝜈) EES
GRB(𝐸𝜈) d𝐸𝜈

,

(3)
where 𝑓GRB(𝐸𝜈) EDGH

GRB (𝐸𝜈) =
∑

𝑖,𝑐 𝑓GRB,𝑖 (𝐸𝜈) EDGH
GRB,𝑖,𝑐 (𝐸𝜈).

The fluence for a single GRB FGRB,𝑖 , proportional to the energy per unit area, is obtained
multiplying the flux 𝜙GRB,𝑖 by 𝑇90 and 𝐸2

𝜈 . We compute a stacking limit on the fluence for the whole
sample by adding the contributions of all GRBs normalized with 𝜙0. The results can be shown in
terms of fluence per GRB, dividing the total fluence by the number of GRBs, 𝑁GRB,

Fstack(𝐸𝜈) =
1

𝑁GRB

∑︁
GRB,𝑖

FGRB,𝑖 =
𝐸2
𝜈

𝑁GRB

∑︁
GRB,𝑖

𝜙0 · 𝑓GRB,𝑖 (𝐸𝜈) 𝑇90,GRB , (4)

where 𝑓GRB(𝐸𝜈) =
∑

𝑖 𝑓GRB,𝑖 (𝐸𝜈) and, by construction, the dependence on neutrino energy of the
fluence limit follows the shape of the average fluence of GRBs in the sample. It is also possible to
convert the fluence Fstack into a quasi-diffuse neutrino flux by multiplying it by the average rate of
GRBs expected per year over the full sky

Φ(𝐸𝜈) = Fstack(𝐸𝜈) ·
1

4𝜋
· 667 yr−1 . (5)

5. Results and discussion

Figure 3 shows the expected neutrino flux and average fluence in the prompt GRB phase, as
obtained with NeuCosmA, along with the stacking limits on both the GRB neutrino flux (left axis)
and average fluence per GRB (right axis). The uncertainty band in the expected fluence is obtained
by averaging the upper and lower bounds of all individual GRB bands. The ES channel alone
contributes ≃ 86% to the Pierre Auger stacking limit. The vertical scale shown inside the plot
indicates the baryonic loading 𝑓𝑝 with 𝑓𝑝 = 10 assumed by default. Changing the value of 𝑓𝑝

would shift the entire fluence prediction and uncertainty band up or down. The ratio of the stacking
limit to the average fluence is ≃ 1.8 ·103, implying that only high values of 𝑓𝑝 would be constrained
by the Pierre Auger Observatory limits.

For comparison, ANTARES [11], also using a sample of GRBs throughout 10 years, and
IceCube [12] using IS models are also shown in Fig. 3. ANTARES stacking limits were also obtained
using NeuCosmA to simulate individual fluences. In fact, when comparing the average fluence
expected for the GRBs in the ANTARES FoV with the one in this work, the spectral trend seen is
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Figure 3: Solid lines: Quasi-diffuse all-flavor neutrino flux (left-hand axis) and average fluence per GRB
(right-hand axis) expected from the prompt phase of GRBs obtained with NeuCosmA for the sample of
GRBs in the FoV of the Pierre Auger Observatory (this work, black line) and ANTARES [11] (blue). Dashed
lines represent the corresponding stacking limits Φ in Eq. (5) and Fstack in Eq. (4) at 90% CL. The vertical
scale shown inside the plot indicates the baryonic loading 𝑓𝑝 with 𝑓𝑝 = 10 assumed by default. In green, the
expected neutrino emission (solid) and corresponding stacking limit (dashes) reported by IceCube for an IS
Model [12], assuming average values of Γ = 300 and 𝑓𝑝 = 10 for all GRB in the sample.

similar, and the fluences are compatible within uncertainties given the fact that the GRB sample is
not the same in both observatories. The ANTARES and Pierre Auger stacking limits (dashed lines)
are of comparable magnitude, constraining quasi-diffuse flux values Φ ∼ 10−7 GeV cm−2 s−1sr−1 at
𝐸𝜈 ∼ 1017 eV. On the other hand, the limits obtained by IceCube (green dashed line) are considerably
more constraining in the same energy range covered by ANTARES. The Pierre Auger limit becomes
the most constraining for UHE neutrinos around and above ∼ 1018 eV and is complementary to
those of ANTARES and IceCube.

Fig. 4 shows the diffuse neutrino flux and fluence predictions, along with the corresponding
stacking limits for the Photospheric, IS and ICMART GRB models, as well as limits assuming
a power-law neutrino spectrum ∝ 𝐸−4, as predicted by the analytical Waxman-Bahcall model at
UHE. The normalization of the stacking limit is determined by the steepness in the energy of the
neutrino flux predicted by the model. The fluence limits obtained are similar across all models,
as they correspond to the level needed to yield 2.4 expected events in the detector. However, the
ratio between these limits and the model predictions varies significantly, depending on the shape of
each model’s neutrino spectrum and the normalization of model prediction. This ratio reflects how
strongly each model is constrained. The Photospheric model is the least constrained by the Pierre
Auger Observatory, since its predicted neutrino flux falls sharply above 1018 eV, where the detector
has maximum sensitivity. The new (IS) considering nuclear cascade is not very well constrained
either because of the low normalization of the expected fluence. In contrast, the ICMART model
is the most strongly constrained due to its relatively high predicted neutrino yield at ultra-high
energies. The resulting ratio for this model is ≃ 2.9 · 103, being slightly higher than that obtained
for the Internal Shock (IS) model using NeuCosmA simulations.

7
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Figure 4: Solid lines: Predicted quasi-diffuse all-flavor neutrino flux (left-hand axis) and average fluence
per GRB (right-hand axis) for the photospheric (green), IS (blue) and ICMART (red) models with nuclear
cascade, and Γ = 300, 𝑧 = 2 and 𝑓𝐴 = 10 except for ICMART, 𝑓𝐴 = 1, and IS with NeuCosmA (no nuclear
cascade, black). Dashed lines: corresponding stacking limits Φ in Eq. (5) and Fstack in Eq. (4) at 90% CL.
Limits to a flux ∝ 𝐸−4

𝜈 , as expected in the WB model, are also shown (gray).

In conclusion, stacking limits to the UHE neutrino flux were computed with NeuCosmA
in the internal shock (IS) model, obtaining neutrino fluences for each GRB in the FoV of the
Pierre Auger Observatory, based on satellite gamma-ray data. Expected average neutrino fluences
and uncertainties were derived from 1000 simulations per GRB, with the jet Lorentz factor Γ

estimated via an empirical relation with luminosity, 𝑧 and 𝑡𝑣 values sampled from PDFs constructed
from available measurements and fixed 𝑓𝑝 = 10. The NeuCosmA-based stacking limits from
the Pierre Auger Observatory are the most constraining at UHE, complementing those of other
experiments. Alternative GRB models including nuclear cascades, using benchmark fluences for
standard parameters were also explored leading to similar conclusions.

Acknowledgments: We gratefully acknowledge M. Bustamante and W. Winter for providing
the NeuCosmA software used in this work.
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