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The Pierre Auger Observatory is a hybrid detector designed to observe and study ultra-high-energy
particles of extraterrestrial origin. With its 27 fluorescence telescopes and over 1600 autonomously
operating water-Cherenkov detectors spread over an area of 3000 km2, it is world-leading in terms
of exposure to cosmic rays and offers an unparalleled window into the physical processes that
happen at energy scales unattainable by particle accelerators on Earth.
Measurement information of candidate air-shower events from all associated detectors and tele-
scopes is collected at a central data-acquisition system located in the nearby town of Malargüe,
and processed for higher-level physics analysis. On top of this, data for monitoring the long-term
stability and operation of the observatory is forwarded to the central server as well.
In this work, we briefly review the central data-acquisition system of the Pierre Auger Observatory.
We examine the rates, efficiencies, and purity of detected events for Phase II of the Pierre Auger
Observatory and compare them to performance parameters during Phase I. We detail challenges in
the event detection up until now and present recent changes in the central data acquisition system
and local station software that aim to streamline the data acquisition chain.
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Figure 1: a The event trigger is based on the 𝑛 nearest neighbors, organized in hexagonal rings around a
central triggered station. For the 3-fold trigger 2ToT𝐶1&3𝐶2 (cyan), at least one nearest neighbor (in 𝐶1), as
well as one next to nearest neighbor (in 𝐶2), must be present. On top of this, only T2 triggers of a specific
type are considered during pattern matching. The 2𝐶1&3𝐶2&4𝐶4 (red) considers all station-level triggers but
requires at least one additional station that can be as far as a 4th nearest neighbor. b Weekly average number
of hexagons during the AugerPrime upgrade, split into upgraded stations (blue), and stations with original
electronics (black). Bad weather during the winter months is responsible for large-scale array shutdowns.

1. Introduction

The Pierre Auger Observatory covers an area of roughly 3000 km2 and is the world’s largest
detector for extensive air showers stemming from cosmic rays of ultra-high energies. The obser-
vatory consists of 27 UV-sensitive telescopes, called the Fluorescence Detector (FD), and > 1600
stations that comprise the Surface Detector (SD). The immense size of the observatory, coupled
with its remote location in the Argentinian pampa, poses unique challenges. For example, a single
SD station collects data with a sampling rate of 120 MHz, which results in a theoretical bandwidth
of the order of TB/s for the SD alone. Of course, it is not feasible to transfer this amount of data over
the distances present in the SD array. Instead, data from a station must pass through a hierarchical
trigger system before being sent to a Central Data Acquisition System (CDAS). In this way, the data
transfer rate1 between the CDAS ↔ station can be limited to < 150 B/s. An exact discussion of the
communication system and the software implementation is given in Ref. [1].

The lowest level in the trigger hierarchy is the station level. Every SD station independently
monitors its detector data for several trigger conditions. If a trigger condition is met, the station
sends a station-level trigger (T2) with a microsecond timestamp to the CDAS. The CDAS scans all
incoming T2s for spatio-temporal coincidences, which are usually caused by air showers induced by
cosmic rays. Two patterns are considered when searching for coincidences: the 3-fold 2ToT𝐶1&3𝐶2
pattern and the more permissive 4-fold 2𝐶1&3𝐶2&4𝐶4 pattern (ref. Figure 1a and [2]). If such
a pattern is recognized, the CDAS issues an event-level trigger (T3) and requests data from the
participating triggered stations to collect all information related to an event.

1Including also diagnostic information about the detector performance.
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Figure 2: a Number of T3s per hexagon, separated by trigger mode for Phase I data (blue) and for Phase II
data (black). The Phase I data was collected from October 2021 to December 2021. The Phase II data stems
from the same timespan in 2024 and displays high variance at the end of the DAQ period, likely due to
thunderstorms. b The T3 purity of the aforementioned dataset. Horizontal lines give the mean T3 purity.

With the AugerPrime upgrade, the Pierre Auger Observatory achieves a higher discrimination
on the primary particle mass and enters Phase II of its data collection. During the upgrade, all of
the SD station electronics have been upgraded from a Unified Board (UB, 10-bit ADC sampled at
40 MHz) to the Upgraded Unified Board (UUB, 11-bit ADC sampled at 120 MHz).

With the higher resolution of the UUB data, the event detection chain changes in principle from
the ground up. However, steps have been taken to ensure the backward compatibility of Phase I and
Phase II triggers [3]. We show this in Section 2 by compiling a preliminary CDAS performance
report for Phase II and comparing it with the performance during Phase I. We highlight challenges
present in the event detection chain and discuss how they can be solved from Section 3 onward.

2. CDAS Performance Phase I + Phase II

A number of parameters have proven useful
to monitor the low-level performance of the
CDAS. For example, the T3 frequency should
resemble the rate with which air showers im-
pinge on the SD array. Since the latter is
constant for UHECRs, the former should be
(with invariant trigger settings) too constant. Of
course, this is assuming a detector of constant
area, which was not the case for the SD during
Phase II commissioning (cf. Figure 1b).

Table 1: CDAS performance parameters. Event
rates are given in no. of T3s per hexagon per day.

Phase I II (prelim.) Δ / %

3-fold rate 4.24 3.89 -8
3-fold purity 0.961 0.960 ±0

4-fold rate 1.13 0.95 -16
4-fold purity 0.025 0.028 +9

SD uptime 0.96 [2] 0.957 ±0

The number of SD unit cells, called hexagons, consisting of one central station and its six
nearest neighbors increases (decreases) for the UUB (UB) array as individual stations are upgraded.
As the UUB array grows, it detects more air shower events. We therefore define T3 rate as the
frequency of (types of) T3s, normalized to the number of hexagons that operate simultaneously in
the SD array.
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After registering a T3 and requesting event data from stations, the CDAS also applies physics-
based quality checks, storing their outcome alongside the event information. These checks filter
out random coincidences of T2s and deliver T3 events that are almost entirely formed by extensive
air showers. Thus, a measure of the background contamination in the T3 dataset is given by the
fraction of events that pass the higher-level selection criteria. This is the T3 purity. Lastly, we
quantify the duty cycle of the SD array during an observation period by splitting it into intervals of
15 min. We build the SD uptime by dividing the number of intervals that do not have T3 events by
the number of all intervals.

To compare the CDAS performance between Phase I and Phase II, we collect all T3 events from
October to December in the years 2021 and 2024. We choose the specific periods due to the good
weather2 and the overall stable operation of the SD. Moreover, the UB array in 2021 and the UUB
array in 2024 have a comparable size and thus exposure (cf. Figure 1b).

This serves as a tentative analysis to gauge the CDAS performance in Phase II. Quality cuts
have not been applied to the data. The systematics of the analysis have not been estimated but are
assumed to be of the order of 10 %. In any case, the results presented in this section are meant to be
understood as preliminary. The calculated T3 rate and purity for Phase I and Phase II are displayed
in Figure 2a and Figure 2b. Their mean values and the SD uptime over the entire DAQ period are
also listed in Table 1.

We observe a slight decrease in T3 rates for both the 3-fold and the 4-fold trigger modes. The
difference in the performance of Phase I and Phase II is probably due to the compatibility mode
in which the SD stations operate in Phase II. In compatibility mode, the UUB emulates the UB
electronics readout process and applies the same station-level trigger algorithms to the filtered and
downsampled data that were in use in Phase I. Evidently, the emulation is not perfect, as the T3
rates are not backwards compatible and overall, fewer events are observed.

The T3 purity remains unchanged for the 3-fold trigger and increases slightly for the 4-fold
trigger. The SD uptime is very similar for both DAQ periods and implies that no significant
downtimes were observed during the detector upgrade, both for the UB and UUB array.

3. Sources of transient noise

Several sources of noise are and have been present in the T2/T3 datasets for Phase II. Although
the underlying effects and problems have, in part, been known since Phase I already, their impact is
amplified with the advent of the higher data resolution that the new station electronics offer.

3.1 Local Sidereal Time

Figure 3a shows the number of working UUB hexagons in the array for the year 2023. A
very careful inspection of the data reveals a pattern that persists throughout the year. Each day,
shortly after sunrise, the number of functioning hexagons drops by up to 40%, causing a decrease in
exposure of 0.1% over the entire year on average. This is caused by individual stations reporting a
very high T2 rate, which results in the CDAS issuing a reset command in the station and temporarily
removing it from the active DAQ (Ref. [4]).

2Thunderstorms and heavy rain were reported over the observatory at the end of 2024.
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Figure 3: a Number of fully functional hexagons in the UUB array for 2023. The sinusoidal blue lines
mark the time of sunrise and sunset. b The spectral density of the SSD (top) and WCD (bottom) detector
for background data of various UUB stations. Several sharp peaks demonstrate the systematic influence of
electronic noise. The data was recorded in 2022-11 (black, red) and 2023-03 (green, blue).

As such, the noise present in the stations is only indirectly observed via a degraded performance
of the SD. The effect is clearly related to the local sidereal time in the UUB array. The Tank Power
Control Board (TPCB) has been theorized to be responsible for the burst in the trigger rate when
charging station batteries during the morning hours. The problem can be mitigated in the laboratory
by equipping the TPCB with diodes and capacitors. With all TPCBs in the field being upgraded in
this fashion and the implementation of the trace-cleaning algorithm in Section 4, the behavior is no
longer observed.

3.2 Electronic Noise

To gauge the presence of electronic noise in the detectors, we analyze background data of the
SD. The data set on hand originates from two different measurements in November 2022 and March
2023 and contains 394.4 s of randomly sampled detector data collected from four stations. It is
divided into sets of 2048 consecutive samples that measure 17 µs in duration. During the DAQ,
5000 such traces are acquired in quick succession and written to disk. The writing introduces a
considerable delay, resulting in roughly 60 s of data being stored in a 22 h interval.

We calculate the FFT of the data on a trace level, applying a Hanning window to minimize
spectral leakage. Figure 3b shows the mean FFT, grouped by SSD and WCD, for all four stations.

Several frequency bands are clearly polluted by artificial signal constituents. In unfortunate
circumstances, electronic noise can trigger a T2 trigger, as shown in Figure 5. The erroneously sent
T2 can then form a T3 pattern with coincident T2s at neighboring stations. This results in the false
detection of an air shower event and decreases the T3 purity of the CDAS.

3.3 Thunderstorms

The largest source of detector instabilities is lightning activity. Both in Phase I and Phase II,
a spike in the T3 rate and a subsequent drop in the T3 purity are observed during and in the wake
of thunderstorms, as shown in Figure 4. During these periods, the SD stations exhibit an elevated
rate of T2 triggers. More importantly, T2 triggers from neighboring stations are highly correlated
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Figure 4: a A large number of 3-fold T3s is recorded during periods with thunderstorms, as indicated by the
arrows. b The corresponding 3-fold T3 purity rate measures a drop coincident with the weather period.

Figure 5: An erroneously triggered WCD trace (black) displays electronic noise in the form of a 10 MHz
oscillation around the baseline (orange) between two sub-threshold muon pulses. The blue trace is the output
of a trace-cleaning algorithm using the black trace as input. The effect of the electronic noise is mitigated

in time, as they are likely caused by the same electric discharge. Consequently, the CDAS identifies
many more T3 events than during nominal operation. Since the communication between the CDAS
and SD stations is bandwidth-limited, only one to two T3 requests can be issued to the SD array
every second. This represents a bottleneck that results in the buildup of a large T3 queue during
thunderstorms. The CDAS naively iterates through the T3 queue and requests data from a station
often hours after the event happened.3 Such stale events block the acquisition of new, real air
shower events and drop the T3 purity and SD uptime considerably. The estimated effect on the
duty cycle of the UB array is ∼ 2 %. The UUB, with its higher resolution, is more susceptible to
lightning-induced triggering. The drop in the SD duty cycle for Phase II reads 5%. The algorithm
presented in Section 5 partially fixes this issue.

4. Improved trigger algorithm

A new trigger algorithm has been in operation in the UUB electronics since August 2024,
which aims to diminish the sensitivity of the T2 algorithms to electronic noise. This is achieved by

3The SD stations save T2 data for ∼ 30 s.

6



P
o
S
(
I
C
R
C
2
0
2
5
)
2
5
4

Cosmic Ray Indirect - #140 Paul Filip

first filtering symmetric oscillations in the trace and then providing the established triggers with the
conditioned version of the detector information.

To detect oscillations, the trace conditioner employs a sliding window algorithm that contin-
uously scans the last 15 samples (125 ns) of the trace data. For each sample 𝑏𝑖 , the algorithm
determines the minimum ∧ and the maximum ∨ for the three right- and leftmost bins 𝑏𝑖±7, 𝑏𝑖±6,
𝑏𝑖±5. It checks for a sinusoidal pattern in the samples 𝑏𝑖 , {∧, ∨}right

left around the baseline 𝐵 (Ref.
[5]), that is to say, the conditioner tests whether Eqs. (1) or (2) are satisfied.

∧right + 4 ADC < 𝐵 < 𝑏𝑖 , ∧left + 4 ADC < 𝐵 < 𝑏𝑖 . Case : (1)

∨right − 4 ADC > 𝐵 > 𝑏𝑖 , ∨left − 4 ADC > 𝐵 > 𝑏𝑖 . Case : (2)

In the Eqs. (1-2), a dead band of 2𝜎𝐵 = 4 ADC counts is used. Oscillations below this
threshold are not considered spurious and are not altered. If a sinusoidal pattern is found, the
conditioned trace is calculated according to Eqs. (3-4). If no pattern is found, it is 𝑏cond.

𝑖
= 𝑏𝑖 .

𝑏cond.
𝑖 = 𝑏𝑖 +

(
max(∧left,∧right) − 𝐵

)
+ 0.5 ADC Case : (3)

𝑏cond.
𝑖 = 𝑏𝑖 +

(
min(∨left,∨right) − 𝐵

)
− 0.5 ADC Case : (4)

5. Rejection of stale T3s

An algorithmically simple method for mitigating the effect of stale T3s on the T3 rate and
purity has been in operation at the CDAS since January 2025. Before sending a T3 request to
stations, a maximum age check is applied at the CDAS level. If the T2 triggers forming the T3
coincidence are older than the cutoff time, the CDAS will reject the request and discard it instead
of sending it to the SD array. The schematic operation and its advantages over the naive iteration of
the T3 queue are shown in Figure 6. The projected improvement in the duty cycle of the SD array
is up to 5%.

6. Conclusion

The Central Data Acquisition System (CDAS) is the main computing facility of the Pierre Auger
Observatory. Most importantly, it is responsible for recognizing extensive air shower events from
spatio-temporal coincidences of T2 triggers and communicating with candidate stations. The CDAS
performed this task reliably during Phase I of data collection, as shown by several performance
parameters that are monitored throughout the operation. These performance parameters remain
largely unchanged after the AugerPrime detector upgrade.

With the higher resolution of detector data, several sources of noise have impacted the event
detection quality in non-trivial ways. The effects leading to losses in T3 rates and purities have been
studied in depth and solutions have been deployed that mitigate their impact on data quality. The
CDAS, in its current state, represents a well-tested system that is prepared for the challenges that
come with the AugerPrime detector upgrade and is expected to improve its Phase I performance.
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Figure 6: a A large backlog of T3s (caused, e.g., by lightning) can cripple the CDAS performance for much
longer than the actual bad weather period. b A simple age check rejects T3 requests that are out of time. The
CDAS recovers much faster as a consequence.
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