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Precise measurements of the nuclear composition and energy spectrum of primary cosmic rays
around the knee are essential to understand their origin, acceleration, and propagation. The
GRAPES-3 experiment in Ooty, India, recently reported a spectral hardening in the proton spec-
trum at ~166 TeV using Gold’s unfolding method based on muon multiplicity distributions. To
enhance composition sensitivity by incorporating additional observables, we implement a Deep
Neural Network (DNN) using both muon multiplicity and shower age, along with other high-level
reconstructed shower parameters. This work presents the strategy, performance, and reliability of
the DNN-based approach for mass composition studies at GRAPES-3.
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1. Introduction

The GRAPES-3 (Gamma Ray Astronomy
at PeV Energies — Phase-3) experiment [1] is
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form lateral sampling of shower particles and

improves the accuracy of core and direction re- —100:— R ’ 7
construction. Complementing the surface array Lol L, T—‘q ‘
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is a 560 m? tracking muon detector composed X [m]

of 3712 proportional counters (PRCs), arranged
across four stations. Each station includes four Figure 1: Schematic of GRAPES-3 EAS array, il-

modules, and each module consists of four or- lustrating plastic scintillator detectors (Smgle PMT a,
Double PMT a), and tracking muon detector modules

thogonal layers with 58 PRCs per layer. These
().

detectors enable precise measurement of muon
trajectories, and their energy threshold varies
with the zenith angle, starting from ~1 GeV for vertical muons. The GRAPES-3 array employs
a two-level triggering system. The Level-0 trigger requires a 3-line coincidence within 100 ns,
and Level-1 requires at least 10 detectors to fire within a 1 us window. The fiducial area defined
for high-quality event selection is about 14,560 m?. Located at high altitude with an atmospheric
overburden of ~800 g cm™2 and equipped with a dense array and muon tracking capabilities,
GRAPES-3 is well-suited to study cosmic-ray energy spectra and primary composition. In partic-
ular, the muon multiplicity distribution provides a composition-sensitive handle to probe nuclear
masses of incoming cosmic-ray primaries [2].

Recent analyses from GRAPES-3 have revealed spectral features in the proton component near
166 TeV [3]. In this study, we extend the composition analysis by employing deep neural networks
(DNN&s) to classify primary cosmic rays (PCRs) nuclei into proton, helium, and heavier groups using
key observables such as muon multiplicity distributions (MMDs), shower age along with other high
level reconstructed shower parameters. The model is trained on Monte Carlo simulated events
generated using the CORSIKA [4] air-shower simulation code with QGSJET-1I-04 and FLUKA
as the high- and low-energy hadronic interaction models, respectively, using a transition energy of
80 GeV. Simulated primary species include proton (H), helium (He), nitrogen (N), aluminium (Al),
and iron (Fe), covering an energy range from sub-TeV to beyond 10 PeV. To ensure the accuracy of
shower reconstruction and minimize edge effects, a series of quality cuts are applied. Only events
passing a reconstruction flag criterion are selected. The reconstructed shower core is required to
lie within the 50 m fiducial radius from the array center and at least 60 m from the center of the 16
muon detector modules to avoid contamination from poorly reconstructed events at the edges. The
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reconstructed shower age parameter is restricted to the physical range 0.02 < s < 1.98. Zenith angle
selection is performed in the range 1.0 < sec 8 < 1.1, corresponding to approximately 6 < 24.6°.

This study employs two datasets derived from a common pre-simulated dataset with a spectral
index of —2.5: (i) the modelGST dataset, and (ii) a dataset with spectral index of —2.7 for training
purposes. To maintain dataset independence, the —2.7 dataset is partitioned into training, testing,
and validation subsets, while the GST dataset is divided into two non-overlapping segments.

For the reliability assessment of the DNN model, the network trained on the —2.7 dataset is
applied to the first segment of the GST dataset to construct the template, and the second segment
is treated as pseudo-data for composition extraction. For the independent composition analysis,
the training and testing subsets of the —2.7 dataset are used to generate the template, while the
entire GST dataset serves as pseudo-data. This structure ensures a robust validation of the model’s
predictive power across both dependent and independent data scenarios. A detailed description of
this methodology is provided in Section 3. All analyses are performed within shower size bins of
width 0.2 in log; N,, covering the range from 4.0 to 6.0, to study the composition evolution as a
function of shower size.

2. Composition-Sensitive Parameters

A detailed understanding of the mass composition and energy spectrum of CRs around the
knee region is essential to uncover the mechanisms responsible for their origin and acceleration.
The GRAPES-3 experiment, operating in this energy regime, allows such investigations by mea-
suring both the electromagnetic and muonic components of EAS. The key observables exploited
for classification include MMDs and shower age, both sensitive to the mass of the PCRs. For
showers of the same primary energy, heavier nuclei generate more muons because of their higher
hadronic activity, while lighter primaries develop deeper in the atmosphere and appear younger at
observational level as observed from the Figure. 2. Additional reconstructed parameters include the
location of the shower core (NKGX, NKGY), the arrival direction (6, ¢), and the size of the shower
(NKGSsize). These variables encode spatial and directional dependencies in the development of
the shower.

log N.: [4.6, 4.8], 6: [0°, 24.6°] log Ne: [4.6, 4.8], 6: [0°, 24.6°]
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Figure 2: Normalized distributions of shower age and muon multiplicity (MMDs) for all simulated primaries
in the range 4.6 < log(N,) < 4.8 and 6 < 24.6°. Mean values for each primary from the GST dataset are
indicated.
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A feature correlation matrix shown in Figures 3 reveals nontrivial interdependencies among
these parameters, justifying the use of a multivariate method such as a Deep Neural Network to
exploit these correlations for effective classification.

Correlation Matrices (log Ne 4.6-4.8, 6 < 24.6°)
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Figure 3: Feature-wise Pearson correlation matrix for input features.

Hence, the non-diagonal structure of the feature correlation matrix indicates interdependent
variables, motivating a multivariate approach. Incorporating two composition-sensitive parame-
ters—muon multiplicity (MMDs) and shower age—enhances the DNN’s ability to distinguish mass
groups.

3. Cosmic-Ray Composition Analysis Using Deep Neural Networks

DNNs are a class of machine learning models composed of multiple interconnected layers
of artificial neurons capable of learning complex non-linear relationships from high-dimensional
data. In the context of CR physics, DNNs provide a powerful tool for multivariate classification
tasks, such as identifying the primary mass of cosmic rays based on composition-sensitive shower
observables.

The DNN is trained in a supervised fashion using cross-entropy loss to classify events into
three mass groups: proton (H), helium (He), and heavier nuclei (N + Al + Fe). Let x € R be the
input feature vector, where d = 7 in our case (that is, MMD, Shower Age, Core X/Y, 6, ¢, and
Shower Size). The forward pass through a fully connected hidden layer is given by:

h® = 5O (W(l>h(z—1> +b<’>), (1)
where:
e h=1 is the input to layer / (with h(®) = x),
« WO and b are the weight matrix and bias vector for layer /,
« o (.) is the activation function (e.g., ReLU or LeakyReLU),
« h¥ is the output of the /™ layer passed to the next layer.

This operation is repeated across all hidden layers. The output of the final hidden layer is then
passed to the output layer followed by a softmax transformation [5]:

p = Softmax (W(O‘“)h(L) + b(om)) ) 2
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where p = (po, p1, p2) is the probability vector over the three mass classes.

The final output of the network is a probability vector p = (pg, p1, p2) obtained via the softmax
function:

et fori € {0,1,2) 3)
i = 5 ori € s Ly 5
Pi Z?:O %

where z; is the logit corresponding to class i. Here, pg represents the predicted probability for class
H, which is denoted as score_class_0 and used for composition extraction.

Input Features: Hidden Layers Output Laver
MMDs, Shower Age, Core (NKGX, NKGY), (Optimized via Optuna: So ftmal))c 3 c}i asses)
Theta, Phi, Shower Size (units, activations, dropout, Ir))

score_class_0 for true
H, He, N + Al + Fe

Template Fitting

_— S

H Composition He Composition N + Al + Fe composition

Figure 4: Schematic representation of DNNs pipeline used for primary mass classification in the GRAPES-3
experiment. The network takes 7 high-level reconstructed features as input, passes through hidden layers
optimized using Optuna, and outputs class probabilities. The score_class_0 values for true H, He, and
N + Al + Fe events are used to construct templates. Template fitting is then used to extract the final mass
composition.

To ensure optimal model performance, we employ the Optuna [6] framework for hyperpa-
rameter optimization. Optuna is an efficient, automated optimization library based on Bayesian
sampling strategies, which searches for the best combination of hyperparameters such as learning
rate, number of layers, nodes per layer, and other training parameters. This approach helps to
reduce overfitting and improve generalization, ultimately improving the accuracy of primary mass
classification.

The performance of the trained DNN is evaluated using ROC curves and a confusion matrix
(Figure 5). High AUC values indicate strong separability, especially for heavier elements. Most
confusion arises between H and He due to similar shower profiles. In general, the model achieves
reliable classification among mass groups.

Beyond classification, we utilize the DNN output to estimate the mass composition of CRs
through a template-fitting method. The softmax output provides a class probability vector for each
event, from which the value corresponding to class 0, score_class_0 is extracted for all simulated
events with known labels (H, He, N + Al + Fe) to construct class-wise templates. The excellent
agreement between the score_class_0 distributions for the train and test sets (Figure 6, left)
demonstrates the reliability of the trained model. Applying the model to an independent test set
yields the pseudo-data distribution, which is then fit using a binned maximum likelihood method
with the three templates to extract the mass composition. The result of this fitting procedure applied
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Figure 5: Receiver Operating Characteristic (ROC) curves and confusion matrix(On thr test dataset) illus-
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Figure 6: Comparison of score_class_0 (Node H output) distributions for train and test sets, showing
good agreement for true H, He, and N+Al+Fe classes, thereby confirming the reliability of the trained DNN
(left). Mass composition fitting using templates from QGSJET-1I-04 with spectral index —2.7 applied to the
full GST dataset as pseudo-data (right).

to GST pseudo-data using QGSJET-II-04 templates is shown in Figure 6 (right), with the extracted
fractions closely matching the injected composition.

The composition is extracted by fitting the distribution of score_class_0 from Pseudo-data
(D(x)) with a linear combination of MC templates (7;(x)) for each class i:

D(x) = fu - To(x) + fue - T1(x) + fre - T2(x), “4)

where Tj, T1, and T, are the normalized templates for H, He, and N + Al + Fe respectively, and fy,
e, and fre are the fitted composition fractions subject to:

fu+ fie + fre = L. ®)

A binned maximum likelihood method is used to determine the best-fit values of f;. Let ny be the
observed number of events in bin k, and let the expected count be:

2
Ui = Niot Z JiTik, (6)
i=0
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where:

* f; are the composition fractions for H, He, and N + Al + Fe,

* T;x is the normalized value of the template for class 7 in bin k,
* N is the total number of events in the pseudo-data.
Assuming Poisson statistics, the likelihood is:

Nk ,—pi
Ly =55 )

]
. ny!
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Figure 7: Comparison of extracted and input compositions for (left) model reliability test using GST-
split template and pseudo-data, and (right) independent extraction using QGSJET-1I-04 spectral index —2.7
template on full GST pseudo-data.

3.1 Model Reliability Assessment via Composition Fitting

In Figure 7 (left), DNN trained on QGSJET-1I-04 spectral index -2.7 Monte Carlo data is
validated for reliability. The first segment of the GST dataset is used to generate the composition
template, while the second segment is treated as pseudo-data for composition extraction. The
extracted mass fractions of H, He, and N+Al+Fe agree well with the input fractions, with relative
deviations typically within +5%. Specifically, the deviation for H remains within +5%, while He
and the heavy group fluctuate within ~ 7%, demonstrating the DNN’s capability to generalize
effectively within the same physics framework. In Figure 7 (right), a more realistic test is performed
where the full GST dataset serves as pseudo-data, and the template is constructed using the full
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QGSIJET-II-04 training and test sets. This provides smoother score distributions and better train-test
consistency, particularly for the class score associated with protons (score_class_0). Despite the
difference in spectral profile between template and pseudo-data, the extracted compositions still
align closely with the injected fractions. Relative deviations for H vary within approximately +10%,
He remains within +7%, and the heavy group exhibits deviations ranging from —6% to +6%. These
results highlight the DNN model’s stability and applicability for data-driven cosmic ray composition
analysis, even in the presence of moderate model mismatches.

4. Conclusion and Outlook

We have developed a robust machine learning framework for mass composition analysis of
cosmic rays in the knee region using GRAPES-3. A deep neural network trained on Monte Carlo
simulations classifies events into H, He, and N+ Al+Fe groups using composition-sensitive features.
Score-based templates derived from the model outputs are fit to pseudo-data using a maximum
likelihood method. Validation studies show agreement within 10% for known compositions. Future
work includes application to GRAPES-3 observational data to extract energy-dependent mass
composition and spectra from sub-TeV to 10 PeV. Systematic studies using alternative hadronic
interaction models beyond QGSJET-II-04 are also planned to assess model-dependent uncertainties.
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