KIT | KIT-Bibliothek | Impressum | Datenschutz

Constructing a reynolds stress model of decaying homogeneous isotropic turbulence using physics informed neural network

Günseren, Deniz; Ertunç, Özgür; Ari, Ismail; Atik, Atakan Ataman; Muhtaroglu, Nitel; Otić, Ivan ORCID iD icon 1
1 Institut für Thermische Energietechnik und Sicherheit (ITES), Karlsruher Institut für Technologie (KIT)

Abstract:

This study develops a neural network (NN) model to predict the decay of homogeneous isotropic turbulence (HIT). A series of decay cases was simulated using a GPU-accelerated pseudo-spectral solver over a low range of Taylor-scale Reynolds numbers, and the resulting time-resolved fields were converted to dimensionless form and used as training and validation data. A central contribution of this work is a fully dimensionless and Reynolds-number–consistent formulation of the HIT decay equations, which allows the decay coefficient to be identified directly from data. Traditional decay models often combine available experimental or numerical data with asymptotic descriptions of turbulence behavior in the limits Re$_λ$ → 0 and Re$_λ$ → ∞; however, such asymptotic guidance may rely on mathematically inconsistent relationships. By pairing the consistent nondimensional formulation with reliable DNS data, we obtain a data-driven decay function Z that reflects the governing dynamics across the simulated Reynolds-number range. A physics-informed neural network (PINN) is then trained to model the evolution of the normalized velocity and dissipation fields. ... mehr


Zugehörige Institution(en) am KIT Institut für Thermische Energietechnik und Sicherheit (ITES)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2026
Sprache Englisch
Identifikator ISSN: 0021-9991
KITopen-ID: 1000190587
HGF-Programm 32.12.01 (POF IV, LK 01) Design Basis Accidents and Materials Research
Erschienen in Journal of Computational Physics
Verlag Elsevier
Band 553
Seiten Art.Nr: 114725
Vorab online veröffentlicht am 31.01.2026
Schlagwörter Turbulence closure, Physics informed neural networks, Direct numerical simulation, Homogenous isotropic turbulence
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page