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Kurzfassung

DieEnergiewende verändert die Struktur und denBetrieb vonStromversorgungssys-
temen grundlegend. Der wachsende Anteil erneuerbarer Energiequellen (EEQ),
die zunehmende Dezentralisierung der Erzeugung und der damit verbundene
Bedarf an überregionaler Koordination stellen neue Anforderungen an die Über-
tragungsnetzbetreiber (ÜNB). Zwei Herausforderungen stehen dabei im Mit-
telpunkt: die Unsicherheit der EEQ-Erzeugung im Netzbetrieb angemessen zu
berücksichtigen undmehr Transparenz über die Rolle einzelner Netzkomponenten
zu schaffen.

Diese Arbeit adressiert beide Herausforderungen mithilfe analytischer Methoden,
die auf Optimierung und der kooperativen Spieltheorie basieren.

In Teil I wird ein einfacher, analytisch lösbarer, stochastischer Mehrperioden-
Optimaler-Lastfluss (OPF) entwickelt, um zu untersuchen, wie Batterie-Energie-
speichersysteme (BESS) die Unsicherheit von EEQ ausgleichen können. Die
Unsicherheiten werden mithilfe von Gaußprozessen modelliert. Das Modell wird
sowohl an Standardtestnetzen als auch an einem realistischen türkischen Übertra-
gungsnetz validiert.

Teil II widmet sich Transparenz und Erklärbarkeit im Netzbetrieb, ausgehend
vom Redispatch-Kontext. Der Shapley-Wert wird auf Stromnetze angewendet,
analysiert und erweitert, um seine Einsatzmöglichkeiten im Netzbetrieb system-
atisch zu untersuchen. Dafür wird der lineare Lastfluss durch ein nichtlineares
AC-OPF ersetzt; ein Vergleich zeigt deutliche Unterschiede bei Engpässen und
Kosten und unterstreicht die Relevanz des nichtlinearenModells. ZumSchutz sen-
sibler Daten wird ein verteilter AC-OPF-Algorithmus (basierend auf ALADIN)
integriert. Der Shapley-Wert wird anschließend von einem Kostenschlüssel zu
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Kurzfassung

einer allgemeinen Nutzenfunktion verallgemeinert und auf ein multiperiodisches
OPF angewendet. Eine Robustheitsanalyse zeigt, dass der Ansatz auch bei Net-
zänderungen belastbar bleibt. Die stärksten Umverteilungen ergeben sich für
Leitungen, gefolgt von Speichern; für Generatoren stimmen Shapley-Wert und
Realleistung am besten überein.

Insgesamt bieten die entwickelten Ansätze einfache und zugleich transparente
Werkzeuge zur Unterstützung der Netzanalyse, einer fairen Kosten- und Nutzen-
verteilung sowie einer erklärbarenNetzplanung. Sie zeigen, dass der Shapley-Wert
nicht nur zur Allokation von Kosten, sondern auch zur Messung des technischen
Einflusses einzelner Komponenten genutzt werden kann, und leisten damit einen
Beitrag, ÜNBs bei der Bewältigung der zunehmenden Komplexität und Unsicher-
heit moderner Stromnetze zu unterstützen.
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Abstract

The energy transition is fundamentally reshaping the structure and operation of
power systems. The rising share of renewable energy sources (RES), the increas-
ing decentralization of generation, and the resulting need for inter-regional co-
ordination impose new requirements on Transmission System Operators (TSOs).
Two central challenges emerge: accounting for RES-induced uncertainty in sys-
tem operation, and creating greater transparency regarding the role of individual
components in the grid.

This thesis addresses both challenges using analytical methods rooted in opti-
mization and cooperative game theory.

In Part I, a simple, analytically tractable, stochastic multi-period Optimal Power
Flow (OPF) model is developed to simulate how Battery Energy Storage Systems
(BESS) can balance RES uncertainty. The method represents uncertainty using
Gaussian processes and is validated on standard test systems as well as a realistic
Turkish transmission network.

Part II focuses on transparency and explainability in power system operation,
starting from the context of redispatch. The Shapley value is applied to power
networks, analyzed, and extended to explore its use in power system analysis
systematically. To improve physical realism, the linear power flow is replaced
by a nonlinear AC OPF; a comparison shows clear differences in congestion and
costs, underscoring the relevance of the nonlinear model. To ensure data privacy,
a distributed AC OPF algorithm (based on ALADIN) is integrated. The Shapley
value is then generalized from a cost-allocation rule to a utility metric and applied
to a multi-period OPF. A robustness analysis shows that the method remains
reliable under grid changes. The strongest redistributions occur for transmission
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Abstract

lines, followed by storage, while Shapley values and real power align most closely
for generators.

Together, these contributions provide transparent and straightforward tools to
support system analysis, fair cost allocation, and explainable grid planning. They
demonstrate how the Shapley value can be used not only for cost allocation but
also to quantify technical influence, helping TSOs manage the complexity and
uncertainty of modern power systems.
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1 Introduction

As the energy transition proceeds, the structure of the power system is changing
fundamentally. Conventional generation is being replaced by wind and solar,
while electricity demand increases and large, controllable power plants are giving
way to smaller, scattered units and prosumers. This creates a system that is more
distributed and subject tomore uncertainty. As a result, it is harder to plan, predict,
and operate. The backbone of coordination is still the transmission grid, but the
role of transmission system operators (TSOs) is becoming more demanding. To
maintain stability and efficiency, grid operators need both greater flexibility to
respond to variability and more transparency to understand which components
or actors influence system behavior and costs. With appropriate models and
analytical tools, we can begin to address these needs—coming from the growing
uncertain generation and structural complexity.

This thesis addresses two core aspects of modern power system operation. On
the one hand, it focuses on the role of flexibility—how resources like battery
energy storage systems (BESS) can help stabilize the system under increasing
variability and uncertainty and how we can model that. On the other hand,
it addresses the growing demand for transparency—asking how to assess and
compare the influence of individual components on system behavior and costs.
Research questions for both parts are visualized in Figure 1.1. Together, these
two perspectives contribute to a deeper understanding of grid flows and provide
analytical tools for more informed, targeted decision-making.

Before introducing the technical research gaps, we zoom in on the evolving
context of system complexity—from high-level drivers of change to their concrete
implications and solution strategies at the grid and operator level.
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25/11/25 Name - Title of Presentation5

How can we simulate

BESS with uncertain 

generation?

→Modelling

Is it useful to build 

a new generator?

→ Utility measure

How much does this 

congested line add to 

redispatch costs?

→ Cost Allocation

Flexibility Transparency

What is the true benefit

of a storage unit?

→ Utility measure

Where do we build

new storage units?

→Modelling

Figure 1.1: Overview of the questions to flexibility and transparency addressed in this thesis.

1.1 Problem Setting

Energy Transition Among the main causes of today’s more complex grid
conditions is the rapid expansion of renewable energy sources (RES), partic-
ularly wind and solar. Policy targets like the Green Deal and REPowerEU,
combined with the desire for energy independence from Russian gas, have ac-
celerated the buildout (SIMSON 2023, ENTSO-E 2023). Germany has its own
ambitious targets of 80% of RES by 2030 (for Economic Affairs and Climate
2022, BMWK 2023a). In 2023, RES supplied 53.3% of Germany’s electric-
ity production—251.2 TWh—and nearly 59% across the EU. While deployment
is progressing rapidly, integration is lagging behind since RES are not without
challenges: Their volatility, spatial disconnect from load centers, and temporal
mismatch with load put stress on the grid. Flexible loads, controllable generation,
and grid expansion are not yet scaled to match this change. As a result, system
balance must be maintained under increasingly complex conditions.

In Germany, the effects are particularly visible. Wind generation is concentrated
in the north, while most load and solar generation lie in the south and west.

2



1.1 Problem Setting

Combined with Germany’s central role in the European grid, this leads to large
cross-country and transit power flows, resulting in frequent congestion and a
greater lack of transparency in the power flows. Dealing with this challenge will
require not only expanding grid capacity physically, but also developing better
tools for monitoring, coordination, and fair cost allocation.

Challenges for Grid Operators The electricity grid is becoming a central
actor in the energy transition, and it must evolve alongside it. As the IEA warns,
they “are becoming the weak link of clean energy transitions” (International En-
ergy Agency 2023). Increasing shares of renewable generation, the rise of flexible
and electrified loads such as electric vehicles and heat pumps, and the growing
number of active market participants are putting the grid under more pressure than
ever. The most critical issues are the fast-changing, unpredictable power flows and
a lack of inherent buffer capacity. What was once passive infrastructure is now
a dynamic system that must absorb fluctuations, balance supply and load in real
time, and maintain stability under uncertainty. The transmission grid acts as a
coordination layer in a system with limited controllability and growing volatility.
As a result, grid operators must not only ensure physical stability but alsomaintain
an overview of an increasingly complex and distributed system.

Transmission system operators (TSOs) are at the center of this operational shift. In
Germany, four TSOs manage the transmission grid, while nearly 900 distribution
system operators (DSOs) handle local power grids, with distinct responsibilities.
DSOs handle voltage control and the customer side, including metering, dis-
tributed photovoltaic (PV), and electric vehicles (EVs). On the other hand, TSOs
are responsible for system stability, long-term planning, market integration, and
coordination across regions and countries. As RES grow and inertia from syn-
chronous generators declines, TSOs have to increasingly integrate new actors into
markets and improve coordination with DSOs and other TSOs—across national
borders in the pan-European grid.

Two challenges are particularly pressing: a lack of flexibility and transparency.
First, the grid is so heavily loaded that congestion has become a daily operational
issue. Due to a lack in flexibility, redispatch measures are used regularly and at

3
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scale, with =C4 billion in costs and 25 TWh of rescheduled energy in 2022 alone
(TenneT and TransnetBW 2024). This underlines the need to understand who or
what is responsible for specific power flows and resulting costs.

Second, there is a growing issue of limited transparency, which mainly arises from
a heavily loaded grid. Even with metering and simulation, it remains difficult to
determine which components or actors drive effects such as congestion or losses,
particularly in large, meshed networks where interactions are complex and causal-
ity is indirect. For operators and regulators, however, such insight is essential.
Knowing the influence of individual generators, lines, or storage units enables
more informed operational decisions, targeted investments, and better-justified
redispatch and tariff structures. As the grid becomes more decentralized and
interconnected, explainability at the component level has become a prerequisite
for both system operation and regulatory legitimacy.

Strategy for Flexibility The current strategy, however, is grid expansion to
simply gain more capacity. To deal with the uncertain and fast-changing power
flows introduced by RES, transmission grids need more flexibility. One way
to add capacity is to physically expand the grid. Across Europe, over 46,000
km of new transmission lines are planned, with around 6,600 km in Germany
alone (50Hertz et al. 2023). Projects like Suedlink aim to connect generation
in the north with load centers in the south. Although the construction of new
lines is necessary, it is often slow, expensive, and comes with regulatory or local
opposition. This option offers long-term relief but limited short-term agility.

A more immediate and versatile option for adding flexibility to the grid is battery
energy storage systems (BESS). These units can be deployed quickly, scaled mod-
ularly, and installed in a wide range of locations. Their rapid response capability
makes them well-suited for stabilizing power flows and buffering fluctuations in
power, such as from renewable generation. Storage units can also buffer the uncer-
tainty that stems from unpredictable RES generation by providing free capacity
and stored electricity. The typical modelling choice for uncertainty is random
variables with a deterministic mean plus some variance.
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Figure 1.2: The Taxi Game; an example application of the Shapley value.

While BESS are originally used for capacity support and grid boosting, BESS
are now being deployed for a growing range of system services, including reactive
power control, black-start capability, and congestion relief. In Germany, major
projects such as the grid boosters are treated as being of “overriding public interest”
(BMWK 2023a, Nguyen et al. 2024), and are firmly integrated into national and
European grid development plans (ENTSO-E 2020, BMWK 2023b). Large-scale
installations (some exceeding 250 MWh) are already under development, and
small-scale adoption is growing (TransnetBW 2024, TenneT 2024).

The challenge is no longer about justifying the need for storage, but about de-
termining where and how it can have the greatest system impact. This requires
tools that can assess the role of storage in the grid and allow comparisons across
different placement and sizing options.

Tomake the impact of storage interpretable and comparable, across time, location,
and configuration, we need metrics that quantify its operational value in a con-
sistent and system-wide way. One such tool, originally developed in cooperative
game theory for fair cost sharing, is the Shapley value.

Approach for Transparency The Shapley value was initially developed to
distribute gains or costs among participants who work together, depending on
their individual contributions across all combinations of players. More precisely,
it is an allocation rule from cooperative game theory, designed to fairly assign the
total cost (or benefit) of a game among individual players based on their marginal
contributions to all coalitions. One example game is a shared taxi ride visualized
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1 Introduction

in Figure 1.2, in which the players have to determine their share of the total ride
costs. Individually, every player would pay 6=C, 11=C, and 15=C. Together, the
whole ride costs 15=C. The question is what the ideal way to share the 15=C is, so
that each passenger pays less than getting a taxi for themselves.

What makes the Shapley value particularly appealing is that it satisfies key fairness
properties: symmetry, efficiency, null player, and additivity. Originally used in
economics, it has since gained traction in fields such as explainableAI and network
analysis (Titz et al. 2024, Narayanam and Narahari 2011)—wherever individual
contributions in a complex system need to be compared.

In power systems, the Shapley value provides an analytic way to quantify the
contribution of individual components, e.g., generators, lines, or storage units, to
the overall system performance. Its application is, however, not as wide-spread,
and focuses primarily on distribution grids (Varenhorst et al. 2024, Sharma and
Abhyankar 2017). More recently, the Shapley value has been introduced for
cost allocation in redispatch and congestion management at the transmission level
(Voswinkel et al. 2022). This work serves as a starting point for this thesis,
which extends the concept beyond cost allocation. In particular, we reinterpret
the Shapley value as a broader utility metric—measuring how much individual
components contribute to the system’s operational behavior. This opens the door
to assessing not just who causes costs, but who provides value, and inwhat context.
Such an approach allows us to compare the technical influence of components,
such as storage or new grid infrastructure, on system performance, supporting
both fairness and transparency in planning and operation.

1.2 Modeling

To apply these tools in realistic power system settings, we require a modeling
framework that captures system physics, component constraints, and operational

6



1.3 Contributions

objectives. This includes both the technical operation of battery storage sys-
tems under uncertainty and the evaluation of component influence through cost
attribution.

A common analytical approach is to model the power grid as a graph and simulate
its behavior using optimization, including all relevant components: generators,
loads, transmission lines, RES, and battery storage units. The standard tool for
this is the Optimal Power Flow (OPF), which minimizes total generation costs
subject to technical constraints, including generator limits, voltage bounds, and
line thermal limits. Another standard tool is power flow (PF) to compute power
flows given loads and generation by solving a (non-)linear system of equations.

Depending on the desired accuracy, we use DC, AC, or multi-period OPF formu-
lations, and extend them to incorporate uncertainty and storage. To account for
distributed actors or privacy constraints, we also implement distributed AC-OPF
methods in certain parts. This framework allows us to analyze the system’s re-
sponse to different configurations and to quantify the effect of storage. In addition
to standard forms, we propose our own DC stochastic model.

Allmodels are implemented in open-source Julia packages using JuMP.jl and Pow-
erModels.jl. To ensure reproducibility, we provide the whole code, experimental
setups, and input data in an open-source package written in Julia.

With this modeling framework, we can now identify the specific research chal-
lenges in modeling and analyzing, and outline how this thesis addresses them.

1.3 Contributions

This thesis investigates how to make transmission grids both more manageable
under uncertainty and more explainable in operation. The focus lies on two
complementary challenges: On the one hand, we examine Battery Energy Storage
Systems (BESS) as a way to provide flexibility for stabilizing power flows. On
the other hand, we address the need for transparency by applying the Shapley
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value to quantify and attribute the influence of individual components in the grid.
Together, they respond to a practical challenge for TSOs: the need for models
that are tractable enough for operational use, and that support fair, data-informed
decision-making.

Part I: Analytical Uncertainty Management Part I asks how BESS should
respond to uncertain renewable generation and where they are most effective.
Methodologically, we provide a reformulation of a chance-constrained multi-
period DC-OPF model. The model includes uncertain RES generation, which is
modeled with Gaussian processes. To counteract the uncertainty from RES, we
include storage components. To direct the interaction of BESS and generators
with the uncertainty, affine policies are used. The resulting model is tractable
and analytically exact. As it is based on DC-OPF, it is simple enough to be used
by system operators.

Additionally, faced with grid data scarcity, we build and publish our own 61-bus
model of the Turkish transmission grid. This enables an evaluation of how BESS
absorbs and reallocate variability to flatten conventional generation profiles and
relieve the network in the face of a high share of RES.

In Part I, we answer the following two research questions:

RQ1 How can we model OPF including uncertainty and BESS in the electricity
grid in an analytically exact way?

→ Contribution. We formulate a tractable, analytically exact, chance-constrained
multi-period DC-OPF with affine policies under Gaussian uncertainty.

RQ2 What influence does BESS placement have on managing uncertainty in the
grid?

→ Contribution. We use the model mentioned above to quantify how BESS
absorbs and reallocates RES uncertainty over time. The approach is validated on
standard IEEE cases. We also provide a realistic Turkish transmission grid model
and experimentally test various storage locations.
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1.3 Contributions

Part II: Transparency through Shapley Part II examines how the Shapley
value can be used in transmission grids for fair cost allocation and for transparent,
explainable component influence. We begin with redispatch cost sharing across
congested lines and operators, moving from the common DC approximation to
the full non-convex AC-OPF.

A first practical challenge is data access. Grid data is distributed across TSOs, and
sharing internal models raises privacy concerns. The Shapley workflow, therefore,
needs a way to preserve data privacy while keeping allocations stable, motivating
a privacy-preserving distributed AC-OPF.

A second issue concerns model accuracy. While DC-OPF is widely used for
speed, it ignores reactive power and can misrepresent feasible operating points.
To ensure fairness, allocations should reflect AC physics. This raises the question
of whether DC-OPF-based Shapley calculations are sufficient or whether results
change noticeably once full AC-OPF is used.

Beyond redispatch, TSOs also need a principled metric to quantify the operational
value of flexibility assets. As BESS deployment grows, simple energy-based
indicators fall short, since they ignore network effects and temporal coupling.
This motivates extending Shapley from cost sharing to a notion of component
utility for storage and other devices.

Finally, any metric must withstand real-world variability. Parameters are un-
certain, operating points shift, and ideal assumptions do not always hold. The
question is how robust the Shapley value remains under such perturbations, and
how stable its insights are across changing grid conditions.

These issues boil down to the following four research questions in Part II:

RQ3 How can we preserve data privacy between grid regions when computing
the Shapley value?

→ Contribution. We implement a privacy-preserving distributed AC-OPF (based
on ALADIN) within the Shapley workflow to allocate redispatch costs while
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preserving data locality across grid partitions. The resulting allocations are
consistent and scalable for large meshed networks.

RQ4 How does the use of AC-OPF affect the results and fairness of the Shapley
value compared to DC-OPF?

→ Contribution. We compare the Shapley calculation with AC-OPF against DC-
OPF across small and large grids, and show that there are substantial differences
in congested lines, redispatch costs, and resulting allocations, underlining that DC
is insufficient for cost allocation.

RQ5 How can the Shapley value be used to quantify the utility of individual BESS
units in the transmission grid?

→Contribution. We adapt the Shapley value to a multi-period AC-OPF including
BESS and use it as a utility measure that attributes system cost reduction and
other metrics (including effects linked to reactive power) to individual units. We
demonstrate its interpretability on a radial and meshed test system.

RQ6 How robust is the Shapley value in its application to electricity grids in the
face of perturbations in grid parameters?

→ Contribution. We perform an experimental robustness analysis. First, we
compute the Shapley values of the storage units and alter their own proper-
ties. Afterwards, we compute the Shapley values for storage units, generators,
and branches, and alter the properties of all grid components with Monte Carlo
sampling. We show that the Shapley value changes continuously, and that the
perturbations have varying strong effects on different components.

1.4 Outline

This thesis is structured in a fundamentals chapter followed by two parts: Chapter
2 introduces the optimal power flow formulations—DC-OPF, AC-OPF, and MP-
OPF —and the BESS model. Part I containing Chapters 3 and 4 answers the

10



1.4 Outline

research questions RQ1 and RQ2 on the modeling and placement of BESS under
Gaussian uncertainty, building on the publications Bauer et al. (2023b, 2022).
Part II containing Chapters 7-10 covers the research questions RQ3-6 and builds
on the publications Bauer et al. (2023a, 2024, 2025). The sensitivity analysis in
Chapter 10 is yet unpublished.
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2 Fundamental Notions for Grid
Modeling and OPF

The Optimal Power Flow (OPF) problem constitutes the mathematical foundation
of modern grid operation and planning. It enables system operators to determine
economically and technically feasible operating points of the power system under
a wide range of network and generation constraints. It is a vital instrument for
voltage control, generator scheduling, and directing power flows. Thereby, TSOs
can ensure efficient operation, reliable supply, and system stability.

OPF is becoming more important with the grid getting more interconnected and
complex due to RES, AC-DC coupling and HVDC lines, smart grid applications,
and prosumers. Additionally, historically, after the full EU market liberalization
in 2009, distribution and transmission grids have been managed separately, when
they have to be thought and optimized increasingly combined, especially with the
focus shifting from central management to the consumer side in the future. This
thesis, however, focuses on transmission grids only.

OPF optimizes the power flows in the electricity grid. There are several optimiza-
tion goals; mostly, however, generation costs or transmission losses areminimized.
When curtailment of RES comes into play, it can be added to the objective as well.
The objective is subject to several constraints, amongst them most prominently
the Power Flow Equation (PFE) that preserves the balance of load and demand in
the grid at every point and, thus, also keeps the frequency stable at 50Hz. Other
constraints are the technical limits of all components. Generally, as long as the
OPF is feasible, an optimal solution exists, but does not have to be unique.
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This chapter successively develops three OPF formulations of increasing com-
plexity and realism: first, the classical nonlinear AC-OPF; second, its linearized
DC approximation; and finally, a multi-period AC-OPF that captures temporal
coupling effects such as RES variability and storage operation.

The DC-OPF is a linear approximation of AC power flows in high-voltage trans-
mission systems, not a model of direct current (DC) networks. It is used instead
of the AC-OPF, especially for large grids when the nonlinear AC-OPF fails to
converge or becomes computationally intractable for large-scale systems. While
AC-OPF ismostly non-linear and non-convex and, thereby, hard to solve, DC-OPF
is easier to solve as it is linear and, thus, convex. Still, DC-OPF solutions are never
AC feasible (Baker 2021) as the DC-OPF has very different feasibility regions
(Wang and Chiang 2021). The problem also has several equivalent formulations,
splitting into rectangular and polar coordinates (Frank and Rebennack 2016). In
this thesis, we use the bus injection model, contrary to the branch flowmodel. The
voltage is represented in polar coordinates and the admittance in rectangular form.
According to Frank and Rebennack (2016), polar coordinates for the voltage yield
fewer variables and fewer nonlinear constraints, although, contrary to rectangular
coordinates, they introduce sin and cos functions in the power flow equations.

Typical OPF solvers use interior-point or sequential quadratic programmingmeth-
ods for nonlinear AC formulations, while linear or quadratic DC approximations
are solved with simplex or interior-point algorithms. There is a manifold of
solvers, depending on whether a convex, non-convex, or mixed-integer problem
is to be solved (Frank and Rebennack 2016). In this work, the convex DC-OPF
is solved using the HiGHS solver, which is integrated via the JuMP optimization
framework in Julia. The nonlinear AC-OPF problems are solved using IPOPT,
and mixed-integer variants employ Juniper.

This chapter first introduces the grid model, then derives the DC-OPF, gives the
AC-OPF, and finally gives the multi-period AC-OPF (MP-OPF). All formulations
are based on the book “Power Generation, Operation and Control” (Wood et al.
2014).
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2.1 Grid Model

Table 2.1: AC-OPF variables.

Variable Meaning Unit Type

PD,i Active power load MW

FixedQD,i Reactive power load MVAr
Vslack = 1 Voltage magnitude at the slack bus p.u.
θslack = 0 Voltage angle at the slack bus deg.

PG,i Active power generation MW

Free
QG,i Reactive power generation MVAr
Fij Line flows MVA
vi Voltage magnitude p.u.
θi Voltage angle deg. (°)

2.1 Grid Model

The power grid is modeled as a graph A = (N ,L) with a set of nodes N =

{1, . . . , Nb} and a set of edges L = {1, . . . , Nl}, with cardinalities Nb = |N |
and Nl = |L|. Given the setting of a power system, nodes are called buses, and
edges represent lines. Each bus i can contain a load di, or a generator gi. In
an extended formulation, a bus can also contain a curtailment generator gcurti or
a storage unit si. A line (i, j) from bus i to bus j is typically an AC line or a
transformer, depending on the chosen case file.

2.2 OPF Formulations

2.2.1 AC-OPF

In the AC model of power flows, every load and generator has an active and a
reactive power componentP andQ, respectively. WhileP performs real work, the
reactive power is necessary to create electromagnetic fields that keep the electrical
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2 Fundamental Notions for Grid Modeling and OPF

flows running and, thereby, enable electricity transmission. The variables in the
grid are given in Table 2.1. Active and reactive power PD,i, QD,i for the loads
are fixed and have to be met by generation. At the slack bus, the voltage angle θi
and a voltage magnitude vi are fixed with θslack = 0 and Vslack = 1 p.u. and are
free otherwise. Active and reactive power generation PG,i, QG,i are free, as well
as the line flows Fij . Hence, the decision variables are summarized as a vector
of vectors x = (θ, v, PG, QG) with each entry in RNb . Concerning the type of
lines, this formulation assumes no DC lines as they may be included in real grids.
The AC-OPF formulation is based on Frank and Rebennack (2016).

Power Flows

The power flows in the grid are derived from the fixed line parameters. Each line
has an admittance Yij , and its reciprocal, the impedance Zij

Yij = Gij + jBij , Zij = Rij + jXij , ∀(i, j) ∈ L, (2.1)

with conductance Gij , susceptance Bij , resistance Rij and reactance Xij (ca-
pacitive and inductive) on line (i, j). Given the definition of the power, i.e.,
S = V · I∗ with voltage Vi = vi∠θi and current I , we can derive the active and
reactive power components as

Pij = v2iGij − vivj (Gij cos∆θij +Bij sin∆θij) , ∀(i, j) ∈ L (2.2a)
Qij = −v2iGij − vivj (Gij sin∆θij −Bij cos∆θij) , ∀(i, j) ∈ L (2.2b)

where vi is the voltage magnitude at bus i, and ∆θij = θi − θj the voltage angle
difference. The active and reactive power equations yield the real and imaginary
parts of the apparent power:

Sij = Pij + jQij , ∀(i, j) ∈ L. (2.3)
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2.2 OPF Formulations

The absolute line flow is then defined as the Euclidean norm of the apparent
power:

|Fij | =
√

P 2
ij +Q2

ij , ∀(i, j) ∈ L. (2.4)

In the implementation, these power flows are described by two variables each: the
from-bus power flow and the to-bus power flow, before and after the losses. Since
power can flow in both directions, these variables can be positive and negative.

Optimization Problem Formulation

The objective minimizes the total generation cost c given by the sum of the
generation costs, over all decision variables x = (θ, v, PG, QG):

min
x

c(P ) =
∑

i∈N

(
ai · (PG,i)

2 + bi · (PG,i) + ci
)
, (2.5)

with constant, linear, and quadratic cost coefficients ci, bi, ai, respectively. Since
the active power P is the usable part of the apparent power, only P is included in
the cost function.

The Kirchhoff’s laws (Wood et al. 2014) stem from the first law of thermodynam-
ics, representing the concept of preservation of energy, and yield the power flow
equations for each bus i and for active and reactive power:

PG,i − PD,i = vi
∑

j∈N
vj (Gij cos∆θij +Bij sin∆θij) , ∀i ∈ N (2.6a)

QG,i −QD,i = vi
∑

j∈N
vj (Gij sin∆θij −Bij cos∆θij) , ∀i ∈ N (2.6b)

saying that the generation PG,i andQG,i minus the demand PD,i andQD,i at each
bus i must equal the incoming power from the adjacent lines, i.e., Pji − Pij and
Qji −Qij . These equations capture both the electrical and topological structure
of the network. These nonlinear relations between voltage magnitudes vi, voltage
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angles θij , and the resulting active and reactive power flows are the main source
of nonconvexity in the AC-OPF. Consequently, the problem may exhibit multiple
local optima, which complicates its numerical solution.

Remaining are the physical limits for all technical components of the power grid.
The generators are bounded with a minimum and maximum capacity:

PG,i ≤ PG,i ≤ PG,i, ∀i ∈ N (2.7)
Q

G,i
≤ QG,i ≤ QG,i, ∀i ∈ N (2.8)

where the minimum limit of the active power PG,i is not necessarily zero, e.g., in
case the generator supplies the base load, and the minimum limit for the reactive
power Q

G,i
can even be negative. The line flows Fij are given limits as well:

|Fij | ≤ F ij , ∀(i, j) ∈ L (2.9)

which is often called Rate A and is the normal static line rating. Together,
equations (2.5) up to (2.9) provide the following nonlinear and nonconvex AC-
OPF optimization problem:

min (2.5)
s.t. (2.6)− (2.9).

(2.10)

2.2.2 DC-OPF

The DC-OPF problem formulation is a much used approximation of the AC-OPF
problem given in Equation (2.10). It especially suits well high-voltage grids, as
they have fewer losses, which are ignored in the DC-OPF formulation. There
are various ways to formulate the DC-OPF, e.g., flow-based, PTDF-based, cycle-
based, angle-based (Hörsch et al. 2017). This thesis uses the Kirchhoff-based
formulation, as above for the AC-OPF, and as introduced in Frank and Rebennack
(2016). The variables are given in Table 2.2 with the active power generation
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2.2 OPF Formulations

Table 2.2: DC-OPF variables.

Variable Meaning Unit Type

PD,i Active power load MW
Fixedvi = 1 p.u. Voltage magnitude p.u.

θslack = 0 Voltage angle at the slack bus deg. (°)

PG,i Active power generation MW
FreeFij Line flows MVA

θi Voltage angle deg. (°)

PG,i, line flows Fij , and voltage angles θi as free variables, and the load PD,i and
voltage angle and magnitude at the slack bus fixed.

Derivation

Three assumptions are made to simplify the power flow equations into a linear
form. First, line resistanceR is neglected, which implies zero conductanceG = 0

while the reactance X remains, as it defines the line susceptance B = 1/X .
Second, all voltage magnitudes are fixed to= 1 per unit. Third, the trigonometric
functions in the power flow equations are linearized by assuming small voltage
angle differences. These justify the approximations sin(θi − θj) ≈ θi − θj
and cos(θi − θj) ≈ 1, which linearize the trigonometric terms in the power
flow equations. Together, these assumptions linearize the nonlinear power flow
equations and eliminate reactive power, yielding a convex quadratic optimization
problem suitable for large-scale transmission networks.

Neglecting line resistance Rij implies zero conductance Gij = 0, leaving only
the susceptive component of the admittance. Reactive power is ignored, and the
power flow equations reduce to:

PG,i − PD,i =
∑

j∈N
Bij (∆θij), ∀i ∈ N (2.11)
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with∆θij = θi − θj . Adding the linear power flow equation (2.11), the complete
DC-OPF formulation can be defined. The derivation of the DC-OPF from the
AC-OPF is detailed in Zhu (2015) and Wood et al. (2014).

Optimization Problem Formulation

The DC-OPF formulation is, apart from the power flow equations, the same as
the AC-OPF, while neglecting reactive power. The objective function minimizes,
as previously, the generation costs:

min
P

c(P ) =
∑

i∈N

(
ai · (PG,i)

2 + bi · (PG,i) + ci
)
. (2.12)

The power flow equation are as in Equation (2.11):

PG,i − PD,i =
∑

j∈N
(Bij · θij) . ∀i ∈ N (2.13)

Since there is no reactive power, the line flows reduce to:

Fij = Pij . ∀(i, j) ∈ L (2.14)

The physical limits reflect the generator limits of active power:

PG,i ≤ PG,i ≤ PG,i, ∀i ∈ N (2.15a)

and the line limits:

|Fij | ≤ F ij . ∀(i, j) ∈ L (2.15b)

Equations (2.12) until (2.15) yield the following DC-OPF formulation:

min (2.12)
s.t. (2.11)− (2.15).

(2.16)
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Table 2.3:Multi-period AC-OPF variables.

Variable Meaning Unit Type

P t
D,i Active power load MW

Fixed

Qt
D,i Reactive power load MVAr

PRES,t
D,i Active power RES generation MW

QRES,t
D,i Reactive power RES generation MVAr

V t
slack = 1 Voltage magnitude at the slack bus p.u.

θtslack = 0 Voltage angle at the slack bus deg. (°)

P t
G,i Active power generation MW

Free

Qt
G,i Reactive power generation MVAr

P t
Curt,i Active power curtailment MW

Qt
Curt,i Reactive power curtailment MVAr

P t,CH
S,i Storage active power charging MW

Qt,CH
S,i Storage reactive power charging MVAr

P t,DC
S,i Storage active power discharging MW

Qt,DC
S,i Storage reactive power discharging MVAr

Et
S,i Storage energy MWh

Fij Line flows MVA
vi Voltage magnitude p.u.
θi Voltage angle deg. (°)

Problem (2.16) is linear and convex.

2.2.3 Multi-Period AC-OPF

A Multi-Period OPF (MP-OPF) is necessary whenever system operators want to
simulate the grid over time, e.g., for generation scheduling or grid planning. A
MP-OPF is especially needed with a high share of RES, since for the security of
supply, RES and its uncertainty needs to be forecasted such that generation can be
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2 Fundamental Notions for Grid Modeling and OPF

scheduled. The MP-OPF is based on the AC-OPF with an added time dimension.
All variables are optimized over a time horizon T , minimizing the total system
costs and connecting the time steps via coupling constraints. This formulation
contains RES curtailment. The formulation of the MP-OPF in this thesis is based
on Nguyen et al. (2015), Gutermuth and Giuntoli (2020), Dai et al. (2024) and
Usman and Capitanescu (2021). All variables are given in Table 2.3.

The objective is similar to Equation (2.5), while the costs are summed over the
horizon:

c(P t
G,i, P

t
Curt,i) =

T∑

t=1

Nb∑

i=1

CG,i(P
t
G,i) + CCurt,i(P

t
Curt,i), (2.17)

where CG,i and CCurt,i are linear or quadratic cost functions, e.g.:

CG,i(P
t
G,i) = ai · (P t

G,i)
2 + bi · (P t

G,i) + ci

with constant, linear, and quadratic cost coefficients ai, bi, ci, respectively. This
thesis mainly uses linear cost functions for better comprehensibility. The term
CCurt,i accounts for the cost of curtailed renewable generation. It penalizes the
reduction of available RES output and thereby promotes the use of renewable
energy whenever feasible.

The power flow equations hold for every bus i and every point in time t, yielding
the active power balance:

P t
G,i − P t

D,i =

Nb∑

j=1

vtiv
t
j

(
Gij cos θ

t
ij +Bij sin θ

t
ij

)
, ∀i ∈ N , ∀t ∈ T

(2.18a)
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and the reactive power nodal balance:

Qt
G,i −Qt

D,i =

Nb∑

j=1

vtiv
t
j

(
Gij sin θ

t
ij −Bij cos θ

t
ij

)
, ∀i ∈ N , ∀t ∈ T

(2.18b)

where vti and θtij denote the voltage magnitude at bus i and the voltage angle
difference on line (i, j) at time t, respectively. As before, the susceptanceBij and
conductanceGij represent the real and imaginary parts of the complex admittance
Yij , respectively.

The physical limits for generation are the same as before, only for every time
step t:

PG,i ≤ P t
G,i ≤ PG,i, ∀i ∈ N , ∀t ∈ T (2.19a)

Q
G,i

≤ Qt
G,i ≤ QG,i, ∀i ∈ N .∀t ∈ T (2.19b)

Constraints (2.19a)–(2.19f) define the technical feasibility region for all com-
ponents, while equations (2.18) ensure power balance at every time step. The
curtailment generators are the only decision variables whose limits change with
every time step t since the amount of curtailable RES generation changes:

− PRES,t
D,i ≤ P t

Curt,i ≤ 0, ∀i ∈ N . ∀t ∈ T (2.19c)

The negative sign indicates that curtailment reduces the available RES generation
rather than adding new production. The maximum curtailment equals the avail-
able RES generation, and since this artificial generator cannot inject power into
the grid, its upper limit is set to zero.

The limits for voltage magnitude and the angle differences are as before:

vi ≤ vti ≤ vi, ∀i ∈ N , ∀t ∈ T (2.19d)
θij ≤ θtij ≤ θij , ∀(i, j) ∈ L. ∀t ∈ T (2.19e)
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as are the limits for the power flows:

|F t
ij | ≤ F ij . ∀(i, j) ∈ L, ∀t ∈ T (2.19f)

The MP-OPF is given by Equations (2.17) until (2.19):

min (2.17)
s.t. (2.18) and (2.19).

(2.20)

Problem (2.20) is nonlinear and nonconvex.
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Part I

Analytical Uncertainty
Management
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Introduction

The shift towards Renewable energy sources (RES) is a vital building block of
the energy transition as it reduces fossil electricity generation. However, it also
brings the challenge of uncertain generation, making electricity generation less
predictable and less controllable.

There are several ways to respond to uncertain generation. Loads can shift their
electricity demand to when the wind blows and the sun shines, via demand side
management (DSM). System operators can ramp up conventional generators every
time when the RES do not produce. What is more difficult, however, is keeping
the exact balance between generation and demand at every time step, and hence
also keeping the frequency at 50 Hz. Conventional generators cannot be ramped
up that quickly, except for gas power plants, which are too expensive for fast
control.

An essential strategy for keeping the load and frequency balance is to introduce a
buffer that can shift electricity in place and time. Battery energy storage systems
(BESS) can provide such a buffer. They can take on excess electricity from RES,
and feed it back into the grid during a period of supply shortage. As BESS
can charge and discharge electricity quickly without much cost, it is an effective
measure to influence the generation and load balance in the grid. Depending
on the size of the storage unit and the number of units in the grid, the BESS
can cover a short period of several hours. This is, however, just enough for
conventional generators to ramp up slowly, or e.g., industrial load to be shifted.
In Germany, large-scale BESS integration is well underway, and even small-scale
BESS requests exceed expectations.
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This part of the thesis focuses on how distributed storage can take on the un-
certainty from RES that would otherwise have to be managed by conventional
generators and loads, and its effects on conventional generation.

We take on the perspective of the transmission system operators (TSOs). To
operate their electricity grids, computing the cost-optimal generation and power
flows is an everyday essential task. To do that, the models of the grid on which
optimal power flow (OPF) is performed, aswell asOPFmodels themselves, need to
be developed further. In the course of current developments, OPF models need to
incorporate the stochastic uncertainty from RES (Vrakopoulou and Hiskens 2017,
Roald et al. 2013), as well as new components for BESS. Solving a stochastic OPF
is generally a difficult task. And for TSOs, this often needs to be done quickly
and with increasing precision. This is the gap where this chapter sets in.

There is a growing body of research on uncertainty-aware OPF formulations,
including stochastic, robust, and chance-constrained, static and multi-period ap-
proaches (Mühlpfordt et al. 2018, Vrakopoulou and Hiskens 2017, Summers et al.
2015). Many of these methods incorporate affine policies to capture how gener-
ators or storage units respond to forecast errors (Bucher et al. 2017). However,
much of the existingwork relies on scenario-basedmethods or static, single-period
formulations that can limit both tractability and interpretability in operational
planning.

For the following two chapters, we use the linear DC formulation introduced
in Chapter 2 with multiple time periods, as it is used by many grid operators
and in literature as a good approximation for AC-OPF for fast computing. The
uncertainty fromRES ismodeled usingGaussian Processes (GPs), which describe
distributions over functions and are commonly used to model time series with
uncertainty (Schulz et al. 2018). Based on that, we derive an analytical model
formulation including stochasticity that can be solved exactly. In the second
chapter, we apply this formulation to our newly built Turkish transmission grid to
show that it works equally well on a larger, more realistic meshed power grid, and
compare several placement strategies for BESS.
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3 Analytical Uncertainty
Propagation

Publication reference for this chapter

Bauer, R. and Mühlpfordt, T. and Ludwig, N. and Hagenmeyer, V. (2023).
“Analytical Uncertainty Propagation for Multi-Period Stochastic Optimal
Power Flow”. Sustainable Energy, Grids and Networks (SEGAN), vol.
33. DOI: 10.1016/j.segan.2022.100969

The integration of BESS requires good and exact models that can be used to
solve an optimal power flow (OPF). Using a DC-OPF formulation, we develop a
model that incorporates uncertainty from both renewable energy sources (RES)
and BESS components, addressing the following research question:

RQ1 How can BESS stabilize the electricity generation with a high share of
uncertain RES generation in the grid?

To investigate this question more systematically, we refine it into three sub-
questions:

– What influence does BESS have on the conventional generation?

– What influence do variance constraints have on generators?

– How does the method scale?
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3 Analytical Uncertainty Propagation

Additional aspects discussed in the original publication (Bauer et al. 2023b), such
as risk1 sensitivity and the distinction between local and global balancing are
omitted here for clarity.

In short, to answer these questions, we formulate a DC stochastic OPF that is
initially not analytically solvable, then reformulate it under the assumption of
Gaussian processes to make it tractable.

Modeling an OPFwith stochastic uncertainty and solving it efficiently is a difficult
task. The computational complexity arises not only from the grid size, but also
from how uncertainty is represented. Necessarily, there is an inherent trade-
off between the richness of the uncertainty model, the exactness of results, and
computational speed. In this chapter we opt for analytically exact results by using
a simplified, but justified, model for RES uncertainty, while accepting reasonable
computational speed.

The central modeling choice is how to represent forecast errors for renewable
sources. We model RES uncertainty using Gaussian Processes (GPs). While
individual generators can behave non-Gaussian, the spatial and temporal aggre-
gation of many plants typically yields approximately Gaussian profiles due to
the central limit theorem (Hemmati et al. 2016). GPs are well-suited for power
system time series because they naturally capture temporal and spatial correla-
tions (Mitrentsis and Lens 2021, Roberts et al. 2012). They are also closed under
linear transformations, which makes them analytically compatible with the linear
structure of DC OPF constraints (Schulz et al. 2018) and thus preserves tractabil-
ity. UsingGaussian Process Regression (GPR), GPs can be fitted to historical RES
data, providing both the predictive mean and covariance that fully characterize
the uncertainty and integrate directly into the stochastic OPF.

In addition to the uncertainty model, the formulation in this chapter relies on three
further ingredients. First, we use chance constraints that limit the probability of
violating physical bounds, in analogy to dynamic line ratings. Second, we employ

1 This risk is applied to the chance constraints and is not to be confused with the risk of the cost
function as in Hemmati et al. (2016).
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3.1 Related Work

affine control policies that determine how generators and storage units react to
forecast errors. Third, we introduce a multi-period time horizon to model the
storage behaviour. The combination of Gaussian uncertainty, affine policies, and
a multi-period DC OPF with chance constraints forms the core of the approach.

3.1 Related Work

Previous research has addressed subsets of the aspects considered here, but few
combine all elements into a unified and tractable framework.

Several studies investigate multi-period stochastic OPF with Gaussian uncer-
tainty and storage, but often omit chance constraints and instead rely on scenario
trees (Hemmati et al. 2016). Other works approximate chance constraints (Sum-
mers et al. 2015, Li and Mathieu 2015), which may compromise accuracy.

The concept of an “analytical reformulation” of chance constraints has been
explored in earlier work on joint chance constraints, for example, in Liu et al.
(2020).

Gaussian processes have been widely used in forecasting applications relevant to
power systems, including wind power (Kou et al. 2013, Chen et al. 2014), solar en-
ergy (Sheng et al. 2018), and electricity demand (Mori and Ohmi 2008, Leith et al.
2004, Lloyd 2014, Rogers et al. 2011, Blum and Riedmiller 2013, McLoughlin
et al. 2013). These studies highlight the suitability of GPs for modeling temporal
and spatial correlations, which motivates their use in uncertainty modeling for
stochastic OPF.

Exact reformulations of chance constraints have been studied in static settings (Bi-
enstock et al. 2012) and partially extended to power systemswithout storage (Roald
et al. 2013) or affine policies (Sjödin et al. 2012). Some second-order cone for-
mulations exist (Zhang et al. 2017, Xie and Ahmed 2018), but they too are either
static, omit storage, or use a different class of constraints (Warrington et al. 2013).
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Table 3.1: Data and test grids for Chapter 3.

Data Type Details
Grids IEEE 5, 39, 57, 118, 300-bus
Time Series ENTSO-E Wind Generation Data (2014-2021),

Northwind (De Felice 2021), synthetic wind &
load data

Affine policies have been used in reserve planning (Ding et al. 2016, Bucher
et al. 2017), distribution grids (Fabietti et al. 2017, 2018), and stochastic
OPF (Vrakopoulou et al. 2013, Louca and Bitar 2016, Munoz-Alvarez et al. 2014).
However, these works typically lack a multi-period treatment, storage integration,
or do not provide an exact analytical reformulation of chance constraints.

Uncertainty propagation techniques such as scenario-based methods and Monte
Carlo sampling (Capitanescu et al. 2012, Fabietti et al. 2017, Vrakopoulou and
Hiskens 2017), as well as Polynomial Chaos Expansion (PCE) (Mühlpfordt et al.
2016, 2017, 2018), can be computationally expensive and may lack analytical
traceability. Robust and distributionally robust approaches avoid distributional
assumptions, but typically yield more conservative solutions.

In summary, this thesis provides a unified and tractable multi-period chance-
constrained DC stochastic OPF framework that brings together three elements
rarely combined in existing work: Gaussian uncertainty modeling, distributed
energy storage, and affine control policies. By integrating these components into
a single analytical formulation, the approach addresses a gap in the literature and
enables a more realistic and scalable treatment of uncertainty in power system
operation.

3.2 Methodology

Analyzing uncertainty in power systems over time requires a multi-period stochas-
tic OPF formulation. However, directly including chance constraints in such a
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model often makes it computationally intractable. To obtain a tractable formula-
tion, we rely on the DC approximation of the AC-OPF, which is well-established
for high-voltage transmission systems (Wood et al. 2014). We build on the an-
alytical reformulation of chance constraints for static DC-OPF (Bienstock et al.
2012) and its extension to storage in (Mühlpfordt 2020), and generalize it to a
multi-period setting as a second-order cone program (SOCP) that is both exact
and tractable.

The uncertainty is modeled through Gaussian Processes, using GPR to obtain
predictive means and covariances. The GP structure is preserved under the linear
operators of the DC OPF, which enables all uncertain quantities—generation,
storage power, nodal injections, and line flows—to be described by affine trans-
formations of a Gaussian vector, which again is Gaussian. This allows the chance
constraints to be expressed in closed form, leading to a second-order cone program
(SOCP).

To handle forecast errors produced by GPR (Schulz et al. 2018), the decision
variables of generators and storage units react to RES generation with affine
control policies, which are linear functions (matrices). Affine policies are sim-
ple to implement, preserve the feasibility of power balance in every realization,
and ensure that the power balance constraints decompose nicely across the time
steps (Mühlpfordt et al. 2018).

The multi-period formulation captures storage charging, discharging, and energy
dynamics, while chance constraints enforce that thermal limits, voltage angle
limits, and storage bounds are satisfied with high probability.

The key contribution of this methodology is the integration of Gaussian un-
certainty modeling, affine control policies, and multi-period chance-constrained
DC OPF into a unified, fully analytical, and tractable optimization framework,
which simultaneously incorporates probabilistic forecasts, uncertainty modeling,
distributed energy storage, and a multi-period OPF formulation.

Figure 3.1 summarizes the model inputs and outputs. The formulation allows
variance constraints to be imposed and the locations of uncertain generation and
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Wind data
time series

Horizon
T = 12

Network
parameters

Risk
level

RES & Storage
locations

GPR

RES generation
forecasts

(mean, covariance)
CC-SOCP

Optimal generation & storage
schedules (t = 1, . . . , T ) Line flows Costs

Figure 3.1: Inputs and Outputs of the CC-SOCP model with Gaussian Processes (GPs) forecasted
with Gaussian Process Regression (GPR) (Bauer et al. 2022).

storage units to be specified. Solving the resulting chance-constrained second-
order cone problem (CC-SOCP) yields optimal generation schedules, storage
operation, line flows, and total generation costs.

Model

Following the notation in Section 2.1, the power grid is represented as a graph
A = (N ,L), where N denotes the set of buses and L the set of transmission
lines. Each bus i ∈ N can host various components: a fixed deterministic load
di, i ∈ D, a stochastic renewable energy source (RES) injection dRES

i , i ∈ DRES

(modeled as a negative load), a conventional generator gi, i ∈ G, or a storage unit
si, i ∈ S. To reducemodeling complexity, we assume that each bus contains either
a RES unit or a storage device, but not both simultaneously. This simplification
does not limit the applicability of the model to the test systems considered and
helps keep the formulation structurally straightforward.
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3.2 Methodology

Note: Both generators and storage units are treated as stochastic decision vari-
ables. While their operational setpoints are determined by the OPF solution,
their actual outputs depend on how they respond dynamically to fluctuations in
renewable generation. This distinction is critical in a stochastic framework: gen-
erators adjust to balance system variability, while storage units provide localized
buffering to partially offset RES uncertainty at their respective buses. Thus, all
controllable devices actively contribute to managing the variability introduced by
stochastic renewable generation.

The basic OPF formulation for minimizing generation costs without any uncer-
tainty is formulated as the following optimization problem:

min
gi(t),si(t)

∑

t∈T

∑

i∈N
C(PG,i(t))

s.t.
∑

i∈N
PD,i(t) + PG,i(t) + PS,i(t) = 0

ES,i(t+ 1) = ES,i(t)− hPS,i(t), ES,i(1) = Eic
S,i

P(x(t) ≤ x) ≥ 1− ε, P(x(t) ≥ x) ≥ 1− ε

0 ≤
√
V(x) ≤ σx

∀x ∈ {Fij , PG,i,∆PG,i, ES,i, PS,i}

∀i ∈ N , t, τ ∈ T , where PG,i, PD,i, PS,i, and ES,i are active power variables,
∆PG,i is the generation ramping constraint, andFij the line flows. SinceRESgen-
eration contains uncertainty, we need to reformulate all variables into stochastic
randomvariables. We do that withGaussian processes because their distributional
form is preserved under linear transformations. We reformulate as follows.

Variables as Gaussian Processes To model this uncertainty over time, we
use GPs. There are many types of random variables to model stochasticity. GPs
are especially suitable for our use case due to two reasons: They are simple, with
only mean and variance as parameters, and this parameterization is preserved
under linear transformations (Schulz et al. 2018). As such, they are flexible tools
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3 Analytical Uncertainty Propagation

for representing time series with probabilistic structure. Hence, all stochastic
variables are modeled as Gaussian processes (Schulz et al. 2018):

p(t) ∼ GP(µ,Σ),

denoted by the random variable p, where µ = E(p) denotes the mean vector, and
Σ = V(p) the covariance matrix. In practice, Σ can be obtained by discretizing
a continuous covariance function k(t, t′), t ∈ T defined over the time horizon T .
This is justifiable since forecasted Gaussian processes are typically continuous in
time, and k captures the temporal correlation structure of the process.

To model uncertainty over time, we represent each stochastic variable as a Gaus-
sian process p with a given mean vector P̂ and covariance matrix Σ. To ensure
a causal structure—i.e., where current values depend only on past and current
noise—we apply a Cholesky decomposition Σ = ΣLΣL⊤ and use the lower-
triangularmatrixΣL to generate the noise termwith causal temporal dependence.
This results in a process of the form:

p(t) ∼ GP(P̂ , P̃ ) with P̃ := ΣLΞ, Ξ ∼ N (0, I),

where P̃ is a zero-mean correlated noise vector. To improve numerical stability,
a small positive multiple of the identity matrix (e.g., 10−7I) is added to Σ before
decomposition if necessary (a technique known as whitening). The Gaussian
process p is modeled as:

p = P̂ +
∑

k

[P̃ ]k [Ξ]k,

or written with an added time dimension as

p(t) = P̂ t +

t∑

k=1

[P̃ t]tk [Ξ]k, t ∈ T

with mean µ = P̂ t, covariance ΣL =
∑t

k=1[P̃
t]2tk, and the stochastic germ

Ξ ∼ N (0, 1).
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3.2 Methodology

Following this form, a RES load dRES
i is then described as theGP {dRES,ti ∀t ∈ T }

with

PRES
D,i (t) = [P̂RES,t

D,i ] +

t∑

k=1

[P̃RES,t
D,i ]tk [Ξ]k, t ∈ T (3.1)

for all buses i ∈ N where P̂RES,t
D,i ∈ RT is the mean and [P̃RES,t

D,i ]2tk ∈ RT×T

the covariance.

With the optimization goal of minimizing generation cost and thus using as much
RES generation as possible, conventional generation and storage are the two
decision variables. As RES generation is stochastic, generation and storage need
to be stochastic as well. Hence, we also write them as realizations of (affine)
random processes {gi(t)∀t ∈ T } and {si(t)∀t ∈ T }. To react to the uncertainty
of RES loads, we introduce affine policies that yield feedback of the form

gi(t) = P̂ t
G,i +

∑

j∈N
P̃ t
G,i Ξj (3.2)

and
si(t) = P̂ t

S,i +
∑

j∈N
P̃ t
S,i,j Ξj , (3.3)

respectively. Note that the feedback is causal, as they cannot react to future
uncertainties.

The fixed load di has no covariance, i.e., Σ = 0, and hence reduces to d =

GP(PD,i, 0) with di(t) = P̂ t
D,i.

With all variables modeled as Gaussian processes, the net power of bus i then
sums up to

pi(t) = di(t) + dRESi (t) + gi(t) + si(t). ∀t ∈ T (3.4)
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3 Analytical Uncertainty Propagation

Note that the net power implicitly contains the voltage angles ϕi, 2

The mapping between the power injections pi, i ∈ N , and line flows fl, l ∈ L, in
a DC setting can be expressed by the Power Transfer Distribution Factor (PTDF)
Φ : RNb → RNl as

fij(t) = Φij · pi(t). (3.5)

Furthermore, we can derive the equation for the generation ramping constraints
from the definitions of generation in Equation (3.2) as

∆gi(t) = gi(t)− gi(t− 1), (3.6)

From Equation (3.3), we can derive the storage state as the discrete-time integrator

ei(t+ 1) = ei(t)− h · si(t), (3.7)

with initial condition ei(1) = EIC and h > 0 as the discretization time interval.
Thereby, (+/-)si(t) is the discharge/charge of the storage unit i ∈ S from time
t to t + 1. Additionally, we assume that storage systems have a prescribed final
state ei(T ). For simplicity, we do not use different variables or efficiencies for
charging and discharging in this setting.

Objective function The objective function of the optimal power flow problem
is the quadratic generation cost

Ci(gi(t)) = γi,2gi(t)
2 + γi,1gi(t) + γi,0, ∀i ∈ N

2 This becomes visible with the Kirchhoff Current Law (KCL) (Hörsch et al. 2017): pi =∑Nl
l=1 Kilfl with line flows fl = 1

xl

∑
i Kilϕi, ∀l ∈ L where xl is the reactance and

K ∈ RNb×Nl the incidence matrix.
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with γi,2 > 0 and γi,2, γi,1, γi,0 ∈ R and the stochastic variable gi. We assume
that there is no cost for storage use. To obtain a deterministic scalar value, we
take the expected value, i.e.,

E(Ci(gi(t))) = Ci(E(gi(t))) + γi,2V(gi(t)). (3.8)

Constraints The central constraint of the optimal power flow problem is the
power balance equation

∑

i∈N
pi(t) = 0, ∀t ∈ T

which splits nicely into the mean and covariance equations (Mühlpfordt et al.
2018) ∑

i∈N
(P̂ t

D,i + P̂ t
G,i + P̂ t

S,i) = 0T ,

P̃ t
D,j +

∑

i∈N
P̃ t
G,i + P̃ t

S,i = 0T ×T . ∀j ∈ N
(3.9)

Remaining technical constraints, such as generator limits and line capacities, are
written as chance constraints of the form

P(x(t) ≤ x) ≥ 1− ε,

P(x(t) ≥ x) ≥ 1− ε,
(3.10)

with the stochastic variables x = fij , gi,∆gi, ei, si and the risk factor ε ∈ (0, 0.1]

set to 0.05. Additionally, we can constrain the standard deviation with

0 ≤
√
V(x) ≤ Σx. (3.11)

Reformulating the chance constraints Combining equations (3.1)-(3.11)
yields a stochastic DC-OPF, albeit one that is not yet tractable due to several
reasons: with random processes, the dimension of the equality constraints is
infinite, and integrals are required to solve the chance constraints and cost function.

39
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To make it tractable, we apply the reformulation of the chance constraints by
Bienstock et al. (2012): For a Gaussian random variable x with mean µ and
standard deviation σ =

√
V(x(t)) with V(x(t)) =

∑t
k=1[Σ

L]2tk, the chance
constraint P(x ≤ x̄) ≥ 1− ε in Equation (3.10) is equivalent to the deterministic
constraints

µ+ λ(ε)σ ≤ x̄,

x ≤ µ− λ(ε)σ,
(3.12)

where λ(ε) = Ψ−1(1 − ε) and Ψ is the standard normal cumulative distri-
bution function (CDF) and x, x̄ the lower and upper bound of variables x =

fij , gi,∆gi, ei, si. Equation (3.11) can be reformulated analogously.

Optimization problem Equations (3.1)-(3.12) finally yield the second-order
cone problem (SOCP) formulation:

min
P̂ t

G,i, P̃
t
G,i, P̂

t
S,i, P̃

t
S,i, F

t
ij

∑

t∈T

∑

i∈N
(Ci(E(gi(t))) + γi,2V(gi(t)))

s.t.
∑

i∈N
(P̂ t

D,i + P̂ t
G,i + P̂ t

S,i) = 0T ,

P̃ t
D,j +

∑

i∈N
P̃ t
G,i + P̃ t

S,i = 0T ×T ,

µ+ λ(ε)
√
Σ2 ≤ x,

x ≤ µ− λ(ε)
√
Σ2,

∀ x ∈ {fij , gi,∆gi, ei, si}

(3.13)

∀i, j ∈ N , (i, j) ∈ L, t ∈ T , with x as the line flows fij , generation gi, generation
ramping ∆gi, storage state ei, and storage injections si.

Formulation (3.13) is convex, tractable, and analytically exact (Bauer et al. 2022).
Table 3.2 compares the optimization problem before and after the reformulation.
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Table 3.2: Comparison of original intractable Problem and the tractable SOCP (3.13).

Formulation (3.1)-(3.11) Reformulation (3.13)

Problem type No SOCP SOCP
# constraints Infinite Finite
Solve CCs Integral Exact formulation
Variables Random process Gaussian process
Convexity Not convex Convex
Tractability No Yes

Data

The method is applied to several standard IEEE test systems ranging from 5 to
300 buses (see Table 3.1). Renewable generation data is generated synthetically
as well as derived from historical wind power time series of the Northwind wind
farm from the ENTSO-E dataset (De Felice 2021), containing the years 2014
to 2021. Synthetic data enables better explainability and control during testing,
while real-world data enables validation in realistic scenarios.

Synthetic data Synthetic load and RES profiles are created using a simple
sinusoidal mean and a fixed variance matrix:

−P̂ t
D,i = P nom

D,i

(
1 + 0.1 · sin

(
2π(t− 1)

T

))
, ∀i ∈ N (3.14a)

−P̃ t
D,i =

{
Li from (3.18), ∀i ∈ D,

0T×T , otherwise,
(3.14b)

where P nom
D,i is the nominal load from the case files and P̃ t

D,i is given by the lower-
triangular matrix Li in (3.18). The minus sign reflects the modeling convention
of loads as negative injections. RES data is constructed analogously.
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Li = 10−4 ·




87 0 0 0 0 0 0 0 0 0 0 0

176 20 0 0 0 0 0 0 0 0 0 0

292 60 7 0 0 0 0 0 0 0 0 0

434 124 26 3 0 0 0 0 0 0 0 0

594 211 63 13 3 0 0 0 0 0 0 0

764 321 123 31 13 3 0 0 0 0 0 0

937 447 208 63 32 11 3 0 0 0 0 0

1103 582 317 109 65 27 10 3 0 0 0 0

1257 718 447 172 116 55 26 10 3 0 0 0

1392 847 591 251 184 98 53 26 10 3 0 0

1504 964 741 342 271 156 94 53 24 9 3 0

1590 1063 889 441 371 229 151 94 50 24 9 3




(3.18)

Real-world data: Gaussian Process Regression Real-world load and
RES forecasts are obtained using Gaussian Process Regression (GPR), resulting
in a Gaussian Process di = GP(µ, k) for each bus i ∈ N , where µ is the mean
and k(t, t′) the covariance kernel function over the time horizon T . This function
is later discretized into the covariance matrix Σ.

The kernel function used for GPR is set up of cosine, squared exponential (RBF),
and constant functions:

k = kcosine + kRBF + kconstant.

The individual kernel functions are:

kcosine(x, x
′) = σ2

1 cos

(
2π
∑

i

(x− x′)
l1

)
, (3.15)

kRBF(x, x
′) = σ2

2 exp

(
− (x− x′)2

2l22

)
, (3.16)

kconstant(x, x
′) = σ3, (3.17)

with hyperparametersσi ∈ R representing the variance and li ∈ R the lengthscale,
which controls periodicity and smoothness (Duvenaud 2014). The matrix Li

defines the time-correlated variance structure for each load or RES profile.

An example forecast based on the ENTSO-E dataset (De Felice 2021) is shown in
Figure 3.2. A rolling window of 5 hours is used to smooth the prediction, which
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Figure 3.2: GPR-fitted and forecast wind power outputs smoothed with a rolling window of 5 hours.

illustrates typical daily variability in wind profiles. Note that the values are scaled
to fit the kernels and are scaled back to only positive values afterwards.

3.3 Experiments

The proposed model in (3.13) is tested using both synthetic and real-world data
on a variety of IEEE test grids. We begin with case5 to explore the dynamics of
storage and uncertainty, followed by scalability tests on larger synthetic grids. In
the next section, the model is further evaluated on a real-world transmission grid.

IEEE 5-bus test case

To evaluate the role of storage in mitigating uncertainty from renewable energy
sources, we consider three scenarios:

– (S1) No storage,

– (S2) With storage,

– (S3) With storage and variance constraints on generation.
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We compare the system behavior using both synthetic data for better interpretabil-
ity and predicted RES time series based on Gaussian Process Regression (GPR).

Table 3.3: Parameter settings for the IEEE 5-bus system.

Type Parameter Values

Generation
∀i ∈ G

Active power limits PG,i = 0.0 PG,i = 1.1Pmax
G,i

Ramping limits ∆PG,i = -0.15Pmax
G,i ∆PG,i = 0.15Pmax

G,i

Cost coefficients γi,2 = 0.01, γi,1 = 0.3, γi,0 = 0.2

Storage
∀i ∈ S

Capacity limits Ei = 0.0 Ei = 6.0

Active power limits PS,i = -10.0 PS,i = 10.0

Initial condition E(Eic
i ) = 2.0 V(Eic

i ) = 0.0

Border limits ET
S,i = 0.19 E

T

S,i = 0.21

System Setup The test network consists of 5 buses and 6 transmission lines.
Wemodify the topology by placing loads at busesD = {2, 3}, a wind farm (RES)
at busDRES = {4}, a storage at bus S = {5}, and generators at buses G = {1, 4}.
Due to modeling requirements allowing at most one generator per bus, generators
1 and 2 have been merged by summing their capacities, and generator 5 is replaced
by a storage unit. Minor adjustments to cost coefficients and line ratings were also
made (see Table 3.3).

To limit fluctuations in generation, we impose variance constraints on generator
outputs: √

V(gii(t)) ≤ 0.01, ∀t ∈ T (3.19)

which corresponds to scenario (S3).

Results

Figure 3.3 illustrates the network state at time t = 6, a representative point where
storage is nearly fully charged. In scenario (S2), the storage injects a significant
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(a)Without storage. (b)With storage.

Figure 3.3: IEEE case5: Network state without (upper) and with (lower) storage at time t = 6, with
generation (dark blue), wind generation (light blue), loads (red), storage (green) and line

flows (black).

amount of power, effectively offsetting generation from g1, and demonstrating the
storage’s ability to shift energy temporally.

Figures 3.4a and 3.5a present the load profiles along with their corresponding
uncertainty bands (shaded areas). In the synthetic case, the uncertainty is smooth
and predictable, allowing generators and storage to respond in a more uniform
manner. In contrast, the real-world forecast shows more volatility and a larger
uncertainty over time, imposing a bigger challenge the system’s flexibility.

Generation profiles shown in Figures 3.4b and 3.5b illustrate the impact of storage
and variance constraints on generator outputs. Without storage (S1, brown), both
generators show considerable fluctuations, particularly around periods of high
RES generation, which can lead to increased costs for ramping in practice and
more stress on the grid and less stable voltages. When storage is introduced
(S2, blue), the generation curves are notably flattened, especially around midday
peaks, as storage absorbs surplus energy and injects it when needed. Scenario
S3 (green) imposes variance constraints on generators, which further smooths the
generation profiles by shifting uncertainty to the storage unit. This demonstrates
storage’s dual role: not only energy shifting but also uncertainty mitigation.

Storage operation is visualized in Figures 3.4c and 3.5c. For both data types,
storage is charged during periods of high renewable availability and discharged
to buffer demand peaks. In the volatile case, storage also absorbs increased fore-
cast uncertainty, reducing the need for fast adjustments of generators. Terminal
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(a) Left: fixed load d2; right: the uncertain load d4.

(b) Power injections of generators {g1, g4}.

(c) Left: Power injections of storage s5; right: respective change of power.

(d) Line flows of lines {l1, l2}.

Figure 3.4: OPF results for the IEEE 5-bus grid with synthetic wind generation without storage (S1,
brown), with storage (S2, blue), and with storage and variance constraints (S3, green).
The random variables x are depicted with their mean E(x) (solid) and scaled standard

deviation E(x)± λ(0.05)
√

V(x) (shaded).46
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(a) Left: fixed load d2; right: the uncertain load d4.

(b) Power injections of generators {g1, g4}.

(c) Left: Power injections of storage s5; right: respective change of power.

(d) Line flows of lines {l1, l2}.

Figure 3.5: OPF results for the IEEE 5-bus grid with real-world wind generation without storage
(S1, brown), with storage (S2, blue), and with storage and variance constraints (S3,
green). The random variables x are depicted with their mean E(x) (solid) and scaled

standard deviation E(x)± λ(0.05)
√

V(x) (shaded).
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Figure 3.6: Computation time of all test cases with respect to the number of uncertainties and
storage units.

energy constraints are met by recharging toward the horizon’s end, emphasizing
foresighted scheduling to maintain reliability under uncertainty.

Finally, line flows in Figures 3.4d and 3.5d reflect the combined effect of load,
generation, and storage. Some lines show reduced flows with active storage,
suggesting that storage can locally relieve lines and smooth power flows. Other
lines remain sensitive to RES variability, particularly in the real-world forecast
scenario. This demonstrates that while storage mitigates uncertainty, its effect is
often local and depends on network topology and placement relative to RES and
loads.

Overall, these results emphasize the critical role of storage in enhancing both op-
erational flexibility and robustness to renewable uncertainty in small test systems.

Scalability Testing

We test scalability on IEEE 39, 57, 118, and 300-bus systems. Up to 7 uncertain
loads and storage units are placed per system. Loads are selected based on demand
magnitude; storage units are assigned randomly.
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The OPF results for the IEEE 39-bus system are provided in the Appendix (Sec-
tion A.2). The qualitative results mirror those of case5: storage units significantly
reduce generator variance, smooth generation profiles, and lower total system
costs.

Figure 3.6 shows computation time versus system size and number of uncertain
nodes. Small systems solve in seconds, but runtime grows quickly for larger
grids, reaching up to 15 minutes for cases with over 100 buses. This highlights
the computational challenges posed by increasing network size and uncertainty.
Longer time horizons further increase complexity: solving for 24 hours takes about
10 times longer than 12 hours due to quadratic growth in variables. The figure
also reveals that more uncertain RES and storage units lead to longer computation
times, reflecting the trade-off between model detail and solver tractability.

3.4 Summary & Discussion

This chapter presented and tested amulti-period stochastic DC-OPFmodel formu-
lated as a second-order cone program (SOCP). Themodel incorporates distributed
storage units and models uncertainty from renewable energy sources (RES) us-
ing Gaussian processes and chance constraints. Forecasts are generated through
Gaussian Process Regression (GPR). The method is validated on a range of IEEE
test cases, including scalability.

Strength The method offers a tractable and analytically exact formulation for
modeling uncertainty in power systems. It scales well to networks of moderate
size, up to around 100 nodes, without requiring additional optimization. Across all
tested cases, storage significantly improves grid operation in high-RES scenarios
bymitigating uncertainty, reducing total generation costs, andflattening generation
profiles, thus enhancing predictability. Additionally, larger grids generally handle
uncertainty better due to structural redundancy and the distributed nature of their
components.
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3 Analytical Uncertainty Propagation

Limitations Despite these strengths, the method has several limitations. Most
notably, its computational complexity grows rapidly with the time horizon, the
number of uncertain nodes, and the number of storage units. For instance, solving
the IEEE case300 with ten uncertain loads and ten storage units over a 12-hour
horizon already takes several minutes. Furthermore, the model relies on the DC
approximation of power flow, which neglects voltage magnitudes and reactive
power and may be less accurate for meshed or distribution-level networks. The
assumption of Gaussian uncertainty, while analytically convenient and partly
justified through aggregation effects, does not always hold in practice and may
limit the realism of the results. Finally, GPR itself is sensitive to the choice
of kernel and its parameters, which makes the forecasting step less robust than
desired and therefore needs to be fitted carefully.

Future ResearchThere are several directions for future research. Improving the
method’s scalability through sparsity-aware solvers or decomposition techniques
could make it suitable for larger systems. Extending the approach to an AC-OPF
formulation would improve accuracy, especially inmeshed networks. More robust
forecasting models could replace GPR as Gaussian Process Regression has its
limits. The storage model could be enhanced to include charging and discharging
efficiencies, degradation effects, and operational costs. Lastly, the approach could
be applied to more complex planning and market scenarios, including optimal
siting and sizing of storage or adapting affine control policies to specific regulatory
or market conditions.

Overall, the proposed method provides a rigorous and tractable framework for
incorporating uncertainty and storage in power system operation. It delivers valu-
able insights into system behavior under high RES penetration and highlights the
importance of optimal storage deployment for future grid planning and reliability.
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4 Case Study: Turkish
Transmission Grid

Publication reference for this chapter

Bauer, R. and Mühlpfordt, T. and Ludwig, N. and Hagenmeyer, V. (2022).
“Analytical uncertainty propagation and storage usage in a high RES
Turkish transmission grid scenario”. Proceedings of the Thirteenth ACM
International Conference on Future Energy Systems, p. 489-495. DOI:
10.1145/3538637.3539762

To further validate the multi-period DC stochastic OPF model from (3.13), we
apply the model to a real-world setting: a newly built Turkish transmission grid.
Wind power plants are modeled as uncertain renewable energy sources (RES),
and we evaluate the optimal storage placement under three different scenarios.
This chapter addresses research question

RQ2 What influence does BESS placement have on managing uncertainty in the
grid?

This chapter is structured as follows. First, we provide background information
on the Turkish transmission system and its strategic importance. Then, we detail
the modeling approach and key assumptions used in our analysis. Following this,
Section 1.2 presents the experiments and results evaluating the role of battery
energy storage systems (BESS). Finally, Section 1.3 summarizes themain findings
and conclusions.
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4 Case Study: Turkish Transmission Grid

4.1 The Turkish Transmission Grid Model

Background

Turkey plays a strategic role in the European energy system as a transit country
for electricity and gas imports from Iran and Azerbaijan into the EU, with 2.2 GW
of interconnection capacity via Bulgaria and Greece (EUROPEAN et al. 2024,
Schröder et al. 2017).

The country has significant renewable energy potential—particularly wind in the
west and solar in the southeast and central Anatolia—and continues to attract
foreign investments (Bart 2020). Its high-voltage transmission grid, operated by
the state-owned TEİAŞ, spans 154 kV and 400 kV and is rapidly expanding (Gullu
2024).

Despite this, the system faces persistent challenges: high energy theft rates (up
to 20%) (EU 2014), dependency on fossil fuel imports (Tokyay 2022), and grid
stability issues, including a major blackout in 2015 (TEIAS 2015). In addition,
much of the infrastructure is exposed to seismic and drought risks (AFAD 2020).

As of 2019, Turkey had over 100 GW of installed capacity and produced more
than 300 TWh of electricity. Renewables made up 10% wind, 7.5% solar, and
roughly 32% hydroelectric power (Agency 2021, IRENA 2021). RES generation
more than doubled between 2009 and 2021.

To meet its 2053 net-zero emissions goal, Turkey plans to add 60 GW of new
wind and solar by 2035 and expand grid flexibility through large-scale BESS
installations. New regulations (2023–2024) require renewable projects to include
co-located storage (Syed 2024, Gullu 2024).
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4.1 The Turkish Transmission Grid Model

Figure 4.1: Overview of the Turkish transmission grid model used in this study.

Model Details

The Turkish transmission grid is built from the following sources: Line pa-
rameters—resistance (R), reactance (X), and susceptance (B)—are statistically
derived using the distributions proposed in Kurban and Filik (2006). Line ratings
are taken from a TEİAŞ transmission map (TEIAS 2004). Generator capacities
are obtained from Peker et al. (2018) and adjusted to reflect national-level capac-
ities in Japan International cooperation agency (2011). The Turkish transmission
grid model consists of 61 buses, 92 transmission lines, and 24 generators. The
grid topology is adapted from Kurban and Filik (2006), while electrical parame-
ters are based on estimates and national data sources. The resulting topology is
visualized in Figure 4.1, and the complete casefile is provided in Appendix A.1.

Wind power is concentrated in the western regions of Turkey (Marmara, Aegean,
and Mediterranean), where wind resources are strongest, as shown in Figure 4.2.
Accordingly, ten wind farms are placed in the western part of the grid, close to
both wind potential and major industrial load centers (Godron et al. 2018), as
visualized in Figure 4.3.

Wind generation follows the data andGaussian Process forecasts from the previous
section, smoothed with a rolling window of size 10 and scaled to the network’s
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4 Case Study: Turkish Transmission Grid

Figure 4.2:Wind capacity and locations for wind power plants in Turkey (Godron et al. 2018).

(a) Loads. (b) Conventional power plants.

(c)Wind farms.

Figure 4.3: Locations of OPF components in the Turkish transmission grid.
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capacity. The total system load is assumed to be 91,000 MW. Wind power is
scaled to 25% (23,000 MW) of this load—more than twice Turkey’s actual wind
share in 2021—to simulate future high-RES scenarios.

Load profiles are based on a representative day in Peker et al. (2018) and scaled to
match total demand. Loads are modeled synthetically as in the previous section,
with spatial distribution matching historical usage patterns.

Storage units are not fixed but placed variably across the grid depending on the
scenario. The time horizon is set to 12 hours, i.e., T = {1, . . . , 12}, to reduce
computational complexity. Since data is scaled to the horizon, this only changes
temporal resolution—not the behavior of the results.

4.2 Experiments

Table 4.1: Data and test grids for Chapter 4.

Data Type Details
Grids 61-bus Turkish Transmission Grid (custom)
Time Series ENTSO-E Wind Generation Data (2014-2021),

Northwind (De Felice 2021)

The used data is summarized in Table 4.1.

Scenarios

To assess the impact of battery energy storage systems (BESS), we compare
scenarios with and without storage integrated into the transmission grid. In this
analysis, we do not consider variance constraints on generation, as there are no
new insights compared to the last chapter.
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4 Case Study: Turkish Transmission Grid

Three storage placement strategies are analyzed to evaluate how location affects
system behavior:

(a) Close to wind generation,

(b) Close to load,

(c) Far away from load and wind generation.

In all three scenarios, ten storage units are deployed, each with a capacity of
5 MWh and a maximum power rating of 10 MW. Their respective bus locations
are:

(a) Na = {1, 2, 8, 9, 10, 11, 38, 39, 41, 43},

(b) Nb = {2, 5, 6, 15, 16, 20, 21, 34, 41, 45},

(c) Nc = {24, 27, 28, 29, 31, 33, 50, 57, 58, 59}.

All remaining parameters are kept consistent with previous experiments (see
Table 3.3).

Results

We begin by analyzing scenario (b), where storage is placed near major load
centers, followed by a comparison of all three placement strategies.

Figure 4.4 illustrates the power flow and storage operation results in the Turkish
transmission grid under real-world renewable energy source (RES) forecast un-
certainty. For numerical stability, the variables are scaled during computation
and should be interpreted in GW rather than MW. In Figure 4.4a, the left plot
depicts the fixed and uncertain loads, showing how the uncertainty bands capture
the uncertainty in the demand profile. The generation profiles in Figure 4.4b
reveal that, without storage (brown), conventional generators must closely follow
the net load variations, leading to substantial ramping and variability in their
output. When storage is introduced (blue), generation is notably smoother, as
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4.2 Experiments

(a) Left: fixed load−d61; right: the uncertain load d1.

(b) Power injections of generators {g39, g50}.

(c) Upper: State of storages {s5, s41}; lower: respective storage injections.

Figure 4.4: Turkish Network: Results for power flow (MW) without storage (brown) and with
storage (blue). The random variables x are depicted with their mean E(x) (solid) and the

scaled standard deviation λ(0.05)
√

V(x) (shaded).
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Figure 4.5: Line flows for scenario (a) with storage close to wind farms.

storage units absorb fluctuations and reduce the need for rapid adjustments in
conventional generation. The storage operation plots in Figure 4.4c confirm that
storage units charge during periods of high RES availability and discharge to meet
demand peaks, effectively buffering uncertainty and flattening the net load seen
by generators.

Figure 4.5 shows the resulting line flows for the scenario where storage is placed
close to wind farms (a). It shows that the lines in the northwest region of the grid
carry the highest power flows, indicating these transmission corridors are critical
for managing energy transfer under uncertain RES conditions. The presence
of storage mitigates flow variability on many lines by smoothing injections, for
example, more than in scenario (c). However, some lines connected to wind farms
still show heavy loading.

The results for the different storage locations are given in Figure 4.6. All storage
units are used, and many are filled fully. At time t = 6, when storage is used
most, the total storage injections are (a) 35 MW, (b) 36 MW, and (c) 28 MW. This
indicates that storage is used most when it is near demand or load. However, as
DC-OPF ignores losses, the differences might be even larger for AC-OPF.

A comparative analysis of all storage placement scenarios is shown in Figure 4.6.
At time step t = 6, when storage activity is at its peak, the total injections from
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4.2 Experiments

(a) Storage directly at wind farms in the west. (b) Storage close to high demand in the center.

(c) Storage far away from wind farms in the east.

Figure 4.6: Storage fill state for three scenarios at t = 5.

storage are: (a) 35 MW, (b) 36 MW, and (c) 28 MW. These results suggest that
storage is utilized most effectively when located near demand centers. As DC-
OPF neglects network losses, the actual benefit of better placement might be even
more pronounced in an AC-OPF formulation.

The mean active power line flows for all scenarios at t = 6 are compared in
Figure 4.7, with scenarios (a), (b), and (c) shown in light blue, magenta, and
brown, respectively. We can see that when storage is placed remotely (scenario
c), key interregional transmission lines are significantly more loaded. Some lines
approach their thermal limits and may be considered congested.

In contrast, scenario (b) with storage near load consistently results in the lowest
overall line utilization, indicating that this placement strategy minimizes trans-
mission stress.

Figure 4.8 summarizes the total active power line flows over all buses, given
over the full horizon. When storage is colocated with wind generation (scenario
a), power flow profiles follow the wind generation curve. Storage near load
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4 Case Study: Turkish Transmission Grid

Figure 4.7: Differences in mean active power line flows for three storage scenarios (a)-(c) for t = 6.

Figure 4.8: Sum of absolute mean active power line flows for all three storage scenarios (a)-(c) and
sum of mean loads over horizon T .
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(scenario b) yields similar but slightly reduced flow peaks. The most pronounced
flow swings are seen in scenario (c), where storage units, located far from both
generation and demand, cause sharp injections and withdrawals early and late in
the horizon to satisfy their boundary constraints.

These results confirm that the Turkish grid’s behavior under uncertainty mirrors
the findings from the previous case studies: storage units play a crucial role
in managing variability by absorbing RES uncertainty, stabilizing generation
profiles, and relieving stress on key transmission lines. The demonstrated ability
of storage to smooth generation and line flows supports its consideration as an
essential component in Turkey’s evolving power system.

4.3 Summary

The case study of the Turkish transmission grid confirms that the proposed multi-
period stochastic DC-OPF formulation performs reliably on realistic, large-scale
networks. Storage units prove effective in mitigating renewable uncertainty and
enhancing operational stability.

Among the evaluated strategies, placing storage close to load centers yields the
best system-wide benefits: lower line loading, more stable generation schedules,
and fewer operational bottlenecks.

These findings support a key recommendation for future high-RES power sys-
tems: integrating distributed storage—especially near demand centers—can sub-
stantially reduce operational stress and improve flexibility.

Notably, since the time of this study, Turkey has taken steps to implement large-
scale storage solutions (7.5 GW by 20235) in alignment with its 2053 net-zero
roadmap and REPowerEU goals. According to Gullu (2024), the transmission
lines that will be most overloaded in the Turkish transmission grid in 2035 are
close to the load in the west. Suggested storage locations are in the west, too,
but not solely as Turkey also has a lot of PV power in the south-east. The largest
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4 Case Study: Turkish Transmission Grid

capacity, however, is in states with much load, not those with the most wind
power. Additionally, as it is connected to a large gas supply country, it has seven
gas pipelines through the country and sees itself as a central country in the future
world energy market (Gürses 2022).
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Part II

The Shapley Value:
Towards Application in the

Power Grid
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5 Introduction

The second part of this thesis shifts from managing uncertainty to improving ex-
plainability in power systems, while maintaining a focus on battery energy storage
systems (BESS). While Part I showed that BESS can mitigate the variability of
renewables and support grid stability, this alone is often not enough in today’s
complex electricity systems.

As the energy transition advances, power systems shift from centralized generation
to distributed renewables, increasing volatility and making power flows harder to
predict and control. This poses new challenges for TSOs, who must ensure secure
operation while managing uncertainty.

Traditional tools like PMUs or power flow simulations show the system state but
not who or what causes specific outcomes. For example, in redispatch, congestion
may affect many lines, but only a few are responsible. Simple proportional cost
allocations can be unfair and mislead future planning. TSOs need better methods
to understand and fairly attribute the impact of individual grid components.

In Part II, we aim to evaluate each component’s contribution to system perfor-
mance more fairly and transparently. If the true impact of a line, generator, or
storage unit is known, it can be priced accordingly and controlled more effectively.
To share total system costs, we use an allocation rule—specifically, the Shapley
value.

Allocation rules are widely used to distribute costs or benefits in multi-agent
systems. Among them, the Shapley value stands out for its fairness properties.
It has been applied in economics, machine learning, and increasingly, in power
systems. In our context, fairness helps uncover the true operational role of each
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grid component, such as how much a congested line contributes to redispatch
costs or how much a storage unit helps relieve it.

The use case of redispatch cost allocation was introduced by a German TSO and
studied in Voswinkel et al. (2022), which applied the Shapley value to a simple
DC-OPF model to allocate costs between TSOs and distribution system operators
(DSOs). While promising, the study had two main limitations: it used the linear
DC-OPF (ignoring reactive power), and it did not evaluate the Shapley value’s
behavior in more complex grids or real-world scenarios.

This part addresses both points. First, we improve realism by using the nonlinear
AC-OPF formulation, as DC-OPF solutions are never AC feasible (Baker 2021).
Second, we respect data privacy by solving it in a distributed way—so grid oper-
ators do not need to share their full models. Third, we extend the Shapley value
beyond cost allocation: we use it as an explainability tool to assign utility. Similar
to explainable AI (XAI), where Shapley is used to evaluate feature importance1,
we apply it to grid components. This allows us to quantify each component’s
influence on total cost or constraint violations—more precisely than proportional
methods, which serve as our baseline.

The rest of this part is organized as follows: Chapter 6 introduces game theory,
allocation rules, and the Shapley value. Chapter 7 presents a distributed AC-OPF
formulation that respects data privacy. Chapter 8 compares DC and AC-OPF
results for cost allocation and congestion patterns. Chapter 9 includes BESS units
and analyzes their role using active and reactive power. Chapter 10 conducts a
sensitivity analysis on the robustness of Shapley values across component types.

1 The SHAP package (SHapley Additive exPlanations) is used in XAI (eXplainable AI). It uses
the Shapley value to assign each input feature a fair contribution to a model’s prediction, making
black-box models like neural networks more interpretable. It explains which features influence
predictions and in what direction.
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6 Fundamentals of Allocation
Rules

This chapter provides the theoretical foundation for allocation rules in power sys-
tems and explains how different methods assign costs or benefits to individual
components in an interconnected electricity network. It also motivates why coop-
erative game-theoretic approaches—in particular the Shapley value—are central
for obtaining fair and transparent allocations.

Allocation rules are mathematical tools used to assign system-wide costs (e.g.,
from generation, losses, redispatch, investments) or profits to individual partici-
pants in the power grid (e.g., system operators, consumers, technical components).

In interconnected power systems, components influence each other through the
network: A generator’s output changes power flows, a line congestion results in
redispatch costs, and a battery can shave RES generation peaks. Because these
interactions are not always local, simple rules, such as proportional sharing, often
misrepresent ’true’ impact. Hence, we need to choose an appropriate allocation
rule suited to the base system.

In the following, we define the requirements for allocation rules in power sys-
tems—with a particular focus on fairness—provide an overview of the main
existing methods, explain why the Shapley value is the most suitable choice, and
introduce the mathematical foundations.
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6 Fundamentals of Allocation Rules

6.1 Allocation Rules

There are various types of allocation rules that can all be used for power grids.
They do have different properties that serve different purposes, so let us put up
some requirements that an allocation rule for cost and utility allocation should
fulfill, and then see why the Shapley value is the most suitable one.

Requirements for Power Systems

In our problem setting we have several participants in the power grid, e.g., grid
components or TSOs, andwewant to know their contribution to the total operation
or redispatch costs. Hence, the goal is to allocate the total system costs to
individual participants or components in the power grid.

Doing that in a fair way is essential because it shows the ’true’ costs for each
participant. At the same time, the value should be interpretable to make the grid’s
complex inner workings transparent, as well as predictable and reproducible. This
suggests an analytical value. Moreover, the method must reflect how components
interact through the network, as these interactions are often non-local and some-
times non-linear.

Hence, the desired requirements, similar to Conejo et al. (2002), are:

– Analytical: Deterministic and comprehensible.
– Transparency: Cost allocation needs to be understandable, and utility
should help to understand the inner grid dynamics.

– Fairness: Fair cost allocation and ’true’ contributions of a grid component.
– Consider power flows: The grid needs to be considered as it heavily
influences generation and thus costs.

– Consider location: Location is considered through the grid; where a
component is located in the grid matters and should reflect in the allocation.
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6.1 Allocation Rules

– Consider participants’ interactions: We want to depict the complex
interactions between grid components.

These requirements already exclude many heuristic or tracing-based methods,
which often fail to capture interactions or depend on ad-hoc assumptions. Co-
operative game theory is a natural framework here because it explicitly links the
allocation of a participant to its contribution. Fairness is an important require-
ment, so let us define what we mean by that quantitatively.

A First Description of Fairness

In the context of power systems, fairness refers to how well an allocation reflects a
participant’s actual impact on the system. Three aspects are particularly relevant:

– Marginal impact: Participants should pay or receive amounts proportional
to the change in system cost they induce.

– Consider location: Allocations should reflect only physical influence
through the network, without a locational bias.

– Consistency in representation: Allocations should not change unexpect-
edly when similar components are grouped or separated.

These fairness principles guide the selection of allocation rules, since not all of
them fulfill them, and are formalized mathematically later in the chapter.

Overview of Allocation Rules

A selection of the various game-theoretic and flow-based allocation rules, along
with their properties, are listed in Table 6.1. There are three families: the core
and Shapley family from cooperative game theory, and the power flow-based
methods. The simple proportional pro-rata rule is added for completeness. We
shortly describe all the families before we reason the choice of the Shapley value.
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6.1 Allocation Rules

Core-Related Methods

The core is a fundamental concept in cooperative game theory (Peters and Peters
2008, Fiestras-Janeiro et al. 2011). It defines a set of stable allocations where no
coalition can improve its payoff by deviating. Formally, it is a convex subset of
Rn defined by linear inequalities that satisfy efficiency and coalitional rationality.
While it ensures stability, the core is not always non-empty—it exists only for
balanced games1. Stability is not part of the fairness axioms, which is why the
Shapley value need not lie in the core.

Two key rules derived from the core are the Nucleolus and the Kernel. The Nucle-
olus, introduced by Schmeidler (1969), minimizes the maximum dissatisfaction
(excess) among all coalitions and yields a unique solution if the core is non-empty.
It assumes an essential game2 but is computationally intensive due to nested LPs.

The Kernel models bilateral bargaining and satisfies efficiency and individual
rationality. It does not guarantee uniqueness and is harder to compute due to
its nonlinear formulation. Both values focus on coalition stability but are less
transparent than Shapley-based rules.

Shapley-Family Methods

The Shapley value and its variants allocate costs based on marginal contributions.
All are analytical, ensuring existence and uniqueness.

The Shapley value, introduced by Shapley (1952), is the foundational solution
concept in cooperative game theory. It distributes total system costs based on each
player’s average marginal contribution across all possible coalitions. Importantly,
it is the only value that satisfies all key fairness axioms: efficiency, symmetry,

1 “A balanced game is one where, informally, no coalition structure can demand more than the
grand coalition’s value.” (Hougaard 2009)

2 A game is essential if the grand coalition yields more than the sum of individual values. (Peters
and Peters 2008)
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null player, and additivity. This makes it particularly attractive for applications
that demand fairness, interpretability, and analytical transparency—such as cost
allocation or influence quantification in power systems. It is defined rigorously
later in Section 6.3.

TheMyerson value adapts the Shapley value to networked systems (Caulier et al.
2017), where only connected players can form coalitions.3 It reflects communi-
cation or physical constraints and scales better due to sparse network topologies.
Applications include power systems and explainable AI (Homberg et al. 2024).

The Aumann–Shapley value extends the concept to continuous cost functions
(Caulier et al. 2017), using path integrals over gradients. It works well in convex
settings like DC-OPF, but in nonconvex models such as AC-OPF, undefined
gradients can cause ambiguity and instability.

TheWeighted Shapley value allows for asymmetric players (Shapley 1953, 1952),
introducing weighted symmetry and a relaxed version of additivity (Béal et al.
2018). This is useful in applications where voting power or influence varies
among players.

Power Flow-Based Methods

Flow-based methods allocate costs based on physical grid behavior. They are
transparent and fast, but do not satisfy game-theoretic properties likemarginality.

Proportional Sharing distributes power flows proportionally among outgoing
branches (Bialek 1996). While simple and intuitive (Conejo et al. 2002), it
is based on DC approximations and lacks accuracy for systems with losses or
reactive power.

The Z-bus method uses the impedance matrix to allocate costs based on voltage
angles (Conejo et al. 2007). It captures AC behavior but is computationally heavy

3 Disconnected networks limit feasible coalitions.
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and scales poorly. Related approaches like Incremental Transfer Loading (ITL)
suffer from volatility and allocation imbalances (Karthikeyan et al. 2013).

PTDF-based methods rely on linear sensitivity factors (Kern and Wendlinger
2022) that quantify how injections affect line flows under DC assumptions. They
are scalable and computationally efficient but unsuitable for nonlinear AC settings.

Proportional Rule

The pro-rata method is the most basic allocation rule, assigning costs directly
proportional to usage (Conejo et al. 2002). It is entirely independent of the network
structure, highly scalable, and extremely easy to implement. However, it neglects
both physical flow characteristics and strategic interactions. Consequently, it
often leads to allocations that are considered unfair in complex systems (Ilic et al.
1998). Nonetheless, it is a common industry benchmark due to its simplicity and
transparency, and shall also serve as a benchmark at some point in this thesis.

Why not use non-cooperative game theory?
Non-cooperative game theory is not suitable for our setting. As Robert Au-
mann notes in an interview (van Damme 1998), non-cooperative models focus on
strategic behaviour and players acting against each other, as in pricing or bidding
problems. In contrast, cooperative game theory focuses on the joint outcome
through cooperation and how to allocate it among participants. In power sys-
tems, we see cooperation of congestion or components as being ’simultaneously
active’ and want to determine their contribution to the overall cost. Hence, only
cooperative game theory suits the purpose.

Why choose the Shapley value?

Game-theoretic methods offer stronger fairness guarantees, but differ in trans-
parency, uniqueness, and computational effort. Among them, the Shapley value
is the only analytical and fully axiomaticmethod that does not require an additional
optimization criterion, unlike theNucleolus or kernel. Flow-basedmethods, while
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intuitive and fast, cannot represent marginal contributions and therefore cannot
capture true system impact.

For this thesis, transparency and analytical tractability are essential. We therefore
adopt the Shapley value as the main allocation method and use a proportional rule
as a simple baseline. In the following, we give the game-theoretic foundations to
define the Shapley value and its fairness axioms rigorously.

6.2 Cooperative Game Theory

This section introduces the basic notions of cooperative game theory. It is based
on the book “An Introduction to Allocation Rules” by Hougaard (2009).

In the power grid setting, the problem of sharing operation costs can be formulated
as a cooperative game. A cooperative game consists of a set of players P , who
may collaborate by forming coalitions Ω ⊆ P , and a cost function Φ assigning a
value to each coalition. The utility is assumed to be freely transferable between
players, meaning all participants use the same unit of payment. A cooperative
game with this property is called a transferable-utility (TU) game (Peters and
Peters 2008, Hougaard 2009).

Definition 1 (Cooperative Game with Transferable Utility (TU Game)) ATU
game is a tuple (P,Φ), where P = {1, . . . , N} is the set of players and the cost
function Φ : P(P) → R assigns each coalition Ω in the power set P(P) a value
Φ(Ω) ∈ R. The empty coalition satisfies Φ(∅) = 0, and the full set Ω̄ = P is the
grand coalition.

As defined above, all players may act jointly by forming the grand coalition, which
produces the total cost Φ(P) (e.g., obtained from an OPF). Distributing this total
cost among the individual participants p ∈ P is called a payoff distribution. Such
a distribution is determined by an allocation rule Ψ (Hougaard 2009).
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Figure 6.1: The Taxi Game; the path costs represent the marginal contributions.

Definition 2 (Cost Allocation Rule) Consider a TU game (P,Φ). A cost allo-
cation rule is a mapping Ψ : P → Rn with n = |P| such that

∑

p∈P
Ψp(Φ) = Φ(P), (6.1)

i.e., the total allocated cost equals the value of the grand coalition. An allocation
is the resulting vector (Ψp(Φ))p∈P ∈ Rn.

To compute an allocation rule, the contribution of a player p ∈ P to a coalition Ω
is often needed, which is called the marginal contribution (Hougaard 2009).

Definition 3 (Marginal Contribution) In a TU game (P,Φ), the marginal con-
tribution of a player p ∈ P to a coalition Ω ⊆ P \ {p} is defined as

Φ(Ω ∪ {p})− Φ(Ω), (6.2)

i.e., the change in cost caused by adding player p. Note that the marginal
contributions can be negative in special cases.

Taxi Example

A simple taxi-sharing example can illustrate cost sharing with marginal contribu-
tions intuitively before applying them to power systems.
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6 Fundamentals of Allocation Rules

Example 1 (Taxi Game) Three passengers pA, pB , pC share a taxi but exit at
different locations. Let Φ be the cost function. Individually, they would pay

Φ(pA) = 6, Φ(pB) = 8, Φ(pC) = 11.

If they ride in pairs,

Φ({pA, pB}) = 11, Φ({pB , pC}) = 14, Φ({pA, pC}) = 13,

and all three together pay

Φ({pA, pB , pC}) = 15.

The costs are visualized in Figure 6.1. The pair (P,Φ) forms a TU game.

Marginal contributions. For instance, the marginal contribution of pA to
{pB , pC} is

Φ({pA, pB , pC})− Φ({pB , pC}) = 15− 14 = 1.

Towards a fair allocation. A natural idea is to consider all possible orders in
which passengers might enter the taxi and record how much extra cost each one
adds when joining the group formed so far. For pA, this involves the coalitions
∅, {pB}, {pC}, {pB , pC}. Their marginal contributions vary: joining the nearly
complete coalition {pB , pC} adds only 1, joining {pB} or {pC} adds 3, and
joining an empty taxi adds 6.

A weighted average (reflecting how often each coalition appears) yields approxi-
mately

pA =
6 + 1

3
+

3 + 2

6
= 3

1

6
≈ 3.167, pB =

8 + 2

3
+

5 + 3

6
= 4

2

3
≈ 4.667,

pC =
11 + 4

3
+

7 + 6

6
= 7

1

6
≈ 7.167
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which sum to the total fare of 15.

This averaging idea—evaluating all orders and combining their marginal contri-
butions—is exactly the intuition behind the Shapley value.

6.3 Shapley Value

The Shapley value is the ’truest’ allocation rule in cooperative game theory with
respect to the players’ marginal contributions. It considers a player’s marginal
contribution in every coalition and weights these contributions according to how
frequently each coalition appears when players join in all possible orders. Because
only coalition size matters, coalitions of the same size receive the same weight.
Averaging these weighted contributions over all permutations yields a fair and
unbiased cost allocation. The Shapley value is defined following Lipovetsky
(2020).

Definition 4 (Shapley Value) Let (P,Φ) be a TU game. The Shapley value is
the allocation rule Ψ defined for each player p ∈ P as

Ψp(Φ) =
∑

Ω⊆P\{p}

|Ω|! (|P| − |Ω| − 1)!

|P|!︸ ︷︷ ︸
weight

[
Φ(Ω ∪ {p})− Φ(Ω)

]

︸ ︷︷ ︸
marginal contribution

. (6.3)

In words, the value of player p is obtained by summing the player’s marginal
contribution to every coalition Ω not containing p, weighted by how often this
coalition appears when all players join in random order. The weight counts per-
mutations of players inΩ, permutations of the remaining players, and normalizes
by the total number of permutations.

The Shapley value has several interpretations depending on its use case. In
a player-focused setting, it can describe power or influence (e.g., politics), a
contribution, or simply an expected value. Looking at it outcome-oriented, it can
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provide a comparison of all possibilities, yield explainability (e.g., XAI), merely
be a probability, or serve as a cost allocation method.

The Shapley value is analytical and gives a linear payoff distribution (Peleg and
Sudhölter 2007). By that, it is particularly useful for OPF-based applications of
the power grid. One downside is its combinatorial complexity of O(2|P|) for
|P| − 1 coalitions. This means for 10 players, 1024 OPFs have to be computed.

It is also the unique value that fulfills the whole fairness definition, described by
the properties above and defined mathematically below (Caulier et al. 2017). All
advantages and drawbacks are summarized in Table 6.2

Table 6.2: Advantages and disadvantages of the Shapley value.

Advantages Disadvantages

– guarantees fairness
– reflects the ’true’ contribution
– analytic / closed-form
– transparent, comprehensible
– simple implementation
– considers the grid structure
– considers the marginal contribu-
tions

– has high computational
complexity

– (equal weight to all play-
ers)

Fairness Axioms

According to the requirements defined for power systems, an allocation rule should
distribute the total system cost exactly, treat equivalent participants identically,
assign zero cost to components that have no influence, and respond linearly when
cost functions are combined. These ideas are captured by four classical fairness
axioms: Efficiency, Symmetry, Null player, and Additivity (Lipovetsky 2020,
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Peters and Peters 2008). This axiomatization traces back to Shubik (1962), while
Shapley’s original formulation relied on the related axioms of carrier, additivity,
and anonymity (Shapley 1953). An overview of axiomatizations is to be found in
Shan et al. (2023).

Efficiency ensures that the full cost of the grand coalition is allocated, without
deficit or surplus.

Axiom 1 (Efficiency (Lipovetsky 2020)) For a TU game (P,Φ), an allocation
rule Ψ satisfies efficiency if

∑

p∈P
Ψp(Φ) = Φ(P). (6.4)

Symmetry states that players who affect the cost function in exactly the same way
must receive the same allocation.

Axiom 2 (Symmetry (Lipovetsky 2020)) Let (P,Φ) be a TU game and p, q ∈
P . If

Φ(Ω ∪ {p}) = Φ(Ω ∪ {q}), ∀Ω ⊆ P \ {p, q}

then a symmetric allocation rule satisfies

Ψp(Φ) = Ψq(Φ).

Some components may have no influence on the system cost when added to any
coalition. Such a component is a null player.

Definition 5 (Null player) A player p is a null player if

Φ(Ω ∪ {p}) = Φ(Ω). ∀Ω ⊆ P

Axiom 3 (Null player (Lipovetsky 2020)) If p is a null player, then

Ψp(Φ) = 0.
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Additivity expresses linearity of the allocation with respect to the cost function.

Axiom 4 (Additivity (Lipovetsky 2020)) Let (P,Φ) and (P, c′) be two TU
games. Then an allocation rule Ψ is additive if

Ψ(Φ + c′) = Ψ(Φ) + Ψ(c′).

Remark 1 The Shapley value does not satisfy individual rationality or coali-
tional rationality, in contrast to stability-oriented concepts such as the core or the
nucleolus. These rationality axioms are meaningful when players are strategic
decision-makers, but not in power systems, where “players” represent grid com-
ponents. Because network effects can make a component reduce total cost when
added to a coalition, such rationality conditions are not appropriate.

The Shapley Value for Power Grids

In power systems, the Shapley value can be used in several ways depending on how
the players and the characteristic function are defined. Typically, the characteristic
function is the outcome of an OPF,

Φ = c,

representing generation cost, redispatch cost, losses, or any other system-wide
utility (e.g., active or reactive power). Players may be system operators (TSOs,
consumers) or physical grid components such as lines, generators, loads, or storage
units. Forming a coalition means that the corresponding components operate
simultaneously.

In the literature (Fiestras-Janeiro et al. 2011), most Shapley-based applications fo-
cus on transmission cost allocation (players = generators/loads, value = transferred
MW) and network usage and wheeling cost allocation (players = transactions,
value = transmission cost). These applications typically use a DC-OPF-based
characteristic function.
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In this thesis, we examine two applications of the Shapley value in power grids.

Application 1—Congested Power Lines

We examine the case where the players are congested transmission lines, and the
cost function represents redispatch costs required to relieve those congestions.
Adding or removing a player corresponds to relaxing or enforcing that line’s
thermal limit. The grand coalition represents the operating point where all con-
gestion–relevant lines have active limits. Inactive limits are set sufficiently high
in the optimization problem so that the corresponding power flows do not reach
them. This is determined via a preliminary power flow: if a line is congested
(its flow exceeds the original limit), the limit is raised; otherwise, it remains
unchanged.

Application 2—Grid Components

If the players are flexible grid assets such as BESS units, the cost function is
typically the generation cost from the OPF. Each unit reduces this cost through
flexibility, creating a utility. Here, adding or removing a player corresponds to
activating or deactivating the device. The grand coalition describes the case where
all units are simultaneously available.

The following chapters apply the Shapley value to power systems across four steps
toward practical implementation. First, using congestion as an application case,
we study computational aspects such as distributed evaluation and compare AC
and DC OPF formulations. Second, we apply the value to grid components such
as BESS units and generators, and analyse its robustness under perturbations and
modelling uncertainties. These applications demonstrate how the Shapley value
can be used to assess influence, allocate costs, and support decision-making in
modern electricity networks.
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Publication reference for this chapter

Bauer, R. and Dai, X. and Hagenmeyer, V. (2023). “A Shapley value-
based Distributed AC-OPF Approach for Redispatch Congestion Cost
Allocation”. Proceedings of the 14th ACM International Conference on
Future Energy Systems, p. 109-113. DOI: 10.1145/3575813.3576881

With rising congestion in the German electricity grid, the four transmission sys-
tem operators (TSOs) are under increasing pressure to prevent overloads through
redispatch. Since power flows naturally across all regions, this can only be man-
aged effectively through close collaboration. The same holds on a European scale:
the pan-European grid is highly interconnected, with frequent inter-country transit
flows and energy traded continuously across borders—not least to avoid blackouts.

To manage such complexity, TSOs need to coordinate their actions and jointly
compute the Optimal Power Flows (OPFs) across larger parts of the grid. New
digital platforms like PICASSO (ENTSO-E 2022) and Connect+ are currently
being developed to facilitate this kind of cooperation. However, such collaboration
brings new challenges—above all, grid security and data privacy. TSOs want to
work together, but they are not willing (or allowed) to fully share sensitive grid
data such as their internal topologies or time series for load and generation. This
refers to research question
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7 Privacy-Preserving Cost Allocation

RQ3 How can we preserve data privacy between grid regions when computing
the Shapley value?

In the context of redispatch in Germany, this can be reformulated as: How can we
share redispatch costs fairly without having to share grid model data?

One proposed answer, introduced earlier in this thesis and studied in Voswinkel
et al. (2022), is to use the Shapley value as a fair cost allocation rule. It allows
redispatch costs to be distributed proportionally to each TSO’s contribution to the
underlying congestion. However, computing the Shapley value requires solving
OPF problems for many different configurations of TSO participation. To make
these results realistic and applicable in practice, we rely on the full non-linear
AC-OPF formulation—since solutions from DC-OPF are not generally AC feasi-
ble (Baker 2021). Yet, for larger grids, solving the AC-OPF centrally becomes
increasingly difficult due to its non-convexity and computational complexity.

This computational challenge motivates a shift toward distributed optimization.
By decomposing a large OPF problem into smaller local subproblems, which are
solved in parallel and coordinated iteratively, we can handle the large number of
scenarios required for Shapley value computations more efficiently. Distributed
methods not only mirror the structure of today’s decentralized energy systems but
also address data privacy concerns, as full grid topologies or detailed time-series
data for load and generation need not be shared. While these approaches are
naturally suited for distribution grids connected to the transmission system at a
single point, as we demonstrate in this chapter, they can also be effectively applied
to meshed transmission networks with complex inter-TSO couplings. Beyond
privacy, distributed optimization further enhances scalability and resilience: it re-
duces the computational burden and isolates failures to individual regions without
disrupting the entire system.

Related Work Several distributed algorithms have been proposed for solving
the AC-OPF problem. The most common first-order methods include the Opti-
mality Condition Decomposition (OCD) (Hug-Glanzmann and Andersson 2009),
the Auxiliary Problem Principle (APP) (Baldick et al. 1999), and the Alternating
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Direction Method of Multipliers (ADMM) (Erseghe 2014). While these are rel-
atively simple and lightweight, they have one major drawback: the nonconvexity
of the AC-OPF problem makes convergence hard to guarantee in general, and
performance often depends on problem structure and initialization. This is be-
cause AC-OPF is proven to be NP-hard (Bienstock and Verma 2019), and these
first-order methods only work well under specific assumptions.

To improve convergence, second-order methods have been developed. One no-
table example is ALADIN (Augmented Lagrangian-based Alternating Direction
Inexact Newton), proposed in Houska et al. (2016). It combines fast local NLP
solvers with a global coordination step that uses curvature information (i.e., Jaco-
bian and Hessians) to build a coupled quadratic program (QP). If suitable Hessian
approximations are used, ALADIN guarantees local convergence with a quadratic
convergence rate given a generic distributed nonconvex optimization problem. In
the context of power systems, ALADIN has a key advantage: it does not require
sharing full grid models, which makes it attractive for privacy-sensitive applica-
tions like inter-TSO coordination. Recent studies (Engelmann et al. 2019, Zhai
et al. 2022) have demonstrated its scalability and robustness, both for transmission
grids and in hybrid AC/DC networks.

In this chapter, we contribute a proof of concept that redispatch costs due to
congestions, when calculated using the Shapley value, remain consistent even
when the underlying OPF is solved using a distributed optimization method across
multiple TSO regions.

The remainder of this chapter is structured as follows. Section 7.1 introduces
the Shapley value algorithm in combination with a distributed OPF formulation
and presents the distributed optimization method ALADIN. In Section 7.2, we
apply the approach to a small IEEE test system and compare the results of the
centralized and distributed OPF implementations. Finally, Section 7.3 concludes
the chapter.
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7.1 Methodology

To share the redispatch costs, we need to know the costs that individual congestions
cause. Asmentioned before, the cost share is not proportional to physical overload,
but to the line’s marginal impact on redispatch costs. Given the total system costs,
the goal is to allocate these costs, i.e., the costs of the grand coalition, to the
individual congested lines. The costs are computed by an OPF. We can compute
the individual cost shares by going through all combinations of active congestions,
taking the marginal contribution of one congestion to the specific configuration,
and later averaging over them. This is the principle of the Shapley value. For
every coalition, i.e., every configuration of congested lines, we have to compute an
OPF. In this case, that is a distributed OPF, which we compute with the ALADIN
algorithm. In the following, we present both the Shapley algorithm, as well as the
distributed OPF algorithm.

Allocating Redispatch Costs with the Shapley Value

Let us repeat the Shapley value first. We are given a TU game (P,Φ), where
P is the set of congested lines, and the cost function Φ represents the OPF. The
goal is to allocate the cost of the grand coalition (total redispatch costs) Φ(P) to
each player (congested line) p ∈ P . The Shapley value for a specific player p, as
defined in Equation 6.3, is written as cf.(Shapley 1952)

Ψp(Φ) =
∑

Ω⊆P\{p}

|Ω|! (|P| − |Ω| − 1)!

|P|! {Φ (Ω ∪ p)− Φ(Ω)} , (7.1)

where {Φ (Ω ∪ p)− Φ (Ω)} is the marginal contribution of player p to the con-
figuration (coalition) Ω, that are weighted individually and summed collectively.

The workflow of computing the Shapley values with ALADIN is visualized in
Figure 7.1. To compute the congested transmission lines, we perform three
steps: First, we compute the optimal market scenario given the fixed demand
and generation capacities. Second, we compute the power flows of that wishful
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Φ(Ω), ∀ Ω ∈ P(P)

Compute Shapley value
Ψp(Φ), ∀ p ∈ P

Cost allocation

Figure 7.1: The Shapley algorithm for cost allocation with a distributed AC-OPF (ALADIN).

market scenario, assuming that there are no line limits. Finally, we compare these
flows with the realistic power flows within the line capacities. In technical terms,
we first compute the market scenario with an economic dispatch (ED), second,
we use power flow to compute the respective power flows, and lastly, we compare
those with the optimal power flow results, yielding the cost-optimal generation
and power flows in the transmission grid. These steps are computed sequentially.

In the right part of Figure 7.1, we compute an OPF for every coalition of congested
lines Ω ⊂ P , and with the resulting marginal contributions, the Shapley value
for all congested lines. This gives us the share in redispatch costs per line. The
algorithm differs from Voswinkel et al. (2022) in two ways: First, Voswinkel uses
a DC-OPF, while we changed to AC-OPF. Second, they describe using a power
flow only, given an optimal market scenario, while we do not assume an optimal
scenario, but perform an economic dispatch optimization followed by a power
flow computation.

The Centralized Optimization Problem

The cost functionΦ for each coalition in the Shapley value algorithm is determined
by solving a full non-linear AC Optimal Power Flow (OPF) problem. This OPF
formulation captures both active and reactive power flows, along with network
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constraints and component limits. Voltages are expressed in polar form, i.e.,
Vi = vie

jθi , where vi is the voltage magnitude and θi is the phase angle at
bus i. The decision variables include voltages, generation, and power flows:
x = (θ, v, PG, QG).

Let Lcl be the set of congested lines. A coalition Ω ⊆ Lcl, with its complement
Ωc ⊆ Lcl, represents the set of congested lines considered active, thermal limits
are enforced only on L̃ = L \ Ωc. All other congested lines in the complement
Ωc = Lcl \ Ω are treated as unconstrained in that OPF run. This allows us to
isolate the marginal cost contribution of each line.

The centralized AC-OPF is formulated following (Frank and Rebennack 2016):

min
x

c(x) =
∑

i∈N

{
ai (PG,i)

2
+ bi(PG,i) + ci

}
(7.2a)

s.t. PG,i − PD,i = vi
∑

k∈N
vk (Gik cos∆θik +Bik sin∆θik) , (7.2b)

QG,i −QD,i = vi
∑

k∈N
vk (Gik sin∆θik −Bik cos∆θik) , (7.2c)

Pij = v2iGij − vivj (Gij cos∆θij +Bij sin∆θij) , (7.2d)
Qij = −v2iGij − vivj (Gij sin∆θij −Bij cos∆θij) , (7.2e)
P 2
ij +Q2

ij ≤ (Sij)
2, (7.2f)

vi ≤ vi ≤ vi, (7.2g)
PG,i ≤ PG,i ≤ PG,i, QG,i ≤ QG,i ≤ QG,i, (7.2h)

∀i ∈ N , (i, j) ∈ L̃, where c in Equation (7.2a) defines the quadratic generation
cost function, constraints (7.2b) and (7.2c) enforce active and reactive power
balance at each node, Equations (7.2d) - (7.2f) model the active and reactive line
flows and enforce thermal limits only for lines within L̃, and (7.2h) represents
the bounds on voltage magnitudes and generator outputs. Note that we follow
MATPOWER’s π-model sign conventions for branch flows.
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The feasible set for a coalitionΩ is denoted byX (Ω), which includes all variables
x satisfying the constraints above. The respective cost for the coalition Ω and a
cost function f is computed as:

x∗(Ω) = arg min
x∈X (Ω)

f(x), (7.3)

Φ(Ω) := f(x∗(Ω)). (7.4)

The operation costΦ(Ω) serves as the characteristic function value in the Shapley
value framework and represents the total redispatch cost resulting from enforcing
constraints for only the lines in Ω.

The Distributed OPF

To solve the AC-OPF from Equation 7.2 in a distributed fashion, we reformulate
it. Instead of disconnecting tie-lines between regions, as proposed in earlier
work (Engelmann et al. 2019), we adopt a more physically consistent approach
using shared components across regional boundaries. This ensures consistency
in physical variables at the interfaces and allows for coordinated optimization
without compromising data privacy. Respective algorithms are to be found in Dai
et al. (2025).

Consequently, the AC OPF problem can be written as an affinely coupled dis-
tributed optimization problem with the set of regionsR:

min
x

f(x) :=
∑
ℓ∈R

fℓ(xℓ) (7.5a)

s.t.
∑
ℓ∈R

Aℓxℓ = b | λ (7.5b)

hℓ(xℓ) ≤ 0 | κℓ, ∀ℓ ∈ R (7.5c)
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where Equation (7.5a) represents the separable objective function—typically the
sum of local generation costs across all regions ℓ ∈ R, Equation (7.5b) contains
the consensus constraints that enforce agreement on shared variables at regional
boundaries (e.g., voltages or flows at tie-line buses), and Equation (7.5c) includes
all local nonlinear constraints, such as power balance equations, line limits, and
box constraints on voltages and generation within each region.

The dual variables λ and κℓ correspond to the equality constraints (7.5b) and
inequality constraints (7.5c), respectively. This formulation enables distributed
solution techniques while ensuring that the overall physical model remains con-
sistent. For further details on the formulation and decomposition approach, we
refer to Mühlpfordt et al. (2021) and Dai et al. (2022).

Solving the Distributed OPF with ALADIN

Concept Among the available distributed nonlinear optimization methods, the
ALADIN algorithm (Houska et al. 2016) is particularly well suited for problems
of the form (7.5). It solves them through an iterative two-level process: in
each iteration, local regions solve nonlinear programs (NLPs) in parallel using
private data, followed by a coordination step that aligns shared variables through
a quadratic program (QP). The local NLPs ensure physical feasibility within each
region, while the central QP enforces consistency across regional boundaries.
Thus, ALADIN combines the decomposition benefits of distributed optimization
with the fast convergence of Newton-type methods.

Algorithm The ALADIN algorithm (Algorithm 1) consists of two main phases:
the local NLP step 1 and the coordination QP step 4. In the local step, each re-
gion ℓ independently solves an augmented Lagrangian subproblem with objective
function fl that includes the penalty term ρ and scaling Σℓ, ensuring that all local
constraints hl, such as power balances and line limits, are satisfied. In the sub-
sequent coordination phase, the algorithm aligns the regional solutions through
the coupled QP (7.8), which uses second-order sensitivity information (7.7). The
penalty parameters ρ and µ control the balance between local accuracy and global
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Algorithm 1 ALADIN

Input: z, λ, ρ > 0, µ > 0 and scaling symmetric matrices Σℓ ≻ 0
Repeat:

1. Solve the following decoupled NLPs for all ℓ ∈ R:

min
xℓ

fℓ(xℓ) + λ⊤Aℓxℓ +
ρ

2
∥xℓ − zℓ∥2Σℓ

(7.6a)

s.t. hℓ(xℓ) ≤ 0 | κℓ (7.6b)

2. Compute the gradient gℓ, the Jacobian matrix Jℓ of active constraints hact
ℓ and the

approximated HessianHℓ at the local solution xℓ by

gℓ = ∇fℓ(xℓ), Jℓ = ∇hact
ℓ (xℓ), Hℓ ≈ ∇2

{
fℓ(xℓ) + κ⊤

ℓ hℓ(xℓ)
}
≻ 0 (7.7)

3. Terminate if ∥Ax− b∥2 ≤ ϵ and ∥Σ(x− z)∥2 ≤ ϵ are satisfied.

4. Obtain (pqp, λqp) by solving the coupled QP:

min
pqp,s

∑
ℓ∈R

{
1

2
(pqpℓ )

⊤
Hℓ p

qp
ℓ + g⊤ℓ pqpℓ

}
+ λ⊤ s+

µ

2
∥s∥22 (7.8a)

s.t.
∑
ℓ∈R

Aℓ(xℓ + pqpℓ ) = b+ s | λqp (7.8b)

Jℓ p
qp
ℓ = 0, ℓ ∈ R (7.8c)

5. Update the primal and the dual variables with the full step

z+ = x+ pqp and λ+ = λqp (7.9)
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consistency. The symmetric, positive-definite matrices Σℓ improve numerical
conditioning; in well-scaled OPF problems, they can be set to the identity matrix.
The dual variable λ corresponds to the consensus constraints (7.5b). The slack
variable s and penalty µmaintain the feasibility of the consensus constraints even
when the local NLPs are not perfectly synchronized. By leveraging this curva-
ture information, ALADIN achieves locally quadratic convergence under standard
regularity assumptions (Engelmann et al. 2019, Houska and Jiang 2021).

Complexity Compared with simpler first-order methods such as ADMM, AL-
ADIN requiresmore communication per iteration, since each regionmust transmit
gradients gℓ, Jacobians Jℓ, and Hessian approximationsHℓ to the central coordi-
nator. The coordination QP is computationally more involved than the averaging
step in ADMM, but the richer second-order information typically yields conver-
gence in far fewer iterations, compensating for the additional effort (Mühlpfordt
et al. 2021, Dai et al. 2022).

From a computational perspective, the distributed AC OPF formulation has a
slightly increased problem size due to duplicated boundary variables and addi-
tional consensus constraints. Each region Ri solves an NLP with 2NRi

b + 2NRi
g

decision variables and 2NRi

b equality constraints, while the coordinator enforces
about 2Nc consensus equalities for coupling buses or tie-lines. This enables par-
allelization across regions, so that the overall computation time scales mainly with
the size of the largest region and the number of its decision variables. Table 7.1
summarizes the relative scaling characteristics of centralized and distributed OPF
formulations (Mühlpfordt et al. 2021).
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Table 7.1: Comparison of centralized and distributed AC OPF complexity.

Aspect Centralized OPF Distributed OPF (ALADIN)

Variables O(2Nb + 2Ng) O
(∑

i(2N
Ri
b + 2NRi

g )
)

Equalities O(2Nb) (PBE) O(2NRi
b ) + O(2Nc) consensus

Per-iteration cost One solve Parallel NLPs + coordination QP
Communication None Exchange of gi, Ji, Hi and dual vari-

ables per iteration

In summary, the distributed formulation has slightly more variables for coupling,
but thereby enables parallel computation and scalability. When the regions are
loosely connected, ALADIN can achieve similar or faster and equally robust
convergence than a centralized solver while preserving local feasibility and data
privacy.

7.2 Illustrative Example

As a case study, we use the standard IEEE 9-bus system, shown in Figure 7.2.
Some grid parameters have beenmodified to induce congestion. All modifications
are given in Table 7.2.

Setting The grid is partitioned into two regions, representing different transmis-
sion grids: R1 = {1, 4, 5, 9} and R2 = {2, 3, 6, 7, 8}, see Figure 7.2a. The
partitioning and distributed OPF setup are implemented using the open-source
toolbox RAPIDPF (Mühlpfordt et al. 2021)2.

Implementation All simulations are run in Matlab R2021a on a standard desk-
top equipped with an Intel® i5-6600K CPU @ 3.50GHz and 32GB
RAM. The modeling is done using the CasADi toolbox (Andersson et al. 2019),

2 Available at https://github.com/xinliang-dai/rapidPF
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Table 7.2:Modifications of IEEE case9 for the robustness analysis.

Component Parameter Changes

Branch
l ∈ L

RateA1 Sij 70 for l = 1, 40 for l = 4

RateB/C set to 0 for all lines
Angle limits set to [−60◦, 60◦] for all branches

Generators
i ∈ G

Cost coeff. bi b1 = 32, b2 = 25, b3 = 20

PG,i 1000.0 for all i ∈ G (sufficiently high)

Loads
i ∈ D

Location / PD,i d5 = 90, d7 = 100, d9 = 125

Other buses no loads assigned

(a) Regions of system operators. (b) Simulation results (red = congested lines,
blue/green = generator ramping up/down,
yellow = load).

Figure 7.2: IEEE 9-bus test grid: Partitioning and simulation results.

and the nonlinear programs are solved using IPOPT (Wächter and Biegler 2006).
For comparison, the centralized OPF reference is computed using the default
solver provided in Matpower.
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Shapley Values

Figure 7.2b shows the OPF results of the test case. Two transmission lines
Lcl = {(1, 4), (3, 6)} are congested with flow limits of {20, 70}MW respectively.
They experience overloads of {57, 16}MW, corresponding to {382, 123}%. The
system includes three generators located at buses G = {1, 2, 3}, producing {72,
163, 85}MW respectively. Accounting for losses, this generation matches the
total system demand of

∑
i PD,i = 315MW, at buses i ∈ D ={5, 7, 9}.

The resulting Shapley values for the congested lines are Ψ1 = 424,Ψ2 = 135,
respectively. These values allocate the total redispatch costs proportionally to
each line’s contribution to congestion. While they roughly reflect the relative
overloads, the cost attributed to regionR1 is slightly higher. This effect becomes
more prominent in larger or more complex networks.

Centralized vs. Distributed Computation

Since the Shapley value is based on repeated evaluations of the AC OPF, the
accuracy of the OPF solutions significantly affects the cost allocation results,
cf. (6.3).

Metrics To validate the distributed approach using ALADIN, we compare the
results with those from the centralized Matpower solver using two metrics: The
deviation of the solution

∥x− x∗∥2 , (7.10)

and the relative solution gap
∣∣∣∣
f(x∗)− f(x)

f(x∗)

∣∣∣∣ , (7.11)

where x∗ and C(x∗) denote the solution and objective value obtained from the
centralized solver.
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ResultsTable 7.3 summarizes the numerical results. For all evaluated coalitions,
ALADIN converges in just seven iterations, yielding highly accurate solutions.
The solution gap remains below 10−6, confirming that distributed computation
does not impact the reliability of the Shapley value calculation.

Table 7.3: Comparison between centralized and distributed OPF solutions

Coalition Ω Iterations Time [s] ∥x − x∗∥2 Solution Gap

{∅} 7 0.129 4.54 × 10−4 2.19 × 10−6

{(1, 4)} 7 0.128 7.82 × 10−6 4.60 × 10−7

{(3, 6)} 7 0.131 9.90 × 10−4 6.04 × 10−8

{(1, 4), (3, 6)} 7 0.129 1.135 × 10−6 9.54 × 10−8

Figure 7.3 shows the convergence behavior of ALADIN for the grand coalition
Ω = Lp = {(1, 4), (3, 6)}. The algorithm rapidly converges to a high-precision
solution in terms of both primal and dual residuals, state variable deviation, and
objective value. This confirms that ALADIN is suitable for distributed OPF
evaluation in the Shapley value framework, even in the presence of coupling
across regional boundaries.

7.3 Conclusion

In this chapter, we proposed a distributed method for calculating the Shapley
value to allocate redispatch costs arising from grid congestion. By extending the
original idea with a full non-linear AC OPF formulation, the approach ensures a
more realistic and fair allocation of costs in comparison to simplified DC models,
which may lack AC feasibility in practical settings. Additionally, the use of the
distributed optimization algorithmALADIN enables system operators to compute
redispatch responsibilities across multiple regions without exposing sensitive grid
data, thereby preserving data privacy.
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Figure 7.3: Convergence behaviour of ALADIN for the grand coalition Ω = P

The simulation results on an IEEE 9-bus test system demonstrate that the dis-
tributed Shapley value approach yields results with equal precision to a central-
ized reference, while also being computationally efficient. These findings confirm
the suitability of the method for real-world applications, particularly in a highly
interconnected and dynamic grid environment.

Given the increasing need for explainability, transparency, and fair cost alloca-
tion in the evolving energy system, this method contributes a promising tool for
grid operators, especially TSOs, facing the complexity of congested, multi-actor
power systems. Future work includes extending this approach to larger systems,
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incorporating distribution-level grids, and developing scalable approximations for
both the OPF problem and the Shapley value.

98



8 Comparison of AC vs. DC-based
Cost Allocation

Publication reference for this chapter

Bauer, R. and Dai, X. and Hagenmeyer, V. (2024). “Industrial Applica-
tion of the Shapley value-based Redispatch Cost Allocation to Large-
Scale Power Grids requires AC Optimal Power Flow”. 2024 IEEE
Power & Energy Society General Meeting (PESGM), p. 1-5. DOI:
10.1109/PESGM51994.2024.10688852

The previous chapter showed that redispatch costs can be fairly allocated using
the Shapley value—even when OPF is solved in a distributed, privacy-preserving
manner using the full AC formulation. However, in the process, we noticed that
results based on AC-OPF can differ substantially from those based on DC-OPF,
both in terms of congestion patterns and Shapley values. These differences cannot
be attributed solely to additional losses: AC-OPF solutions are not necessarily
more expensive, nor do they always produce more congested transmission lines.

Such discrepancies are relevant for both fairness in cost allocation and long-term
grid planning. For example, if congestion locations differ between models, result-
ing decisions on grid reinforcements will also diverge. Thus, a fair cost allocation
requires not only tractability but also a sufficiently accurate representation of grid
physics.

Since the Shapley value is typically applied using DC-OPF —both in studies and
operational tools—this raises the question of whether DC-OPF remains appropri-
ate given the complexity of today’s grid flows. A further limitation of the previous
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chapter was its illustrative test case, which did not address scalability to larger,
meshed AC grids.

Accordingly, this chapter shifts focus from how OPF is solved to what physical
model it is based on—and how well the overall approach scales. This leads to our
central research question:

RQ4 How does the use of AC-OPF affect the results and fairness of the Shapley
value compared to DC-OPF?

Because the observed differences between Shapley values based on AC-OPF
versus DC-OPF are neither systematic nor easy to predict, we extend the analysis
to a range of meshed grids of varying size and topology. This raises the question:
do these differences also appear on larger, meshed grids?

Section 8.1 shortly formulates the Shapley-based cost allocation with AC-OPF
and outlines the computational setup for scaling. Section 8.2 presents numerical
results on small and large systems, contrasting DC and AC outcomes. Section 8.3
summarizes insights and implications for application.

8.1 Methodology

We build directly on the previous chapter by using the Shapley value to allocate
total redispatch costs to congested lines. The AC-OPF formulation follows the
exact polar representation as in the DC case. In this section, we summarize the
setup and highlight differences between the DC and AC approaches, particularly
in how costs are allocated and how scaling plays a role in both formulations.

Grid and Players

Let the transmission grid be A = (N ,L) with a set of buses N and branches L.
Congested lines form the player setP ⊆ L, where each player p = (i, j) represents
a transmission line p ∈ L. Coalitions are defined as sets of simultaneously active
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congested lines, and are contained in the power set of players, i.e., Ω ∈ P(P).
The characteristic cost function Φ : P(P) → R≥0 maps each coalition to the
resulting redispatch cost computed by the AC-OPF. This framework builds on the
fact that redispatch costs vary depending on the specific lines involved and the
congestion in the network, making the Shapley value an ideal method to allocate
these costs fairly.

Shapley Value for Redispatch Costs

Given the players P and the OPF cost function Φ, we use the same cooperative
game (P,Φ) as before. Again, the Shapley value Ψp(Φ) assigns the cost of
the grand coalition Φ(P) to each congested line p based on its average marginal
contribution across all possible coalitions. Specifically, the marginal contribution
of a line is calculated by considering how much the coalition’s redispatch cost
increases when the line is added to the coalition. This is expressed as:

Ψp(Φ) =
∑

Ω⊆P\{p}

|Ω|! (|P| − |Ω| − 1)!

|P|!
{
Φ(Ω ∪ {p})− Φ(Ω)

}
. (8.1)

Operationally, we first determine the set of congested lines P by comparing the
power flow results with the network-feasible OPF solution. The power flows are
computed in two steps: an Economic Dispatch (ED) step determines the optimal
(topology-unaware) generation, followed by a Power Flow (PF) computation to
determine the actual line flows. The ED and PF are used solely to detect congested
lines, with the actual redispatch costs computed from the AC/DC-OPF. Note that
this differs slightly from the method presented in Bauer et al. (2024), which used
only power flow computation. However, this approach is insufficient as the initial
generation values may not represent the optimal market dispatch. Hence, in this
thesis, we adopt this corrected method to better reflect real-world conditions.

For each coalitionΩ ⊆ P , we solve an OPF where only the lines in the coalitionΩ
enforce thermal limits, while the remaining lines (players)P\Ω are unconstrained.
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This procedure allows us to compute the marginal contributions with the cost
function Φ(·) for each coalition and obtain the Shapley values by averaging these
contributions across all possible coalitions.

The full process is illustrated in Figure 8.1, which outlines the method from initial
power flow calculations to the final cost allocation.

Grid

ED

DC / AC PF

DC / AC-OPF

Set of players P

Evaluate cost function
Φ(Ω), ∀ Ω ∈ P(P)

Compute Shapley value
Ψp(Φ), ∀ p ∈ P

Cost allocation

Figure 8.1: The Shapley algorithm with cost allocation based on DC and AC PF and OPF.

AC-OPF Formulation

We use the AC-OPF formulation from the last chapter. For each coalition Ω ⊆ P
in the Shapley procedure, the characteristic cost Φ(Ω) is obtained from a full
non-linear AC optimal power flow. Voltages are in polar form Vi = vie

jθi , and
the decision vector is x = (θ, v, pg, qg). To isolate marginal effects, only lines in

L̃ = L \
(
P \ Ω

)

retain their thermal limits in that OPF run; players in the complement are un-
constrained. We follow Frank and Rebennack (2016) and, using MATPOWER’s
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π-model sign conventions for branch flows as previously, we write the centralized
AC-OPF as

min
x

c(x) =
∑

i∈N

{
ai (PG,i)

2
+ bi(PG,i) + ci

}
(8.2a)

s.t. PG,i − PD,i = vi
∑

k∈N
vk (Gik cos∆θik +Bik sin∆θik) , (8.2b)

QG,i −QD,i = vi
∑

k∈N
vk (Gik sin∆θik −Bik cos∆θik) , (8.2c)

Pij = v2iGij − vivj (Gij cos∆θij +Bij sin∆θij) , (8.2d)
Qij = −v2iGij − vivj (Gij sin∆θij −Bij cos∆θij) , (8.2e)
P 2
ij +Q2

ij ≤ (Sij)
2, (8.2f)

vi ≤ vi ≤ vi, PG,i ≤ PG,i ≤ PG,i, QG,i ≤ QG,i ≤ QG,i, (8.2g)

∀i ∈ N , (i, j) ∈ L̃, where θij = θi − θj , Gij + jBij are elements of the
bus-admittance matrix, and sij are the apparent power limits on L̃. Constraints
(8.2b)–(8.2c) impose nodal active/reactive power balance; (8.2d)–(8.2f) define
AC branch flows and thermal limits; and (8.2g) enforces bounds on voltages and
generator outputs.

8.2 Results

We study how the choice of theOPFmodel (DC vs. AC) influences three outputs of
the Shapley procedure under fixed loads: the set of congested lines, the redispatch
costs, and the resulting Shapley values. We begin with small systems to show the
basic effects, then move to large, meshed grids where scale and topology matter.

Setup We use networks from 9 up to 2383 buses, mostly from the PGLib li-
brary (Babaeinejadsarookolaee et al. 2019), see Table 8.1. These cases are derived
from standard IEEE systems with mildly adjusted parameters, including genera-
tion costs. For each case, we induce multiple congestions by altering load and
thermal limits (Appendix Section A.3) and report representative instances here.
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Table 8.1: Data and test systems used in Chapter 8.

Data Type Details
Grids IEEE 9, 39, 118, 300, 793, 1354-bus,

PGLib 2382wp, ACTIVSg10k (TAMU)

Table 8.2: Shapley allocations with DC-OPF and economic dispatch (Julia).

Cases Lines Congested lines System costs ($) Redispatch costs ($) Shapley Values ($) Runtime (min)

case9 9 {2,4,5} 6,566 266 {182, 25, 59} 00:00:56

case39 39 {2,4} 5,334 48 {27,21} 00:00:49

case118 186 {106,141,163} 93,132 105.3 {46, 1.3, 58} 00:16:36

case300 411 {394,400} 707,405 1,112 {401,711} 00:01:14

case793 913 {188,324,338,399,616,910,911} 253,891 88.7 {0,0,0,0,65,17,6.7} 00:26:00

case1354 1,991 {86,167,227,230,297} 1,177,118 3,526 {256,104,2058,246,862} 00:01:42

case2383 2,896 {169,292,321,322} 1,769,943 1,464 {926,538,0,0} 00:01:42

Coordinates for the larger grids are generated with the yEd software (yWorks
GmbH 2019). In all plots, generators are shown in green, loads in blue, and
line thickness encodes flow magnitude. The exact results for congestions, redis-
patch costs, and Shapley values are given in Tables 8.2–8.3 for DC and AC-OPF,
respectively, with the biggest differences marked in bold.

Implementation Computations are performed in MATLAB R2022b using
MATPOWER (The MathWorks 2021) on a desktop (Intel® i5-6600K @
3.50GHz, 32GB RAM), with the CasADi toolbox (Andersson et al. 2019), and
the nonlinear programs are solved using IPOPT (Wächter and Biegler 2006).

Small-scale systems: Two effects of AC-OPF on the Shapley values

Our first result is qualitative: AC-OPF can change flows enough to alter which
congestions are costly, and by how much. This is not just a mere refinement of
DC-OPF, as it can flip which line is deemed responsible.
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Table 8.3: Shapley allocations with AC-OPF and economic dispatch (Julia).

Cases Lines Congested lines System costs ($) Redispatch costs ($) Shapley Values ($) Runtime (min)

case9 9 {2,4,5} 6,773 168 {105,22,41} 00:01:25

case39 39 {1,2,4} 5,666 293 {4,181,108} 00:11:00

case118 186 {105,106,141,163} 97,213 330 {43,201,0,86} 02:50:51

case300 411 {394,400} 720,612 886 {336,550} 00:05:36

case793 913 {324,399,616} 255,547 0 {0,0,0} 00:12:00

case1354 1,991 {86,167,227,230,297,829} 1,216,700 3,234.05 {77,205,2018,23,911,0.05} 02:32:20

case2383 2,896 {169,292,321,322} 1,858,494 60 {0,60,0,0} 15:16:43
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Figure 8.2: Case9: Overloaded lines (red) in DC-OPF (left) and AC-OPF (right), with power flows
(blue, flow indicated by width), and generation (green) and load (blue) nodes.

9-bus example Figure 8.2 compares DC-OPF (left) and AC-OPF (right) for
the same IEEE 9-bus case. Both models flag the same three lines Lcl{2, 4, 5}
as congested, but assign different importance scores and redispatch costs. This
shows that AC-OPF can still shift cost attribution even if the active constraints
remain unchanged.

The Shapley allocations differ accordingly. Under DC, the Shapley values are
distributed as {182, 25, 59}, whereas under AC, they become {105, 22, 41}.
Despite identical overloads, the importance of each line to the system cost shifts
notably. The overloads are computed from economic dispatch and PF, with
values of 315 MW at bus 1 under DC and 324 MW under AC. With limits {70,

105



8 Comparison of AC vs. DC-based Cost Allocation
case39

4.
75

 M
W

4.15 M
W

case39

17
.7

7 
M

W

14
.4

 M
W

12.69 M
W

Figure 8.3: Case39: Overloaded lines (red) in DC-OPF (left) and AC-OPF (right), with power flows
(blue, flow indicated by width), and generation (green) and load (blue) nodes.

40}MW, the implied overloads are {245.0,100.2}MW and {261.4, 105.7}MW,
respectively. After redispatch, the flows change to {13.1, 40.0} in DC and {70.0,
15.6} in AC.

Two effects stand out. First, total redispatch costs differ substantially; AC-OPF
yields lower redispatch costs, counter to the intuition that AC is always more
expensive due to losses. Second, the cost attribution among the same set of
congested lines shifts significantly. These changes arise from topology-dependent
flow redistribution under AC constraints. Extrapolating DC-based allocations can
therefore be misleading, even on small systems.

Large-scale systems: more and different changes

On large, meshed grids, the same message persists. AC-OPF does not simply
scale DC-OPF; it can change the number of congestions, the pattern of redispatch,
and the Shapley values—sometimes in directions opposite to expectation. Even
runtimes are not uniformly higher for AC-OPF (cf. case793).

Tables 8.2-8.3 summarize the results from IEEE test grids with 9 to 2383 buses.
Figure 8.3 shows an early case (39-bus) where AC-OPF introduces additional
congestions and drastically alters cost attribution. Figure 8.4 confirms the same
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Figure 8.4: Case118: Overloaded lines (red) in DC-OPF (left) and AC-OPF (right), with power
flows (blue, flow indicated by width), and generation (green) and load (blue) nodes.
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Figure 8.5: Case3793: Overloaded lines (red) in DC-OPF (left) and AC-OPF (right), with power
flows (blue, flow indicated by width), and generation (green) and load (blue) nodes.

trend in a larger grid, where both the number and the identity of congested lines
shift. In contrast, Figure 8.5 highlights the opposite: AC-OPF reports fewer
congestions and zero redispatch cost. Together, these examples show that AC
effects are not uniform but depend on topology and grid configuration. Since
the AC vs. DC differences are non-monotonic and topology-dependent, DC
results cannot be corrected by simple scaling factors or heuristics. Some trends
are familiar (often higher redispatch under AC), but two additional effects are
noteworthy. We highlight them below using specific cases from Figures 8.3-8.5.
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Different number of congestions AC-OPF frequently yields more conges-
tions than DC-OPF, though not consistently. In IEEE case39 and case118, the
number and identity of congested lines expand under AC-OPF. Parity occurs in
the IEEE case300, and the reverse is possible: In the PGLib case793, AC-OPF
reports only three congestions versus seven under DC and, crucially, zero redis-
patch cost, meaning the OPF schedule coincides with the market schedule for the
active limits. One plausible explanation is that AC feasibility constraints already
reshape generation locationally before line limits bind, as in DC. However, the
precise workings are topology-dependent and thus cannot be explained precisely.
In the PGLib case2383, AC has more congestion but still lower redispatch cost
than DC. In these cases, AC feasibility shifts generation enough so that the re-
maining active constraints are naturally satisfied, whereas DC enforces a flow
pattern that requires redispatch.

Shapley is not proportional to overload Many Shapley values are zero,
even though the corresponding lines show non-zero overload. A line can be
heavily overloaded yet irrelevant for redispatch if its removal or enforcement does
not change the optimal dispatch—its marginal contribution is zero. Interpreted as
importance scores (as in XAI), the Shapley value therefore highlights only those
congestions that actually drive system cost under the given market outcome and
capacities.

This is seen clearly in case793 (Figure 8.5): DC assigns cost to five lines, while
AC reports zero Shapley values despite similar flows. This reflects how different
grid physics affect the marginal cost impact of each line, and that load alone does
not determine cost responsibility.

108



8.3 Conclusion

8.3 Conclusion

Redispatch costs continue to rise, making both their exact computation and their
equitable distribution increasingly important. The Shapley value has been pro-
posed as a fair allocation rule and demonstrated on small, concatenated test sys-
tems; however, existing redispatch studies typically rely on DC-OPF. This work
asks how the choice of power flow model—DC versus AC—affects the Shapley
allocation and evaluates the approach on large, meshed transmission systems.

Our results show that AC-OPF can materially change all three outputs of the
Shapley procedure: which lines are congested, the total redispatch costs, and the
Shapley values themselves. Across a range of systems from 9 to 2383 buses, we
observe consistent deviations between DC and AC results—sometimes subtle,
sometimes substantial—as illustrated in Figures 8.3-8.5. Crucially, these differ-
ences are not systematic. AC-OPF does not always produce more congestion,
higher redispatch costs, or larger allocations. The direction and magnitude of
changes depend on topology and AC feasibility effects, which means DC-based
results cannot simply be extrapolated to real AC grids. We also observe substan-
tial variability in Shapley values, including many zeros, highlighting that high
loading does not necessarily translate into cost responsibility.

For research and TSOpractice alike, we recommend usingAC-OPF as the basis for
Shapley-based redispatch cost allocation, especially on large, meshed networks.

For future work, several extensions are plausible. First, real-world case studies,
for example, on the German transmission grid, would validate the findings at an
operational scale. However, after this work had been completed, another study by
Voswinkel (2023) was published that applies the Shapley value on the German TG
using DC-OPFwith a speed-up method to compute the Shapley values. Following
the results from this paper, it would be interesting to repeat this simulation with
AC-OPF. Second, a systematic comparison of meshed versus concatenated (e.g.,
transmission vs. distribution) topologies could clarify how network structure
affects allocations. Finally, incorporating flexibilities such as battery storage
would quantify congestion relief and the ensuing reduction in redispatch costs.

109





9 Extending Shapley towards
Utility

Publication reference for this chapter

Bauer, R. and Dai, X. and Zahn, F. and Hagenmeyer, V. (2025). “Shapley
value-based cost allocation for Battery Energy Storage Systems in Power
Grids with a High Share of Renewables”. Proceedings of the 16th ACM
International Conference on Future and Sustainable Energy Systems, p.
650-655. DOI: 10.1145/3679240.3734664

Battery Energy Storage Systems (BESS) are increasingly seen as key assets for
operating power systems with high shares of renewable generation. Their main
advantage is additional capacity and thus short-term flexibility, e.g., to shift
load in time, smooth renewable variability, and support ancillary services like
reactive power compensation (Hu et al. 2022, Ayesha et al. 2024, Blair et al. 2022,
Tookanlou et al. 2023). As redispatch costs rise and congestion becomes a routine
challenge, BESS are expected to reduce operational costs and relieve stress on the
grid (Dehnavi et al. 2019, Nguyen et al. 2024).

However, the extent to which a specific BESS unit contributes to these goals is
not straightforward to quantify. In meshed AC transmission grids, power flows
depend on nonlinear interactions and the system-wide impact of a single unit may
not align with its local energy throughput. This raises the question of how to
assess and compare the usefulness of individual storage units—not just by their
dispatch, but by their effect on system performance over time.

111

https://doi.org/10.1145/3679240.3734664
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In this chapter, we propose a way to quantify the operational utility of BESS based
on the Shapley value (Lipovetsky 2020), which we have discussed in the previous
Chapters 6, 7, and 8 and that has appeared in recent publications (Voswinkel 2023,
Bauer et al. 2024). In this chapter, we adapt the Shapley value for Application 2
(see Chapter 6 on Shapley fundamentals): to evaluate the contribution of storage
units to system cost reduction and constraint relief across multiple time periods,
addressing the research question

RQ5 How can the Shapley value be used to quantify the utility of individual BESS
units in the transmission grid?

This includes not only active power effects, but also reactive power and grid
interactions. Compared to previous work, we shift the focus from allocating costs
between actors or regions to assessing utility at the component level. BESS are
treated as the players in a cooperative game whose value function is based on the
cost outcomes of a multi-period AC-OPF.

The chapter proceeds as follows: We first introduce the OPF-based grid and stor-
agemodel, then define the Shapley utilitymeasure in this context. We demonstrate
the method on both radial and meshed test systems and discuss how the results
reflect the system-level contribution of each BESS unit.

9.1 Methodology

This section outlines the modeling and computation framework for quantifying
the utility of distributed battery energy storage systems (BESS) by applying the
Shapley value to an Optimal Power Flow (OPF) problem. Each BESS is treated
as an individual actor, and its impact on system operation is evaluated based on
its contribution to total cost reduction over a multi-period optimization horizon.

The OPF is formulated as a multi-period AC problem, as the benefits of storage
only manifest over time. Unlike previous Chapters 6 and 7, where the Shapley
value was used for cost allocation between TSOs, we repurpose it here as a utility
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measure for individual BESS units. The OPF formulation and Shapley setup are
reintroduced for completeness, but kept concise to avoid redundancy.

AC-OPF Formulation

The system behavior is modeled using a multi-period AC optimal power flow
(MP-OPF) including battery storage units, as their value unfolds over time. At
each time step t ∈ T , the objective is to minimize total generation costs subject
to physical grid constraints and operational limits on all components.

The decision variables include the voltage magnitude and angle (vti , θi) at each
bus i ∈ N , the active and reactive generation (P t

G,i, Q
t
G,i) for generators i ∈ G,

and the active and reactive storage injections (P t
S,i, Q

t
S,i) for storage units i ∈ S.

Generator cost is modeled as a quadratic function CG,i = ci + bi · P t
G,i + ai ·

(P t
G,i)

2, while curtailment and storage costs (e.g., investment and usage costs)
can optionally be included. In this setting, storage costs are set to zero.

The total system cost is given by:

C =
∑

t∈T

(∑

i∈G
CG,i +

∑

i∈DRES

CCurt,i +
∑

i∈S
CS,i

)
, (9.1)

with zero storage cost, i.e., CS,i = 0.
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This objective is subject to a set of operational and physical constraints at each
bus i ∈ N and time step t ∈ T . First, the power flow equations sum active and
reactive power from generation, storage, demand, and RES generation:

P t
G,i + P t

S,i − P t
D,i − (PRES,t

D,i − P t
Curt,i) (9.2a)

=
∑

j∈N
vtiv

t
j

(
Gij cos(θ

t
ij) +Bij sin(θ

t
ij)
)
, (9.2b)

Qt
G,i +Qt

S,i −Qt
D,i − (QRES,t

D,i −Qt
Curt,i) (9.2c)

=
∑

j∈N
vtiv

t
j

(
Gij sin(θ

t
ij)−Bij cos(θ

t
ij)
)
, (9.2d)

as well as the standard operational limits for generators, curtailment, voltages,
and line flows:

PG,i ≤ P t
G,i ≤ PG,i, (9.3a)

Q
G,i

≤ Qt
G,i ≤ QG,i, (9.3b)

0 ≤ P t
Curt,i ≤ P

t

Curt,i, (9.3c)

(F t
ij)

2 + (F t
ji)

2 ≤ S
2

ij , (9.3d)
vi ≤ vti ≤ vi. (9.3e)

Storage Model

The storage model follows Geth et al. (2020) and introduces a new set of variables
and constraints to describe charging, discharging, and changes in the State of
Energy (SoE) of storage units at buses si ∈ S over the time horizon T .
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At each time step, the active power injection from a storage unit is defined as:

P t
S,i = P t,CH

S,i − P t,DC
S,i , (9.4)

where P t,CH
S,i and P t,DC

S,i denote the charging and discharging power, respec-
tively. To prevent simultaneous charging and discharging, the model includes a
complementarity condition:

P t,CH
S,i · P t,DC

S,i = 0. (9.5)

In practice, this is implemented via a nonlinear constraint rather than a binary
decision variable, thereby avoiding mixed-integer formulations while preserving
the physical requirement.

The storage state of energy evolves across time steps as:

Et
S,i = Et−1

S,i · ηSDC
S,i +∆t ·

(
ηCH
S,i · P t,CH

S,i − 1

ηDC
S,i

· P t,DC
S,i

)
, (9.6)

where ηCH
S,i , ηDC

S,i , and ηSDC
S,i are the charging, discharging, and self-discharging

efficiencies, respectively.

Technical limits on power and energy further constrain the storage unit:

0 ≤ P t,CH
S,i ≤ PS,i, (9.7a)

0 ≤ P t,DC
S,i ≤ PS,i, (9.7b)

0 ≤ Qt
S,i ≤ QS,i, (9.7c)

0 ≤ Et
S,i ≤ ES,i. (9.7d)

To improve interoperability and for simplicity, we fix the initial and final energy
states via boundary conditions E0

S,i = EIC and Et+1
S,i = EBC , ensuring the
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storage does not gain or lose energy over the horizon. If no storage is connected
to a bus, all associated variables are set to zero.

The resulting optimization problem is the full multi-period AC-OPF with storage:

min C (9.1)
s.t. Power flow equations (9.2),

Physical constraints (9.3),
Storage model (9.4) - (9.7)

(9.8)

As in the previous chapters, the problem is nonlinear and nonconvex due to the
full AC formulation and time-coupling from the storage state.

Shapley Value as Utility Measure

To quantify the marginal utility of each storage, we apply the Shapley value from
cooperative game theory. Unlike in earlier chapters (e.g., Chapter 7), where the
Shapley value was used to allocate redispatch costs among TSOs, here we adapt
it to measure benefit: the reduction in total system cost due to the inclusion of an
individual storage unit.

The basis is a cooperative game in which each player p ∈ P corresponds to a
storage unit si, i ∈ S, a coalition Ω ⊆ P represents the active storage units, and
the value of a coalition Φ(Ω) is given by the optimal cost of the multi-period
AC-OPF.

The Shapley value for a storage unit p is defined as:

Ψp =
∑

Ω⊆P\{p}

|Ω|!(|P| − |Ω| − 1)!

|P|! [Φ(Ω ∪ {p})− Φ(Ω)] . (9.9)

Since the benefits of storage manifest over time, we compute the marginal contri-
bution of each storage unit at every time step t ∈ T , apply the Shapley procedure
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to each step individually, and then aggregate the results. Thus, we define the
utilityΨsi of the storage unit (player) p = si as the average marginal contribution
of that storage unit across all time steps, where the Shapley value at each t is
applied to the cost function ct. To reflect a benefit (rather than a (negative) cost
reduction), the total value is negated:

ΨBESSsi(c) = − 1

T

∑

t∈T
Ψt

si(c
t). (9.10)

Since each ct contributes linearly to the total cost c =
∑

t∈T ct, the additivity
axiom of the Shapley value (Lipovetsky 2020) implies that the sum over time
is equivalent to applying the Shapley value once to the full multi-period cost
function. Hence,

ΨBESSsi(c) = − 1

T
· Ψsi(c) (9.11)

represents the average contribution of BESS unit si to the overall cost reduction,
normalized over the horizon T .

Grid

ED

AC PF

MP AC-OPF

Set of players P

Evaluate cost function
Φ(Ω), ∀ Ω ∈ P(P)

Compute Shapley value
Ψsi(Φ), ∀si ∈ P

Utility allocation

Figure 9.1: The Shapley algorithm for multi-period AC-OPF as a utility measure.

The algorithm is presented in Figure 9.1. Compared to before, the dark violet,
purple, and brown boxes for the MP-AC-OPF, Shapley computation and utility
allocation have changed.
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The resulting value Ψp can be interpreted as a utility score: how much does the
system benefit from the inclusion of storage unit p, relative to the case without it.

Baseline

To benchmark the utility values computed via the Shapley procedure, we define
a baseline measure for each storage unit si ∈ S based on its total energy output.
Specifically, we sum the active power discharged over the entire horizon T :

Bi =
∑

t∈T
P t,DC
S,i , (9.12)

where P t,DC
S,i denotes the active power discharged by storage unit si at time t.

This is a valid and symmetric reference, as the energy level is assumed to return
to its initial state by the end of the horizon, the total amount of discharged energy
is equal to the total amount charged, i.e.,

T∑

t=1

(P t,DC
S,i + P t,SDC

S,i ) =

T∑

t=1

P t,CH
S,i . (9.13)

Synthetic Load and RES Generation Data

For load and renewable generation profiles, we generate synthetic time series that
are designed to mimic the periodic patterns that typically appear in daily demand
and solar or wind generation.

The load profile for bus i is generated using a simple sine-based function creating
a bump in the middle:

fload,i(t) =

∣∣∣∣dloadi · 1
2
· γload · sin

(
πt

T

)∣∣∣∣ ∈ R≥0,
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where dloadi is the initial nominal load, and γload ∈ R is a scaling factor to control
the amplitude. The absolute value ensures non-negative demand values.

The renewable generation profile (treated as negative load) is defined analogously,
using a combination of sine waves to introduce more variability:

fRES,i(t) = −
∣∣∣∣
dRESi · γRES

2
·
(
sin

(
4πt

T
+ 0.7

)
+ sin

(
3πt

T

))∣∣∣∣ ∈ R≤0,

where dRESi is the nominal RES generation at bus i, and γRES ∈ R is a scaling
factor. The negative sign reflects that the load is negative, and as loads are, per
se, negative, it is a positive generation. As the RES curve is deterministic, i.e.,
contains no uncertainty, the assumption is a perfect forecast.

Results

Radial Five-Node Test Grid

Figure 9.2: Grid topology and bus types for IEEE case5.

The five-node test grid (Figure 9.2) consists of a radial configuration with one
generator at bus 1, followed by a load, a BESS unit s3, a renewable generator
(RES), and a second BESS s5. Line capacities are 100 MVA, except the line
between buses 2 and 3, which is reduced to 40 MVA to induce congestion. Loads
are fixed to 40MW/20MVAr, RES generation is set to an initial 30MW/10MVAr
(before curtailment). The generator has a cost of =C40/MWh, and curtailment is
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penalized at =C60/MWh. The BESS units have energy/power ratings of 20/10
MW (s3) and 10/10 MW (s5), with a shared reactive power limit of [–50, 70]
MVAr and round-trip efficiency of 0.9.

Figure 9.3: OPF results for the grand coalition Ω = 3, 5 in IEEE case5.

Figure 9.3 shows the OPF results when both storage units are active. The RES
generation fully covers the load, and excess energy is stored to avoid curtailment.
No conventional generation is needed. Both storage units charge and discharge
repeatedly, with unit s3 (lower purple line) storing more energy due to its larger
capacity and more central position.

Table 9.1: Costs of coalitions for case5.

Coalition Ω {} {3} {5} {3, 5}

Cost c (=C) 87.8 55.8 66.2 44.0

Table 9.1 summarizes the resulting costs. With no BESS, the total cost is =C87.8.
Adding s3 or s5 alone reduces costs to =C55.8 and =C66.2, respectively, while the
grand coalition yields the lowest cost at =C44.0. The combined effect results in a
49.8% cost reduction. This indicates that s3 is slightly more effective overall.

Figure 9.4 gives the results. Again, note that the Shapley values are positive (a
negated cost reduction). The Shapley values in Figure 9.4a confirm the relative
importance of the two BESS units. Storage s3 receives a utility of 2.26, while
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(a) Shapley values. (b) Baseline active power injections.

Figure 9.4: Shapley values and baseline injections for s3 and s5 in IEEE case5.

s5 receives 1.39. This reflects its larger capacity and more central grid location.
Interestingly, the baseline from Equation 9.12 in Figure 9.4b shows that s5 injects
slightly more (56.6 MW) than s3 (54.8 MW). Hence, s3 must offer additional
value beyond energy shifting.

(a) Storage s3.

(b) Storage s5.

Figure 9.5: Active (green) and reactive (red) power of BESS units in IEEE case5.
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Figure 9.5 reveals that s5 provides significantly more reactive power compensation
than s3. While s3 operates mostly within [–20, 0] MVAr, s5 ranges from –40
to +45 MVAr. This reactive contribution, which affects voltage and losses, is,
however, hardly captured in the Shapley utility. The question remains whether
the Shapley value can capture that reactive power compensation.

Modified IEEE case14

A more complex example is the IEEE case14, which has more nodes and is a
meshed grid; see Figure 9.6. The loads and RES are concentrated in order to make
the power flows more understandable and to imitate real-world situations. The
most important parameters different to IEEE case5 are: The loads d2, d3, d4, d13
are set to 45 MW/14 MVA, 30 MW/10 MVA, 70 MW/25 MVA, and 13 MW/6
MVA, respectively, and RES dRES

12 , dRES
14 to 30 MW/10 MVA and 20 MW/7

MVA, respectively. Generation costs are =C20, =C30, =C35, =C40, and =C50 for plants
g10, g1, g2, g8, g6, respectively. Branches (4, 9), (5, 6), (6, 12), (7, 8), (12, 13)

have a reduced capacity of 30 MVA, and all BESS units have 10 MWh of energy
capacity.

The OPF results of IEEE case14 are given in Figure 9.7. We can see that the
RES generation is insufficient to cover the load, and conventional generation fills
in. Several storage units are charged, discharged, and charged again during the
second peak. Removing the BESS results in significantly higher conventional
generation, while some curtailment still occurs during peak periods, likely due to
the restricted line capacity from north to south.

Table 9.2: Costs of coalitions for case14.

Ω {} {6} {7} {12} {6, 7} {6, 12} {7, 12} {6, 7, 12}

c (=C) 81.8 68.0 69.4 63.8 63.2 51.2 51.7 48.9
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Figure 9.6: Scenario for IEEE case14.

Figure 9.7: OPF results of case14 for the grand coalition Ω = {6, 7, 12}.
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Figure 9.8: Shapley values for three storage units s6, s7, and s12 for case14.

Looking at the costs in Table 9.2, it seems that storage s12 contributes most to
cost reduction, followed by s6 and s7. The overall cost reduction from =C81.8 to
=C48.9 is approximately 40%, similar to the IEEE case5 scenario due to the chosen
parameters.

The Shapley values in Figure 9.8 confirm this observation: Unit s12 has the
largest contribution (1.38), followed by s6 (0.72) and s7 (0.64). In this example,
the Shapley values roughly correspond to the sum of the active powers up to size.
Still, the reactive power should be considered. Although the objective considers
only active power generation costs, reactive injections influence voltages and
losses, thereby altering the feasible dispatch set. This indirect effect is captured
by the Shapley value, which explains why s6 and s7 receive non-negligible utility
despite similar active power profiles.

Figure 9.9 shows that units s6 and s7 contribute significantly to reactive power
compensation, with values up to ±70 MVAr. Although s12 shows lower reactive
power usage, it has the highest utility. This suggests that active power affects cost
reduction more directly, while reactive power contributions are still captured by
the Shapley value due to their effect on system losses and voltage support.

Insights

Two insights stand out:
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(a) Storage unit s6.

(b) Storage unit s7.

(c) Storage unit s12.

Figure 9.9: Active (green) and reactive power input (red) of the BESS units of case14.
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(1) The influence of an individual storage unit cannot be inferred from its active
power profile alone. Location, losses, and voltage support can dominate
the marginal contribution.

(2) The results hint that the Shapley value can capture reactive power effects
even though the objective minimizes only active power cost, since reactive
injections alter feasibility, losses, and dispatch.

These findings suggest that the Shapley value can enhance transparency by quan-
tifying the broader system contribution of BESS units—including indirect effects
that are otherwise difficult to observe.

9.2 Discussion and Conclusion

This chapter presented a Shapley-based utility measure to quantify the contribu-
tion of battery energy storage systems (BESS) in the transmission grid. Based on
a multi-period optimal power flow (MP-OPF), the approach allocates system cost
reductions to individual storage units while respecting time coupling, nonlinear
interactions, and both active and reactive power effects. The approach is demon-
strated on two test systems: a simplified 5-bus radial grid and a modified IEEE
14-bus meshed grid.

The results show that the Shapley value offers a meaningful and interpretable
measure of system utility. It captures contributions that are not directly observ-
able in the power injections alone due to the meshed nature of the power grid.
Units with comparable energy throughput can yield substantially different val-
ues, depending on their location and system interaction. This supports the idea
that BESS placement decisions should not rely solely on injection magnitudes or
energy-based heuristics, but should instead involve a system-wide analysis.
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Interpretation and Technical Considerations

Several modeling choices and observations deserve further clarification.

First, while the Shapley value can be evaluated per time step, this is notmeaningful
for storage. Due to intertemporal coupling, a storage unit’s value often depends
on its behavior over the whole horizon. Temporary charging or discharging may
appear costly in isolation, but is beneficial when viewed in the broader context of
future load or RES forecasts. Consequently, a storage unit may exhibit positive
marginal costs in individual time steps, yet its overall Shapley value remains
negative, reflecting net cost reduction over the full horizon.

Second, one might ask whether the presence of BESS can introduce new con-
gestion. Since congestion is defined by comparing the optimal power flow (OPF)
with a reference power flow (PF) that excludes storage, no new congestion can
arise solely from storage. More precisely, a congestion is counted only if the OPF
violates a limit that is also violated in the reference PF; limits that turn binding
solely as a consequence of the storage’s operation are not considered part of the
congestion set. However, line loadings may increase, particularly near the storage
units, as they actively participate in balancing power flows.

Third, it is theoretically possible for BESS to reduce costs below the reference
PF solution, especially if large and well-located storage units reduce expensive
generation. This would result in negative redispatch costs. However, such out-
comes are rare in realistic scenarios, as transmission and storage limits constrain
the extent to which storage can reshape flows or displace generation.

Limitations and Open Questions

The proposed method is not without limitations. The following aspects are
particularly relevant for future research:

Time horizon What horizon length is required to obtain a stable and repre-
sentative utility value, especially when decisions are made over shorter intervals?
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There has beenwork on finding the optimal planning horizon in storage scheduling
problems (Prat et al. 2024), showing that it is possible to determine a long-enough
horizon. A research question could be whether the same holds for our BESS
schedules in transmission grids.

Scalability Two questions arise when it comes to applying the approach on larger
power grids: Does it work equally well on larger grids, and do the Shapley values
show the same behavior? And does the approach scale well? Regarding the
behavior, some effects might be smoothed out or enlarged, such as the sensitivity
to perturbations. Regarding computation complexity, due to the factorial increase
in coalitions, scalability is a challenge. However, there are approximationmethods
that have proven to work well in other contexts (van Campen et al. 2017) (Survey:
(Lamothe and Ngueveu 2025)). The only question is, wether they work equally
well on a complex system such as an AC power grid.

Model assumptions The analysis is performed with ideal model assumptions
such as perfect (deterministic) forecasts and does not include any uncertainty, nor
in the available load and RES data, nor in that BESS units are keeping some
capacity for other services, nor in the variability of prices. In practice, a lot more
criteria have to be considered that might make the Shapley computation for BESS
units more difficult. What these are and how they can be considered is an open
research question.

Sensitivity and robustness How stable is the Shapley value under variations
in component parameters or other perturbations in the grid? This links to the last
point of model assumptions and uncertainty. Since we considered only one load
scenario, it would be interesting to see how meaningful the Shapley value of a
component is in an ever-changing environment and over a longer period of time.

We do address the last point of uncertain component parameters and changing
grid configurations in the next Chapter 10.
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Conclusion and Outlook

The increasing complexity of power systems, driven by the integration of renew-
able energy and the decentralization of resources, demands tools that improve
transparency and explainability. BESS are an important flexibility resource, but
their system contribution is sometimes difficult to quantify. This chapter proposed
a Shapley-based utility measure to evaluate the operational value of individual
storage units in terms of system cost reduction.

The results demonstrate that this measure can distinguish between different units
– even when they perform similarly in terms of injected energy – based on their
location, interaction, and system impact. This enables more informed planning
decisions regarding BESS deployment and supports the design of compensation
or incentive schemes that reflect true system value.

Future work should further investigate the robustness of the utility metric under
system changes, as well as explore its application to other outputs of the MP-
OPF, such as reactive power or RES curtailment. In addition, the method could
be extended to support optimal BESS placement or portfolio planning under
uncertainty and operational constraints. The potential to generalize the Shapley
value toward broader transparencymetrics in grid planning and regulation presents
an exciting direction for continued research.
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10 Robustness Analysis of the
Shapley Value in Power Grids

After having applied the Shapley value to battery storage units, showing differ-
ences in AC and DC OPF usage, and using it in a privacy-preserving fashion,
another step towards practical applicability is necessary: Testing the values’ ro-
bustness in the face of uncertainties in the grid.

This reminds us of the first part of this thesis, where we included uncertain
wind generation in a DC OPF problem. In this second part, we do not include
uncertainty analytically, but rather through different scenarios. We want to test
how robust the Shapley value is when faced with an uncertain load situation and
grid parameters. We also want to know, whether these changes affect various
player types equally, e.g., storage units, but also generators or branches. This is
summarized in the last research question of this thesis:

RQ6 How robust is the Shapley value in its application to electricity grids in the
face of perturbations in grid parameters?

We can divide this question by asking what parameters we change: the ones of
the player himself, or the grid parameters. In this chapter, we look at both aspects
in two parts with the following questions:

(1) How does the Shapley Value for BESS units change when their parameters
are perturbed?

(2) How does the Shapley value of various player types change under pertur-
bations in the grid parameters?
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To answer these questions, we perform an experimental robustness analysis using
Monte Carlo sampling for one example grid.

A robustness analysis usually tests how stable a system is when its inputs are
perturbed, or when ideal assumptions from theory no longer hold. Its goal is
to ensure that the outcome is not highly sensitive to uncertain inputs and can
function under various conditions. In contrast to a sensitivity analysis, it does
not ask which input features have the most effect on the output, but tests extreme
conditions.

In the context of electricity grids, a robustness analysis for tools that automate,
help decision-making, or allocate costs is essential as grid systems are subject to
constant changes. These include uncertainties in RES generation, transmission
line failures, and changing loads. By better understanding the impact of these
changes, we can make more informed decisions regarding resource allocation,
grid investments, and the overall design of future grid infrastructure. When it
comes to cost allocation mechanisms, e.g., for electricity charges or the evaluation
of the beneficialness of components, it is especially vital to know how the value
behaves. Only then can we interpret it properly and include it in our decision-
making processes.

One primary requirement is that its behavior is predictable. It should reflect
changes in the grid, but also stay fairly stable and not be overly sensitive to small
changes. Of course, how the value behaves always depends on the dynamics of
the underlying grid. Accumulating values, such as the Shapley value that averages
marginal contributions, usually have such a behavior. As the Shapley value is a
linear map, its output also changes linearly with the inputs. Still, different values
behave differently, and we do not know precisely how, especially for complex
systems like electricity grids. Therefore, it is necessary to perform a robustness
analysis before thinking about deploying it in practice.

The remaining chapter first describes the experimental setup including sampling
strategies, data, and perturbations, then gives the results for questions (1) and (2),
and concludes with a discussion.
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10 Robustness Analysis of the Shapley Value in Power Grids

10.1 Experimental Setup

This robustness analysis (def. in Nosek and Errington (2020)) is empirical and
conducted on a modified IEEE 14-bus test grid, described below. The goal of
this first attempt is to study how the Shapley value behaves under large controlled
changes of the grid topology in a meshed network.

The workflow of the analysis is shown in Figure 10.1. Perturbed grid scenarios are
sampled on the left, passed through the unchanged OPF–Shapley pipeline (dashed
box), and yield Shapley vectors Ψ(θ(k)) for each realization. These vectors are
then evaluated using the robustness metrics shown on the right.

Sampling Strategies

We use two sampling strategies to generate perturbed grid scenarios: a grid
sweep and Monte Carlo sampling. For Question (1), BESS parameters are varied
directly via a deterministic grid, since we directly evaluate the storage units.
For Question (2), Monte Carlo sampling is used to integrate the more complex
grid–component interactions. All scenarios are evaluated with both the DC and
AC OPF formulations.

Deterministic Grid Sampling

For Question (1), each storage parameter (location, efficiency, energy capacity,
and charge/discharge limits) is systematically varied over a predefined grid. Only
one parameter is perturbed at a time, while all others remain at their default values.
This produces a deterministic and structured set of scenarios that covers the full
parameter range without randomness.
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Monte Carlo Sampling

For Question (2), we use Monte Carlo sampling to capture the complex grid
interactions; grid sweep would not be possible due to the many possibilities. In
each trial, several component types (generator, load, branch, or RES unit) with
one or two associated parameters are selected and perturbed. The magnitude of
the perturbation is drawn from the corresponding intervals. Each draw yields
one random grid realization. The following subsection formalizes this sampling
process with Monte Carlo sampling.

Mathematical Formulation To describe the sampling process mathemati-
cally, we collect all perturbed grid parameters in a vector

θ = [θ1, . . . , θm]

with each parameter θj drawing values from the domain Θj , i.e., θj ∈ Θj . The
whole value space is then defined as Θ = Θ1 × · · · ×Θm, from which we draw
N independent samples from a probability distribution P (Θ):

θ(k) ∼ P (Θ). k = 1, . . . , N

Each sample θ(k) represents a scenario of the TU game (P,Φ(· | θ(k))), with
players P , OPF cost function Φ, and grid parameters θ(k). Let Ψp(θ

(k)) denote
the Shapley value of player p ∈ P in scenario k. Then the set

{
Ψp(θ

(k)) | k = 1, . . . , N
}

gives the empirical distribution of one player’s Shapley value allocation under
uncertainty.
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10 Robustness Analysis of the Shapley Value in Power Grids

Robustness can then be assessed with several measures. Closest are the empirical
mean and variance that can be applied to the distribution of one or all players’
Shapley values. The empirical mean of player p is defined as

µ̂p =
1

N

N∑

k=1

Ψp(θ
(k)). (10.1)

The empirical variance, capturing the spread of player p’s Shapley values across
all perturbations, is

σ̂2
p =

1

N

N∑

k=1

(
Ψp(θ

(k))− µ̂p

)2
. (10.2)

Since mean and variance only give limited information, we use three additional
error measures: cosine similarity, the mean absolute error (MAE), and a rank-
order error. Each measure captures a different dimension of robustness: cosine
similarity captures the overall alignment or correlation between Shapley vectors,
MAE captures the absolute magnitude of deviations, and rank-order error captures
how strongly the relative importance of players, as expressed through their Shapley
values, has shifted. They are defined as follows.

Definition 6 (Cosine Similarity) Let Ψ(a) and Ψ(b) denote two Shapley value
vectors. The (normalized) cosine similarity is defined as

CosSim
(
Ψ(a),Ψ(b)

)
=

Ψ(a) ·Ψ(b)

∥Ψ(a)∥2, ∥Ψ(b)∥2
, (10.3)

normalized to lie in [0, 1]. It measures the directional correlation between the
two vectors.

While cosine similarity reflects the general alignment, it does not reflect whether
the order, which indicates the player’s importance, changes. Knowing this is
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important when decisions are to be made, e.g., which component is built. To
assess the order, we take the rank-order error, defined as follows.

Definition 7 (Rank-Order Error) Let rank(Ψ) denote the ordering of players
induced by the Shapley values. The rank-order error between two Shapley value
vectors is defined as the number of pairwise inversions between their rankings.
This quantity is not normalized. It measures how much the relative importance
of players changes.

However, even if the order is off, it might still be the case that the differences are
generally very small. Therefore, we have to consider the absolute deviations as
well with the mean absolute error, defined as follows.

Definition 8 (Mean Absolute Error (MAE)) For two Shapley value vectors
Ψ(a) andΨ(b), the globally normalized mean absolute error is

MAE
(
Ψ(a),Ψ(b)

)
=

1

|P|
∑

p∈P

∣∣∣Ψ(a)
p −Ψ(b)

p

∣∣∣ . (10.4)

It describes the absolute deviations between both allocations.

Together, these three measures provide an interpretable assessment of how the
Shapley values change.

Data

We perform both robustness analyses on a modified IEEE 14-bus test case. The
load, generation, and line limits are adjusted to obtain a north-south power flow
with congestion, and storage units are added. The grid is visualized in Figure 10.2,
which stems from the previous chapter. All modifications are listed in Table 10.1;
while the storage parameters are given in Table 10.2.
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10 Robustness Analysis of the Shapley Value in Power Grids

Figure 10.2: Scenario for IEEE case14.

Perturbation Intervals

The pipeline in Figure 10.1 applies to both Question (1) and Question (2); only the
perturbed parameter sets differ between them. Tables 10.3 and 10.4 summarize
all grid values and intervals used.

For Question (1), we analyze how changes in the storage unit’s own parameters
affect its Shapley value. For this, we add three storage units at busesS = {6, 7, 12}
with energy capacity 10 MWh, power limits of 10 MW, and efficiencies of 0.9.
In each trial, we alter the capacity and power, the efficiencies, add or remove
a storage unit, or scale the RES output with the factor aRES. In total, we test
N = 57 scenarios, containing 7 values for the capacity, 5 for the efficiencies,
10 for the amplitude factor aRES , and 35 different storage locations for 2 and 3

storage units.

For Question (2), we study how Shapley values of different player types behave
when the grid topology or composition changes. In each Monte Carlo trial, we
add either a generator, a load, a branch, or a RES unit at a randomly selected
admissible location, or scale the RES output. For this part, we have many more
scenarios than in the first, because the relationship between the perturbation and
the tested component is more complex due to interactions with the grid. In total,
we have N = 133 scenarios, with 34 for the generators, 42 for the branches, and
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Table 10.1:Modifications of IEEE case14 for the robustness analysis.

Component Parameter Changes
Branch
l ∈ L RateA1 Sij 30 for l ∈ {9, 10, 12, 14}, 10 for l = 19

Generators
i ∈ G

Location move g3 to g10, add g1, g2, g6, g8

Cost coeff. bi b1 = 0.3, b2 = 0.35, b6 = 0.5, b8 = 0.4, b10 = 0.2

PG,i 190.0 ∀i ∈ {1, 2, 6, 8, 10}
QG,i 130.0 ∀i ∈ {1, 2, 6, 8, 10}

Loads
i ∈ D

Location delete d6, d9, d10, d11, d12, d14
move d5 to d3

PD,i {45, 30, 70} ∀i ∈ {2, 3, 4}
QD,i {15, 10, 25} ∀i ∈ {2, 3, 4}

RES
i ∈ DRES

Location add dRES
12 , dRES

14

PRES
D,i {30, 20} ∀i ∈ {12, 14}

QRES
D,i {10, 7} ∀i ∈ {12, 14}

Table 10.2: Storage parameters for the modified IEEE 14-bus system.

Component Parameter Value

Storage
i ∈ S

Location s6, s7, s12

Capacity ES,i 10 MWh
Efficiencies ηCH

S,i , η
DC
S,i , η

SDC
S,i 0.9

57 for the storage units from before. The players are PS = {6, 7, 12} as storage
units, PG = {1, 6, 8} as generators, and PL = {1, 7, 10, 19} as branches.
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10 Robustness Analysis of the Shapley Value in Power Grids

Table 10.3: Parameter grids used in Part (1), where only storage units and RES amplitude are
perturbed. All parameters are varied deterministically over predefined grids.

Component Parameter Grid

Storage Capacity / Power {10, 20, . . . , 70}MWh/MW
Self-/Dis-/Charge efficiency {0.8, 0.85, . . . , 1.0}
Location N

RES units Amplitude aRES ×{0.25, 0.5, . . . , 2.5}

Table 10.4: Parameter intervals used in Part (2), where grid-level components are perturbed using
Monte Carlo sampling. In each trial, exactly one component type and one parameter is

perturbed.

Component Parameter Interval / Set

Storage Location N

Generators Location N \ G

Loads Location N \ D

Branches Location (new) N

RES units Amplitude aRES ×[0.25, 2.5]

10.2 Results

The results follow the two questions (1) and (2) from above; by (1) analyzing
perturbations of BESS parameters onto BESS Shapley values—also comparing
values based on AC and DC-OPF as previously for congested lines, and (2)
analyses the influence of random perturbations in the grid onto the Shapley values
of storage, generators, and branches.
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Figure 10.3: Shapley values of storage units at buses 6, 7, and 12 under perturbed RES amplitude
factors.

BESS Parameter Perturbations

This first section addresses the first part of research question RQ6:

How does the Shapley Value for BESS units change when their parameters are
perturbed?

In the following, we look at all parameter types individually and assess their
impact on the Shapley values of the storage units.

RES Amplitude As the amount of RES generation increases, see Figure 10.3,
the Shapley values rise sharply once RES production is large enough to saturate
local demand. When RES output is very low, all storage units contribute almost
nothing—the OPF hardly uses storage because there is simply no surplus to
shift across time. As RES output grows, the unit located closest to the RES
buses gains the most value. But this trend reverses at very high amplitudes:
when RES generation becomes so large that it directly displaces conventional
generation at the samepoint in time, storage becomes less relevant, and itsmarginal
contribution declines. Thus, while placing storage close to RES generation is
generally advantageous, the overall benefit still depends on how the units interact
with the rest of the system.
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Figure 10.4: Shapley values of storage units at buses 6, 7, and 12 under perturbed efficiencies.
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Figure 10.5: Shapley values of storage units at buses 6, 7, and 12 under perturbed capacities.

Efficiency Raising the efficiency parameters increases the value of all units, but
not uniformly, see Figure 10.4. The farther a unit sits from the RES injections, the
more it benefits from increased efficiency—because higher round-trip efficiency
compensates for additional network losses and congested paths, making these
units more attractive for the OPF. Although the Shapley values of the units move
noticeably with the efficiency parameters, the trajectories remain smooth and
monotonic. The changes are predictable rather than erratic. Overall, storage
units do not converge to identical values—even with perfect efficiency—because
network placement still governs their system value.
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Figure 10.6: Shapley values of storage units at buses 6, 7, and 12 under varying numbers of storage
units and locations.

Capacity Larger energy capacity clearly increases the value of the unit nearest
the RES, see Figure 10.5. That unit captures the bulk of additional cost savings
because it can absorb most of the fluctuating RES surplus directly at the source.
As soon as the storage becomes large enough—that is, it can absorb all RES
generation—the value saturates. Among all parameters tested, capacity produces
the largest spreads in the Shapley values (up to 1.8), exceeding efficiency and
RES amplitude changes.

Location Placement matters, but only up to a point, as shown in Figure 10.6.
With two units, each storage sees a higher individual value because they are used
more intensively. With three units, all but the RES-adjacent locations drop to low,
nearly flat values around 0.6. Only units very close to RES consistently retain
high value; units elsewhere are used fairly evenly and contribute comparatively
little. Once several units are active, marginal contributions flatten across most
locations—the network distributes usage broadly, except at the RES injection
points.
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Figure 10.7: Distribution of Shapley values for storage units at buses 6, 7, and 12 under
RES-amplitude perturbations.

Differences in AC vs. DC

One aspect that arose before in Chapter 8 was that AC and DC-OPF yield dif-
ferent congested lines and different Shapley values with sometimes unexpected
outcomes. Therefore, given our many results, we split the values in those runs
performed with a DC-OPF, and those with an AC-OPF, and check howmuch they
differ. This is interesting as Shapley values might have a different sensitivity for
storage units than for branches (congested lines).

To avoid redundancy, we only show those results for the factor with which the RES
amplitude is multiplied, and for the number of storage units at different locations.
The results for perturbations in capacity and efficiency are given in the Appendix
(see Section A.4). Up front, we can already say that AC and DC OPF yield fairly
similar results with slightly higher values for AC. This meets expectations, as AC
produces higher costs due to added losses. It also suggests that the DC-OPFmight
just be good enough for approximating the Shapley values of BESS units.

Figure 10.7 shows the distribution of Shapley values under varying RES ampli-
tudes, separated into AC and DC OPF. Since the storage units are grouped by bus,
the plot highlights how each unit responds to changes in renewable injections.
Across all three buses, AC-based Shapley values are generally higher and show a

144



10.2 Results

2 3 4

0.4

0.6

0.8

1

1.2

1.4

1.6 OPF
ac
dc

Number of Storage Units

Sh
ap

le
y 

Va
lu

e

Figure 10.8: Distribution of Shapley values for two, three, and four storage units placed randomly in
the grid. All their Shapley values are depicted in one of the three groups on the x-axis,

which indicates the number of storage units placed.

noticeably larger spread. This can be interpreted such that storage units are more
sensitive to changes in the AC setting, or that the perturbations in the AC setting
produce more complex interactions between RES generation and the grid. This
also means, that storage becomes more valuable in the AC setting because it can
relieve not only active-power congestion but also AC-specific constraints.

Figure 10.8 shows the distribution of Shapley values under varying numbers of
storage units and, hence, slightly different locations, too. As before, fewer storage
units tend to have higher marginal contributions, with two having noticeably larger
values than three or four units, suggesting that they have the biggest payoff and that
more units might not be necessary. Comparing AC and DC, both formulations
exhibit almost the same ordering across the cases, and the absolute differences
are small. As this shows in the other plots, too, it supports the argument that DC
might be good enough for BESS units. Nevertheless, AC values are slightly higher
across the board, but not as pronounced as in the RES amplitude experiment.
This makes sense, since when adjusting only the number and locations of storage
units—without altering the injection height—the system is not driven into strongly
voltage-sensitive regions. Additionally, the variance is still high, suggesting that
at some locations, storage is very useful, while at others not so much. This also
shows that placement within the grid matters.
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10 Robustness Analysis of the Shapley Value in Power Grids

Figure 10.9:Mean and variance of all trials for perturbations through added generator, storage, and
branch components.

Perturbations in other components

This second section addresses the second part of research question RQ6:

How does the Shapley value of various player types change under perturbations
in the grid parameters?

Note: When there are more units in the plots than stated players, this happens
because, as a perturbation, one unit of the player’s type can be added.

Figure 10.9 presents a box plot of Shapley values across all individual components,
grouped by type—storage units, generators, and branches. Generators generally
show the highest median Shapley values and a wide range, indicating that they
often exert a strong influence on the system outcome but with notable variability
across units. Storage units also have positive Shapley values with tighter spreads,
suggesting that their contribution is consistently beneficial and less sensitive to
system configuration. Branches, in contrast, cluster around zero with a high
number of outliers in both directions, reflecting that it very much depends on the
settingwhether the branch benefits the system, but it can also be counterproductive,
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Figure 10.10: Distribution of Shapley values per storage unit over all trials. Units {1, 2, 3} are
located at buses {6, 7, 12}. The additional unit 4 can be located anywhere in the grid.

too. One could say that adding branches to a network needs to be planned a lot
more carefully than adding generators or storage units.

However, as this graphic only shows aggregated values, we need to look at the
players individually and applymore elaborate error scores thanmean and variance.

In the following graphics, each trial is represented by a black dot. Red dashed line
represents no correlation of the Shapley vectors for Cosine Similarity, and one
permuted order for the Rank-Order Error (based on MSE). The Mean Squared
Error (MAE) is normalized globally over all trials.

Storage

Figure 10.10 shows the full distribution of Shapley values for individual storage
units at buses {6, 7, 12}. Units one and two display relatively narrow and centered
distributions, which points to stable and consistent importance across different
trials. However, some units, such as unit 3, show a broader or multi-modal
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(a) Cosine Similarity. (b) Rank-Order Error. (c)MAE.

Figure 10.11: Error measures assess the sensitivity of the Shapley value to perturbations with
respect to storage units as players.

distribution, suggesting their influence fluctuates significantly depending on the
specific network configuration or parameter set. The fourth violin is small as only
in some trials storage units have been added.

Figure 10.11 shows the three error measures applied to the whole set of Shapley
vectors over all players. The cosine similarity and rank-order error show strong
stability, indicating that storage-related Shapley rankings are preserved under
parameter variations. However, the MAE is slightly more dispersed, varying on
average about 50%. Since values are not large in general (see Figure 10.10) and
the other two measures show high agreeableness, all values must have increased
about the same size. This can match with the results from the previous section.
Hence, while storage units tend to retain their relative importance, the magnitude
of their Shapley values is sensitive to perturbations, probably mostly changes in
RES generation.

Generator

Figure 10.12 illustrates the Shapley value distributions for each generator at buses
{1, 6, 8}. One generator (unit 1) stands out with both the highest mean and
variance, suggesting it plays a dominant and context-sensitive role in system
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Figure 10.12: Distribution of Shapley values per generator over all trials.

(a) Cosine Similarity. (b) Rank-Order Error. (c)MAE.

Figure 10.13: Error measures assess the sensitivity of the Shapley value to perturbations with
respect to generators as players.
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Figure 10.14: Distribution of Shapley values per branch over all trials.

outcomes. This is well reasoned with it being the cheapest generator and with 1
and 8 being closer to loads than the generator at bus 6.

Figure 10.13 presents sensitivity metrics for the Shapley values resulting from
perturbations of generator parameters. The cosine similarity remains high across
trials, indicating that the direction of the influence vector is well preserved. The
rank-order error is also low, confirming that the relative importance of generators
is robust to parameter changes. The MAE shows broader variability, implying
that while the ranking of players remains consistent, their absolute contributions
do shift, although all in a similar direction. This suggests that the Shapley value
for generators is stable in terms of order, but not necessarily in magnitude.

Branch

Figure 10.14 displays the distribution of Shapley values for each branch in
{1, 7, 10, 19}. As expected from the component-level analysis, most branches
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(a) Cosine Similarity. (b) Rank-Order Error. (c)MAE.

Figure 10.15: Error measures assess the sensitivity of the Shapley value to perturbations with
respect to branches as players.

cluster around a zero Shapley value, reflecting their generally low impact. How-
ever, several branches show highly dispersed distributions, showing that in some
grid configurations, they can exert considerable influence. As such, they are more
critical to plan a storage unit.

Figure 10.15 shows how sensitive the Shapley values are to perturbations in
the branch parameters. The cosine similarity values are surprisingly close to
-1, indicating a strong counter-correlation. This means the Shapley vectors are
pointing in opposite directions. The rank-order error also yields uncorrelated
values; the order of the values is completely off. However, looking at the MAE,
the absolute values are small in general, so the results from the other two error
measures cannot be taken as very important, as small grid changes quickly alter
these scores.

10.3 Discussion & Conclusion

This chapter examined the robustness of the Shapley value when grid parameters
or player attributes are perturbed. We tested a range of scenarios to understand
how much the value shifts under changing system conditions. Results show that
the Shapley value generally behaves in a stable and interpretable manner, but the
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degree of robustness depends strongly on the type of component and the form of
perturbation.

The Shapley value behaves as expected continuously with respect to parameter
changes, especially in the deterministic grid tests for BESS units. Increasing
their efficiency or capacity raised the Shapley value, particularly for units near
renewable injections. For the capacity and number of storage units there are
saturation effects, and good efficiencies spread the utility more evenly across
units. However, there is also the unexpected effect of lower use with very high
RES shares of the unit close to RES generation. Hence, the utility increasesmostly
as expected and can be approximated with active power injections, although there
might be potential in using the Shapley value in a planning simulation to bring
additional insight into each unit’s beneficialness. Also, there are slight differences
between optimization with AC and DC OPF; Shapley values based on AC OPF
yield slightly higher values with a slightly larger spread. This can mean that
they are more sensitive to grid changes and can better help with the nonlinear
constraints in an AC setting.

In the Monte Carlo simulations for system-wide perturbations, generators showed
the highest and most consistent Shapley values. This makes sense, as the system
costs are the generation costs. Storage units followed, with slightly lower values
but good robustness. Branches had lowmean values but wide variance, indicating
high sensitivity to location. Error metrics like cosine similarity and rank-order
error confirmed these patterns. The shape of Shapley vectors was preserved
well across trials, but rankings—especially for branches—were unstable. This
implies that absolute contributions are fairly robust, but relative importance is
less obvious for branches. Hence, when planning a grid, branches are the more
delicate component, while generators and storage units are less sensitive to their
location and other added components.

Limitations

As mentioned, some components, especially branches, showed strong variability
across trials. The wide spread in Shapley values for individual branches suggests
they are more sensitive to topological changes in the grid. Since their relevance
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is highly context-dependent, this complicates interpretation. Even if the overall
vector remains similar, rankings can shift rapidly. This is a limitation if Shapley
values are used for prioritization or investment planning.

Storage units, while stable in ranking, showed variation in magnitude under per-
turbations. This means that while their importance remains visible, the absolute
value assigned can however fluctuate largely. This needs to be accounted for if
the value is used for fine-grained decisions or payment allocation.

Another limitation is the use of only one grid. While the IEEE 14-bus system is
common for testing, generalizability is limited. The results might look different
for larger or differently structured networks. Moreover, only one objective—OPF
cost—is used to define the Shapley value. Other system values might yield
different Shapley distributions.

Despite these limitations, the overall findings indicate that the Shapley value re-
tains much of its structure and meaning even under perturbations. It reacts as
expected to parameter changes, and most types of players exhibit interpretable
behavior. With this, the analysis provides a first step toward real-world applica-
bility, offering guidance on where the method performs reliably and highlighting
larger sensitivities that warrant deeper exploration.
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Part II evaluates the use of the Shapley value as a fair and explainable allocation
rule in power systems, moving from conceptual motivation to practical constraints.
It assessed whether the value can capture the operational role of grid components
such as generators, branches, and especially BESS units, in a transparent and
robust way. Four aspects were addressed: privacy-preserving computation, AC
realism, inclusion of storage, and robustness to perturbations. These steps reflect
core challenges in real-world grid operation, where transparency and fairness are
needed, but models must remain tractable, data cannot always be shared, and
system conditions are constantly changing.

Contributions

Chapter 7 used a distributed Shapley computation based on the AC OPF model
ALADIN to preserve model privacy when applying the Shapley value to con-
gestions. Chapter 8 looked closer at the different outcomes of congestion and
Shapley values based on DC and AC OPF computations and stated that they can
be unexpectedly different. Chapter 9 used the Shapley value to define the utility
of battery storage in a multi-period OPF setting, showing that the Shapley value
can capture some effects better than default proportional methods. Chapter 10
conducted a robustness analysis using deterministic and stochastic perturbations
to test how stable and meaningful the values remain under uncertainty.

Explainability The Shapley value offers additional insight into the complex in-
teractions within power grids and supports more transparent infrastructure plan-
ning and fairer cost allocation. By quantifying individual component influence,

155



11 Discussion & Outlook

it can uncover technical drivers of system behavior that are otherwise hidden in
aggregate results.

Relevance to practice Data privacy, physical accuracy (AC modeling), fair
cost allocation, and robustness are key concerns in real-world grid operation.
This work takes steps toward bridging theory and practice by addressing these
challenges and demonstrating potential use cases. Also, it can serve as a starting
point for practical adoption and inform further discussion on where and how such
methods could be integrated into operational processes.

Limitations

Scope and scale Scalability, as well as the data basis, are clear limitations. All
results are based on IEEE test grids, with only one chapter using a broader range
of models. This means conclusions may not generalize to larger grids or different
topologies. The computational cost of Shapley value estimation—especially in
AC OPF—remains a bottleneck and is not explicitly benchmarked.

Missing integration into decision-making is another key gap. The Shapley
value remains an interpretive tool here; no mechanisms are designed to act upon
the results. There is no feedback from electricity price settings, incentives, or
investment decisions to whether the value is useful in non-ideal assumptions.

Outlook

For practical deployment, the Shapley value approach should be embedded into
larger frameworks to show its real benefits, e.g., pricing schemes, planning tools,
or regulatory models. It could be tested whether it has an advantage in contrast to
simpler values, test additional robustness under less ideal assumptions, see how
scalable the approach has to be, and wether it can yield use case-specific insights.

Speaking of scalability, another open point is to model the Shapley value over a
longer period of time to see how it behaves over the span of a year, for example.
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12 Conclusion

This thesis looks at two increasingly critical aspects of modern transmission
system operation: managing uncertainty from renewable energy sources and
improving transparency about the influence of individual grid components. It
combines optimization with cooperative game theory and demonstrates that both
uncertainty management and transparency can be addressed with analytic and
interpretable tools.

Part I addressed how BESS interact with uncertain RES generation and how
they should be placed to maximize system benefit. The key contribution is a
chance-constrained, multi-period DC-OPF that remains analytically exact under
Gaussian uncertainty and includes affine control policies for storage. This model
enabled a systematic evaluation of BESS on standard test systems and a realistic
reconstruction of the Turkish transmission grid. Across all experiments, BESS
reduced system costs, flattened generation profiles, and relieved transmission
stress. The analysis also showed that BESS placement matters, with sites near
load centers offering the highest systemic benefit.

Part II moves the Shapley value, suggested for redispatch cost allocation, towards
practical application. A privacy-preserving distributed AC-OPF was embedded
into the Shapley workflow, enabling cost allocations across large meshed grids
without requiring the exchange of internal grid data. The comparison between
DC and AC formulations revealed that DC-based allocations can be misleading,
particularly in congested or reactive-power-constrained networks, highlighting
the need for physical accuracy in attribution tasks. The concept of the Shapley
value was further generalized toward assessing component utility, and applied
to battery energy storage systems (BESS) in multi-period AC grids, capturing
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their impact through both active and reactive power. To assess the robustness
of Shapley-based allocations, a sensitivity analysis was conducted using both
deterministic perturbations and Monte Carlo sampling. The results showed that
Shapley values vary continuously with system changes and remain structurally
stable for generators and storage units, while branches tend to be more sensitive to
topological variations. Together, these contributions support a more transparent
and physically grounded approach to evaluating component influence in power
systems.

Limitations

There are several limitations to this work. Firstly, Part I relies on the DC approx-
imation, which omits voltage magnitudes and reactive power. While necessary
for analytical tractability, this limits realism, especially in voltage-constrained
or distribution-level settings. Second, Gaussian uncertainty—though conve-
nient—does not capture all forecast errors. Lastly, scalability remains restricted:
horizons of 12 hours and systems beyond roughly 100 buses approach the com-
putational limits of the model.

Part II also faces scalability issues, mainly due to the combinatorial complexity
of the Shapley value, which grows exponentially with the number of players.
Although the distributed AC-OPF generally enables larger systems, computing
the full Shapley value is still expensive. To use the Shapley value as a utility
metric, evaluation needs to be performed on larger grids to see how much it
differs from the baseline of active power injections. Likewise, the robustness
analysis has to be expanded to larger grids to see how the sensitivity of the
Shapley values changes with different topologies.
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Outlook

While the thesis advances analytical tools for flexibility and transparency, sev-
eral research areas remain open. Extending the stochastic OPF to AC formu-
lations—possibly through convex relaxations, hybrid DC–AC models, or data-
driven surrogates—would enable more realistic uncertainty analysis. Also, scal-
ability can be improved for both the OPF and Shapley framework; approaches
can be to decompose the problem, for example into a hierarchical Shapley value,
or to use learning-based approximations of the marginal contributions. Further,
a large open question is where and how to integrate the Shapley value-based
cost allocation; in the market environment, redispatch regulation, or investment
planning, and model the surrounding system. For the Shapley value, fast approx-
imation schemes and better baselines could make the approach more applicable
in operational settings. Finally, as grids become more data-rich through PMUs,
distributed sensors, and improved forecasting, combining these analytical tools
with real-time observability may open the door to automated decision support
systems.

In summary, this thesis contributes analytical methods that support both the op-
erational management of uncertainty and the transparent evaluation of system
influence. By combining tractable modeling and rigorous fairness concepts, it
offers a step toward more explainable and resilient power system operation. How-
ever, further work is required to scale these methods and integrate them into
real-world processes.
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A Appendix

A.1 Turkish Transmission Grid Data

The following data for the Turkish transmission grid used in Chapter 4 and is
given in the form of MATPOWER case files.

Further, there are default values for some components that are not contained in
the tables: For the busses, the area is set to 1. For the branches, rateB, rateC, the
ratio and angle are set to 0, and the status is 1. For the generators, the status is set
to 1 as well, and Pc1, Pc2, Qc1min, Qc1max, Qc2min, Qc2max, ramp agc, ramp
10, ramp 30, ramp q, and apf are set to 0. The generator costs are complete.

Table A.1: Bus Data

Bus Type Pd Qd Gs Bs Vm Va BaseKV Zone Vmax Vmin

1 3 758.07 168.46 0 0 1.015 0 345 1 1.06 0.94
2 1 0 0 0 0 0.9996 -3.038 345 1 1.06 0.94
3 1 0 0 0 0 0.9986 -3.348 345 1 1.06 0.94
4 1 0 0 0 0 0.9883 -4.081 345 1 1.06 0.94
5 1 0 0 0 0 0.9935 -3.294 345 1 1.06 0.94
6 1 0 0 0 0 0.9861 -4.178 345 1 1.06 0.94
7 1 0 0 0 0 0.9927 -3.489 345 1 1.06 0.94
8 1 0 0 0 0 1.0375 1.044 345 1 1.06 0.94

Continued on the next page
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Bus Type Pd Qd Gs Bs Vm Va BaseKV Zone Vmax Vmin

9 1 0 0 0 0 1.0112 3.225 345 1 1.06 0.94
10 1 0 0 0 0 1.0185 5.169 345 1 1.06 0.94
11 1 0 0 0 0 1.0063 3.408 345 1 1.06 0.94
12 1 0 0 0 0 0.9923 -14.53 345 1 1.06 0.94
13 1 0 0 0 0 0.9897 -8.987 345 1 1.06 0.94
14 1 0 0 0 0 0.9995 -6.196 345 1 1.06 0.94
15 1 0 0 0 0 1.016 -4.166 345 1 1.06 0.94
16 1 0 0 0 0 1.0045 -8.808 345 1 1.06 0.94
17 1 0 0 0 0 1.0001 -2.289 345 1 1.06 0.94
18 1 0 0 0 0 1.0137 -1.348 345 1 1.06 0.94
19 1 0 0 0 0 1.002 1.399 345 1 1.06 0.94
20 1 0 0 0 0 1.0058 -1.699 345 1 1.06 0.94
21 1 0 0 0 0 1.0232 -0.648 345 1 1.06 0.94
22 1 0 0 0 0 1.0052 -1.184 345 1 1.06 0.94
23 1 0 0 0 0 1.0125 4.470 345 1 1.06 0.94
24 1 0 0 0 0 0.9944 0.9564 345 1 1.06 0.94
25 1 0 0 0 0 1.0272 3.193 345 1 1.06 0.94
26 1 0 0 0 0 1.0209 6.588 345 1 1.06 0.94
27 1 0 0 0 0 1.0115 -6.806 345 1 1.06 0.94
28 1 0 0 0 0 1.017 -6.984 345 1 1.06 0.94
29 1 0 0 0 0 1.0246 -1.179 345 1 1.06 0.94
30 1 0 0 0 0 0.9938 -2.312 345 1 1.06 0.94
31 1 0 0 0 0 0.9638 -5.282 345 1 1.06 0.94
32 1 0 0 0 0 1.0088 -0.2473 345 1 1.06 0.94
33 2 0 0 0 0 1.0129 3.349 345 1 1.06 0.94

Continued on the next page
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Bus Type Pd Qd Gs Bs Vm Va BaseKV Zone Vmax Vmin

34 1 0 0 0 0 1.0109 2.575 345 1 1.06 0.94
35 1 0 0 0 0 1.0885 -10.39 345 1 1.06 0.94
36 2 510 136 0 0 1.01 -1.258 345 1 1.06 0.94
37 2 693 184.8 0 0 1.02 5.907 345 1 1.06 0.94
38 2 678 180.8 0 0 1.03 -0.7999 345 1 1.06 0.94
39 2 0 0 0 0 1.02 0.9894 345 1 1.06 0.94
40 2 555 148 0 0 1.02 1.126 345 1 1.06 0.94
41 1 0 0 0 0 1.02 0.98 345 1 1.06 0.94
42 2 514.5 137 0 0 1.01 1.881 345 1 1.06 0.94
43 2 960 256 0 0 1.02 6.14 345 1 1.06 0.94
44 2 1903 607.5 0 0 1.02 5.363 345 1 1.06 0.94
45 1 330 88 0 0 1.01 5.817 345 1 1.06 0.94
46 2 435 156 0 0 1.03 4.895 345 1 1.06 0.94
47 2 495 132 0 0 1.03 5.594 345 1 1.06 0.94
48 2 330 88 0 0 1.01 5.817 345 1 1.06 0.94
49 2 375 100 0 0 1.02 -12.02 345 1 1.06 0.94
50 2 0 0 0 0 1.01 -2.442 345 1 1.06 0.94
51 2 435 116 0 0 1.0117 1.202 345 1 1.06 0.94
52 2 250.5 -66.8 0 0 1.001 0.6819 345 1 1.06 0.94
53 1 0 0 0 0 1.0111 -0.2622 345 1 1.06 0.94
54 2 2100 560 0 0 1.011 1.364 345 1 1.06 0.94
55 1 0 0 0 0 1.011 -0.5653 345 1 1.06 0.94
56 2 474 126.4 0 0 1.02 -0.2161 345 1 1.06 0.94
57 2 1980 528 0 0 1.02 0.9146 345 1 1.06 0.94
58 2 1260 336 0 0 1.041 2.934 345 1 1.06 0.94

Continued on the next page
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Bus Type Pd Qd Gs Bs Vm Va BaseKV Zone Vmax Vmin

59 2 0 0 0 0 1.041 -0.4667 345 1 1.06 0.94
60 2 445.5 120 0 0 1.011 5.185 345 1 1.06 0.94
61 2 877.5 234 0 0 1.011 7.882 345 1 1.06 0.94

Table A.2: Branch Data

From To R (Ohms) X (Ohms) B (Mvar) RateA Angle Min Angle Max

1 4 0.0001 0.0016 0 750 -60 60
1 38 0.0001 0.0014 0 750 -60 60
2 3 0.0001 0.0011 0 750 -60 60
2 5 0.0001 0.0013 0 750 -60 60
2 38 0.0001 0.0013 0 750 -60 60
2 54 0.0001 0.0014 0 750 -60 60
3 4 0.0001 0.0011 0 750 -60 60
3 38 0.0001 0.0012 0 750 -60 60
3 39 0.0001 0.0011 0 750 -60 60
4 5 0.0001 0.0012 0 1000 -60 60
4 6 0.0001 0.0012 0 750 -60 60
5 6 0.0001 0.0011 0 750 -60 60
5 7 0.0001 0.0011 0 750 -60 60
5 54 0.0001 0.0014 0 1000 -60 60
6 7 0.0001 0.0011 0 500 -60 60
7 20 0.0001 0.0019 0 1000 -60 60
7 40 0.0001 0.0016 0 500 -60 60

Continued on the next page
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From To R (Ohms) X (Ohms) B (Mvar) RateA Angle Min Angle Max

7 53 0.0001 0.0014 0 500 -60 60
8 40 0.0001 0.0017 0 750 -60 60
8 43 0.0001 0.0018 0 750 -60 60
9 41 0.0001 0.0015 0 500 -60 60
9 43 0.0001 0.0013 0 500 -60 60
10 11 0.0001 0.0013 0 750 -60 60
10 43 0.0001 0.0011 0 500 -60 60
10 45 0.0001 0.0012 0 500 -60 60
10 44 0.0001 0.0010 0 1000 -60 60
11 47 0.0001 0.0014 0 750 -60 60
12 34 0.0001 0.0017 0 750 -60 60
12 49 0.0001 0.0013 0 500 -60 60
13 14 0.0001 0.0013 0 500 -60 60
13 35 0.0001 0.0025 0 500 -60 60
14 15 0.0001 0.0013 0 500 -60 60
14 50 0.0001 0.0015 0 750 -60 60
15 59 0.0001 0.0013 0 500 -60 60
16 18 0.0001 0.0020 0 500 -60 60
16 35 0.0001 0.0014 0 500 -60 60
17 19 0.0001 0.0022 0 500 -60 60
17 20 0.0001 0.0011 0 500 -60 60
17 52 0.0001 0.0017 0 500 -60 60
18 57 0.0001 0.0024 0 1000 -60 60
19 33 0.0001 0.0022 0 500 -60 60
19 59 0.0001 0.0016 0 500 -60 60

Continued on the next page
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From To R (Ohms) X (Ohms) B (Mvar) RateA Angle Min Angle Max

20 18 0.0001 0.0023 0 1000 -60 60
20 25 0.0001 0.0022 0 750 -60 60
20 36 0.0001 0.0013 0 500 -60 60
20 54 0.0001 0.0019 0 1000 -60 60
20 55 0.0001 0.0017 0 500 -60 60
20 59 0.0001 0.0030 0 750 -60 60
21 25 0.0001 0.0019 0 750 -60 60
21 55 0.0001 0.0019 0 750 -60 60
22 55 0.0001 0.0012 0 500 -60 60
23 25 0.0001 0.0015 0 500 -60 60
23 37 0.0001 0.0014 0 750 -60 60
23 60 0.0001 0.0011 0 500 -60 60
24 27 0.0001 0.0029 0 1000 -60 60
24 60 0.0001 0.0019 0 1000 -60 60
25 26 0.0001 0.0017 0 750 -60 60
25 37 0.0001 0.0014 0 500 -60 60
26 61 0.0001 0.0013 0 750 -60 60
27 28 0.0001 0.0014 0 750 -60 60
27 29 0.0001 0.0019 0 750 -60 60
29 33 0.0001 0.0016 0 750 -60 60
30 31 0.0001 0.0014 0 750 -60 60
30 58 0.0001 0.0014 0 750 -60 60
31 32 0.0001 0.0022 0 750 -60 60
32 57 0.0001 0.0013 0 750 -60 60
33 58 0.0001 0.0014 0 500 -60 60
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From To R (Ohms) X (Ohms) B (Mvar) RateA Angle Min Angle Max

33 58 0.0001 0.0013 0 500 -60 60
33 61 0.0001 0.0016 0 750 -60 60
34 45 0.0001 0.0016 0 750 -60 60
34 46 0.0001 0.0015 0 750 -60 60
35 49 0.0001 0.0014 0 500 -60 60
35 51 0.0001 0.0023 0 500 -60 60
36 53 0.0001 0.0016 0 500 -60 60
40 41 0.0001 0.0010 0 500 -60 60
40 53 0.0001 0.0016 0 500 -60 60
41 42 0.0001 0.0014 0 500 -60 60
42 51 0.0001 0.0012 0 500 -60 60
45 46 0.0001 0.0016 0 750 -60 60
45 51 0.0001 0.0022 0 500 -60 60
46 47 0.0001 0.0012 0 500 -60 60
46 48 0.0001 0.0010 0 500 -60 60
50 56 0.0001 0.0012 0 750 -60 60
50 57 0.0001 0.0014 0 750 -60 60
51 52 0.0001 0.0012 0 500 -60 60
52 53 0.0001 0.0014 0 500 -60 60
53 54 0.0001 0.0010 0 750 -60 60
54 55 0.0001 0.0013 0 750 -60 60
56 57 0.0001 0.0013 0 500 -60 60
57 58 0.0001 0.0017 0 500 -60 60
57 59 0.0001 0.0017 0 750 -60 60
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Table A.3: Generator Data

Bus Pg Qg Pmin Pmax Qmin Qmax Vg mBase

1 610 0 0 732 -100 100 1.0658 100
33 1125 0 0 1350 -100 100 1.0133 100
36 394 0 0 472.8 -100 100 0.8986 100
37 262 0 0 314.4 -100 100 1.0509 100
38 445 0 0 534 -100 100 1.1265 100
39 9975 0 0 11970 -100 100 0.9842 100
40 365 0 0 438 -100 100 0.9101 100
42 156 0 0 187.2 -100 100 0.8882 100
43 576 0 0 691.2 -100 100 0.8758 100
44 1449 0 0 1738.8 -100 100 1.0398 100
46 350 0 0 420 -100 100 1.0339 100
47 297 0 0 356.4 -100 100 0.9216 100
48 182 0 0 218.4 -100 100 1.0754 100
49 250 0 0 300 -100 100 0.8934 100
50 1032 0 0 1238.4 -100 100 1.1487 100
51 262 0 0 314.4 -100 100 0.7872 100
52 167 0 0 200.4 -100 100 0.9726 100
54 1704 0 0 2044.8 -100 100 1.0753 100
56 416 0 0 499.2 -100 100 1.0012 100
57 1320 0 0 1584 -100 100 1.0049 100
58 840 0 0 1008 -100 100 0.9491 100
59 273 0 0 327.6 -100 100 1.1965 100
60 200 0 0 240 -100 100 0.954 100
61 536.66 0 0 643.992 -100 100 1.0698 100
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Table A.4: Generator Cost

Model Startup Shutdown n cn−1 cn−2 c0

2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
2 0 0 3 0.01 0.3 0.2
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A.2 Additional results for IEEE case39

These results refer to Chapter 3.

Figure A.1: ieee case39: Network state without (upper) and with (lower) storage at time t = 9, with
generation (dark blue), wind generation (light blue), loads (red), storage (green) and line

flows (black).
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A.2 Additional results for IEEE case39

(a) Left: fixed load d20; right: the uncertain load d24.

(b) Power injections of generators {g36, g38}.

(c) Left: Power injections of storage s18; right: respective change of power.

(d) Line flows of lines {l31, l24}.

Figure A.2: OPF results for the IEEE 39-bus grid with real-world wind generation without storage
(S1, brown), with storage (S2, blue), and with storage and variance constraints (S3,
green). The random variables x are depicted with their mean E(x) (solid) and scaled

standard deviation E(x)± λ(0.05)
√

V(x) (shaded). 171
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A.3 Modifications of IEEE test cases

These modifications refer to the grids used in Chapter 8.

Table A.5:Modifications for Various IEEE and PGLib Case Files.

Case Parameter Changes

IEEE case9

Loads {90, 100, 125} ∀i ∈ {5, 7, 9}
RateA {70, 40} ∀i ∈ {1, 4}
Gen Cost {32, 25, 20} ∀i ∈ {1, 2, 3}
Plim 1000 ∀i ∈ L
RateB/C 0 ∀i ∈ L

IEEE case39
RateA {100, 30, 90} ∀i ∈ {1, 2, 4}
Loads {0, 0, 0, 0, 90, 0, 100, 0, 125, 0}

∀i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
PGLib case118 - -

IEEE case300 RateA 1000 ∀i ∈ L
PGLib case793 RateA ·1.4
PGLib case1354 RateA ·1.2

IEEE case2383
RateA Increase several rateA values by 10 to 200
Load Reduce load by ·0.9
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A.4 Additional results for the IEEE case14

These results refer to Chapter 10. They give the comparison of AC and DC
OPF-based Shapley value computation for three storage units in the IEEE 14-bus
test grid.
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Figure A.3: Distribution of Shapley values for storage units at buses 6, 7, and 12 under capacity
perturbations.
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Figure A.4: Distribution of Shapley values for storage units at buses 6, 7, and 12 under efficiency
perturbations.
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