KIT | KIT-Bibliothek | Impressum | Datenschutz

C3S: Towards Generalizing Coordinated Congestion Control Across Flows and Topologies

König, Michael ORCID iD icon 1; Zitterbart, Martina 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

We revisit C3, a centralized reinforcement learning–based approach to coordinated congestion control, and introduce C3S, a modular, permutation-invariant neural architecture that enables scalable guidance for an arbitrary number of flows.
Our results demonstrate effective scaling and fair bandwidth sharing, while highlighting the importance of topology-aware aggregation for generalization to complex network settings.


Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator KITopen-ID: 1000190595
Erschienen in 7th KuVS Fachgespräch on Machine Learning in Networking (MaLeNe 2026); Augsburg, 19.-20.03.2026
Veranstaltung 7th KuVS Fachgespräch on Machine Learning in Networking (MaLeNe 2026 2026), Augsburg, Deutschland, 19.03.2026 – 20.03.2026
Schlagwörter Congestion Control, Single Agent Reinforcement Learning (SARL), TCP
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page