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GRANDProto300 (hereafter referred to as GP300) is a pioneering prototype array of the GRAND
experiment. It consists of 300 radio antennas and will cover an area of 200 km2 in a radio-quiet
region of western China. Serving as a test bench for the GRAND experiment, GRANDProto300
aims to achieve autonomous radio detection and reconstruction of highly inclined air showers.
It is designed to detect ultra-high-energy cosmic rays in the energy range of 1016.5 − 1018 eV at
a rate comparable to that of the Pierre Auger Observatory. Over the past two years, significant
improvements have been made to both the hardware and firmware of GP300. Currently, 65
antenna units have been deployed at the site by June 2025. We present the current status of
detector commissioning, including updates on hardware, calibration results such as GPS timing
and antenna positioning. Additionally, we discuss the solar radio bursts associated with solar
flares, the galactic radio emissions detected, and preliminary cosmic ray surveys.
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1. Introduction

Radio detection for cosmic rays above 100 ‌PeV‌ has been emerging in recent ‌decades‌, which is
regarded as a crucial way to measure the ‌properties‌ of cosmic rays ‌with accuracy comparable to‌ the
developed fluorescence technique‌,‌ the latter ‌of which‌ is designed to measure the electromagnetic
component of extended air showers. Moreover, radio detection has ‌the‌ advantage of duty cycle and
flexibility for large-scale deployment, and is crucial for detection of very low flux density at ‌the‌
highest energy band. GRAND is proposed for detecting ultra-high energy cosmic rays (UHECRs)
and neutrinos[1, 2]. A 300-antenna array in western China‌,‌ GRANDProto 300 (GP300)‌,‌ is the
pioneering prototype array for GRAND concept. There have been‌ 65 detection units (DUs)
deployed at XiaoDuShan site in Dunhuang‌,‌ ‌a‌ city in ‌the‌ north-western ‌part‌ of China‌,‌ in Gansu
‌Province‌. In this contribution, we will present the progress in ‌the‌ last two years for the deployment
of 65 DUs and the whole system. More contributions for this conference from GRAND and the
relevant are seen[3–10]. More detailed hardware status for GRAND and progress in radio frequency
chain can be found [11, 12].

2. Site surveys

The first candidate ‌site‌ in China was ‌Lenghu‌ in Qinghai‌, where a few prototypes of DU were
deployed in 2019. At the end of 2019 the situation for GRAND ‌changed‌ during the pandemic. The
site survey was ‌restarted‌ in 2021 ‌coordinated‌ by ‌the‌ Purple ‌Mountain‌ Observatory. After ‌reassessing‌
the ‌Lenghu‌ site and ‌conducting‌ new surveys across other possible locations in Qinghai and Gansu‌,‌
both the local government of Dunhuang and ‌the‌ survey group decided to choose ‌XiaoDushan‌ as
the experiment site for GP300‌, a 2.5-hour drive from the city of Dunhuang, in the Gansu Province,
China. This site ‌has been‌ confirmed ‌to have‌ a long-term radio quiet background from 50 to 200
MHz in last two years.

3. Detection unit (DU)

One DU of GP300 is ‌shown‌ in Fig.1‌, which‌ consists of a ‌triangle-shaped‌ base for ‌storing‌ the
battery inside ‌it, a solar panel for charging on the ‌south-facing plane surface‌, a 3.5‌-meter-tail‌ pole,
and five arms ‌aligned‌ with ‌the‌ north-south, west-east, and vertical directions defined as X, Y, and Z
polarization, respectively. There is a nut at the top of ‌the‌ pole‌,‌ with ‌a‌ Low Noise Amplifier (LNA)
and matching network mounted‌ inside ‌it‌. A mesh antenna at ‌the midpoint‌ of ‌the‌ pole is used for
communication between ‌the‌ DU and ‌the‌ central station. The timing for each DU is ‌managed‌ with
a GPS antenna mounted on the base. The Front End Board (FEB) is mounted behind the triangular
shaped box, with updated heat dissipation methods. It accepts three-channel signals from the LNA,
each of the signals is amplified by a Variable Gain Amplifier (VGA) and shaped through a 30-
200 MHz bandpass-filter circuit before digitized by a 14-bit 500MSPS analog-to-digital-converter
(ADC). The digitized signals are moved into a System on Chip (SoC) (Xilinx, Zynq Ultrascale+,
XCZU7CG), which performs tasks such as event triggering, event building, communication, and
data buffering. After triggering, the firmware running inside the PL part of the SoC builds the event
data package which is composed of the data from all three channels, the timing information from
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Figure 1: Face view (left) and back view (right) of one detection unit of GP300 deployed at the XiaoDuShan
site in China.

the GPS chip and other slow control parameters. Afterwards, the data package is stored into the
local DDR memory by the PS part of the SoC.

The communications between DUs and central station have been implemented by using a rocket
(installed at central station) and the WIFI mesh antenna mounted at the pole as shown in Fig. 1
working at 5GHz band in wireless. Current total throughput bandwidth is roughly 150Mbps, which
enables us to take data at tens of Hz for trigger event.

4. Deployment Progress of GRANDProto300

The campaigns for GP300 separated into different stages benefit the hardware and software
development for GRAND experiment, and also the understanding of the detection method.

4.1 GP13 from February 2023 to October 2024

The ‌first‌ deployment in 2023 for GP13 demonstrated the beginning of GP300 construction‌,
whose‌ layout ‌consisted of‌ three hexagons and one central station for data acquisition seen black
points in Fig. 2. The monitoring data obtained from the 13-antenna ‌array‌ allowed us to control the
temperature ‌overheating‌ inside ‌the‌ FEB box, which is ‌a Faraday‌ box ‌that contains‌ the FEB and is
the heart of ‌the‌ DU. Additional heat ‌dissipation‌ function was introduced‌, and‌ it ‌has been‌ proved to
work well‌, ensuring‌ the long-term ‌operation‌ on a Gobi site. The solar panel works with a charge
controller for battery charging‌. Thanks to the commissioning ‌run‌ of GP13, we identified different
sources of noise from the whole DU and suppressed or ‌shielded‌ them with ‌appropriate‌ actions‌.‌
More ‌details‌ will be summarized in a journal paper.

GP13 was not dedicated to ‌detecting‌ cosmic rays due to ‌its‌ very small area and ‌hard-
ware/software being in an early prototype phase. ‌However,‌ data ‌acquisition‌ became more reliable
and stable with ‌the‌ implementation of ‌firmware updates‌ for our FEB ‌at‌ this stage‌, along with‌
improvements in ‌communication‌ between ‌the‌ DUs and ‌the‌ central station.

3



P
o
S
(
I
C
R
C
2
0
2
5
)
4
5
3

Progress of the GRANDProto300 Project PengXiong Ma

5000 4000 3000 2000 1000 0 1000
Easting [meter]

2000

1000

0

1000

2000

3000

4000

No
rth

in
g 

[m
et

er
]

C1

C5

91

41
29

30

24

50

82

102 20 17

48

39

53

1
78

47

244
40 16

11

34

93

85

328

51

88

4610

21

55

37

1923
27

81
105

119
18

32

26

7

52

31

25

8

35

3615

12
9

146

42

33

116 45

5
43

54

38

2213

49

13-1
13-2

13-3
13-4

13-5 13-6 13-7
13-8 13-9

13-10
13-11

13-12

13-13

93.90 93.95 94.00 94.05 94.10
Longitude

40.90

40.92

40.94

40.96

40.98

41.00

41.02

La
tit

ud
e

All GP300
DU (Deployed)

Figure 2: Left: In the past two years, black circles and blue squares denote GP13’s and GP65’s DUs with
spacings of 580 m and 1000 m, respectively(left panel). Red stars mark current central stations. C5/C1
serve as data, logistics, and hardware centers. Right: Positions of all the GP300 DUs indicate in blue circles,
the green squares inside denote the deployed GP65.

4.2 GP45/65 from October 2024 to date

Additional 65 detection bases and 45 FEBs were deployed in October 2024‌, this new array
‌performs well in detecting‌ transient signals in ‌the‌ ambient ‌environment‌. We stopped the commis-
sioning run of GP13 and ‌merged‌ it into GP45 in April 2024, deployed‌ more new DUs as well. The
latest field trip was conducted June of 2025, all DU of GP65 were completely deployed. A‌ much
bigger and complete array ‌has been established. The current layout is shown in Fig.2, with all blue
points representing DUs and two red stars indicating the central stations.

4.3 Data taking in different period.

The GRAND DAQ system has established a functional data transmission pipeline that meets
current operational needs. Deployed at XiaoDuShan site in 2023, it has operated continuously for
nearly two years. While the system has received incremental upgrades alongside array expansion,
its long-term role as the primary DAQ platform of GP300 remains subject to further performance
validation. Stability and efficiency improvements are ongoing. The current setup of ‌each DU
enables us to collect data in different modes, including monitor/unbiased mode (MD) periodically,
triggered mode ‌at‌ single DU level (UD), and coincidence ‌detection‌ among a few DUs (CD) that
composes ‌events‌. We gradually ‌achieved‌ stable CD data flow with ‌improved‌ data acquisition
‌capability. Data taking rate of UD ‌can‌ reach around 1.3 kHz. On average, ‌tens of Hz‌ could
be ‌handled‌ in the case of CD currently. ‌These data have enhanced‌ our knowledge ‌of‌ the radio
background and expectations for detecting cosmic rays at XiaoDuShan in past two years.

5. Preliminary results

5.1 Preliminary calibration for timing

The GRAND antenna, called ‌the‌ HorizonAntenna, ‌is‌ optimized for ‌detecting‌ very inclined
incident signals. Direction reconstruction in GRAND-like experiments relies on the early-late
effect across triggered DUs, requiring precise GPS timing. Beacon tests using an LPDA (mounted
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on a container or mobile pole) revealed non-negligible timing offsets. We focus on a selected test
for comprehensive calibration, governed by equation 1, where 𝐷𝑖𝑠𝑖 and 𝐷𝑖𝑠ref are distances to No.
𝑖 and the reference DU, respectively, 𝑐 and 𝑛 are speed of light and the refractive index of air at site.

𝑇offset,ns =
𝐷𝑖𝑠𝑖 − 𝐷𝑖𝑠ref

𝑐/𝑛 − (𝑇𝑖 − 𝑇ref) (1)

By comparing measured with expected signal arrival times between the beacon emitter and
DUs, we determine individual timing offsets 𝑇offset,ns. Statistical analysis of multiple test events
yields a distribution whose mean and standard deviation represent the systematic GPS timing offset
and resolution, respectively. Applying these corrections improves reconstruction performance, as
evidenced by small dispersion on ground plane.(Figs. 3). Observed timing drifts and glitches [13]
remain unaddressed in current analysis. Future upgrades will implement a more robust on-site
timing system.
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Figure 3: The spatial discrepancies between
reconstructed beacon positions and GPS nomi-
nal coordinates are analyzed along X/Y/Z axes
(top/middle/bottom panels). Temporal and cumu-
lative distributions (left/right panels) demonstrate
significantly greater dispersion in the vertical (Z)
dimension, seemingly consistent with known GPS
altitude measurement uncertainties.

N
315°

E

225°
S

135°

W

45°

20

40

60

80

2024-12-16 23:09

2024-12-18 00:03

101 103
Reduced Chi-square

0

20

40

60

80

100

120

# 
of

 e
ve

nt

Preliminary

N
315°

E

225°
S

135°

W

45°

20

40

60

80

2024-12-16 23:09

2024-12-18 00:03

10 1 101 103
Reduced Chi-square

0

20

40

60

80

100

120

# 
of

 e
ve

nt

Preliminary

Figure 4: The angular reconstruction performance
analysis of December 17, 2024 data shows dis-
tinct improvement after offset corrections, with un-
corrected results (top) dominated by clustered sig-
nals from flights and a nearby transformer station
(azimuth 300°) while corrected results (bottom)
demonstrate reduced dispersion, as quantified by the
𝜒2/𝑛𝑑𝑓 values distributions shown in the right panel.

We noticed that ‌the‌ quality of angular reconstruction for flight events in Dec 2025 from Fig.4,
‌conducted‌ one month later than the beacon test‌, still ‌shows‌ better performance when the offset and
resolution are considered. This demonstrates that a single execution of the beacon test can still
yield valuable insights.

5.2 The galaxy contribution at low band on GP300
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Preliminary

Preliminary

Figure 5: The integrated intensity of 60-80 MHz observed by GP45 in April 2025. RF-Chain simulations
(thick blue line) show good agreement with experimental data from deployed detector units (dashed lines),
displayed separately for N-S and E-W polarizations in left/right panels, respectively.

The Galactic radio emission in the GRAND band exhibits time-varying background intensities
modulated by the celestial rotation, maintaining consistent Local Sidereal Time (LST) periodicity.
Comparative analysis between 60-80 MHz observational data and RF-chain simulations reveals
strong modulation alignment (Fig. 5), with residual discrepancies attributable to gain variations in
the FEB’s LNA/VGA components.

The potential rotation angle deviations for each DU from nominal values (N-S/E-W/vertical
alignments) critically impact cosmic ray detection accuracy, as they affect both individual antenna
radio pattern reconstruction and RF-chain matching. Deployment variations and hardware iterations
introduce angular uncertainties requiring systematic calibration - particularly for gain-rotation cross-
optimization in our experimental framework.

5.3 Solar Radio

In the‌ last two years, the Sun ‌has been‌ approaching its latest maximum‌ year of activity, which
‌has emitted‌ many strong ‌radiation events‌, ‌such as‌ solar flares, ‌coronal‌ mass ejections (CMEs), and
associated radio radiation ‌across‌ a wide band, from tens of MHz to above GHz. Our antennas ‌have
captured‌ solar radio events at different stages. As shown in Fig.6, GRAND-band measurements
reveal finer temporal structures and pulsation features compared to hard X-ray counterparts of ASO-
S[14]. Notably, Fig.7 demonstrates tri-polarization spectral characteristics during a M7.7-class flare
event.

Solar radio events would provide valuable calibration references for antenna orientation, anal-
ogous to galactic emission-based methods. The well-defined planar wavefront characteristics of
solar signals enable simultaneous optimization of both antenna gain and radiation pattern parameters
during such events.

5.4 Cosmic rays candidates search

The cosmic-ray detection employs the CD mode as detailed previously. Following GP45’s
commissioning in November 2024, we initiated online UD operations, recording complete waveform
traces at the central station. The trigger algorithm requires:

6
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Figure 6: The light curves of solar radio in band of
45 to 105 MHz observed by GP13 in January 2024.
The triangle shaped markers present the data from
DU1031 at the stage of GP13, the ADC is shown in
the right vertical axis. The thin light curves are quick
look data of satellite ASO-S in hard X-ray band with
vertical axis in left showing the number of density
for X-ray photons.

Figure 7: Spectrum from a solar flare at M7.7 class
on May 14 2025 with sampling rate of 127 Hz. There
are clear excesses below 100 MHz for this event.

1. A positive ADC pulse exceeding 5𝜎 of the background noise

2. Clean pulse morphology (no pre-/post-pulse artifacts)

3. Coincident triggers from ≥5 detector units within a proper window

During the initial two-month period, online UD ran concurrently with offline CD processing at the
central station. Data acquisition rates were limited by three key factors: (1) FEB memory allocation,
(2) Array-wide communication bandwidth and (3) DU stability.

A major improvement occurred in February 2025 with the successful deployment of online CD
processing, achieving a 10-fold increase in duty cycle (10 Hz) compared to offline operations.

RFI mitigation is crucial for cosmic-ray detection, where we identified significant interference
in the 118-140 MHz band and from a northeast transformer station (>150 MHz). We implemented
notch filters for the former and are deploying FIR filters (115 MHz above) for the latter. Flight-path
RFIs along NW-SE routes show strong weather dependence, constituting most of background events
with higher occurrence in overcast conditions, which are most of background events in our data.

6. Conclusion and Outlook

The GP300 array has successfully deployed 65 DUs, marking a significant milestone in its
phased construction. The system will now enter a sustained data-taking period to validate per-
formance and optimize operation. This stabilization phase is crucial for preparing the next-stage
array expansion (targeting 200+ units) and hardware upgrades. Current operations will generate
the necessary baseline data for future hardware iterations while maintaining continuous cosmic-ray
detection capabilities. On the other hand, GP300 could enable detection of bright Galactic and
nearby fast radio bursts (FRBs). However, the current system can only deliver a small fraction
of data points in time domain, which significantly reduces the sensitivity for pulsed signals with
high dispersion measures by approximately two to three orders of magnitude. Future upgrades are
expected to make FRB detection more feasible for GP300.

7
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Preliminary

Preliminary

Figure 8: Top: One of voltage traces of CR31, de-
tected by GP45. Bottom: Corresponding electronic
field trace reconstructed by using the method[15].

Preliminary

Figure 9: The lateral distribution function fit-
ting (left) and ground plane distribution (right) for
CR31[10]. The triggered DUs with filled circle indi-
cate the position inside of part of array on the ground
plane.
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