
Control-over-the-Air: Verteilte
Regelungen durch cloudbasierte

Fahrzeugfunktionen

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Elektrotechnik und Informationstechnik
des Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

M. Sc. Martin Sommer
(geb. Böhme)

geb. in Freiburg im Breisgau

Tag der mündlichen Prüfung: 05.02.2026

Hauptreferent: Prof. Dr.-Ing. Eric Sax
Korreferent: Prof. Dr. Andreas Oberweis

Kurzfassung

Die Automobilindustrie steht vor der Herausforderung, softwarebasierte

Fahrzeugfunktionen flexibler und ressourceneffizienter zu gestalten. Mit

bis zu 150 Steuergeräten in Premiumfahrzeugen und Lebenszyklen von bis

zu 35 Jahren bei Stadtbussen entsteht eine kritische Diskrepanz zwischen

statisch verbauter Hardware und exponentiell wachsenden Softwareanfor-

derungen. Diese Dissertation entwickelt einen systematischen Ansatz zur

Erweiterung von Fahrzeug-E/E-Architekturen um cloudbasierte Funktionen,

insbesondere den Control-over-the-Air (COTA) Ansatz, bei dem regelnde

Softwarekomponenten in der Cloud ausgeführt werden und die Regelschleife

vom Fahrzeug über die Cloud geschlossen wird.

Die Forschungsarbeit adressiert drei zentrale Fragestellungen: die syste-

matische Identifikation cloudfähiger Funktionen, die Auswahl optimaler

Deploymentmodelle und die quantifizierbare Bewertung der Cloudverlage-

rungspotenziale. Zur Identifikation geeigneter Funktionen wird ein zwei-

stufiger Bewertungsprozess entwickelt, der zunächst die Realisierbarkeit

anhand von Safety- und Echtzeitanforderungen prüft und anschließend

mittels eines Eignungs-Scores aus fünf Bewertungsmetriken die optimalen

Kandidaten identifiziert. Die Anwendung dieses Prozesses auf eine moder-

ne Stadtbus-E/E-Architektur identifiziert die Heizung, Lüftung, Klimatisie-

rung (HLK)-Regelung als besonders geeigneten Kandidaten, da sie weder

sicherheitskritisch (kein ASIL zugewiesen) noch echtzeitkritisch ist, aber

gleichzeitig erhebliche Energieeinsparpotenziale aufweist.

Für die identifizierte Funktion wird eine multikriterielle Entscheidungsanaly-

se (engl. MCDA) durchgeführt, um ein passendes Cloud-Deploymentmodell

i

Abstract

zu bestimmen. Das Nur Cloud-Modell erzielt ein knapp besseres Ergebnis

als das Fallback-Modell. Beide Ansätze werden daher praktisch umgesetzt,

basierend auf einer rechenintensiven modellprädiktiven Regelung, die sich

besonders für die Cloud eignet. Ein Software Orchestrator im Fahrzeug

koordiniert dabei die dynamische Integration von Services wie dem cloudba-

sierten Regler, unabhängig davon, ob sie lokal im Fahrzeug oder in externen

Netzwerken bereitgestellt werden.

Die Validierung der beiden identifizierten Deploymentmodelle erfolgt auf

einer Testplattform am Institut, die eine vereinfachte zentralisierte E/E-

Architektur nachbildet. Die Evaluierung umfasst vier repräsentative Klimas-

zenarien von durchschnittlichen Bedingungen bis zu extremen Temperaturen

von−15 ◦C. Die Ergebnisse demonstrieren signifikante Verbesserungen: Der

cloudbasierte MPC erreicht realistische Energieeinsparungen von 11,06%

gegenüber einem fahrzeuginternen PID-Regler, entsprechend 2,4 kWh täg-

lich oder einer zusätzlichen Reichweite von 2,1 km. Gleichzeitig wird der

thermische Komfort gemäß VDV-236 Vorgaben in allen Szenarien ohne Ver-

bindungsabbruch eingehalten, während die Vorgaben bei Verbindungsabbrü-

chen im -15 °C-Szenario sowohl im Nur Cloud- als auch im Fallback-Modell

leicht überschritten werden. Bei der praktischen Erprobung zeigt das Fall-
back-Modell bessere Robustheit gegenüber Verbindungsabbrüchen als das

in der MCDA besser bewertete Nur Cloud-Modell.

Die Dissertation leistet einen systematischen Beitrag zur Integration von

Cloud Computing in automotive E/E-Architekturen durch die Entwick-

lung strukturierter Bewertungsprozesse, methodischer Deploymentmodell-

Auswahl und den praktischen Nachweis messbarer Potenziale. Die Ergeb-

nisse zeigen, dass der COTA-Ansatz technisch realisierbar ist und klare

Vorteile in Energieeffizienz, Wartbarkeit und Skalierbarkeit bietet. Fallback-

Strategien im Fahrzeug sind kurzfristig zwar sinnvoll, könnten mit zukünfti-

gen drahtlosen Kommunikationstechnologien jedoch entbehrlich werden.

ii

Abstract

The automotive industry faces the challenge of making software-based vehi-

cle functions more flexible and resource-efficient. With up to 150 electronic

control units (ECUs) in premium vehicles and life cycles of up to 35 years

for city buses, there is a critical discrepancy between statically installed

hardware and exponentially growing software requirements. This disserta-

tion develops a systematic approach to extending vehicle E/E architectures

with cloud-based functions, in particular the Control-over-the-Air (COTA)

approach, in which control software components are executed in the cloud

and the control loop is closed from the vehicle via the cloud.

The research addresses three central questions: the systematic identification

of cloud-enabled functions, the selection of optimal deployment models, and

the quantifiable evaluation of cloud migration potential. To identify suitable

functions, a two-stage evaluation process is developed that first checks

feasibility based on safety and real-time requirements and then identifies the

optimal candidates using a suitability score based on five evaluation metrics.

Applying this process to a modern city bus E/E architecture identifies heating,

ventilation, and air conditioning (HVAC) control as a particularly suitable

candidate, as it is neither safety-critical (no ASIL assigned) nor real-time-

critical, but at the same time offers considerable energy-saving potential.

A multi-criteria decision analysis (MCDA) is performed for the identified

function to determine a suitable cloud deployment model. The Only Cloud
model achieves a slightly better result than the Fallback model. Both ap-

proaches are therefore implemented in practice, based on a computationally

intensive model predictive control system that is particularly suitable for the

iii

Abstract

cloud. A software orchestrator in the vehicle coordinates the dynamic inte-

gration of services such as the cloud-based controller, regardless of whether

they are provided locally in the vehicle or in external networks.

The two identified deployment models are validated on a test platform at

the institute that replicates a simplified centralized E/E architecture. The

evaluation covers four representative climate scenarios ranging from aver-

age conditions to extreme temperatures of -15 degrees Celsius. The results

demonstrate significant improvements: The cloud-based MPC achieves real-

istic energy savings of 11.06 percent compared to an in-vehicle PID controller,

corresponding to 2.4 kilowatt hours per day or an additional range of 2.1

kilometers. At the same time, thermal comfort is maintained in accordance

with VDV-236 specifications in all scenarios without connection interrup-

tions, while the specifications are slightly exceeded in the -15 °C scenario in

both the Only Cloud and Fallback models in the event of connection inter-

ruptions. In practical testing, the Fallback model shows better robustness

against connection interruptions than the Only Cloud model, which was

rated higher in the MCDA.

The dissertation makes a systematic contribution to the integration of cloud

computing into automotive E/E architectures through the development of

structured evaluation processes, methodical deployment model selection,

and practical verification of measurable potential. The results show that the

COTA approach is technically feasible and offers clear advantages in energy

efficiency, maintainability, and scalability. Fallback strategies in vehicles

make sense in the short term, but could become unnecessary with future

wireless communication technologies.

iv

Danksagung

Diese Dissertation wäre ohne die Unterstützung vieler Menschen nicht

möglich gewesen.

An erster Stelle möchte ich meinem Doktorvater, Herrn Prof. Dr.-Ing. Eric

Sax, für seine hervorragende Betreuung, seine fachliche Unterstützung und

die zahlreichen wertvollen Impulse während der gesamten Entstehung dieser

Dissertation danken. Mein besonderer Dank gilt ebenso Herrn Prof. Dr.

Oberweis für die freundliche Übernahme des Korreferats.

Meinen Kolleginnen und Kollegen am Institut für Technik der Informations-

verarbeitung (ITIV) danke ich aufrichtig für die vertrauensvolle Zusammen-

arbeit und die vielen konstruktiven Gespräche, die wesentlich zum Gelingen

dieser Arbeit beigetragen und meine Zeit am ITIV persönlich wie fachlich

sehr bereichert haben.

Von ganzem Herzen danke ich meiner Familie, insbesondere meiner Frau

Simone, für ihre Geduld, ihre stetige Unterstützung und ihren Zuspruch, die

mich während der gesamten Promotionszeit getragen und bestärkt haben.

Ohne euch wäre diese Dissertation nicht möglich gewesen.

Meiner Tochter Rosa in Liebe gewidmet.

Offenburg, im Februar 2026

Martin Sommer

v

Hinweise

Erklärung zu generativer KI

Bei der Erstellung dieser Arbeit wurde generative KI verwendet. Daher wird

eine Erklärung zu generativer KI gemäß den Regeln der CEUR-WS-Richtlinie

zu KI-unterstützenden Tools
1
in ihrer aktuellen Fassung (2025) abgegeben:

Bei der Erstellung dieser Arbeit habe ich LanguageTool verwendet, um:

Grammatik und Rechtschreibung zu überprüfen. Zusätzlich wurde ChatGPT

verwendet für: Grammatik- und Rechtschreibprüfung, Formatierungshilfe,

Paraphrasierung und Umformulierung. Nach der Verwendung dieser Tools

habe ich den Inhalt überprüft und bei Bedarf überarbeitet und übernehme

die volle Verantwortung für den Inhalt der Veröffentlichung.

Gender-Hinweis

In dieser Arbeit wird aus Gründen der Lesbarkeit bei Personenbezeichnungen

die männliche Form verwendet. Sie schließt ausdrücklich alle Geschlechter

ein.

1 https://ceur-ws.org/GenAI/Policy.html

vii

https://ceur-ws.org/GenAI/Policy.html

Inhaltsverzeichnis

1 Einleitung . 1

1.1 Hintergrund und Motivation 4

1.2 Cloudbasierte Fahrzeugfunktionen 6

1.3 Allgemeine Begriffsdefinitionen 7

1.4 Forschungsfragen . 10

2 Technische und begriffliche Grundlagen 11

2.1 Regelungstechnik . 11

2.1.1 Modellprädiktive Regelung 11
2.1.2 Fuzzy-Regler . 17
2.1.3 PID-Regler . 18

2.2 Steuergeräte . 19

2.3 Die Elektrik/Elektronik (E/E)-Architektur 25

2.3.1 Historische Entwicklung der E/E-Architektur 25
2.3.2 Die serviceorientierte Architektur 27

2.4 Klimatisierung im Stadtbus 32

2.4.1 Typenvielfalt im Busverkehr 32
2.4.2 HLK-Systeme im Stadtbus 36
2.4.3 Regelwerk zur Klimatisierung von Linienbussen des

Verbands deutscher Verkehrsunternehmen 42
2.4.4 Die thermische Modellierung der HLK-Vorgänge im

Stadtbus . 44
2.5 Cloud Computing . 50

2.6 Vehicle-to-X-Kommunikation 52

ix

Inhaltsverzeichnis

2.6.1 Cellular-V2X . 54
2.6.2 Einflüsse auf die erreichbaren Datenraten im Mo-

bilfunknetz . 56
2.7 Multikriterielle Entscheidungsanalyse 58

3 Stand der Technik und Wissenschaft 61

3.1 Cloudbasierte Fahrzeugfunktionen 61

3.2 Deploymentmodelle cloudbasierter Fahrzeugfunktionen . . 62

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug 62

3.3.1 Frameworks für die Funktionsverteilung 66
3.3.2 Use Cases cloudbasierter Applikationen 67
3.3.3 Fazit zu den Anwendungsfällen und Frameworks

aus der Wissenschaft 73
3.3.4 Wissenschaftliche Methode zur Bewertung des Aus-

führungsortes einer Fahrzeugfunktion 73
3.3.5 Stand der Wissenschaft hinsichtlich der Ziele einer

Funktionsverlagerung 76
3.4 Regelungsstrategien für HLK-Systeme 78

3.5 Beitrag der Klimatisierung auf den Gesamtenergieverbrauch
eines BEB . 82

3.6 Lücken des Standes der Wissenschaft und Technik 85

3.7 Beitrag dieser Dissertation im Kontext der Forschungsfragen 87

4 Definition und Identifikation cloudfähiger Fahrzeugfunk-
tionen . 89

4.1 Die Definition einer cloudbasierten Fahrzeugfunktion 89

4.2 Identifikation cloudfähiger Fahrzeugfunktionen 90

4.2.1 Anforderungen . 90
4.2.2 Bewertung der Realisierbarkeit 92
4.2.3 Bewertung der Eignung 95
4.2.4 Anwendung des Prozesses auf die E/E-Architektur

eines Stadtbusses . 107

x

Inhaltsverzeichnis

5 Die cloudbasierte HLK-Regelung eines BEB 113

5.1 Der Use Case . 113

5.2 Die Auswahl des Reglers . 114

5.3 Die Regelstrecke . 119

5.3.1 Das Fahrzeugkabinenmodell 119
5.3.2 Wärmepumpe . 120

5.4 Aufbau des MPC-Reglers . 123

5.5 Die serviceorientierte Architektur 127

5.6 Das Deploymentmodell . 130
5.7 MCDA zur Identifikation des optimalen Deploymentmodells

cloudbasierter Funktionen 131

5.7.1 Die Komponenten der MCDA 131
5.7.2 Bewertung der Alternativen für die HLK-Regelung . 136

5.8 Fazit zur Konzeptentwicklung 138

6 Prototypische Umsetzung . 141

6.1 ATLAS Testplattform . 143

6.2 Die integrierten Softwarekomponenten des COTA-Ansatzes 146

6.3 Definition der Systemanforderungen und Testszenarien . . . 154

6.4 Validierung der Anforderungen 156

6.4.1 Die Simulationsszenarien 156
6.4.2 F-Req-1: Energieeffizienz 158
6.4.3 F-Req-2: Thermischer Komfort 160
6.4.4 F-Req-3: Fehlerbehandlung und Wiederherstellung . 161
6.4.5 F-Req-4: Einhaltung des Regler Abtastintervalls . . . 167
6.4.6 NF-Req-1: Wartbarkeit und Erweiterbarkeit 168
6.4.7 NF-Req-2: Security 169

6.5 Bewertung der Ergebnisse 169

7 Fazit und Ausblick . 173

7.1 Beantwortung der Forschungsfragen 173

7.2 Ausblick . 176

7.3 Das Barebone-Fahrzeug . 177

xi

Inhaltsverzeichnis

A Anhang . 179

A.1 Einige Grundbegriffe der Thermodynamik 179

A.2 Coefficient of Performance einer Wärmepumpe 180

A.3 Thermischer Komfort: Predicted Mean Vote 180

A.4 Mikrocontroller . 182

A.5 Zyklische und Streaming-basierte Funktionen imAutomotive-
Kontext . 184

A.6 X-in-the-Loop Testmethoden 186

A.7 ROS 2 . 189

A.8 AUTOSAR Adaptive . 193

A.9 Weitere Netzwerkprotokolle 197

A.10 Software Architektur von Steuergeräten 198

A.11 Middleware . 199

A.12 Middleware Kommunikationsprotokolle 200

A.13 Funktionale Sicherheit im Automobil 202

A.14 OSI Referenzmodell . 206

A.15 Hierarchieebenen von E/E-Features 207

A.16 Tabellen . 209

A.17 Grafiken . 211

Verzeichnisse . 217

Abbildungsverzeichnis . 217
Tabellenverzeichnis . 221

Abkürzungsverzeichnis . 223

Glossar . 229

Literaturverzeichnis . 235

Eigene Veröffentlichungen . 253

Betreute studentische Arbeiten . 259

xii

1 Einleitung

Der Automobilsektor, der traditionell vom Maschinenbau geprägt ist, wird

zunehmend durch Themen der Informationstechnologie vorangetrieben.

Die Kunden haben sich an Produkte gewöhnt, deren Funktionalitäten sich

im Laufe ihres Lebenszyklus ändern können. Neue Feature und Feature-

aktualisierungen müssen dem Kunden schnell zur Verfügung gestellt werden.

Diese softwarebasierten Feature zeigen sich in den Trends der Automobilin-

dustrie, die sich zu den folgenden Kernthemen zusammenfassen lassen:

Elektrifizierung:Die Elektromobilität wird nach allem, waswir heute

wissen, kurz- bis mittelfristig als sinnvollste technologische Antwort

betrachtet, um die externen Auswirkungen des Automobils, insbe-

sondere Luft- und Lärmemissionen, zu minimieren [23]. Neben den

Anforderungen an Fahrzeuge mit herkömmlichen Verbrennungsmo-

toren ist die Energieeffizienz für elektrische Fahrzeuge von entschei-

dender Bedeutung, um eine möglichst hohe Reichweite zu erzielen.

Eine der Möglichkeiten zur Reduktion des Energieverbrauchs ist es,

nicht benötigte Funktionen und Steuergeräte in einen stromsparenden

Standby-Modus zu versetzen und durch Zentralisierung von Features

die Gesamtzahl der Steuergeräte zu reduzieren. Ein weiterer in dieser

Dissertation betrachteter Ansatz zur Verbesserung der Energieeffizienz

ist die Entwicklung cloudbasierter Fahrzeugfunktionen.

Automatisiertes Fahren: Das hochautomatisierte Fahren erfordert

eine schnelle Verarbeitung von umfangreichen Sensordaten (z.B. Ra-

dar und Kamerabilder) und den Austausch dieser Daten zwischen

1

1 Einleitung

verschiedenen Teilsystemen. Die schnelle Verarbeitung setzt eine er-

hebliche Rechenleistung der verbauten Hardware und Bandbreite der

fahrzeuginternen Kommunikation voraus. Bereits in aktuellen Fahr-

zeugen werden technisch immer ausgereiftere Fahrerassistenzsysteme

eingesetzt.

Vernetztes Fahrzeug: Die Vernetzung der Fahrzeuge stellt einenWeg

dar, um in einem starken Wettbewerbsgefüge neue Akzente und An-

reize für die Kunden zu setzen. Beim sogenannten Vehicle-2-X wird

das Fahrzeug mit anderen Fahrzeugen oder mit Infrastruktur (Ampel-

anlagen etc.) vernetzt. Bereits flächendeckend verfügbare Techniken

wie das Mobilfunknetz werden zunehmend für eine Anbindung des

Fahrzeugs an die Cloud verwendet. Dadurch sind Hersteller in der

Lage, kontinuierlich Daten aus dem Fahrzeug zu sammeln und in der

Cloud aufzuarbeiten. Diese Daten können herangezogen werden, um

einzelne Features zu verbessern und in der Cloud bereitzustellen oder

neu auf die Fahrzeuge zu verteilen. Das Fahrzeug lässt sich zudem in

ein digitales Ökosystem integrieren, in dem Feature für einen kurzen

Zeitraum einzeln gebucht werden können [69].

Diese Trends sind einerseits durch politische Initiativen getrieben, etwa die

Elektrifizierung als Folge der strengeren Abgasgesetzgebungen, andererseits

leiten sie sich aus neuen technologischen Innovationen sowie aus Kunden-

wünschen ab [103]. Die Elektrik/Elektronik (E/E)-Architektur der Fahrzeuge

muss diesen Trends gerecht werden und eine hohe Flexibilität bezüglich

der Implementierung neuer, innovativer Features über den Lebenszyklus er-

möglichen. Zukünftige E/E-Architekturen gehen daher zunehmend weg von

verteilten Steuergeräten und hin zur logischen Zentralisierung auf zentralen

Steuergeräten oder Fahrzeugcomputern. Die logische Zentralisierung von

Funktionen in wenigen leistungsstarken Steuergeräten in Kombination mit

einer hohen Vernetzung der Fahrzeuge mit der Cloud macht eine physische

Verteilung der E/E-Architektur denkbar, wie in der zentralisierten Architek-

tur der Zukunft aus Abbildung 1.1 dargestellt. Funktionen, die bisher fest

2

Zentralisierte E/E Architektur
Domänenunabhängiger zentralisierter Ansatz
mit zentralisiertem Fahrzeuggehirn und Zonen

für maschinelles Lernen: Logische
Zentralisierung und physische Verteilung

Domänenzentralisierte E/E
Architektur

Umgang mit zunehmend
domänenübergreifenden Funktionen

Verteilte E/E Architektur
Hauptsächlich gekapselte E/E

Architektur

Vision:
Features in der Cloud

Zonenorientierte Architektur und
Hochleistungsrechner (HPC)

Domänenübergreifende
Zentralsteuergeräte

Domänenspezifische
Zentralsteuergeräte

Funktionale Integration

Jede Funktion in einzelnem
Steuergerät

Z
uk

un
ft

H
eu

te
/

M
or

ge
n

H
eu

te
Fahrzeug-Cloud

Computing

Fahrzeugcomputer &
Zonensteuergeräte

Domänenfusion

Zentralisierung

Integration

Modular

Softwareanteil

Funktionsspezifisches Steuergerät

Domänen/Zentralsteuergerät

Optionales Steuergerät (Gateway)

Domänenunabhängiges Zonensteuergerät
Domänenspezifisches Zonensteuergerät

(z.B. Türsteuergerät)

Sensoren/Aktoren

Abbildung 1.1: Evolution der E/E-Architekturen im Automobil (angelehnt an [103])

in einem Steuergerät im Fahrzeug ausgeführt wurden, werden durch die

Vernetzung des Fahrzeugs mit der Cloud in diese verlagert. Im Rahmen der

vorliegenden Dissertation wird eine solche Verlagerung anhand des Beispiels

einer Klimaregelung eines elektrischen Stadtbusses prototypisch umgesetzt.

3

1 Einleitung

1.1 Hintergrund und Motivation

Ein modernes Premiumfahrzeug verfügt über 150 Steuergeräte [124], die das

Fahrzeugverhalten überwachen und zahlreiche Komfort- sowie Fahrerassis-

tenzfunktionen ermöglichen.

Diese Steuergeräte werden an den Produktionsbändern der Automobilher-

steller in Fahrzeuge montiert, deren Lebenszyklen im Fall von Omnibussen

bei bis zu 35 Jahren liegen (s. Abbildung 1.2). Das bedeutet, dass statisch

3 Jahre 6 Jahre

Entwicklung Produktion

Aftersales

15 Jahre

5 Jahre 10 Jahre 15 Jahre

15 Jahre15 Jahre5 Jahre

Fahrzeugnutzung

Abbildung 1.2: Produktlebenszyklen verschiedener Fahrzeugtypen in Jahren [102]

verbaute Rechen- und Speicherressourcen in Fahrzeugen die Anforderungen

zukünftiger Software über mehrere Jahrzehnte erfüllen müssen. Betrachtet

man den rasant steigenden Technologieumfang im Fahrzeug (s. Abbildung

1.3), der zunehmend durch Software-Features angeführt wird, so ist da-

von auszugehen, dass diese Annahme nicht haltbar ist. Stattdessen werden

Over-The-Air (OTA)-Software-Updates, wie auch im Smartphone-Bereich,

ab einer definierten Version gar nicht mehr oder in reduzierter Form an-

geboten, da die Kompatibilität nicht gegeben ist. Ein Ansatz, Hardware

und Software über den Lebenszyklus gleichbleibend aktuell zu halten, ist

die (re-)konfigurierbare Fahrzeugarchitektur [111], bei der Hardwarekom-

ponenten über den Lebenszyklus ersetzt oder hinzugefügt werden können.

4

1.1 Hintergrund und Motivation

Eine andere Möglichkeit, Hardware und Software über den Lebenszyklus

aktuell zu halten, stellt die Erweiterung der E/E-Architektur in die Cloud dar.

Diese Erweiterung beinhaltet die Nutzung der skalierbaren Ressourcen der

Cloud zur Ausführung von Funktionen, deren Output wiederum im Fahrzeug

genutzt werden kann.

Im Kontext von Control-Over-The-Air (COTA) (s. Tabelle 5.1) handelt es sich

um regelnde Funktionen, bei denen die Regelschleife vom Fahrzeug über die

Cloud und zurück zum Fahrzeug geschlossen wird. Die Umsetzung dieser

Idee führt zu folgenden Herausforderungen:

HF-1 Dynamische Integration von lose gekoppelten Funktionen

HF-2 Kontextadaptive und robuste Regelung trotz intermittierender Kon-

nektivität oder Serviceausfällen

HF-3 Lebenszyklusfähige und wartbare Regelalgorithmen

• Elektronische
Kraftstoffeinspritzung

• Antiblockiersystem

• CAN
• Getriebesteuerung
• Traktionskontrolle
• Elektronische

Kraftstoffeinspritzung
• Antiblockiersystem

• Hybrider
Antriebsstrang

• Fahrdynamikregelung
• Notrufsystem
• Elektrische

Servolenkung
• Flexray
• Aktive Radaufhängung
• CAN
• Getriebesteuerung
• Traktionskontrolle

• Elektrischer
Antriebsstrang

• AUTOSAR
• Head-up Dispaly
• Telediagnose
• Start-Stop Automatik
• Elektronisches

Bremssystem
• Spurhalteassistent
• Online Software

Updates
• Notbremsassistent
• Hybrider

Antriebsstrang
• Fahrdynamikregelung
• Aktive Radaufhängung

• Mobilitätsservices
• Automatisiertes Fahren
• Brake-by-wire
• Steer-by-wire
• Vehicle2X
• Cloud Anbindung
• Gestensteuerung
• Ethernet/IP Backbone
• Elektrischer

Antriebsstrang
• AUTOSAR
• Head-up Dispaly
• Telediagnose
• Start-Stop Automatik
• Elektronisches

Bremssystem
• Spurhalteassistent
• Online Software

Updates
• Notbremsassistent

1975 1985 1995 2005 2015 2025

Abbildung 1.3: Zeitliche Entwicklung des Technologieumfangs im Automobil (angelehnt an

[110])

5

1 Einleitung

1.2 Cloudbasierte Fahrzeugfunktionen

Ziel dieser Dissertation ist es, darzulegen, wie die bestehende E/E-Architektur

eines Fahrzeugs durch den Einsatz cloudbasierter Fahrzeugfunktionen syste-

matisch erweitert werden kann. Die Integration einer dynamischen Clou-

dumgebung in die traditionell statische Fahrzeugarchitektur führt zu einer

grundlegenden Veränderung der Architekturentwicklung – insbesondere im

Hinblick auf die Funktionsverteilung. Die Möglichkeit, eine Funktion (vgl.

Definition 1.5) nicht nur im Fahrzeug, sondern auch in der Cloud bereitzu-

stellen, eröffnet neue Freiheitsgrade im Entwurf. Dies betrifft sowohl die

Migration bestehender Funktionen in die Cloud als auch die Realisierung

neuartiger Funktionen, die aufgrund begrenzter Rechen-, Speicher- oder

Energieressourcen im Fahrzeug bislang nicht umsetzbar waren.

Zu diesen neuartigen Funktionen zählen insbesondere regelungstechnische

Komponenten, deren Stellgrößen direkt zur Optimierung fahrzeuginterner

Funktionen beitragen können, beispielsweise im Bereich des Energiemana-

gements, der Klimatisierung oder der Fahrdynamik. Lernende Funktionen,

die in der Cloud betrieben werden, können zudem umfangreiche Daten aus

Fahrzeugflotten nutzen, um ihre Strategien kontinuierlich zu verbessern und

so eine weitere Steigerung von Effizienz, Komfort und Sicherheit zu erzielen.

Ein weiterer zentraler Vorteil cloudbasierter Funktionen liegt in deren Le-

benszyklusflexibilität. Sie können unabhängig von der im Fahrzeug fest ver-

bauten Hardware dynamisch bereitgestellt, aktualisiert oder ersetzt werden.

Im Gegensatz zu OTA-Update-Prozessen, bei denen Softwarepakete explizit

an die Fahrzeugflotte verteilt werden müssen, erfolgt die Aktualisierung

cloudbasierter Funktionen zentral. Fahrzeuge, die mit der Cloud verbunden

sind, greifen automatisch auf die jeweils aktuelle Version zu. Dies ermöglicht

eine erhebliche Reduktion der Update-Komplexität, senkt Betriebs- und War-

tungskosten und minimiert potenzielle Ausfallzeiten infolge softwareseitiger

Aktualisierungen.

6

1.3 Allgemeine Begriffsdefinitionen

1.3 Allgemeine Begriffsdefinitionen

Diese Dissertation verwendet die Begriffe System, Komponente, Funktion

und Feature gemäß der in Abbildung 1.4 dargestellten ontologischen Bezie-

hung und den zugehörigen Definitionen. Demnach kann ein System aus null

oder mehr Subsystemen bestehen und setzt sich mindestens aus einer Kom-

ponente zusammen. Eine Komponente als generalisierte Form von Hard- und

Softwarekomponenten stellt einen funktional sowie logisch abgegrenzten

Teil eines Systems dar. Sie kann dabei aus einer oder mehreren Funktionen

bestehen. Funktionen sind hier als logische Softwarekomponenten zu ver-

stehen, die Eingaben verarbeiten und Ausgaben erzeugen; sie können dabei

optional in Komponenten vorhanden sein. Aus Sicht des Anwenders werden

Funktionen in Form von Features wahrgenommen, die die für den Kunden

erlebbaren Eigenschaften des Systems darstellen.

System

1

1..*
besteht aus

Komponente

Funktion

0...*

1...*

Feature
(Kundensicht)

besteht aus

realisiert

0..*

1

besteht aus

Softwarekomponente Hardwarekomponente

Abbildung 1.4: Ontologie der Begriffe System, Komponente, Funktion und Feature

7

1 Einleitung

Definition 1.1 System: Die ISO/IEC/IEEE 24765:2017 „Systems and

software engineering — Vocabulary" [57] definiert ein System als

eine Kombination interagierender Elemente, die so organisiert sind,

dass sie einen oder mehrere definierte Zwecke erfüllen. Im Kontext

dieser Dissertation kann der Begriff System, abhängig vom jeweiligen

Betrachtungsrahmen, unterschiedliche Bedeutungen annehmen (vgl.

[101]):

• das Gesamtfahrzeug, bestehend aus verschiedenen Komponen-

ten wie Elektrik und Antrieb,

• ein Subsystem innerhalb des Fahrzeugs, bspw. das Heizung,

Lüftung, Klimatisierung (HLK)-System in Kapitel 2.4,

• eine einzelne Fahrzeugkomponente, wie z. B. ein Verdichter

oder ein Steuergerät.

Definition 1.2 Komponente: Ein System besteht aus Komponenten,

wobei eine Komponente einen funktional und logisch abgegrenzten

Teil des Systems darstellt. Dabei kann es sich sowohl um HWCs (s.

Definition 1.3) als auch um SWCs (s. Definition 1.4) handeln, die selbst

weiter in Subkomponenten unterteilt werden können. (nach [57])

8

1.3 Allgemeine Begriffsdefinitionen

Definition 1.3 Hardwarekomponente (HWC): Eine HWC ist eine

technische Einheit, die eine Funktion durch in Hardware implemen-

tierte Logik ausführt:

• Festgelegte Logik (Application-specific integrated circuit

(ASIC), dedizierte Schaltungen)

• Konfigurierbare Logik (Field-Programmable Gate Array

(FPGA))

• Prozessoren und Mikrocontroller (als Ausführungsplattform)

Die Funktionalität wird direkt durch die Hardwarearchitektur bereit-

gestellt.

Definition 1.4 Softwarekomponente: Eine Softwarekomponente

(SWC) ist eine technische Einheit, die eine Funktion durch ausführ-

baren Code realisiert. Dieser Code wird auf einer HWC (Prozessor,

Mikrocontroller) interpretiert und ausgeführt. Die SWC bestimmt das

funktionale Verhalten durch programmierbaren Code.

Definition 1.5 Funktion: Im Kontext dieser Dissertation ist eine

Funktion eine logisch abgegrenzte Ausführungsanweisung, die Ein-

gaben entgegennimmt, verarbeitet und Ausgaben zurückliefert. Sie

wird in einer Softwarekomponente realisiert. (nach [58])

Definition 1.6 Feature: Features, auch Kundenfunktionen, sind

nicht mit Funktionen im Sinne von Definition 1.5 zu verwechseln.

Kundenfunktionen stellen abstrakte funktionale Charakteristika eines

Systems dar, die für Anwender und andere Stakeholder greifbar sind.

(nach [56])

9

1 Einleitung

1.4 Forschungsfragen

Die Integration von Cloud-Technologien in die Fahrzeugarchitektur stellt

einen vielversprechenden Ansatz dar, um die Softwareentwicklung flexibler

zu gestalten, neue Features schneller bereitzustellen und die Rechenleistung

bedarfsgerecht zu skalieren. Gleichzeitig wirft diese Entwicklung neue Fra-

gen auf, da bestehende E/E-Architekturen in Fahrzeugen primär für lokale

Steuergeräte optimiert sind und eine Migration in die Cloud umfassend

analysiert werden muss.

Daher ist zunächst zu klären, wie in Fahrzeug-E/E-Architekturen potenziell

cloudfähige Funktionen systematisch identifiziert und deren Eignung für

eine Cloud-Migration bewertet werden können. Aufbauend auf einer solchen

Identifikation stellt sich die Frage, welche Deploymentmodelle (s. Definition

5.1) für cloudbasierte Funktionen überhaupt denkbar sind und wie sich das

am besten geeignete Modell finden lässt. Schließlich gilt es nachvollziehbar

zu machen, welche Vorteile sich daraus ergeben und wie diese messbar belegt

werden können.

Forschungsfrage 1: Identifikation cloudfähiger Funktionen

Wie können in Fahrzeug-E/E-Architekturen potenziell cloudfähige

Funktionen systematisch identifiziert und deren Eignung für eine

Cloud-Migration bewertet werden?

Forschungsfrage 2: Deploymentmodelle

Welche Deploymentmodelle cloudbasierter Fahrzeugfunktionen sind

vorstellbar und wie lässt sich das am besten geeignete finden?

Forschungsfrage 3: Potenziale der Cloudverlagerung

Welche Vorteile ergeben sich aus der Cloudverlagerung und wie

lassen sich diese messbar nachvollziehen?

10

2 Technische und begriffliche
Grundlagen

2.1 Regelungstechnik

2.1.1 Modellprädiktive Regelung

Eine modellprädiktive Regelung (engl. Model Predictive Control (MPC))

nutzt ein Anlagenmodell, um das zukünftige Verhalten der realen Anlage

bzw. des Systems vorherzusagen.

Das Modell bildet die Systemdynamik möglichst realitätsnah ab und kann

dabei in verschiedenen Formen vorliegen, wie z. B. als Zustandsraumdarstel-

lung, Übertragungsfunktion oder auf Basis der Sprungantwort. Mithilfe des

Modells wird aus dem aktuellen Zustand x(k) sowie einer gegebenen Refe-

renz ein prädizierter Output berechnet, der mit dem gewünschten Sollverlauf

der Ausgangsgröße y(k) verglichen wird. Aus diesem Vergleich ergibt sich

ein prädizierter Fehler.

Ein integrierter Optimierer berechnet anschließend auf Basis dieses Fehlers,

einer zugehörigen Kostenfunktion sowie definierter Beschränkungen die

optimale zukünftige Stellgrößenfolge (bzw. prädizierten Input) u(k), welche

das Regelziel bestmöglich erfüllt.

Obwohl der Optimierer eine gesamte Stellgrößenfolge berechnet, wird in

der Praxis jeweils nur der erste Eintrag an die reale Anlage übergeben. Der

11

2 Technische und begriffliche Grundlagen

daraus resultierende neue Systemzustand x(k) wird zurückgeführt und im

nächsten Zeitschritt zur erneuten Optimierung verwendet – ein Prinzip, das

als Receding Horizon bezeichnet wird.

Modellprädiktive Regelung

Optimierer

Anlagenmodell/
Modelliertes System

Anlage/
System

x

Prädizierter
Output

Prädizierter
Fehler

-
+

BeschränkungenKostenfunktion

Prädizierter
Input u(k)

x(k)

Referenz y(k)

Abbildung 2.1: Struktur einer modellprädiktiven Regelung

Dieser Vorgang wird stetig wiederholt. Die Struktur eines Systems mit mo-

dellprädiktiver Regelung ist in Abbildung 2.1 zu sehen. Da angenommen

wird, dass die Zustände der Anlage vollständig beobachtbar sind, ist in dieser

Abbildung kein Zustandsschätzer in den Regelkreis integriert.

In Abbildung 2.2 ist die Strategie einer modellprädiktiven Regelung schema-

tisch dargestellt. Der Ablauf kann durch folgende Schritte in zeitdiskreter

Form beschrieben werden [27]:

• 1. Schritt:

Für den Zeitschritt k wird die zukünftige Stellgrößenfolge über einen

endlichen Horizont Np (Prädiktionshorizont) bestimmt, die zum op-

timalen Verlauf der Ausgangsgröße führt (s. Abbildung 2.2a). Die

Vorhersage erfolgt anhand des Modells und des aktuellen Zustands

des realen Systems. Der Optimierungsvorgang zur Bestimmung der op-

timalen Stellgrößenfolge wird durch Minimierung der Kostenfunktion

umgesetzt.

12

2.1 Regelungstechnik

• 2. Schritt:

Der erste Wert der für den Zeitschritt k ermittelten zukünftigen Stell-

größenfolge wird an das reale System übermittelt und angewendet.

Die anderen Werte der vorhergesagten Stellgrößenfolge werden ver-

worfen. Es ergibt sich ein neuer Zustand des Systems. Die tatsächliche

Ausgangsgröße des Systems kann dabei von der prädizierten Aus-

gangsgröße abweichen, wenn das verwendete Modell die Dynamik

des Systems nicht exakt widerspiegelt oder Störungen auftreten, die

im Modell nicht berücksichtigt werden können (s. Abbildung 2.2b).

• 3. Schritt:

Im nächsten Zeitschritt k + 1 wird für den verschobenen Prädik-

tionshorizont und mit dem neuen Zustand des Systems eine neue

Stellgrößenfolge vorhergesagt (s. Abbildung 2.2c). Dieses Vorgehen

wird für die folgenden Zeitschritte wiederholt.

a) Kostenfunktion Bei einer MPC wird zu jedem Zeitschritt eine opti-

male zukünftige Stellgrößenfolge gesucht. Dazu erfolgt ein Optimie-

rungsvorgang innerhalb des Reglers. Die Optimierung basiert dabei

auf der Minimierung einer Kostenfunktion. Eine solche Kostenfunk-

tion berücksichtigt typischerweise die Differenz der Ausgangsgröße

von einer Referenz sowie die Änderungen der Stellgröße [95]:

J =

Np∑
j=1

q · [y(k+ j)− yref(k+ j)]2+

Nc∑
j=1

r · [∆u(k+ j− 1)]2 (2.1)

Die Faktoren q und r aus Gleichung 2.1 dienen der Gewichtung der

Optimierungsziele einer Kostenfunktion (s. Abbildung 2.1). Durch die-

se Größen kann eingestellt werden, ob die Abweichung des Ausgangs

von der Referenz oder aggressive Änderungen der Stellgrößen stärker

bestraft werden sollen.

13

2 Technische und begriffliche Grundlagen

u,y,r

Referenztrajektorie

prädizierter
Ausgangsgrößenverlauf

prädizierte
Stellgrößenfolge

Prädiktionshorizont

Steuerhorizont

ZukunftVergangenheit

k k+1 k+2 k+3 k+Nc k+Np Zeit

u,y,r

Referenztrajektorie

prädizierter
Ausgangsgrößenverlauf

prädizierte
Stellgrößenfolge

Prädiktionshorizont

Steuerhorizont

ZukunftVergangenheit

k k+1 k+2 k+3 k+Nc k+Np Zeit

(a)

u,y,r

Referenztrajektorie

prädizierter
Ausgangsgrößenverlauf

Prädiktionshorizont

Steuerhorizont

ZukunftVergangenheit

k k+1 k+2 k+3 k+Nc k+Np Zeit

1. Wert der
Stellgrößenfolge wird

angewendet

Alle anderen Werte
werden verworfen

tatsächliche
Ausgangsgröße

u,y,r

Referenztrajektorie

prädizierter
Ausgangsgrößenverlauf

Prädiktionshorizont

Steuerhorizont

ZukunftVergangenheit

k k+1 k+2 k+3 k+Nc k+Np Zeit

1. Wert der
Stellgrößenfolge wird

angewendet

Alle anderen Werte
werden verworfen

tatsächliche
Ausgangsgröße

(b)

14

2.1 Regelungstechnik

u,y,r

Referenztrajektorie

prädizierter
Ausgangsgrößenverlauf

prädizierte
Stellgrößenfolge

Prädiktionshorizont

Steuerhorizont

ZukunftVergangenheit

k+1 k+2 k+3 k+4 k+Nc+1 k+Np+1 Zeit

u,y,r

Referenztrajektorie

prädizierter
Ausgangsgrößenverlauf

prädizierte
Stellgrößenfolge

Prädiktionshorizont

Steuerhorizont

ZukunftVergangenheit

k+1 k+2 k+3 k+4 k+Nc+1 k+Np+1 Zeit

(c)

Abbildung 2.2: Strategie einer modellprädiktiven Regelung

a) Vorhersage der optimalen Stellgrößenfolge

b) Anwendung des ersten Wertes der Stellgrößenfolge

c) Horizont verschieben und neue Stellgrößenfolge bestimmen

b) Beschränkungen Einer der größten Vorteile einer modellprädiktiven

Regelung ist die Berücksichtigung von Beschränkungen der Stellgrö-

ßen. Mechanische Grenzen von Maschinen können dadurch ebenso

berücksichtigt werden wie konstruktive oder sicherheitstechnische

Begrenzungen. Beispielsweise kann das maximale Füllniveau eines

Tanks oder ein einzuhaltender Druckbereich eines Behälters über Be-

schränkungen einkalkuliert werden. Dabei wird zwischen harten und

weichen Beschränkungen unterschieden. Während harte Beschrän-

kungen zu jeder Zeit eingehalten werden müssen, können weiche

Beschränkungen kurzzeitig verletzt werden.

15

2 Technische und begriffliche Grundlagen

c) Prädiktionshorizont Bei der MPC wird in jedem Zeitschritt die

optimale zukünftige Stellgrößenfolge gesucht, die innerhalb eines be-

stimmten Zeitfensters die Abweichung der Ausgangsgröße von einer

gewünschten Referenz minimiert. Dieses Zeitfenster, für das die opti-

male Stellgrößenfolge vorhergesagt wird, ist der Prädiktionshorizont

Np. Die Wahl des Prädiktionshorizonts muss den Gegebenheiten des

zu regelnden System angepasst werden. Er sollte länger als die signifi-

kanten Dynamiken des Prozesses sein, um rechtzeitig auf mögliche

Störungen reagieren zu können. Allerdings sollte auch berücksich-

tigt werden, dass der Rechenaufwand des Reglers mit zunehmendem

Prädiktionshorizont zunimmt.

Prädiktionshorizont Np=8

Steuerhorizont NC=4

k k+1 k+2 k+3 k+8 Zeitk+4

u

Prädiktionshorizont Np=8

Steuerhorizont NC=4

k k+1 k+2 k+3 k+8 Zeitk+4

u

Abbildung 2.3: Beispiel einer prädizierten Stellgrößenfolge mitNp = 8 undNc = 4

d) Steuerhorizont Der Steuerhorizont Nc gibt an, bis zu welchem Zeit-

schritt des Prädiktionshorizonts die Stellgröße verschiedene Werte

annimmt. Über den Steuerhorizont kann somit eingestellt werden, ab

welchem Zeitschritt die Stellgrößenfolge konstante Werte annehmen

soll. In Abbildung 2.3 ist beispielhaft eine prädizierte Stellgrößenfolge

mit dem Prädiktionshorizont Np = 8 und Steuerhorizont Nc = 4

dargestellt. Ab dem Zeitpunkt k + Nc = k + 4 ist die Stellgrößen-

folge bis k +Np konstant. Die Wahl des Steuerhorizonts beeinflusst

den Rechenaufwand des Reglers. Entspricht der Steuerhorizont dem

Prädiktionshorizont, muss für jeden vorhergesagten Zeitschritt eine

Optimierung durchgeführt werden. Bei kürzeren Steuerhorizonten

16

2.1 Regelungstechnik

entfällt die Optimierung für die Zeitschritte zwischen Steuer- und

Prädiktionshorizont, da in diesem Bereich die vorhergesagten Stell-

größenwerte konstant gehalten werden.

2.1.2 Fuzzy-Regler

Ein Fuzzy-Regler arbeitet mit unscharfen Zugehörigkeitsfunktionen, die

zusammen eine Fuzzy-Menge bilden, um Ein- und Ausgangsgrößen mittels

linguistisch formulierter Regeln zu verknüpfen. Dabei werden konkrete Ein-

gangssignale durch definierte Funktionen in unscharfe linguistische Begriffe

überführt (Fuzzifizierung). So kann beispielsweise eine exakte Temperatur-

angabe (in
◦C) durch Begriffe wie „niedrig“, „mittel“ oder „hoch“ beschrieben

werden. Diese Abbildung eines scharfen auf einen unscharfen Eingangswert

erfolgt über Zugehörigkeitsfunktionen, die für jeden Eingangswert einen

Zugehörigkeitsgrad (zwischen 0 und 1) zu den jeweiligen Begriffen ange-

ben. Die Zugehörigkeitsfunktionen der einzelnen Begriffe dürfen sich dabei

überlappen (s. Abbildung 2.4).

0 10 20 30 40
0

0.5

1

Temperatur in
◦C

Z
u
g
e
h
ö
r
i
g
k
e
i
t

niedrig mittel hoch

(a) Dreieckszugehörigkeitsfunktion

0 20 40 60 80 100
0

0.5

1

Geschwindigkeit in km/h

Z
u
g
e
h
ö
r
i
g
k
e
i
t

niedrig mittel hoch

(b) Gaußsche Zugehörigkeitsfunktion

Abbildung 2.4: Fuzzifizierung der Eingangsgrößen Temperatur und Geschwindigkeit mittels

Dreiecks- und Gaußscher Zugehörigkeitsfunktionen

Für die so fuzzifizierten Eingangswerte werden anschließend mithilfe von

Regeln der Form

17

2 Technische und begriffliche Grundlagen

WENN <Bedingung>, DANN <Anweisung>

die zugehörigen unscharfen Ausgangswerte bestimmt.

Aus diesen unscharfen Ausgangswerten wird anschließend durch verschie-

dene Verfahren (bspw. Flächenschwerpunkt-Bestimmung) ein scharfer Aus-

gangswert berechnet (Defuzzifizierung) (s. Abbildung 2.5) [5]. Die Regelbasis

basiert dabei häufig auf Expertenwissen, es existieren jedoch auch Ansätze

zur automatischen Generierung bzw. adaptiven Anpassung, etwa durch den

Einsatz künstlicher neuronaler Netze.

Scharfer Eingang
(Messwert)

Fuzzifizierung Regelbasis

Defuzzifizierung
Scharfer
Ausgang

Temperatur = 22 °C
Luftfeuchte = 55 %

Niedrig (0,2),
Mittel (0,8),
Hoch (0,0)

WENN Temperatur ist „Mittel“
 DANN Ventil auf Stufe 3/4

WENN Luftfeuchte ist „Niedrig“
 DANN Ventil auf Stufe 1/2

Berechnung einer scharfen
Stellgröße aus akkumulierten

unscharfen Stellgrößen
Ventil auf 6/10

Abbildung 2.5: Ablauf eines Fuzzy-Reglers

2.1.3 PID-Regler

Der PID-Regler zeichnet sich durch Robustheit, Intuitivität und Einfachheit

aus und wird auch als Universalregler bezeichnet. Ein PID-Regler besteht aus

einem Proportionalteil (P-Glied), einem Integralteil (I-Glied) sowie einem

Ableitungsteil (D-Glied). Dabei sorgt das P-Glied für direkte Reaktion auf

Regelabweichungen und der I-Anteil für Elimination von stationären Fehlern.

Der D-Anteil reagiert auf Änderungen der Regelabweichung:

18

2.2 Steuergeräte

u(t) = Kp · e(t) +KI ·
∫ t

0

e(t) dt+KD · d

dt
e(t) (2.2)

mit

u: Stellgröße

e: Regelabweichung (Sollwert – Istwert)

K : Verstärkungsfaktoren der jeweiligen Anteile

Der Hauptnachteil von PID-Reglern liegt in der Vielfalt möglicher Parame-

terwerte, die es auszuwählen gilt, um einen optimalen Regler zu gestalten.

Oftmals wird deshalb, je nach Regelstrecke, auf einzelne Glieder verzichtet.

2.2 Steuergeräte

Elektronische Steuergeräte (fortan Electronic Control Unit (ECU)), Sollwert-

geber, Sensoren und Aktoren bilden gemeinsam ein elektronisches System

zur Beeinflussung des Zustands der Strecke. Dieses System wirkt innerhalb

des Gesamtsystems „Fahrer – Fahrzeug – Umwelt“ häufig im Verborgenen.

Besonders Steuergeräte, die ausschließlich Steuerungs- und Regelungsaufga-

ben übernehmen, besitzen keine direkten Benutzerschnittstellen und bleiben

für die Fahrzeuginsassen unsichtbar.

Der Einfluss des Fahrers auf diese Steuergeräte erfolgt nur indirekt, etwa

über Gaspedalstellung oder Lenkwinkel, sogenannte Führungsgrößen. Diese

werden über Sensoren oder Sollwertgeber (als Sonderform von Sensoren zur

Erfassung von Benutzerwünschen) erfasst und im Steuergerät überwacht,

geregelt oder gesteuert (s. Abbildung 2.6). Aktoren wandeln die von der ECU

kommenden Stellgrößen in physikalische Reaktionen auf die Strecke um.

Unter der „Strecke“ versteht man den physikalischen Teil des Systems. Im

Fahrzeugkontext umfasst die Strecke beispielsweise:

• das mechanische System des Antriebs,

19

2 Technische und begriffliche Grundlagen

• die Bewegung des Fahrzeugs (z. B. Beschleunigung, Bremsung),

• das Verhalten der Räder oder Dämpfer,

• die Innenraumtemperatur in einem Klimaregelungssystem.

Sensoren erfassen den sich neu ergebenden Systemzustand und geben diesen

an die ECU zurück, um in diesem Fall einen Regelkreis zu schließen.

ECU

Fahrzeug

Fahrer Umwelt

Sollwertgeber SensorenAktoren Strecke
Überwachung
Steuerung
Regelung

R

RXYUW

W* Z

W

R

U

Abbildung 2.6: Steuergerät als eingebettetes System im Fahrzeug [104]

Die ECUs im Fahrzeug sind über ein Kommunikationsbussystemmiteinander

vernetzt. Dieses Kommunikationssystem ermöglicht den Datenaustausch

zwischen den verschiedenen ECU in Echtzeit (s. Definition 2.1) und bildet

somit das Rückgrat für viele elektronische Features moderner Fahrzeuge.

Definition 2.1 Echtzeitsystem: Verarbeitet ein System seine

Eingangs- und Zustandsgrößen innerhalb eines vorgegebenen Zei-

tintervalls garantiert und erzeugt in diesem Zeitintervall die zuge-

hörigen Ausgangs- und Zustandsgrößen, so spricht man von einem

Echtzeitsystem [101].

20

2.2 Steuergeräte

Die zunehmende Anzahl an ECUs wird in der Automobilindustrie durch den

Ansatz „teile und herrsche“ realisierbar gemacht. Mittels dieses Ansatzes

wird das Fahrzeug üblicherweise in die Subsysteme bzw. Domänen unterteilt

(s. Abbildung 2.7):

• Antriebsstrang

• Fahrwerk

• Karosserie (mit Komfort und Passive Sicherheit)

• Infotainment

• Fahrerassistenz

Leistungskategorien von ECUs Eine generelle Aussage über die Rechen-

leistung und den Energieverbrauch von ECUs ist nicht realistisch. Vielmehr

kann die Vielzahl an ECUs in Fahrzeugen in Kategorien eingeteilt werden.

Die nachfolgenden Leistungsklassen basieren auf der Dissertation „Ener-

giemanagement Ethernet-basierter Fahrzeugnetze“ von Balbierer [13]. Die

Leistungsklasse Hoch wurde aufgrund aktueller leistungsfähiger Mikro-

controller für Machine Vision im Bereich der Fahrerassistenz angepasst.

Dazu gehört zum Beispiel der i.MX 8Quad Max des Herstellers NXP, dessen

Kennwerte hier übernommen wurden [88]. Die Leistungsklasse Sehr hoch
orientiert sich am NVIDIA DRIVE AGX Orin [86].

Einfluss der CPU-Auslastung auf den Energieverbrauch der ECU

Die unteren zwei Leistungsklassen aus Tabelle 2.1 liegen in Bezug auf den

Stromverbrauch im Bereich eines Raspberry Pi Model B
1
. Daher wird die in

Abbildung 2.8 gemessene Kurve näherungsweise auf diese Leistungsklassen

angewendet. Auf diese Weise kann die Leistungsaufnahme aus der Central

1 https://www.raspberrypi.com/documentation/computers/raspberry-

pi.html#voltages

21

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#voltages
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#voltages

2 Technische und begriffliche Grundlagen

Fahrzeug

 Domäne
 Antriebsstrang

 Domäne
 Fahrwerk

 Domäne
 Karosserie

 Domäne
 Infotainment

 Domäne
 Fahrerassistenz

 Komfort

 Passive Sicherheit

ECU ECU

ECU ECU

ECU ECU

ECU ECU

ECU ECU

ECU ECU

ECU ECU

ECU ECU
Subsystem

Gateway

Elektronisches
System

Abbildung 2.7: Zuordnung der elektronischen ECUs zu den funktionalen Domänen des Fahr-

zeugs [104]

Processing Unit (CPU)-Last abgeleitet werden. Um die Kurve anzunähern,

muss zunächst bestimmt werden, welcher Prozentsatz der maximalen Leis-

tung (CPU-Auslastung 100%) im Leerlauf, d.h. wenn sie nicht genutzt wird,

verbraucht wird. Der Stromverbrauch im Ruhezustand entspricht etwa 89%

der maximalen Last. Damit lässt sich eine allgemeine Berechnungsregel für

den Stromverbrauch in Abhängigkeit von der CPU-Last δCPU aufstellen:

PCPU,usage = 0, 11 · Pmax · δCPU + 0, 89 · Pmax (2.3)

22

2.2 Steuergeräte

Tabelle 2.1: Leistungsklassen typischer ECU im Fahrzeug (angelehnt an [13])

Kategorisierung

Leistungs-

klasse

Einsatz-

gebiet

Rechen-

performanz

Mikro-

controller
Peripherie Netzwerk

Summe

(50 % Effizienz)

Sehr hoch HPC

>200 TOPS

>50.000 DMIPS
40W 8,0W 2W 150W

Hoch

Fahrer-

assistenz

10.000-50.000

DMIPS
15W 4,0W 1W 40W

Medium

Antriebs-

strang

1.000-10.000

DMIPS
0,8W 1,0W 0,12W 4W

Gering ESP

500-1.000

DMIPS
0,5W 0,5W 0,04W 2W

DMIPS: Dhrystone million instructions per second TOPS: Tera operations per second

ESP: Elektronisches Stabilitätsprogramm

Typischerweise werden in modernen E/E-Architekturenmehrere Funktionen

auf einer ECU lokalisiert (s. Kapitel 2.3). Um nur eine Funktion zu berück-

sichtigen, muss daher die durchschnittliche CPU-Auslastung der im Fokus

stehenden Funktion in die Formel eingesetzt werden und nicht die gesam-

te CPU-Auslastung der ECU. Für die zwei untersten Leistungsklassen von

Mikrocontrollern ergeben sich daraus die folgenden Gleichungen:

Medium Leistungsklasse: PMedium = 0, 11 · 1,6W · δFunktion (2.4)

Geringe Leistungsklasse: PNiedrig = 0, 11 · 1W · δFunktion (2.5)

Für die hohe und sehr hohe Leistungsklasse liegen keine vergleichbaren

Kurven der Leistungsaufnahme in Abhängigkeit von der CPU bzw. Graphics

Processing Unit (GPU)-Auslastung vor, es wird aber ein linearer Zusammen-

hang angenommen. Um sich der Formeln anzunähern, muss die Leistungs-

aufnahme eines Low-Power-Zustandes ermittelt werden. Hierfür wird der

Leistungsbedarf des NXP i.MX 8QuadMax [88] und des NVIDIA Drive AGX

23

2 Technische und begriffliche Grundlagen

Orin [87] im Low-Power-Zustand auf Basis des Datenblatts ermittelt. Es

ergeben sich folgende Formeln für die Leistungsklassen:

Hohe Leitungsklasse: PSehr hoch = 0, 8 · 30W · δFunktion (2.6)

Sehr hohe Leitungsklasse: PSehr hoch = 1, 1 · 80W · δFunktion (2.7)

1 i n t main (i n t argc , char∗ a rgv []) {
2 v o l a t i l e i n t x =0;
3 v o l a t i l e i n t y ;
4 whi le (1) {
5 y=x+x ;
6 x ++;
7 }
8 re turn 0 ;
9 }

Listing 2. Source Code to keep the CPU busy

source code, all other processes also influence the measured
CPU utilization. Hence the variance is higher. The load is
generated by running an infinite loop adding numbers as
shown in Listing 2, filling up the CPU load to the desired
limit.

The load on the network interfaces may be generated by a
number of tools. The basic differentiation of these is between
TCP and UDP connections. TCP is the most widely used
protocol in the Internet, hence, its performance is of high
interest. Still, UDP has a number of advantages considering
the measurements. The most important aspect is the missing
traffic control, which allows configuring a fixed data rate
beforehand. This further eliminates the errors introduced by
TCP’s slow start and congestion avoidance algorithms. As
UDP uses no back channel, the measurement of only the
incoming or outgoing traffic counter is sufficient. Furthermore,
only the bytes on the wire are used to calculate the power
consumption. Considering the final model, the selection of
UDP has no influence on the applicability of the final power
model. Contrary, the accuracy of the measurements is im-
proved. As the kernel file system is evaluated during the model
generation, the power consumption generated by TCP traffic
can be modeled as well.

As a traffic generator, iPerf was selected. It allows config-
uration of the bandwidth for UDP connections. The measure-
ments are automated using a script running iPerf in different
configurations. iPerf also returns traffic statistics during and
after each run, but these miss the required accuracy. Further-
more, they only contain the self generated traffic and require
parsing of the command line output.

III. MEASUREMENTS

The measurements were conducted in a home environment
during the night to reduce potential interference of the WiFi
measurements. The power measurements are conducted with
a sampling rate of 1 kS/s, while the maximum update rate of
the bandwidth and utilization measurements is one sample per
second. Hence, a block-wise average is applied to the power
measurement samples. The start of the blocks was determined
based on the beginning of the utilization samples. All mea-
surement values between two system or network utilization
samples are averaged and then mapped to the second value.
The time difference between the utilization and bandwidth
measurement points is always below 80 ms. Hence, the time
difference may be neglected. Each test runs for 900 seconds,

CPU utilization in %

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 i
n
 W

0 10 20 30 40 50 60 70 80 90 100
1.5

1.55

1.6

1.65

1.7

1.75

1.8

Robust Regression (order:1)

Fig. 2. Power consumption vs. CPU utilization

resulting in 900k power measurements, which are reduced
to 900 combined utilization and power measurements. For
each experiment 10 different operating points are configured
and measured, resulting in 90k independent samples for each
approximation. The CPU utilization measurement is executed
without network access to reduce external influences to a
minimum.

The collected measurements are plotted in a heat map to
allow a visualization of the density of the measurements. This
is advantageous compared to scatter plots, as the high number
of measurements reduces the visibility of the individual data
points. The heat map is logarithmically weighted to visualize
the full range of measurements. On top of the heat map, the
models derived in Section IV are plotted.

A. CPU

Figure 2 shows the result of the CPU measurements in the
range 10% to 100% in 10% steps and a fitted linear function
generated by Matlab’s R© robustfit function. The horizon-
tal extent of the data spots reflects the accuracy of the CPU-
limiting script. The variation is clearly smaller than ±5%. The
power measurements between the different configurations are
overlapping. This can be explained by the discrete number of
frequency scaling steps in the processor. As the plotted values
are averages of the individual measurements, the discrete steps
are not visible. Still, this improves the visibility of the trend.
As the number of power samples is 1000 times higher than
the displayed values, the averages still reflect the underlying
power consumption.

B. Ethernet

The power measurements in this section use the power
model proposed in Section IV-A. From the raw measurements,
the power consumption generated by the idle state and CPU is
subtracted. Remaining is the power of the network transmis-
sion only. This is possible, as during the measurements, the
network load and the CPU utilization were monitored by the
respective scripts.

239

Authorized licensed use limited to: KIT Library. Downloaded on February 28,2023 at 16:58:28 UTC from IEEE Xplore. Restrictions apply.

Abbildung 2.8: Energieverbrauch in Abhängigkeit von der CPU-Last eines Raspberry Pi Model

B [62]

24

2.3 Die Elektrik/Elektronik (E/E)-Architektur

2.3 Die Elektrik/Elektronik (E/E)-Architektur

2.3.1 Historische Entwicklung der E/E-Architektur

Verteilte Architektur

Die konventionelle Herangehensweise setzt auf funktional-verteilte Systeme,

bei denen jede einzelne Funktion auf eine eigene ECU partitioniert wird.

Um Informationen miteinander auszutauschen, sind die Komponenten bei-

spielsweise über Controller Area Network (CAN)- und Local Interconnect

Network (LIN)-Bussystememiteinander vernetzt. Beide Kommunikationssys-

teme verfolgen dabei das Prinzip der signalorientierten Datenübertragung.

Das heißt, ein Messwert wird von einem Sensor erfasst und per Broadcast

an alle ECUs ausgegeben, die den Messwert wiederum an entsprechende

Aktoren weiterleiten (s. Abbildung 2.9). Dieses Prinzip beruht auf einer sta-

tischen Kommunikationsmatrix, die die Beziehungen zwischen Sendern und

Empfängern definiert [137]. Die Modularität der signalorientierten Archi-

tektur macht den Aufbau einfach, allerdings steigt der Umfang an ECUs mit

neu hinzugefügten Funktionalitäten kontinuierlich [25].

Sensor (Fkt. 1)

Sensor (Fkt. 2)

Sensor (Fkt. n)

ECU (Fkt. 1)

ECU (Fkt. 2)

ECU (Fkt. n)

Aktor (Fkt. 1)

Aktor (Fkt. 2)

Aktor (Fkt. n)

...

Fahrzeugbus (CAN)

Abbildung 2.9: Verteilte E/E-Architektur [111]

25

2 Technische und begriffliche Grundlagen

Domänenzentralisierte Architektur

Inzwischen enthalten Personenkraftwagen (PKW) zwischen 70 und 150

ECUs [124], die mit Kabeln einer Länge von bis zu einem Kilometer und

einem Gewicht von bis zu 70 Kilogramm miteinander verbunden sind [59].

Die hohe Anzahl an ECUs in Kombination mit dem Broadcast Prinzip führen

zu einer hohen Ineffizienz, da eine Vielzahl der sich auf dem Bus befinden-

den Nachrichten für die meisten ECUs irrelevant sind. Eine Reduzierung

der Gesamtlänge der Datenkabel bei gleichzeitiger besserer Einhaltung von

Zeitanforderungen brachte das Konzept der Zentralisierung, bei dem ECUs

nach Aufgabenbereichen (bspw. Antriebsstrang) zusammengefasst werden.

Nach Möglichkeit finden die Aufnahme von Sensordaten, die Verarbeitung

und die anschließende Steuerentscheidung in einem sogenannten domänen-

spezifischen oder gar domänenübergreifenden Gerät statt. Entsprechend

steigen aber auch die Anforderungen an die einzelne ECU, beispielsweise

müssen die Prozessoren deutlich leistungsfähiger sein [98].

Zentralisierte Architektur

Die zentralisierte Fahrzeugarchitektur verfolgt das Konzept der Datenfusion

aus heterogenen Quellen, um ein umfassenderes, systemisches Verständnis

des Fahrzeugs und seiner Umgebung zu ermöglichen. Dies stellt eine essen-

zielle Grundlage für die Realisierung zukünftiger Mobilitätskonzepte wie

das automatisierte Fahren dar. In diesem Kontext gewinnen Konzepte aus

der Informationstechnik (IT)-Branche zunehmend an Bedeutung. Besonders

leistungsfähige ECUs bilden die Grundlage für eine bedarfs- und ressour-

cengerechte Allokation sowie Ausführung von Funktionen (vgl. Kapitel

3.3) [25].

Die dynamische Zuweisung von Funktionen stellt einen Paradigmenwechsel

innerhalb der automobilen E/E-Architekturen dar. Sie ermöglicht die Ent-

wicklung und Integration cloudbasierter Fahrzeugfunktionen, welche den

zentralen Forschungsgegenstand dieser Arbeit bilden.

26

2.3 Die Elektrik/Elektronik (E/E)-Architektur

Abbildung 2.10: Zonenarchitektur des UNICARagil Projekts [135]

Im Unterschied zu klassischen, domänenbasierten und überwiegend signa-

lorientierten Architekturen beruhen zentralisierte Architekturen auf ser-

viceorientierten Prinzipien. Ein evolutionärer Zwischenschritt zwischen

domänenbasierter und vollständig zentralisierter Architektur ist die soge-

nannte Zonenarchitektur (vgl. Abbildung 2.10). Dabei erfolgt die Gruppie-

rung von Fahrzeugkomponenten primär basierend auf ihrer physischen

Position innerhalb definierter Zonen. In diesem Architekturansatz überneh-

men zonale ECU (Zonencontroller) die Erfassung von Sensordaten sowie die

Ansteuerung von Aktoren. Diese Zonencontroller sind mit zentralen Hoch-

leistungsrechnern (engl. High-Performance Computer (HPC)) verbunden,

welche die übergeordneten Funktionen koordinieren und ausführen.

2.3.2 Die serviceorientierte Architektur

Eine serviceorientierte Architektur (SOA) versteht das System als zusam-

menhängendes Gebilde von Komponenten, die untereinander kooperieren

müssen. Diese Zusammenarbeit basiert darauf, dass eine Komponente einen

Service anbietet (Service Provider) und eine andere ihn nachfragt (Service

Consumer). Die Beschreibung stellt vielmehr die Anwendung ins Zentrum

der Betrachtung, als den technischen Aufbau der Bauelemente und ihrer

27

2 Technische und begriffliche Grundlagen

Schnittstellen. Diese Herangehensweise erleichtert auch die Wiederverwen-

dung von Software, die durch einheitliche Schnittstellen zusätzlich unter-

stützt wird. SOAs bieten die Option, den Datenverkehr zwischen verschie-

denen Teilnehmern erst während der Laufzeit dynamisch festzulegen. Eine

starre Kommunikationsmatrix, wie bei signalorientierten Architekturen,

kann vermieden werden [45]. In Abbildung 2.11 wird der Unterschied der

beiden Architekturansätze dargestellt. Auf der linken Seite der Abbildung ist

eine signalorientierte Kommunikation, bei der logische Signale in Protocol

Data Unit (PDU) gruppiert und anschließend in CAN Nachrichten abgebildet

werden, dargestellt. Demgegenüber werden bei SOA sowohl Informationen

(z.B. „Außentemperatur“) als auch Funktionen (z.B. „Sitz belüften“) als Ser-

vices angeboten und z.B. mit Internet Protocol (IP)-basierten Protokollen

ausgetauscht. Die Definition der sendenden und empfangenden Komponente

sowie des Kommunikationsmusters (engl. communication pattern) sind aus-

reichend (s. Abbildung 2.11b). Dadurch verringert sich der Arbeitsaufwand

und überflüssiger Kommunikations-Overhead wird vermieden.

App1 App2

Middleware

ECU1 ECU2

CAN Bus

Signal

PDU

Message

Signal

Message

(a) Signalorientiert

App1 App2

ECU1 ECU2

Service

Message

<<use>>

Pattern

Ethernet
Switch

Middleware

(b) Serviceorientiert

Abbildung 2.11: Vergleich zwischen signalorientierter und serviceorientierter Architektur (in

Anlehnung an [73]):

a) Klassische Zuordnung von Signalen zu Nachrichten (engl. Messages): Lo-

gische Signale werden in PDUs (Protocol Data Units) zusammengefasst, die

wiederum CAN-Nachrichten zugeordnet werden.

b) Service-Bindung in einem SOA-Ansatz. Hier werden nur die Interaktions-

muster definiert, während der Rest automatisch erfolgt.

28

2.3 Die Elektrik/Elektronik (E/E)-Architektur

Da sich das Kommunikationsverhalten bei SOA über die Lebenszeit des

Produkts verändern kann, sind Updates von Funktionen oder sogar das

Hinzufügen gänzlich neuer Funktionen auch nach Auslieferung möglich.

Komponenten einer serviceorientierten Architektur

Die in Tabelle A.2 beschriebenen Open Systems Interconnection (OSI)

Schichten und deren Zusammenfassung finden auch in der Automotive-

Softwarearchitektur in Abbildung 2.12 Anwendung. Diese Schichten blei-

ben auch in einer SOA erhalten, mit dem Unterschied, dass die Ebene der

Applikations-Software in weitere Ebenen unterteilt wird (s. Abbildung 2.13).

Applikations-Software

Laufzeitumgebung, Middleware

Hardwareabstraktion

Hardware der ECU (CPU,RAM)

Abbildung 2.12: Grundlegende Komponenten einer Automotive-Softwarearchitektur

Der Konsument greift auf Services zu, die von Softwarekomponenten (engl.

software component (SWC)) ausgeführt werden. Die Servicekomponenten

Schicht verbindet den Service Contract mit der Implementierung des Service

in der SWC. Die einzelnen Services (atomar oder zusammengesetzt) werden

durch die Prozessebene verschaltet und zur Anwendung bzw. Applikation

zusammengefügt, die dann dem Konsumenten angeboten wird. Der Service

ist die entscheidende Ebene innerhalb der SOA und besteht wiederum aus

kleineren Komponenten, die nachfolgend beschrieben werden.

29

2 Technische und begriffliche Grundlagen

Konsumentenebene

Prozessebene

Services

Servicekomponenten

Softwarekomponenten

A
nb

ie
te
r

K
on

su
m
en
t

Abbildung 2.13: Ebenen der SOA, angelehnt an [90]

Service Roger Heutschi hat in der Veröffentlichung „Serviceorientierte

Architektur: Architekturprinzipien und Umsetzung in die Praxis“ [51] die

Definition 2.2 eines Service eingeführt.

Definition 2.2 Service: Ein Service ist ein abstraktes Software-

Element bzw. eine Schnittstelle, die anderen Applikationen über ein

Netzwerk einen standardisierten Zugriff auf Anwendungsfunktionen

bietet.

Dieser Definition wird ein SOA-Service durch die Einführung dreier Kom-

ponenten gerecht. Ein Service besteht aus einem Contract (A), der Imple-

mentierung (B) und Schnittstellen (C). Die Schnittstelle (C) nach außen zum

Client beschreibt die Funktionalität des Services. Der Service-Contract (A)

definiert den Service an sich. Diese Definition wird meist auf formaler Ebene

in einer Sprache wie IDL
2
(Verwendung bei Data Distribution Service (DDS)

3

und damit auch Robot Operating System (ROS) 2 und AUTomotive Open

2
Interface Definition Language

3
Data Distribution Service

30

2.3 Die Elektrik/Elektronik (E/E)-Architektur

System ARchitecture (AUTOSAR) Adaptive) oder WSDL
4
durchgeführt. Die

Contract Definition abstrahiert und erzeugt dadurch eine weitestgehen-

de Technologieunabhängigkeit. Diese Unabhängigkeit beinhaltet dabei die

Aspekte Programmiersprache, Middleware, Laufzeitumgebung und Netz-

werkprotokoll.

Service

Schnittstelle 1 (C)

+Operation 1
+Operation 2
...

Schnittstelle 2 (C)

+Operation 1
+Operation 2
...

Implementierung (B)

Service-Contract (A)

(Business)-Logik
(D)

Daten (E)

Abbildung 2.14: Komponenten eines Services, nach Krafzig [67]

Die Implementierung (B) ist die tatsächliche technische Umsetzung zur

Erfüllung des Contracts eines Services (in ROS 2 ein Node). Die Imple-

mentierung beinhaltet die Funktionalität bzw. Logik (D), die dann mittels

Service-Schnittstellen zur Verfügung gestellt werden. Die Daten (E) sind

nicht zwangsläufig Teil eines Service. Die meisten Services sind stateless, das
heißt, sie verfügen über keinen Speicher und werden bei jedem Aufruf auf

einem gleichen Zustand gestartet.

4
Web Service Description Language

31

2 Technische und begriffliche Grundlagen

2.4 Klimatisierung im Stadtbus

2.4.1 Typenvielfalt im Busverkehr

Im öffentlichen Personennahverkehr (ÖPNV) werden Kraftomnibusse zur

Beförderung von Fahrgästen eingesetzt. Diese Fahrzeuge lassen sich in drei

Fahrzeugklassen einteilen (s. Definition 2.3).

Definition 2.3 Kraftomnibus: Ein Kraftomnibus ist ein Kraftfahr-

zeug der Klassen M2 (zGM
a ≤5 t) oder M3 (zGM >5 t), das für die

Beförderung von mehr als acht Personen (zusätzlich zum Fahrersitz)

ausgelegt ist [30], [31]. Fahrzeuge mit einer Beförderungskapazität

von mehr als 22 Fahrgästen werden in drei Fahrzeugklassen unter-

gliedert [30]:

• Klasse I: Fahrzeuge, die über Stehplätze verfügen und für den

Transport von Fahrgästen auf Strecken mit zahlreichen Halte-

stellen ausgelegt sind.

• Klasse II: Fahrzeuge, die primär für die Beförderung sitzender

Fahrgäste konzipiert sind, jedoch auch die Mitnahme stehender

Fahrgäste im Gang oder in einem auf maximal zwei Sitzbank-

reihen begrenzten Bereich zulassen.

• Klasse III: Fahrzeuge, die ausschließlich für die Beförderung

sitzender Fahrgäste bestimmt sind.

Ein Kraftomnibus kann mehreren Klassen gleichzeitig zugeordnet

werden, sofern er für die jeweiligen Klassen zugelassen ist.

a
zulässige Gesamtmasse (zGM)

In der Praxis erfolgt eine Einteilung der Fahrzeuge nach ihrem vorherr-

schenden Einsatzzweck. So werden Fahrzeuge der Klasse I üblicherweise als

Stadtbusse, Fahrzeuge der Klasse II als Regional- oder Überlandbusse und

32

2.4 Klimatisierung im Stadtbus

Fahrzeuge der Klasse III als Reisebusse bezeichnet. Die Regelung Nr. 107 der

Wirtschaftskommission für Europa der Vereinten Nationen (engl. United

Nations Economic Commission for Europe (UNECE)) legt die grundlegenden

Konstruktionsmerkmale fest, die für die Genehmigung von Fahrzeugen in

den verschiedenen Fahrzeugklassen erforderlich sind [130]. Dazu zählen un-

ter anderem die Flächen für stehende und sitzende Fahrgäste, die Anzahl und

Anordnung von Betriebstüren und Notausstiegen, die Gestaltung der Fenster,

Gangbreite, Stufenhöhe, Einstiegshöhe sowie der Abstand und die Ausfüh-

rung von Sitzen. Auch Anforderungen an Brandunterdrückungssysteme,

Beleuchtung und Kennzeichnung sind Teil dieser Regelung.

Definition 2.4 Solobus:Ein einteiliger Kraftomnibus ohne Gelenk,

typischerweise etwa 12 Meter lang [122].

Definition 2.5 Gelenkbus: Ein mindestens zweiteiliger Kraftomni-

bus, verbunden durch ein Gelenk, mit einer Länge von etwa 18 Me-

tern [122]. Die Straßenverkehrs-Zulassungs-Ordnung (StVZO) sieht

eine Länge von 18,75m vor und erfordert beim Einsatz im öffentli-

chen Straßenverkehr von Fahrzeugen, die diese Länge überschreiten

oder über mehr als ein Gelenk verfügen, eine Ausnahmegenehmigung

entsprechend §70 der StVZO.

Batterieelektrische Stadtbusse Im batterieelektrischen Bus (BEB) wird

alle benötigte Energie für den Antrieb und alle sonstigen Verbraucher aus der

Hochvoltbatterie (Abk. HV-Batterie) entnommen. Aufgrund der begrenzten

Batteriekapazität stellt die effiziente Gestaltung der Verbraucher die größte

Herausforderung im BEB dar. Ein Vergleich der Energiemengen in einem

dieselbetriebenen Citaro und einem batterieelektrischen eCitaro des Her-

stellers Mercedes-Benz unterstreicht diese Herausforderung. Mithilfe des

33

2 Technische und begriffliche Grundlagen

Heizwerts von Diesel und dem Tankinhalt eines Citaro5 Busses bestimmt

sich der Energieinhalt einer Tankfüllung zu:

Hi,vol,Diesel =

{
34,7MJL−1

9,64 kWhL−1
(2.8)

ETank = VTank ·Hi,vol,Diesel = 2.506 kWh (2.9)

Die größte im eCitaro Solobus erhältliche Batteriekonfiguration verfügt über

eine Batteriekapazität von:

EBatterie = 588 kWh6 (2.10)

Dem BEB steht also nur 23,5% der Energiemenge eines Dieselbusses zur

Verfügung. Die mit dieser Energiemenge erzielbare Reichweite hängt stark

von der Umgebungstemperatur ab, da die Klimatisierung einen erheblichen

Anteil am Gesamtenergiebedarf des BEB ausmacht (vgl. Kapitel 3.5). Das

in Abbildung 2.15 dargestellte Sankey-Diagramm der Energieflüsse im BEB

verdeutlicht den großen Anteil thermischer Wandler wie der Wärmepumpe

oder dem Zusatzheizgerät, die Energie für die Klimatisierung bereitstellen.

Zur Bewertung des Energieverbrauchs von Fahrzeugen und deren Kompo-

nenten wird typischerweise die Energiemenge in Relation zur gefahrenen

Strecke gesetzt (Energieverbrauch e in kWhkm−1
).

Bei einer Umgebungstemperatur von 15 ◦C ist der streckenbezogene Gesam-

tenergieverbrauch mit durchschnittlich eBasis = 1kWhkm−1
am gerings-

ten [15]. Bei diesen Temperaturen kann mit dem Solobus mit der maximalen

Batteriekapazität also eine theoretische Reichweite von smax = 588 km

5 https://www.mercedes-benz-bus.com/de_DE/models/citaro/facts/facts-

citaro.pdf
6 https://www.mercedes-benz-bus.com/de_DE/models/ecitaro/technology/ba

ttery-technology.html

34

https://www.mercedes-benz-bus.com/de_DE/models/citaro/facts/facts-citaro.pdf
https://www.mercedes-benz-bus.com/de_DE/models/citaro/facts/facts-citaro.pdf
https://www.mercedes-benz-bus.com/de_DE/models/ecitaro/technology/battery-technology.html
https://www.mercedes-benz-bus.com/de_DE/models/ecitaro/technology/battery-technology.html

2.4 Klimatisierung im Stadtbus

H
V

-N
eb

en
-

ag
gr

eg
at

e

Druckluft-
kompressor Fahrwerk

Wärmepumpe

Bremswiderstände (elektr.
Heizen)

H
V

-B
at

te
ri

e

Bremsen

Fahrwiderstände

Mech. Bremse

E-MotorAntrieb

ZusatzheizgerätHeizöltank

Druckluft-
tank

~2 % Verluste

5 % Verluste

1 % Verluste

~1 % Restl. Dauerverbraucher (ECUs...)

2 % Bremswiderstände

~0,5% Lichtanlage
~0,5 % Innenraumbeleuchtung
~0,5 % Türen
~0,5 % Elektr. Lenkhilfpumpe

~2 % Verluste

Rekuperationsenergie

HLK Komponenten

Speicher/Senken

Wandler

Energieformen

Energiespeicher

Bedarfsverbraucher

Dauerverbraucher

Verlorene Energie

Wirkungsgradverluste

Elektrisch

Kinetisch

Pneumatisch

Thermisch

Hochvolt

Niedervolt

Fossil

Pneumatisch

Rekuperation

~48 %

~8 %

~10 %

~30 % ~27 %

~15 %

~5 %

~6 %

~8 %

~3 %
~3 %

Abbildung 2.15: Sankey-Diagramm des Energieflusses im BEB (angelehnt an [71])

zurückgelegt werden. Im Heizbetrieb unterhalb von 10 ◦C reduziert sich die

genannte maximale Reichweite um bis zu 58% [100] auf:

smax,Heiz = 247 km (2.11)

Im Kühlbetrieb fällt der Abfall mit 47% [100] nur marginal geringer aus und

es ergibt sich eine Reichweite von:

smax,Kühl = 311 km (2.12)

Mit smax können alle Umlaufpläne für Solobusse des deutschen Busverkehrs-

systems abgedeckt werden (s. Abbildung 2.16). Reduziert sich die Reichweite

auf smax,Kühl können noch 82% der Umläufe realisiert werden, während bei

smax,Heiz sogar nur noch 50% abgedeckt werden können.

35

2 Technische und begriffliche Grundlagen

200 300 400
0
10
20
30
40
50
60
70
80
90
100

Reichweite in kmA
n
t
e
i
l
a
n
a
b
d
e
c
k
b
a
r
e
n
U
m
l
a
u
f
p
l
ä
n
e
n
i
n
%

Abbildung 2.16: Anteil an abdeckbaren Umlaufplänen des deutschen Busverkehrssystems bei

gegebener Reichweite eines Busses [64]

2.4.2 HLK-Systeme im Stadtbus

Die Klimatisierung eines Elektrofahrzeugs stellt im Vergleich zu einem

Fahrzeug mit Verbrennungsmotor eine deutlich größere Herausforderung

dar. Durch die fehlende Abwärme des Verbrennungsmotors muss in einem

Elektrofahrzeug der komplette Heizbedarf durch zusätzliche Heizkompo-

nenten bereitgestellt werden. Neben passiven Maßnahmen, wie z. B. bessere

Isolierung des Fahrzeugs zur Verringerung des Wärmeverlustes im Winter

oder Wärmeeintrags im Sommer, gibt es verschiedene Möglichkeiten und

Varianten, die in elektrisch betriebenen Fahrzeugen zur Klimatisierung zum

Einsatz kommen. Dazu zählen für Heizzwecke elektrisch-, mechanisch- und

kraftstoffbetriebene Zuheizer. Ein anderer Ansatzpunkt ist die Verwendung

einer Wärmepumpe zur Bereitstellung der benötigten Heizleistung. Die

Kühlung erfolgt sowohl bei Fahrzeugen mit Verbrennungsmotor als auch

mit alternativen Antriebstechniken durch den Einsatz von Kompressionskäl-

temaschinen [24]. Außer im Fall des Wärmepumpensystems sind die Heiz-

36

2.4 Klimatisierung im Stadtbus

Abbildung 2.17: Darstellung der Aufdachanlage mit dem Wirkprinzip des Kühlkreislaufs [15]

und Kühlkreisläufe voneinander getrennt [61].

Tabelle 2.2: Übliche HLK-Systeme in Elektrobussen (in Anlehnung an [61])

Variante Kühlung Heizung

1 Aufdachklimaanlage Elektrische Widerstandsheizung

2 Aufdachklimaanlage Kraftstoffheizung

3 Aufdachwärmepumpe für Kühl- und Heizbetrieb (ggf. mit Zuheizer)

In Tabelle 2.2 sind die in Elektrobussen (vgl. batterieelektrischer Bus in

Kapitel 2.4.1) am häufigsten eingesetzten HLK-Systeme zu sehen [61]. Die

Kühlung erfolgt jeweils durch eine Kompressionskältemaschine, welche in

einer Aufdachanlage untergebracht ist (s. Abbildung 2.17). Für den Einsatz in

37

2 Technische und begriffliche Grundlagen

einem Elektrobus werden Aufdachklimaanlagen mit unterschiedlichen Käl-

temitteln angeboten. Häufig eingesetzt wird das Kältemittel R134a, welches

allerdings aufgrund seines hohen Treibhauspotentials in der Kritik steht und

für neu entwickelte PKW sowie Transporter bereits verboten ist [119]. Als

Alternative wurden in den vergangenen Jahren natürliche Kältemittel für

den Einsatz in Klimaanlagen untersucht. Dabei hat sich Kohlenstoffdioxid

(CO2), auch als R744 bezeichnet, als vielversprechende Option herauskristal-

lisiert. Aus ökologischer Sicht ist CO2 ein nahezu ideales Kältemittel, da es

weder giftig noch brennbar ist sowie ein geringes Treibhauspotential besitzt.

Ein Austritt in die Atmosphäre ist daher unbedenklich und hat im Vergleich

zu anderen Kohlenstoffdioxidemittenten einen vernachlässigbaren Einfluss

auf die globale Erwärmung. Nachteilig beim Einsatz von Kohlenstoffdioxid

als Kältemittel sind die erforderlichen hohen Drücke und die damit einher-

gehenden höheren Kosten für die Bauteile der Klimaanlage [99].

Für die Heizung eines Elektrobusses greifen die meisten Hersteller auf eine

elektrische Widerstandsheizung, eine Kraftstoffheizung oder eine Wärme-

pumpe zurück. Durch den Einsatz von kraftstoffbetriebenen Heizungen sind

auch Elektrobusse häufig mit einem Kraftstofftank ausgestattet und daher

nicht vollständig emissionsfrei. In Abbildung 2.18 sind die Verschaltungen

der Heiz- und Kühlsysteme sowie die Anordnung der Komponenten der

drei üblichen HLK-Systemvarianten schematisch dargestellt. Die Varianten

1 und 2 aus Tabelle 2.2 werden in Abbildung 2.18a dargestellt. Diese nutzen

einen Flüssigkeitskreislauf, der mithilfe eines elektrischen bzw. kraftstoff-

betriebenen Zuheizers erwärmt wird. Dieser Kreislauf ist an bodennahe

Konvektoren angeschlossen, welche die Luft in der Fahrzeugkabine erwär-

men. In Stadtbussen sind diese Konvektoren zumeist als Seitenwandheizer

mit Gebläse realisiert. Zusätzlich ist der Flüssigkeitskreislauf mit einem

Heizungswärmeübertrager in der Aufdachanlage verbunden. Dort wird je

nach Stellung der Umluftklappe Frisch-, Misch- oder Umluft erwärmt und

schließlich der Fahrzeugkabine zugeführt. Durch die Stellung der Umluft-

klappe kann der Frischluftanteil innerhalb des Busses gesteuert werden.

Im Heizfall ist die Klimaanlage ausgeschaltet und der Luft wird somit bei

der Durchströmung des Verdampfers der Kompressionskältemaschine kei-

38

2.4 Klimatisierung im Stadtbus

(a)

M

Konvektoren

Gebläse

Luft

Kältemittel

Wasser

R134a Kreislauf

Pumpe

Zuheizer El./
Kraftstoff

Verdampfer

Wärmeübertrager

Umluft-
klappe

Aufdachanlage

Fahrgastraum

(b)

M

Konvektoren

Gebläse

Pumpe

Verdampfer

Umluftklappe

Aufdachanlage

Fahrgastraum

CO2 Kreislauf

Wärmeübertrager

Heißwasser
Wärmeübertrager

Luft

Kältemittel

Wasser

Abbildung 2.18: Schematischer Aufbau unterschiedlicher HLK-Systeme eines Elektrobusses (in

Anlehnung an [61]):

a) Aufdachklimaanlage mit elektrischem bzw. kraftstoffbetriebenem Heizgerät

(verwendetes Kältemittel R134a)

b) Aufdachwärmepumpe für Heiz- und Kühlbetrieb (verwendetes Kältemittel

R744 (CO2))

ne Wärme entzogen. Ist die Klimaanlage eingeschaltet, wird die Luft nach

der Umluftklappe im Verdampfer gekühlt. Im Kühlfall ist der Zuheizer aus-

geschaltet und der Flüssigkeitskreislauf gestoppt, wodurch die Luft, ohne

39

2 Technische und begriffliche Grundlagen

erwärmt zu werden, durch den Heizungswärmeübertrager in die Kabine ge-

leitet wird. Es gibt auch Verschaltungen, in denen die Luft über einen Bypass

am Heizungswärmeübertrager vorbeigeleitet wird [109]. Alternativ zu den

oben beschriebenen Heizmethoden mit Flüssigkeitskreislauf existieren auch

Heizkonzepte, bei denen sowohl der Heizungswärmeübertrager als auch

die bodennahen Konvektoren als reine elektrische Positive Temperature

Coefficient (PTC)-Luftheizungen ausgeführt sind.

Durch das häufige Öffnen der Türen an den Haltestellen eines Stadtbus-

ses findet in kurzen Abständen ein erheblicher Wärmeaustausch zwischen

Fahrzeugkabine und Umgebung statt. Daher werden für den Einsatz von

Stadtbussen in Gebieten mit extremen Außentemperaturen teilweise zusätz-

lich Türluftschleier eingesetzt. Diese erzeugen vor den Türen des Busses

mittels starker Gebläse eine Barriere aus strömender Luft. Dadurch wird der

Austausch von sehr kalter oder sehr warmer Außenluft mit der klimatisierten

Luft der Fahrzeugkabine reduziert [61].

Bei Variante 3 aus Tabelle 2.2 (s. Abbildung 2.18b) erfolgt sowohl die Kühlung

als auch die Heizung mittels einer Wärmepumpe. Durch Umkehrung des

Kältemittelkreislaufs oder Luftumkehr kann eineWärmepumpe als Kompres-

sionskältemaschine fungieren. Diese Umkehrung wird genutzt, um zwischen

Heiz- und Kühlbetrieb umschalten zu können und somit sowohl den Heiz- als

auch den Kühlbedarf durch die Aufdachwärmepumpe bereitzustellen. Beim

Einsatz von R134a als Kältemittel der Wärmepumpe muss aufgrund der ther-

modynamischen Eigenschaften bei niedrigen Außentemperaturen auf eine

Zusatzheizung zurückgegriffenwerden. Besser geeignet für Temperaturberei-

che unter 0 ◦C ist dagegen Kohlenstoffdioxid. Allerdings kann es auch beim

Einsatz von CO2-Wärmepumpen sinnvoll sein, eine kraftstoffbetriebene Zu-

satzheizung zu integrieren, um diese bei extremen Witterungsverhältnissen

oder zur Verlängerung der Reichweite bedarfsgerecht zuzuschalten. Zusätz-

lich wird oftmals die Abwärme des Bremswiderstandes als Wärmequelle

genutzt.

40

2.4 Klimatisierung im Stadtbus

Eigenschaften verschiedener Wärmequellen

Folgende Eigenschaften dienen der Beschreibung von Wärmequellen:

• Elektrische Effizienz: Der Coefficient of Performance (COP) gilt

als Maß für die Effizienz von Wärmepumpen (s. Definition A.5). Die-

ser Ansatz wird verwendet, um die Effizienz elektrisch betriebener

Wärmequellen zu berechnen (s. Definition 2.6).

Definition 2.6 Electrical Coefficient of Performance: Der
electrical coefficient of performance bezeichnet bei einer elek-
trisch betriebenen Wärmequelle das Verhältnis des nutzba-

ren Wärmestroms Q̇ab zu eingebrachter elektrischer Leistung

Pelektrisch:

COPel =
Q̇ab

Pelektrisch
(2.13)

• Leistungsbereich:Wärmequellen können einen nutzbaren Wärme-

strom in einem bestimmten Wärmebereich zur Verfügung stellen.

Q̇ab,min < Q̇ab < Q̇ab,max (2.14)

• Temperaturniveau: Für den Transport und die anschließende Ver-

wendung der Wärme ist deren Temperaturniveau ausschlaggebend.

Tab,min < Tab < Tab,max (2.15)

• Betriebliche Einschränkungen: Wärmequellen können zusätzliche

Abhängigkeiten haben, die je nach Betriebszustand die Verfügbarkeit

beeinflussen.

41

2 Technische und begriffliche Grundlagen

2.4.3 Regelwerk zur Klimatisierung von Linienbussen
des Verbands deutscher Verkehrsunternehmen

Der Verband Deutscher Verkehrsunternehmen (VDV) beschäftigt sich in sei-

ner Schrift 236 mit der Klimatisierung von Linienbussen und definiert dabei

unter anderem die Anforderungen an einzuhaltende Temperaturbereiche in

der Fahrzeugkabine (s. Abbildung 2.19). Es werden Komfort und Economy

Kennlinien definiert. Die Economy Kennlinie ist für Verkehre mit geringeren

Reichweiten bzw. kurzer Aufenthaltsdauer der Fahrgäste und E-Mobilität

sinnvoll und ist gekennzeichnet durch:

• Heizen im Bereich der unteren Kennfeldgrenze

• Kühlen im Bereich der oberen Kennfeldgrenze

Die Kennlinien müssen geringfügig anpassbar sein. Die Soll-Innenraum-

temperatur darf im Heizbetrieb um ±2 K verschoben werden. Die Start-

temperatur für den Kühlbetrieb darf ebenfalls um ±2K angepasst werden.

Die Fahrzeugkabinewird in verschiedene Klimazonen unterteilt (s. Definition

2.7).

Definition 2.7 Klimazone: Eine Klimazone umfasst jeweils den

Bereich eines Gesamtsystems, der eigenständig kontrollierbar kli-

matisiert werden kann. Ein Solo- Linienbus wird in die Klimazonen

Fahrerarbeitsplatz (FAP) und Fahrgastraum (FGR) aufgeteilt, bei ei-

nem Gelenkbus kommt entsprechend eine zweite FGR-Zone hinzu.

Typischerweise wird im Linienbus jeder Zone eine Aufdachanlage zuge-

ordnet, während der FAP über ein zusätzliches System, genannt Frontbox,

klimatisiert wird.

Neben Vorgaben zu Temperaturbereichen legt die Vorschrift ebenfalls einen

Mindestwert für den Frischluftanteil von 15m3 h−1
pro Person in der Fahr-

42

2.4 Klimatisierung im Stadtbus

−15−10 −5 0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

25

30

35

40

Außentemperatur in
◦C

K
a
b
i
n
e
n
t
e
m
p
e
r
a
t
u
r
i
n

◦ C

−10

−5

0

5

10

15

20

25

30

35

40

T
e
m
p
e
r
a
t
u
r
d
i
ff
e
r
e
n
z
i
n
K

mögliche Economy-Kennlinie

Temperaturdifferenz Economy-Kennlinie

mögliche Komfort-Kennlinie

Temperaturdifferenz Komfort-Kennlinie

Abbildung 2.19: Mögliche Economy- und Komfort-Kennlinien nach VDV-Schrift 236 mit den

Betriebszuständen Heizen (blau), Lüften (gelb) und Kühlen (rot) [123], sowie

jeweils davon abgeleitete Temperaturdifferenz zwischen Kabinen- und Umge-

bungstemperatur

zeugkabine fest. Dieser Wert darf unterschritten werden, wenn die Luftgüte

durch eine entsprechende Messung des CO2 Gehalts oder der relativen Luft-

feuchte oder der Luftreinheit (Partikel) sichergestellt wird.

43

2 Technische und begriffliche Grundlagen

2.4.4 Die thermische Modellierung der HLK-Vorgänge
im Stadtbus

Das thermische Modell der HLK-Vorgänge orientiert sich an der Auftei-

lung des Stadtbusses in Klimazonen (s. Definition 2.7). Die Enthalpie- und

Wärmeströme in einer Klimazone sind in Abbildung 2.20 abgebildet.

ḢUmluft

ḢFrischluft

ḢMischluft

Q̇HLK ṁKondensat

ḢZuluft

Q̇Umgebung

Q̇Solar

ḢAbluft

ḢTüröffnung

Q̇Passagiere Q̇Interieur

Q̇Heizung

Abbildung 2.20: Wärme- und Massenströme in einem Stadtbus (angelehnt an [46])

Die in Abbildung 2.20 blau dargestellten Enthalpieströme deuten den Trans-

port feuchter Luft an, während die rot dargestellten Wärmeströme einen

Wärmetransport durch Konduktion oder Strahlung aufzeigen. Die Luftmen-

ge innerhalb einer Klimazone der Fahrzeugkabine wird als homogene Masse

mit den Zustandsgrößen (s. auch Kapitel A.1)

• Temperatur TKabine

• Feuchtegrad xKabine

• Spezifische Enthalpie hKabine

44

2.4 Klimatisierung im Stadtbus

und entsprechend mit TUmgebung, xUmgebung und hUmgebung betrachtet.

In der HLK-Anlage werden Umluft und Frischluft abhängig von der Umluft-

klappe (s. Abbildung 2.18) gemischt. Der Frischluftanteil a beschreibt dabei

den Anteil des Frischluftmassenstroms am gesamten Mischluftmassenstrom,

a =
ṁFrischluft

ṁMischluft
=

ṁFrischluft

ṁFrischluft + ṁUmluft
(2.16)

sodass die Mischluft wie folgt berechnet wird:

xMischluft = (1− a) · xKabine + a · xUmgebung (2.17)

hMischluft = (1− a) · hKabine + a · hUmgebung (2.18)

Definition 2.8 Enthalpie: Die Enthalpie H (Einheit: J) ist eine

Zustandsgröße eines thermodynamischen Systems. Sie berechnet

sich aus der inneren Energie U , dem Druck p und dem Volumen V

und kann nicht direkt gemessen werden:

H = U + pV (2.19)

Wird die EnthalpieH auf eine Massem bezogen, entsteht eine inten-

sive Größe, die spezifische Enthalpie h (Einheit: J kg−1
):

h =
H

m
(2.20)

45

2 Technische und begriffliche Grundlagen

Definition 2.9 Enthalpiestrom: Wird Luft mit der spezifischen

Enthalpie h durch einen Luftmassenstrom ṁL bewegt, entsteht ein

Enthalpiestrom Ḣ :

Ḣ = h · ṁL (2.21)

Ein Enthalpiestrom Ḣ ist gleichbedeutend mit einemWärmestrom Q̇

und wird wie dieser in einen sensiblen Anteil (Änderung der Tempera-

tur) und einen latenten Anteil (Änderung des Feuchtegrads) aufgeteilt.

Im Folgenden wird der Begriff Enthalpiestrom zur besseren Unter-

scheidung verwendet, um so einen Wärmestrom zu kennzeichnen,

der explizit durch den Transport von feuchter Luft hervorgerufen

wird.

In HLK-Systemen wird der Frischluftanteil a durch die Umluftklappe und

der Mischluftmassenstrom ṁMischluft durch das Gebläse vorgegeben. Somit

ergeben sich folgende Enthalpieströme (s. Definition 2.9):

ḢFrischluft = hUmgebung · ṁFrischluft = a · hUmgebung · ṁMischluft (2.22)

ḢUmluft = hKabine · ṁUmluft = (1− a) · hKabine · ṁMischluft (2.23)

ḢMischluft = ḢFrischluft + ḢUmluft (2.24)

Der Mischluft wird in der HLK-Einheit der Wärmestrom Q̇HLK zugeführt.

Die dabei entstehende Zuluft in die Fahrzeugkabine lässt sich folgenderma-

ßen berechnen:

ḢZuluft = ḢFrischluft + ḢUmluft + Q̇HLK (2.25)

Der Massenstrom ṁAbluft beschreibt, wie viel Luft aus der Kabine an die

Umgebung abgegeben wird und bestimmt den zugehörigen Enthalpiestrom

ḢAbluft:

ḢAbluft = hKabine · ṁAbluft (2.26)

46

2.4 Klimatisierung im Stadtbus

Türöffnungen führen zu einem bidirektionalen Austausch von Luft zwischen

Fahrzeugkabine und Umgebung, der zu einem Enthalpiestrom ḢTüre pro

Anzahl der geöffneten Türen NTüren, geöffnet führt:

ḢTüre = hKabine · ṁTür, ausströmend − hUmgebung · ṁTür, einströmend (2.27)

ḢTüröffnung = NTüren, geöffnet · ḢTüre (2.28)

Besteht zwischen TKabine und TUmgebung eine Temperaturdifferenz, so wird

abhängig von der Oberfläche A und dem Wärmedurchgangskoeffizient U

(inWm−2 K−1
) [116] der Wärmestrom Q̇Umgebung von der Kabine an die

Umgebung abgegeben:

Q̇Umgebung = A · U · (TKabine − TUmgebung) (2.29)

1

U
=

1

UKonvektion
+

1

UKonduktion
=

1

hInnen
+

1

hAußen

+

n∑
i=1

di
ki

(2.30)

Eine ausführliche Darstellung der Berechnung des Wärmedurchgangs findet

sich bei Schild [105].

DerWärmeeintrag durch Sonneneinstrahlung setzt sich aus direkter, diffuser

und reflektierter Solarstrahlung zusammen:

Q̇Solar = Q̇direkt + Q̇diffus + Q̇reflektiert (2.31)

Die Fahrzeugkabine kann durch zusätzliche Heizungen mit Umwälzgebläse

ausgestattet werden. Diese führt dem Raum den Wärmestrom Q̇Heizung zu.

Eine Temperaturdifferenz der Innenausstattung TInterieur (vereinfacht als

eine homogene thermische Masse mInterieur) von TKabine erzeugt den Wär-

mestrom Q̇Interieur:

Q̇Interieur = mInterieur · cp, Interieur · ṪInterieur (2.32)

47

2 Technische und begriffliche Grundlagen

Dieser ist hauptsächlich für Aufheiz- und Abkühlvorgänge relevant, da sich

TInterieur und TKabine im stationären Zustand annähern und Q̇Interieur damit

vernachlässigbar klein wird.

Ein normal bekleideter, sitzender Mensch gibt einen Wärmestrom Q̇P zwi-

schen 110W und 120W ab, welcher sich abhängig von der Raumtemperatur

aus sensibler und latenter Wärme zusammensetzt (s. Abbildung A.20). Je

höher die Raumtemperatur ist, desto größer ist der Anteil der Wärmeabgabe,

der durch Verdunstung von Schweiß erreicht wird und somit zu latenter

Wärme führt. Der Wärmestrom durch die Passagiere ergibt sich mit deren

Anzahl NPassagiere zu:

Q̇Passagiere = NPassagiere · Q̇P = NPassagiere ·
(
Q̇P, sen + Q̇P, lat

)
(2.33)

Der gesamte auf die Fahrzeugkabine einwirkende Wärmestrom Q̇Gesamt

berechnet sich wie folgt:

Q̇Gesamt = ḢZuluft − ḢUmluft − ḢAbluft − ḢTüröffnung − Q̇Umgebung

+ Q̇Solar + Q̇Heizung + Q̇Interieur + Q̇Passagiere

(2.34)

Durch Lösen der folgenden Differentialgleichung kann schließlich die Kabi-

nentemperatur bestimmt werden:

Q̇Gesamt = mKabine,L · cp,L · dTKabine

dt
(2.35)

Die Fahrzeugkabine weist dabei eine thermische Masse der LuftmKabine,L

mit der spezifischen Wärmekapazität cp,L auf.

Beim Zusammenführen der einzelnen Klimazonen (s. Definition 2.7) in ei-

nem Fahrzeug entstehen zusätzliche Enthalpieströme, die den Luftaustausch

zwischen den Zonen abbilden. In einem Solobus tritt dabei ein Enthalpie-

strom ḢFAP,FGR1 zwischen dem FAP und dem FGR auf. In einem Gelenkbus

48

2.4 Klimatisierung im Stadtbus

kommt ein weiterer Strom ḢFGR1,FGR2 zwischen dem ersten und dem zwei-

ten FGR hinzu (s. Abbildung 2.21).

ḢFAP,FGR1 ḢFGR1,FGR2

FAP FGR1 FGR2

Abbildung 2.21: Enthalpieströme zwischen den Klimazonen im Stadtbus [100]

49

2 Technische und begriffliche Grundlagen

2.5 Cloud Computing

Mit der zunehmenden Bedeutung der IT kann die Verfügbarkeit von Re-

chenkapazität als ein Grundbedürfnis ähnlich der Verfügbarkeit von Strom

angesehen werden. Von diesem Standpunkt aus können Benutzer unabhän-

gig von Dienststandort und Technologie auf Rechenressourcen zugreifen.

Cloud Computing (CC) ist ein Paradigma zur Bereitstellung von On-Demand-

Computing-Dienstprogrammen aus Rechenzentren für Benutzer an verschie-

denen Standorten. Eine Cloud besteht aus einer Sammlung von Computern,

die miteinander verbunden und virtualisiert sind [26]. Es gibt mehrere Defi-

nitionen für Cloud Computing. Eine der etablierten stammt vom National

Institute of Standards and Technology (NIST), die CC wie folgt definieren:

Definition 2.10 Cloud Computing: Cloud Computing ist ein Mo-

dell zur Ermöglichung allgegenwärtiger, bequemer On-Demand-

Netzwerkzugriffe auf einen gemeinsam genutzten Pool konfigurier-

barer Rechenressourcen (z. B. Netzwerke, Server, Speicher, Anwen-

dungen und Dienste), die mit minimalem Verwaltungsaufwand oder

Interaktion mit dem Dienstanbieter schnell bereitgestellt und freige-

geben werden können [79].

Vergleich Cloud vs. ECU Die in Tabelle 2.3 beschriebenen Eigenschaften

zeigen die Flexibilität und Leistungsfähigkeit des Cloud Computing. Ta-

belle 2.4 zeigt einen Vergleich zwischen Cloud und ECU hinsichtlich der

Funktionsausführung. Während ECUs nur begrenzte Rechenkapazitäten

bieten, vergleichbar mit einem Raspberry Pi, kann in der Cloud potenziell

auf spezialisierte Hochleistungs-Hardware wie die NVIDIA A100
7
zurück-

gegriffen werden, die über 100 Tera Floating Point Operations Per Second

(TFLOPS) Rechenleistung bereitstellt. Dem gegenüber steht jedoch ein er-

7 https://www.nvidia.com/de-de/data-center/a100/

50

https://www.nvidia.com/de-de/data-center/a100/

2.5 Cloud Computing

Tabelle 2.3: Wesentliche Eigenschaften des Cloud Computing [79]

Eigenschaft Beschreibung

On-Demand-Self-Service Ein Verbraucher kann Rechenkapazitäten wie Serverzeit

und Netzwerkspeicher einseitig nach Bedarf automatisch

bereitstellen, ohne dass eine menschliche Interaktion mit

jedem Dienstanbieter erforderlich ist.

Breiter Netzwerkzugriff Auf Computer- und Speicherkapazitäten kann über das

Netzwerk durch Standard-Benutzerplattformen, wie z. B.

Mobiltelefone, zugegriffen werden.

Ressourcenzusammenlegung Die bereitgestellten Ressourcen sind standortunabhängig.

Mehrere physische und virtuelle Ressourcen werden den

Kundenanforderungen dynamisch zugewiesen.

Hohe Elastizität Die bereitgestellten Ressourcen lassen sich elastisch ska-

lieren und wirken oft unbegrenzt.

Messbarer Service Die verwendeten Services können vomAnbieter und vom

Kunden überwacht, kontrolliert und gemeldet werden.

Tabelle 2.4: Vergleich der Funktionsausführung auf Steuergerät und Cloud [7]

Eigenschaft ECU Cloud

Rechenkapazität Gering (vgl. Raspberry Pi 4 Model B) Skalierbar (bis zu >100 TFLOPS z.B. in

NVIDIA A100)

Speicherressourcen Beschränkt (<100 GB) Skalierbar bis Petabyte

Kommunikationslatenz Gering (vorhersagbar) Hoch >50ms

Funktionale Sicherheit Sehr hoch Gering bis Mittel

Verfügbarkeit Sehr hoch Abhängig von Komm.-kanal

Security Sehr hoch Gering

Geographische Abdeckung National oder global Lokal

heblicher Nachteil in der Kommunikationslatenz. ECUs zeichnen sich durch

eine vorhersagbar niedrige Latenz aus, was für zeitkritische Anwendungen

unerlässlich ist. Die Cloud hingegen verursacht durch den notwendigen

Datenverkehr über Netzwerke typischerweise Latenzen von über 50ms.

Auch bei funktionaler Sicherheit (vgl. Definition 4.2) und Security (s. Defini-

tion 4.3) zeigen sich signifikante Unterschiede. Lokale Steuergeräte unter-

51

2 Technische und begriffliche Grundlagen

liegen häufig strengen Sicherheitsstandards und bieten entsprechend hohe

Sicherheitseigenschaften. Cloud-Infrastrukturen hingegen sind potenziell an-

fälliger für Angriffe, was sich in einer im Vergleich geringeren funktionalen

Sicherheit und Datenschutzbewertung widerspiegelt.

2.6 Vehicle-to-X-Kommunikation

Vehicle-to-X- oder Vehicle-to-Everything-Kommunikation beschreibt im

Allgemeinen den Internet of Things (IoT)-Ansatz, bei dem Fahrzeuge Infor-

mationen mit anderen Akteuren in ihrer lokalen Umgebung über Messaging

austauschen (s. Abbildung 2.22). Die V2X Kommunikation lässt sich, abhän-

gig von den beteiligten Parteien, unterschiedlich kategorisieren:

• Vehicle-to-Vehicle (V2V): Die Fähigkeit von Fahrzeugen, miteinan-

der zu kommunizieren. Dies ist eine der häufigsten Instanziierungen

der Vehicle-to-Everything-Kommunikation.

• Vehicle-to-Infrastructure (V2I): Die Fähigkeit von Fahrzeugen, mit

jeder Art von Verkehrsinfrastruktur zu kommunizieren. Ein oft ge-

nannter Use Case ist der bilaterale Austausch von Fahrzeugen mit

Ampeln, um den Verkehrsfluss zu optimieren. Weitere Beispiele sind

die automatisierte Mautabrechnung oder das Freihalten von Fahrbah-

nen für Einsatzfahrzeuge.

• Vehicle-to-Pedestrian (V2P):Die Fähigkeit von Fahrzeugen, indirekt

mit Fußgängern in der Nähe zu kommunizieren, die hauptsächlich

zur Vermeidung von Kollisionen verwendet wird. Fußgänger müssen

mit Smartphones oder tragbaren Geräten ausgestattet sein, um an der

Kommunikation teilnehmen zu können.

• Vehicle-to-Network (V2N): Die Fähigkeit von Fahrzeugen, mit al-

len Arten externer Netzwerke zu kommunizieren, z.B. um Echtzeit-

Verkehrsinformationen zu erhalten, Parkplätze zu finden, OTA-Software-

52

2.6 Vehicle-to-X-Kommunikation

Updates zu erhalten oder um Zugriff auf Multimedia-Dienste zu erhal-

ten.

Im Jahr 2016 wurde von der 3GPP Organisation
8
eine erste Spezifikation

der Cellular-V2X-Technologie (C-V2X) (s. Kapitel 2.6.1) unter Verwendung

von Long Term Evolution (LTE)-Netzwerken veröffentlicht und erste V2X

Services beschrieben, die mit diesem Standard ermöglicht werden sollen (s.

Abbildung 2.23). Insbesondere mit der Etablierung von 5G-Netzen, deren

Eigenschaften in 2.6.1 dargestellt sind, wird C-V2X immer attraktiver, da

eine verbesserte Latenz und ein höherer Durchsatz hochleistungsfähige

Anwendungen ermöglichen. Der Einsatz der jeweiligen Mobilfunknetze ist

8 https://www.3gpp.org

Abbildung 2.22: Vehicle-to-X Kommunikationsarten [1]

53

https://www.3gpp.org

2 Technische und begriffliche Grundlagen

Abbildung 2.23: Zusammenfassung der V2X Service Kategorien (Release 14-16) der 3GPP Spezi-

fikationen

sehr stark von dem im Fahrzeug verbauten Telematiksystem (s. Abbildung

A.21) abhängig.

2.6.1 Cellular-V2X

Mobilfunk ist dank flächendeckender Verfügbarkeit, hoher Sicherheit und

steigender Netzkapazität der aussichtsreichste Übertragungskanal für cloud-

basierte Fahrzeugfunktionen. Die C-V2X Technologie setzt aktuell entweder

auf die LTE- oder 5G-Technologie. Die wesentlichen Unterschiede beider

Technologien werden in Abbildung 2.24 in einem Netzdiagramm hinsichtlich

folgender Kriterien zusammengefasst:

• Datenrate beim Benutzer:Minimale erreichbare Datenrate für einen

Benutzer in der tatsächlichen Netzwerkumgebung

• Anschlussdichte:Gesamtanzahl angeschlossener Geräte pro Flächen-

einheit

• Datenkapazität pro Flächeneinheit: Gesamtdatenrate aller Benut-

zer pro Flächeneinheit

54

2.6 Vehicle-to-X-Kommunikation

• Maximale Datenrate: Maximal erreichbare Datenrate pro Benutzer

• Energieeffizienz des Netzwerks: Anzahl an Bits, die pro Energie-

einheit übertragen werden können

• Latenz: Dauer der Datenübertragung vom Sender zum Empfänger

• Mobilität: Relative Geschwindigkeit zwischen Empfänger und Sender

unter bestimmten Performanzanforderungen

• Bandbreiteneffizienz: Verhältnis zwischen Datenübertragungsrate

und Bandbreite

Abbildung 2.24: Vergleich der Schlüsselfunktionen von IMT-Advanced (4G) mit IMT-2020 (5G)

[38]

55

2 Technische und begriffliche Grundlagen

2.6.2 Einflüsse auf die erreichbaren Datenraten im
Mobilfunknetz

Die Datenrate des Mobilfunknetzes wird von verschiedenen Faktoren beein-

flusst, die somit auch Einfluss auf die in die Cloud verlagerte SWC haben.

Die Entfernung der Basisstationen und ihr Einflussbereich wirken sich direkt

auf die Datenrate aus, da das Signal-to-Interference-plus-Noise Ratio (SINR)

an den Grenzen einer Zelle abnimmt. Das SINR steht in direktem Zusam-

menhang mit der Datenrate und ist definiert als das Verhältnis zwischen

der Leistung des Signals und der kombinierten Leistung von Störungen und

Rauschen [83]. Auch die Umgebung und die Position des Fahrzeugs sind

entscheidend. Ein großes Gebäude zum Beispiel begrenzt die erreichbare

Datenrate. Hohe Geschwindigkeiten eines Fahrzeugs beeinflussen ebenfalls

die erreichbaren Datenraten und führen zu Paketverlusten und Kommuni-

kationsverzögerungen. Ein weiteres Problem, das bei Großveranstaltungen

beobachtet werden kann, ist der Einfluss der Anzahl der Nutzer auf die

Datenrate. Sobald die Kapazitätsgrenze eines Netzes erreicht wird, kann sich

die Round-Trip Time (RTT) im Vergleich zur normalen Nutzung um den

Faktor 1,5 bis 7 erhöhen [83].

Nutzerstatistiken aus dem deutschen Mobilfunknetz der Deutschen Tele-

kom zeigen eine durchschnittliche Download-Datenrate von 65,2Mbit s−1

und eine Upload-Datenrate von 13,9Mbit s−1
[93]. Der Unterschied in der

Upload- und Download-Geschwindigkeit spielt im weiteren Verlauf der Dis-

sertation bei der Bewertung der Eignung einer Funktion für die Verlagerung

in die Cloud eine Rolle.

Stromverbrauch für den Datentransfer über das Mobilfunknetz

Der Stromverbrauch für den Datentransfer über LTE wurde von Huang et

al. [54] anhand von Nutzerdaten in den USA untersucht. Abbildung 2.25

zeigt die Ergebnisse als das Verhältnis zwischen Datendurchsatz R und

Stromverbrauch für Up- und Download im LTE-Netz. Für die Berechnung

56

2.6 Vehicle-to-X-Kommunikation

des Stromverbrauchs in Abhängigkeit vom Datendurchsatz beim Up- und

Download werden die folgenden vereinfachten Geradengleichungen einge-

führt [54]:

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20

P
o

w
e

r
(m

W
)

Throughput (Mbps)

LTE DOWN
LTE UP

Figure 9: Power-throughput curve for LTE net-
work.

 0

 250

 500

 750

 1000

 1250

 0 500 1000 1500 2000

P
o

w
e

r
(m

W
)

Throughput (kbps)

3G DOWN
3G UP

WiFi DOWN
WiFi UP

Figure 10: Power-throughput curve for 3G and
WiFi.

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 0.2 0.4 0.6 0.8 1

P
o

w
e

r
(m

W
)

Ratio of uplink throughput: UP/(UP+DOWN)

UP + DOWN = 2Mbps
UP + DOWN = 1Mbps

Figure 11: Power of simultaneous uplink and
downlink transfers.

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000

µ
J
 /

 b
it

Bulk data size (kB)

LTE DOWN
LTE UP

WiFi DOWN
WiFi UP

3G DOWN
3G UP

Figure 12: Energy per bit for bulk data transfers.

networks fluctuates, both affecting energy per bit, our measurement
only serves as a sampled view for the energy efficiency of different
networks.

First, energy per bit decreases as bulk data size increases, largely
because with a small data size, throughput does not reach link ca-
pacity due to TCP slow start. We also observe that LTE’s energy
per bit in downlink is comparable with WiFi, although the absolute
power level of LTE is much higher than WiFi. This is due to high
downlink throughput for LTE at our test location, even compared
with the WiFi network. Similarly, for LTE uplink, it drops from
10µJ/bit to less than 1µJ/bit as bulk data size increases. With
bulk data size of 10MB, LTE consumes 1.62 times the energy of
WiFi for downlink and 2.53 for uplink. With lowest throughput,
3G has the worst energy efficiency for large data transfer, e.g., for
downloading 10MB data, 3G requires 21.50 times the energy of
LTE and 34.77 times the energy of WiFi, and for uplink, 7.97 times
of LTE and 20.16 times of WiFi.

5.4 Power model validation
To validate the LTE power model and the trace-driven simulation

(§3.3.2), we compare measured energy (measured from LTE Phone)
with simulated energy for case study applications. Table 5 contains
the sample application usage scenarios described in §3.4. The error
rate is consistently less than 6%, with the largest error rate from
Website Y, which includes heavy JavaScript execution and HTML
rendering. Since our power model focuses on radio power and ig-
nores the impact of CPU, for Website Y, the total energy usage is
slightly underestimated.

The error rate is increased if the impact of downlink and uplink
throughput is ignored, i.e., assuming αu = αd = 0. However,
the increase is not significant, at most 1.5%. This is because for

App Measured Simulated Error
energy (J)1 energy (J)1

Website G3 24.77 24.37 -1.61% (-2.06%2)
Website Y3 31.84 30.08 -5.53% (-7.04%)
YouTube 21.81 21.14 -3.07% (-4.17%)

NPR News 24.65 24.37 -1.12% (-1.70%)
Market 38.64 38.03 -1.58% (-3.03%)

1Both measured and simulated energy include tail energy
2This error is for simulated energy assuming αu = αd = 0
3Refer to §3.4 for the definition of Website G and Website Y

Table 5: LTE power model validation.

these web-based applications, network throughput is low due to
small object size (§7.2). For other applications, such as video/audio
streaming and file download, we expect to see a larger gap in error
rate if the impact of downlink/uplink is ignored.

In this section, in addition to comparing energy per bit in bulk
data transfer for different networks, we construct a new LTE power
model and validate its accuracy, which is the basis for the following
analysis.

6. USER TRACE BASED TRADEOFF ANAL-
YSIS

In this section, we apply the LTE power model to UMICH data
set and compare energy efficiency with 3G and WiFi, with detailed
break down of the total energy. We then study the tradeoff of con-
figuring different LTE parameters via our analysis framework.

6.1 Energy efficiency comparison
We use the UMICH data set to simulate the LTE, WiFi and 3G

model. Assume that the simulated energy usage for LTE, WiFi and
3G power model is Elte, Ewifi and E3g , respectively, the energy
ratio of LTE/WiFi is defined as Elte/Ewifi, and that for 3G/WiFi
is calculated as E3g/Ewifi. With the same traces, we can make
fair comparison among different power models to understand their
energy efficiency.

In Figure 13, we compare the energy efficiency of different net-
works for the 20 users both individually and in aggregate (summing
up for all users). We first observe that LTE power model consumes
significantly more energy than WiFi. The ratio of LTE/WiFi ranges
from 16.9 to 28.9 and the aggregate ratio for all users is 23.0. No-
tice that the gap between LTE and WiFi is larger compared with
the bulk data transfer experiments in §5.3. This is because, for bulk
data transfer, LTE’s high throughput could compensate the low en-
ergy efficiency, compared with real traces, which do not saturate the
link capacity. Second, for 3G/WiFi ratio, the range is between 10.8

233

Abbildung 2.25: Energieverbrauch im LTE-Netz abhängig vom Datendurchsatz im Up- und

Download [54]

PTrans,Up = αUpRUp + βUp (2.36)

PTrans,Down = αDownRDown + βDown (2.37)

αUp und αDown sowie βUp und βDown sind feste Modellparameter, die die

Autoren im Rahmen der durchgeführten Messungen extrahieren konnten.

Das Verhältnis αUp/αDown beträgt 8,44 [54]. Demnach ist der Stromver-

brauch der gleichen Datenmenge bei gleichem Datendurchsatz im Upload

wesentlich höher als im Download. β ist der Basisstromverbrauch ohne

Datendurchsatz. Durch Einsetzen der durchschnittlichen Up- und Down-

loaddatenraten aus Kapitel 2.6.2 ergeben sich folgende Leistungswerte:

PTrans,Up = 438, 39
mW

Mbit s−1
· 13,9Mbit s−1 + 1.288,04mW = 7,38W

(2.38)

PTrans,Down = 51, 97
mW

Mbit s−1
· 65,2Mbit s−1 + 1.288,04mW = 4,67W

(2.39)

57

2 Technische und begriffliche Grundlagen

2.7 Multikriterielle Entscheidungsanalyse

Die multikriterielle Entscheidungsanalyse (engl. Multiple-Criteria Decision

Analysis (MCDA)) ist eine Methode der Entscheidungsfindung für jegliche

Art von Alternativen und Kriterien. Der Zweck der multikriteriellen Ent-

scheidungsanalyse ist es, den Entscheidungsprozess anhand der folgenden

fünf Schritte zu strukturieren [18]:

I. Identifizierung des Entscheidungsproblems - Analyse des betrach-

teten Systems, Formulierung des Problems und Identifizierung der

gewünschten Ziele.

II. Strukturierung des Entscheidungsproblems - Die Bestandteile des

Entscheidungsproblems (Ziele, Kriterien und Alternativen) werden

genau definiert. Darüber hinaus werden die Wertebereiche für die

Kriterien festgelegt.

III. Erstellung des Modells - Die Komponenten des Entscheidungspro-

blems werden in einem System zusammengefasst, mit dem eine ziel-

orientierte Bewertung der Alternativen möglich ist.

IV. Bewertung der Alternativen - Die Alternativen werden mithilfe des

Modells bewertet.

V. Analyse der Ergebnisse.

Für die Bewertung von Alternativen aus Schritt IV stehen vielfältige Metho-

den zur Verfügung (s. dazu auch [115]). Das Weighted Sum Model (WSM)

ist aufgrund der schnellen Implementierung weit verbreitet.

Weighted SumModel (WSM) Das WSM bewertet die Alternativen Ai

anhand der gewichteten Summe der Kriterienbewertungen. Jede Alterna-

tivlösung Ai wird hinsichtlich der definierten Kriterien Cj in Form eines

Kriterienwertes aij beurteilt. Mithilfe eines relativen Gewichtswj können die

einzelnen KriterienCj nachWichtigkeit eingestuft werden. Die finale Bewer-

58

2.7 Multikriterielle Entscheidungsanalyse

tung der Alternative Ai, bezeichnet als Gesamtnutzwert AWSM
i , berechnet

sich schlussendlich wie in Gleichung 2.40 definiert, wobei die Kriterienwerte

normiert werden müssen, bevor sie in die Alternativenbewertung einfließen.

AWSM
i =

N∑
j=1

wjaij , i ∈ I (2.40)

Dabei sind alle wj > 0 und es gilt:

N∑
j=1

wj = 1 (2.41)

59

3 Stand der Technik und
Wissenschaft

3.1 Cloudbasierte Fahrzeugfunktionen

Cloudbasierte Fahrzeugfunktionen orientieren sich an Trends der Informati-

onstechnik, die zunehmend in die Automobilbranche einfließen. Besonders

das Internet der Dinge (engl. IoT), also die Vernetzung von Soft- und Hard-

warekomponenten über das Internet, spielt hierbei eine zentrale Rolle. Da

moderne Fahrzeuge internetfähig sind, stellt sich die Frage nach dem Mehr-

wert, den sie als Teil des IoT bieten. Das Forschungsthema cloudbasierter

Fahrzeugfunktionen adressiert genau diese Fragestellung und wird von Mi-

lani [82] wie folgt definiert:

Cloud-based vehicle functions

Cloud-based vehicle functions (CBVF) are entire or parts of vehicle

applications, which run temporarily or permanently in the cloud and

use cloud capability (computing and/or storage resources) instead of

vehicle’s on-board capacity. CBVFs can use as input both information

from vehicle e.g. on-board sensors and data from cloud data center.

Their outputs are destined for on-board ECU functions to improve

the vehicle control decision and strategy. According to this definition,

functions in the cloud without influence on the vehicle on-board ECU

control, are not part of CBVFs.

61

3 Stand der Technik und Wissenschaft

3.2 Deploymentmodelle cloudbasierter
Fahrzeugfunktionen

Die Autoren Kovachev et al. [65] versuchen in der Arbeit „Mobile Cloud

Computing: A comparison of Application Models“ eine Unterteilung von

Deploymentmodellen (vgl. Definition 5.1) für mobile Cloud-Anwendungen

durchzuführen. Die Autoren entwickeln Modelle, die von einer reinen Cloud-

Ausführung bis hin zu unterschiedlichen Formen der Multiplizität in der

Cloud reichen. Diese Kategorien wurden vonMilani [82] auf den Automotive-

Bereich übertragen und dort auf folgende Modelle für CBVF festgelegt:

• Nur Cloud: Die Funktion ist nur in der Cloud verfügbar und verfügt

über keinerlei Fallback im Fahrzeug.

• Fallback: Die Funktion wird in der Cloud ausgeführt, es existiert aber

eine Fallback Funktion im Fahrzeug-Steuergerät.

• Dupliziert: Eine Kopie der Funktion existiert in der Cloud. Die Funktion

wird entweder auf dem Steuergerät oder in der Cloud ausgeführt.

• Elastisch: Die Funktion kann nahtlos zwischen dem Fahrzeug und der

Cloud wechseln.

3.3 Statische und dynamische
Funktionsverteilung im Fahrzeug

Die Veröffentlichung „Ontology for Vehicle Function Distribution“ von

Ruhnau et al. [RtH
+
23] gibt einen Überblick über die statische und dy-

namische Funktionsverteilung (s. Definition 3.1) in der Fahrzeugdomäne.

Eine Funktion wird in diesem Fall als die „Erfüllung spezieller Aufgaben

wie Signalverarbeitung, Algorithmenberechnung und Steuerung von E/E-

Komponenten“ definiert.

62

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

Cloudbasierte
Fahrzeugfunktionen

Nur Cloud Fallback Duplizierte Elastisch

Cloud
Funktion

Cloud
Funktion

Fahrzeug-
Funktion

Cloud
Funktion

Fahrzeug-
Funktion

Funktion

Funktion

Abbildung 3.1: Arten cloudbasierter Fahrzeugfunktionen, nach [82]

Definition 3.1 Funktionsverteilung: Ergebnis des Prozesses der
Verteilung von Funktionen und Erstellung einer Konfiguration. Die

Funktionsverteilung setzt voraus, dass zuvor die Schritte der Funkti-

onsallokation und des Deployments durchgeführt wurden. [RtH
+
23]

Jede Funktionsverteilung (s. Abbildung 3.2) definiert eine gültige Kombinati-

on aus Software und Hardware für das gesamte Fahrzeug. Sie besteht aus

einem Deployment (s. Definition 3.2) und einer Allokation (s. Definition 3.3).

Definition 3.2 Deployment: Der Vorgang der tatsächlichen Be-

reitstellung der SWC auf einer Ausführungsplattform. Vorausset-

zung ist, dass die Funktionsallokation vorher abgeschlossen worden

ist. [RtH
+
23]

Definition 3.3 Funktionsallokation: Prozess der Verteilung von
Funktionen auf die Hardwarekomponenten des Systems [57].

63

3 Stand der Technik und Wissenschaft

Letzteres muss als Ergebnis eines Planungsprozesses vorhanden sein, be-

vor das eigentliche Deployment stattfinden kann. Sowohl das Deployment

als auch die Allokation betreffen den gesamten Satz von SWCs und sind

daher für jede Funktionsverteilung eindeutig, während Deployment- und

Allokations-Mappings die individuellen Beziehungen beschreiben. Das heißt,

eine Vielzahl an Mappings formen das Deployment bzw. die Allokation.

Das Allokations-Mapping beschreibt den geplanten Ausführungsknoten,

auf dem die einzelne SWC laufen soll, auch wenn die Software bisher nicht

physisch bereitgestellt ist. Das Deployment-Mapping beschreibt jedoch, wo

die Artefakte, die die SWC implementieren, installiert sind und sich somit

befinden. Bei diesen Artefakten handelt es sich um die eigentlichen Binärda-

teien oder ausführbaren Dateien der SWC. Das Deployment der Artefakte

wird meist auf einem einzelnen Ausführungsknoten durchgeführt, es kann

jedoch Fälle geben, in denen die SWCs auf mehreren Ausführungsknoten be-

reitgestellt (engl. deployed) werden. So kann etwa eine Software in der Cloud

aus Gründen der Ausfallsicherheit über eine Fallback-Version im Fahrzeug

verfügen.

Statische Funktionsverteilung

Die statische Funktionsverteilung ist der einmalig geplante Schritt innerhalb

des Allokationsprozesses (Definition 3.3) bei der Entwicklung von Fahrzeug-

architekturen. Das entsprechende Deployment (Definition 3.2) erfolgt dann

bei der Herstellung des Fahrzeugs und der Installation bzw. dem Flashen

der Software auf den Steuergeräten oder anderen Ausführungsknoten wie

der Cloud. Nach diesem Schritt ist die Funktionsverteilung mit genau einem

Deployment und einer Allokation (und entsprechenden Mappings) abge-

schlossen. Betrachtet man die Cloud-Deploymentmodelle (s. Kapitel 3.2) so

fällt einzig das „Nur Cloud“ Modell in diese Kategorie, während alle anderen

Modelle in das nachfolgende dynamische Modell der Funktionsverteilung

eingeordnet werden.

64

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

1...*

1

ändert

installiert auf/deployed

Artifact

Software Systems

Customer Functions

Sub-functions

1...*

1...*

1...*

1...*

DecompositionAllokation

Allokations-Mapping
Artifact

1...*

1

beseht aus

Software Systems

Customer Functions

Sub-functions

1...*

1...*

1...*

1...*

Function Distribution

1

1

besteht aus

Decomposition

1

1

benötigt

1 1

benötigt

11

Deployment

1...*

1

besteht aus

Ausführungsknoten Softwarekomponente
für Ausführung geplant auf

Artefakt

1...*

1

implementiert

Deployment-Mapping

Softwaresysteme

Kundenfunktion

Unterfunktion

1...*

1...*

1...*

1...*

1...*

1...*

realisiert durch

1...* 1...*

Funktionsverteilung

1

1

besteht aus

AllokationsanpassungDeploymentanpassung

Neuverteilung der Funktionen

Verteilungsanpassungen

Dekomposition

1

1

1...*

1

besteht aus

0...1

1
besteht aus

Änderung
1...*1 impliziert / führt zu

11

1...*

1...*

1...*

0...1

ausgeführt auf

besteht aus

besteht aus

besteht aus

1

1...*

ändert

1

1

besteht aus

Abbildung 3.2: Ontologie für die statische und dynamische Funktionsverteilung. Ohne die gel-

ben Elemente und ihre Beziehungen wird der statische Fall dargestellt (angepasst

an [RtH
+
23])

Dynamische Funktionsverteilung

Bei einer dynamischen Funktionsverteilung ist der gesamte Prozess flexibler,

da sich die Allokation und das Deployment von Software zur Laufzeit ändern

können. Dies führt möglicherweise zu mehreren Deploymentanpassungen

(engl. redeployment) mit vorhergehenden Reallokationsprozessen. Die Neu-

verteilung (engl. redistribution) der Softwarefunktionen wird durch eine

Änderung ausgelöst. Diese Änderung könnte entweder eine Änderung der

Umgebungsbedingungen, z.B. die Verfügbarkeit von Bandbreite für den Up-

und Download zur Cloud, oder die Veränderung von Software zur Laufzeit

sein. Die Neuverteilung besteht aus einer oder mehreren einzelnen Ver-

teilungsanpassungen. Eine Verteilungsanpassung besteht aus genau einer

Allokationsanpassung, aber nicht zwingend aus einer Deploymentanpassung.

Dies ermöglicht den Fall, dass verschiebbare SWC gleichzeitig auf mehreren

Ausführungsknoten verfügbar (engl. deployed) sind (bspw. in Form einer

Backup-Version) und daher eine Funktionsneuverteilung nicht unbedingt ei-

65

3 Stand der Technik und Wissenschaft

ne Deploymentanpassung erfordert. Die notwendige Allokationsanpassung

ändert jedoch den Ausführungsknoten, auf dem die SWC ausgeführt werden

soll. Dies führt schließlich zu einer geänderten Funktionsverteilung, sobald

die neue Allokation aktiviert ist.

3.3.1 Frameworks für die Funktionsverteilung

Die Veröffentlichung „Elastic Service Provision for Intelligent Vehicle Func-

tions“ von Stefan Kugele et al. [72] versucht die beschränkte Rechenleistung

des Fahrzeugs mithilfe eines konzeptuellen Frameworks zu lösen, das in

der Lage ist, die E/E-Architektur des Fahrzeugs in die Cloud zu erweitern.

Fahrzeugfunktionen sollen in einem entfernten Rechenzentrum genauso

wie im Fahrzeug selbst ausgeführt werden können. Dadurch wird ein hohes

Maß an Standorttransparenz erreicht: Fahrzeugdiensten soll es gleichgültig

sein, ob sich ihre Gegenstellen auf demselben Host-Rechner oder einem

entfernten Server befinden. Hierfür entwickeln die Autoren neben einem

Ansatz zur Verbindung des Fahrzeugs mit der Cloud auch Strategien für

die Verteilung der Funktionen zwischen Fahrzeug und Cloud abhängig vom

Betriebszustand des Fahrzeugs. Die Autoren setzen auf Docker
1
für die Con-

tainerisierung vonDiensten in der Cloud und setzen auf eine Kommunikation

basierend auf der serviceorientierten Publish/Subscribe Technik. Abhängig

von verfügbarer Rechenpower im Fahrzeug, der Fahrzeuggeschwindigkeit

oder der verfügbaren Batteriekapazität entscheidet das System, wo Dienste

ausgeführt werden sollen. Die Verbindungsqualität der Luftschnittstelle wird

dabei außen vor gelassen. Der genaue Inhalt eines Dienstes, der elastisch

zwischen Fahrzeug, Steuergerät oder Cloud verschoben werden soll, ist nicht

von entscheidender Rolle, sondern stellt ein Programm dar, das in einem

gewissen Rahmen Daten zwischen zwei Endpunkten schicken will.

1
https://www.docker.com/

66

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

Die Änderungen des Betriebszustandes des Fahrzeugs werden auch von

Banijamali et al. in der Veröffentlichung „Kuksa: Self-Adaptive Microservices

in Automotive Systems“ aus dem Jahr 2020 betrachtet [14]. Die Autoren

präsentieren ein Microservice-Framework vom Fahrzeug bis in die Cloud

(s. Abbildung 3.3), das in der Lage ist, sich den Fahrzeuggegebenheiten

(z.B. sich ändernde Geschwindigkeiten) anzupassen. So sollen Funktionen

(oder Microservices) in der Cloud durch Parameteranpassungen in einer

Feedback-Schleife (mittels des sogenannten Autonomic Controllers) konti-
nuierlich angepasst werden, um zu jedem Zeitpunkt in der Lage zu sein,

Echtzeitentscheidungen treffen zu können. Diese möglichen Anpassungen

werden aus theoretischer Sicht betrachtet und beinhalten beispielsweise ein

Upgrade des Antriebsstrangs des Fahrzeugs aufgrund eines angehängten

Wohnwagens oder das Hinzufügen von neuen Sicherheitsanforderungen

aufgrund schlechter Wetterverhältnisse. Das Framework wird anhand eines

Video-Streaming Use Case in einem Laboraufbau mit einemmobilen Roboter

getestet. Die adaptive Anpassung des Microservices wurde dabei anhand

der Kriterien Zeit für die Rekonfiguration des Services an sich ändernde

Gegebenheiten und der Qualität des Services in Form von Bildrate und Bild-

qualität beurteilt. Beide Parameter können zudem unterschiedlich gewichtet

werden. Die Ergebnisse der Arbeit zeigen, dass ein adaptiver Microservice

sinnvoll ist, um die Qualität des Services deutlich zu verbessern. Allerdings

zeigt sich auch, dass diese Anpassungsfähigkeit eine weitere Komplexität

zum Gesamtsystem hinzufügt, die nicht immer sinnvoll und demnach stark

vom Use Case abhängig ist.

3.3.2 Use Cases cloudbasierter Applikationen

Ashok et al. [8] beschreiben 2015 ein System, das in der Lage ist, dem Fahr-

zeug Cloud-Rechenkapazitäten zur Verfügung zu stellen. Dabei werden die

Konzepte der Serviceorientierung (s. Kapitel 2.3.2) verwendet. Das bedeutet,

dass die Cloud-Funktionalität dem Fahrzeug als Service angeboten wird. Die

betrachteten Use Cases für eine Verlagerung sind aus dem Bereich Compu-

67

3 Stand der Technik und Wissenschaft

Abbildung 3.3: KUKSA Framework [14]

ter Vision, da dieser Bereich aufgrund der großen Datenmengen als sehr

rechenintensiv gilt.

1. Ein System zur Erkennung von Handgesten, bei dem ein Benutzer

Handbewegungen vollzieht (Hand bewegen, Finger nach oben/unten

zeigen etc.), die von einer Kamera aufgezeichnet werden. Die Ges-

ten werden den entsprechenden Ausgaben für die Nutzung im Auto

zugeordnet. Zum Beispiel entspricht Winken dem Öffnen der Karten-

68

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

App, während das Bewegen des Zeigefingers nach oben/unten dem

Auslösen eines Telefonanrufs entspricht.

2. Ein Ampel- und Verkehrszeichenerkennungssystem, bei dem die Ka-

mera (auf die Straße gerichtet) den Zustand der Ampel und Verkehrs-

schilder in ihrem Sichtfeld erkennt.

Beide Applikationen wurden nicht in einem Fahrzeug integriert, sondern

prototypisch als Android Apps auf einem Smartphone mit Cloud-Anbindung

umgesetzt. Für beide Systeme wurde untersucht, inwiefern eine Verlagerung

der rechenintensiven Schritte der Bilderkennung in die Cloud die Reakti-

onszeit der Applikation gegenüber einer vollständigen lokalen Ausführung

auf einem Smartphone verbessert oder verschlechtert. Die Ergebnisse zei-

gen eine mindestens dreifach schnellere Ende-zu-Ende-Reaktionszeit der

Applikation bei einer Cloudverlagerung der Bilderkennungsschritte.

Deng et al. [33] beschreiben in ihrem Paper aus dem Jahr 2020 die Mög-

lichkeit, cloudbasierte Fahrzeugfunktionen mithilfe der Cloud-Infrastruktur

von Amazon Web Services (AWS) umzusetzen. Es wird in einem ersten

Schritt gezeigt, über welche Infrastruktur und Architektur die Cloud verfü-

gen muss. Die Cloud soll die zentrale Schnittstelle für vernetzte Fahrzeuge

und andere Verkehrsteilnehmer, die Verkehrsinfrastruktur (Road Side Units)

und Services (Wettervorhersagen) aus dem Internet darstellen. Die Autoren

haben diese Infrastruktur in AWS umgesetzt und eine prototypische Ver-

kehrsaufkommensüberwachung in Echtzeit auf Basis von Fahrzeugdaten

in der Cloud implementiert. Fahrzeuge übertragen Informationen wie die

aktuelle Geschwindigkeit und den Standort an den Datenbankdienst in der

Cloud (NoSQL-Datenbank). Anschließend wird auf Basis dieser Daten eine

Applikation zur Berechnung der Durchschnittsgeschwindigkeit auf einzel-

nen Streckenabschnitten ausgeführt und an Abonnenten dieser Applikation

entsprechend ihres aktuellen Standorts für vorausliegende Abschnitte ver-

teilt. Der Hauptfokus der Arbeit lag bei der anschließenden Untersuchung

der Cloud-Applikation hinsichtlich der Paketumlaufzeit zwischen Fahrzeug,

Cloud und zurück.

69

3 Stand der Technik und Wissenschaft

Abbildung 3.4: Architektur des cloudbasierten Fahrerassistenzsystems [125]

Die Arbeiten an einem cloudbasierten Fahrerassistenzsystem von Wang et

al. [125] aus der Veröffentlichung „A Digital Twin Paradigm: Vehicle-to-

Cloud Based Advanced Driver Assistance Systems“ beschreiben ein System,

das dem Fahrer Vorschläge für die Einstellungen von Aktoren mittels Driver-

Vehicle-Interface (DVI) sichtbar macht, diese aber nicht automatisch (bspw.

durch direktes Schreiben derWerte auf den CANBus) für den Fahrer ausführt.

Der Fahrer soll diese Vorgaben bestmöglich durch selbständiges Betätigen

der Aktoren (in diesem Fall durch die Bedienung des Fahrpedals) einhalten.

Die Architektur des Fahrerassistenzsystems mit den einzelnen Komponenten

im Fahrzeug sowie in der Cloud und dem Informationsfluss ist in Abbildung

3.4 dargestellt.

Auf der Fahrzeugseite besteht das System im Wesentlichen aus der DVI

Einheit, die Sensorinformationen (Fahrzeuggeschwindigkeit, Position) sam-

melt und die Nachrichten des Fahrerassistenzsystems in der Cloud dem

Fahrer zur Verfügung stellt. Alle Berechnungen des Systems werden in der

70

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

Abbildung 3.5: Use Case der Rampenzusammenführung von Straßen für den Test des cloudba-

sierten Fahrerassistenzsystems [125]

Cloud ausgeführt, in der digitale Nachbildungen der realen physikalischen

Welt erstellt werden. Dazu gehören unter anderem eine digitale Karte des

Testfelds und ein Algorithmus, der anhand der gemessenen Position des

realen Fahrzeugs die Position des Fahrzeugs auf der digitalen Karte anpasst.

Entscheidend ist die Bewegungsplanung und -steuerung, die auf Basis des

Ist-Zustandes (Geschwindigkeit etc.) des Ego-Fahrzeugs eine Bewegungs-

abfolge in Form von „rohen“ Geschwindigkeitsvorgaben berechnet. Da der

reale Fahrer des Fahrzeugs nicht in der Lage ist, die „rohen“ Vorgaben genau

umzusetzen, wurde ein Fahrer-Verhaltensmodell entwickelt, das den mensch-

lichen Fehler kompensieren soll. Die tatsächlich an das physikalische System

übertragenen Vorgaben sind der Ausgang dieses Modells. Schlussendlich

wird das Verhalten des Ego-Fahrzeugs und anderer Fahrzeuge digital dar-

gestellt und kann auch direkt anhand von Kriterien wie Energieverbrauch,

Beschleunigungswerten etc. in der Cloud ausgewertet werden.

Die Effektivität des entwickelten Systems haben die Autoren anhand eines

realen Praxisbeispiels einer Straßenzusammenführung in Riverside in den

USA getestet (Abbildung 3.5 zeigt den Test Use Case vereinfacht). Dabei wur-

de eine spezielle Rampenzusammenführung gewählt, bei der die beteiligten

Fahrzeuge bis zuletzt keine Sicht auf die jeweils andere zusammenführende

Fahrbahn haben. Ein Fahrzeug auf der Hauptspur und ein Fahrzeug auf der

zusammenführenden Rampe sollen zusammengeführt werden. Das Manöver

71

3 Stand der Technik und Wissenschaft

wurde auf digitaler Ebene in der Cloud zu einem Fahrzeug-Folge-Problem

vereinfacht, indemman ein virtuelles Fahrzeug der jeweils anderen Fahrbahn

mit denselben Parametern (Geschwindigkeit und Distanz bis zum Zusam-

menführungspunkt) auf der anderen Fahrbahn gespiegelt hat. Anhand dieses

Beispiels konnten die Autoren schlussendlich zeigen, dass das cloudbasierte

System im Testszenario trotz Paketverlusts und Latenz zwischen den realen

Fahrzeugen und der Cloud funktioniert und die Fahrzeuge ohne drastische

Geschwindigkeitsveränderungen durch das cloudbasierte Assistenzsystem

zusammengeführt werden können.

Chao Yang et al. beschreiben einen Use Case, der ebenfalls das Ziel der

Energieoptimierung (in diesem Fall von Stadtbussen) mittels eines cloud-

basierten Frameworks verfolgt [134]. Das Framework sammelt Positions-

und Geschwindigkeitsdaten aus Stadtbussen mit Plug-In-Hybrid-Antrieben

und versucht, diese zunächst in verschiedene Fahrstreckenprofile einzu-

teilen (Cluster). Mithilfe dieses Streckenprofils und aktueller Brems- und

Beschleunigungsdaten aus dem Fahrzeug ermittelt ein Online-Algorithmus

in der Cloud eine energieoptimierte Strategie für die Aufteilung des Dreh-

moments des Elektromotors und des Verbrennungsmotors für den weiteren

Verlauf auf der Busroute. Der weitere Verlauf der Route wird überwacht

und kontinuierlich in einer Regelschleife eine neue Aufteilung der Werte

berechnet. Das Framework wird in einem Hardware-in-the-Loop (HiL)-Test

überprüft. Die Aussagekraft der Arbeit wird von den Autoren durch eine

Analyse der jeweils durch den Cloud-Algorithmus berechneten Drehmo-

mente der Motoren auf der Busroute bezüglich der Energieeffizienz in einem

Wirkungsgradkennfeld dargelegt. Dabei zeigen die Autoren, dass das von

Ihnen entwickelte Verfahren einen, verglichen mit dem bisherigen regelba-

sierten Verfahren im Motorsteuergerät, geringeren Energieverbrauch auf

der beispielhaften Route aufweist.

72

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

3.3.3 Fazit zu den Anwendungsfällen und Frameworks
aus der Wissenschaft

Die vorgestellten Veröffentlichungen zeigen, dass die grundsätzliche Idee,

Funktionen in die Cloud zu verlagern oder diese zumindest durchWissen aus

der Cloud anzureichern, bereits wissenschaftlich diskutiert und exemplarisch

umgesetzt wurde. Eine elastische Applikation, wie in Kapitel 3.2 beschrieben,

wird durch das Framework von Stefan Kugele et al. beschrieben. Dabei

werden aber zum einen Parameter, die einen Einfluss auf die Verlagerung

haben (wie die Mobilfunkverbindung), vernachlässigt und zum anderen nicht

ein Feature (s. Definition 1.6) verlagert, sondern beispielhafte nicht weiter

spezifizierte Dienste betrachtet, die Daten zwischen Cloud und Fahrzeug

austauschen. Das KUKSA Framework von Banijamali et al. beschreibt die

selbstanpassende Fähigkeit von Microservices in der Cloud, um eine hohe

Verfügbarkeit und Qualität sicherzustellen.

Die Veröffentlichungen zu den Frameworks und die Erkenntnisse aus den

Anwendungsfällen für cloudbasierte Fahrzeugfunktionen bieten gemeinsam

eine Grundlage für die prototypische Umsetzung cloudbasierter Use Cases.

3.3.4 Wissenschaftliche Methode zur Bewertung des
Ausführungsortes einer Fahrzeugfunktion

In ihrer Dissertation „Suitability Analysis Methodology for Cloud-based

Vehicle Functions“ entwickelt Farzaneh Milani [81] eine Methodik zur Be-

wertung der Eignung von Fahrzeugfunktionen für die Migration in Cloud-

Umgebungen. Diese Methodik, bekannt als „Suitability Analysis Methodolo-

gy“ (SAM) (s. Abbildung 3.6), stellt einen Ansatz dar, um die Machbarkeit

(engl. Feasability) und Eignung (engl. Suitability) der Verlagerung von Fahr-

zeugfunktionen in die Cloud systematisch zu untersuchen. Die Machbarkeit

der Auslagerung im ersten Teil der Methodik beschreibt vier relevante Krite-

rien:

73

3 Stand der Technik und Wissenschaft

• Ausreichende Speicher- und Rechenressourcen

• Einhaltung von Deadline Beschränkungen

• Einhaltung von Safety- und Securitybeschränkungen

• Ausreichende Energie für die Ausführung von Funktionen und die

Datenübertragung

Die Eignung der beiden Ausführungsorte Fahrzeug und Cloud in Form eines

Bewertungs-Scores wird anhand von fünf Kriterien ausgemacht:

• Kapazitätsbedarf

• Datenabhängigkeit

• Reaktionszeit

• Sicherheitsmaßnahmen

• Energieverbrauch

Suitability Analysis Method
(SAM)

Parameters:
Variable system
Boundary information

Inputs:
Function specifications
HW specifications
Aim(s) of outsourcing

Alternatives:
ECU,Cloud

Outputs:
Feasibility Indices (FI)
Suitability Indices (SI)

Abbildung 3.6: Suitability Analysis Methodology (SAM) für die Funktionsverlagerung in die

Cloud [81]

Weiterer Bestandteil der Methodik ist ein Partitionierungsalgorithmus, der

dazu dient, die optimale Aufteilung von Fahrzeugfunktionen zwischen On-

Board-Systemen und der Cloud zu bestimmen. Dieser Algorithmus berück-

sichtigt sowohl technische als auch betriebliche Anforderungen und er-

möglicht eine Entscheidungsfindung bei der Planung und Implementierung

cloudbasierter Funktionen.

74

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

Bewertung von SAM

Die Suitability Analysis Methodology (SAM) verfügt nicht über ein einheit-

liches Prozessschaubild mit einer nachvollziehbaren Vorgehensweise zur

Bewertung der Cloud-Eignung von Fahrzeugfunktionen. Dies zeigt sich auch

daran, dass die Arbeit Kriterien anführt und diese ausführlich beschreibt,

diese anschließend aber nicht mehr in der schlussendlichen Realisierbarkeit

bzw. Eignung miteinbezieht.

Zudem fehlen wesentliche Kriterien wie eine umfassende Wirtschaftlich-

keitsanalyse, beispielsweise in Form einer Total Cost of Ownership (TCO)-

Betrachtung, die sowohl die langfristigen Kosten als auch mögliche Einspar-

potenziale der Cloud-Ausführung berücksichtigt. Ebenso bleibt das Potenzial

der Cloud für lernende Systeme und künstliche Intelligenz (KI) unberücksich-

tigt, insbesondere in Bezug auf adaptive Optimierungen, datengetriebene

Verbesserungen und verteiltes Lernen, die für moderne Fahrzeugfunktionen

von großer Bedeutung sind.

SAM bietet dennoch die Grundlage für den Prozess zur Identifikation cloud-

basierter Fahrzeugfunktionen in Kapitel 4.

75

3 Stand der Technik und Wissenschaft

3.3.5 Stand der Wissenschaft hinsichtlich der Ziele
einer Funktionsverlagerung

Die dynamische Verteilung von Smartphone Applikationen (s. auch Kapitel

3.3) zwischen Cloud und lokalem Endgerät ist Untersuchungsbestandteil

des Journalbeitrags „Application partitioning algorithms in mobile cloud

computing: Taxonomy, review and future directions“ von Liu et al. [77]

aus dem Jahr 2015. Im Rahmen dieses Beitrags wurden Ziele einer solchen

Verteilung im Mobile Cloud Computing (MCC) definiert:

• Verteilung auf verschiedene Cloud Server: Durch die Verteilung

von Funktionen auf verschiedene Server kann die Verfügbarkeit der

Funktion erhöht werden.

• Reduzierung der Speicherbeschränkungen: Die Speicherbeschrän-

kungen eines lokalen Geräts können durch eine Verlagerung umgan-

gen werden.

• Dynamische Updates von Funktionen: Die Funktion kann in der

Cloud Updates erhalten, ohne dass das lokale Endgerät davon betroffen

sein muss (bspw. durch Ausschalten).

Huaming Wu [131] und Karthik Kumar [74] haben neben diesen Zielen

insbesondere die Möglichkeiten der Energieeinsparung und zeitliche Perfor-

manzsteigerungen als Ziele identifiziert und beschreiben diese wie folgt:

• Zeitliche Performanzsteigerung: Die Gesamtzeit für die Remote-

Ausführung ist die Summe der Ausführungszeit in der Cloud (tExeCloud)

und der Übertragungszeit (tTrans), um die Datenmenge (D) zwischen

der Cloud und dem Endgerät auszutauschen. Die Remote Ausfüh-

rung spart Zeit, wenn die Ausführungszeit auf einem lokalen End-

76

3.3 Statische und dynamische Funktionsverteilung im Fahrzeug

gerät (tExeMob) größer ist, als die aufgewendete Zeit für die Remote-

Ausführung:

tExeMob > tExeCloud + tTrans > tExeCloud +
D

B
(3.1)

B stellt dabei die Datenrate zwischen Endgerät und Cloud dar. Eine

hohe Ausführungsgeschwindigkeit in der Cloud, eine geringe Da-

tenmenge zwischen Endgerät und Cloud und eine hohe Datenrate

sprechen demnach für eine Ausführung in der Cloud.

• Reduzierung des Energieverbrauchs: Durch die Verlagerung von

Funktionen kann der Energieverbrauch lokaler Endgeräte gesenkt

werden. Das Endgerät benötigt für Berechnungen PMob, im Leerlauf

PIdleMob und für die Datenübertragung PTrans. Eine Energieeinspa-

rung durch Auslagerung ist nur dann möglich, wenn folgende Bedin-

gung gilt:

PMob · texeMob > PIdleMob · tExeCloud + PTrans ·
D

B
(3.2)

Das Paper mit dem Titel „A partial offloading technique for wireless mo-

bile cloud computing in smart cities“ von Mazza et al. [78] behandelt den

Trade-off zwischen den genannten Zielen Energieverbrauch und zeitlicher

Performanz für die Funktionsverlagerung. Im Rahmen des Beitrags wird eine

Berechnungsaufgabe dann in die Cloud verlagert, wenn die Ausführungs-

kosten (Zeit, Energie) auf dem lokalen Endgerät bedeutend höher sind als in

der Cloud. Für diese Entscheidung wird eine Kostenfunktion herangezogen,

die beide genannten Faktoren beinhaltet und somit optimal berechnen soll,

wie viele Aufgaben in die Cloud verlagert werden sollen. Kumar et al. [74]

schlagen vor, den Trade-Off zwischen Rechenanforderungen und der Trans-

ferdatenmenge (D) als Entscheidungsmerkmal zu betrachten. Die Autoren

haben dabei zwei beispielhafte Applikationen untersucht. Ein Schachcompu-

ter benötigt eine hohe Rechenpower bei gleichzeitig geringem Datentransfer

77

3 Stand der Technik und Wissenschaft

zwischen Cloud und Endgerät. Eine solche Applikation ist entsprechend der

Autoren für eine Verlagerung geeignet. Das Gegenstück stellt die Funktion

für einen inhaltsbasierten Bildabruf (engl. content-based image retrieval)

dar. Eine solche Funktion fordert einen hohen Datentransfer der Bilder bei

gleichzeitig moderatem Rechenaufwand (die Feature-Erkennung innerhalb

der Bilder erfolgt direkt nach der Erstellung des Bildes). Eine solche Funkti-

on sollte demnach immer lokal ausgeführt werden. Die Autoren haben den

Trade-Off entsprechend Abbildung 3.7 dargestellt.

Rechenanforderungen

T
ra

ns
fe

rd
at

en
m

en
ge

 (D
)

Abhängig von
Transferdatenrate

Ausführung immer
Remote

Keine Remote-
Ausführung

Abbildung 3.7: Trade-Off zwischen Transferdatenmenge und Rechenanforderungen bei einer

Funktionsverlagerung im Bereich des Mobile Cloud Computing [74]

3.4 Regelungsstrategien für HLK-Systeme

Im Bereich der Stadtbusse (s. Kapitel 2.4.1) hat sich die Aufteilung des voll-

ständigen HLK-Systems in Subsysteme durchgesetzt. Das zu regelnde System

– genauer gesagt die zu regelnde Anlage – wird dabei in die Fahrzeugkabine

sowie das HLK-System (Dachklimaanlage bzw. Wärmepumpe) unterteilt,

welches die thermischen Bedingungen in der Kabine regelt. Dadurch ent-

78

3.4 Regelungsstrategien für HLK-Systeme

steht eine Kaskadenregelung (s. Abbildung 3.8), die zum einen eine höhere

Genauigkeit ermöglicht und zum anderen für eine bessere Koordinierung

der einzelnen Regelkreise sorgt, indem sichergestellt wird, dass zu einem be-

stimmten Zeitpunkt immer nur ein Regelkreis für eine Regelgröße in Betrieb

ist [84].

PID PID

Sollwert Führungsregler Folgeregler HLK-System Fahrzeugkabine

-- --

Eingangsstörung Ausgangsstörung

Istwert

Abbildung 3.8: Typische Kaskadenregelung der Klimatisierung im Stadtbus

Die Kaskadenregelung ist so aufgebaut, dass der äußere Regelkreis den

optimalen thermischen Energieeintrag für die Fahrzeugkabine berechnet,

wobei dieser thermische Energieeintrag Q̇Soll von der Dynamik und den

Beschränkungen des HLK-Systems abhängt. Der innere Regelkreis regelt

das HLK-System so, dass der vom äußeren Regelkreis vorgegebene Wärme-

strom Q̇Soll mit dem tatsächlichen Wärmestrom des HLK-Systems, Q̇HLK,

möglichst genau übereinstimmt.

Sowohl für den äußeren Regelkreis der Kaskadenregelung als auch für den

inneren Regelkreis stehen aus technischer Sicht vielfältige Umsetzungsmög-

lichkeiten für die einzelnen zu regelnden Größen zur Auswahl. PID-Regler

(s. Kapitel 2.1.3) sind im Bereich von HLK-Systemen ein weitverbreiteter

Regelkreismechanismus. Allerdings stößt ein solcher Regler für Multiple

Input Multiple Output (MIMO)-Systeme sowie für Systeme mit großer Nicht-

linearität an Grenzen.

Regelbasierte Algorithmen, wie der in Kapitel 2.1.2 beschriebene Fuzzy-

Regler, eignen sich besonders für Prozesse, bei denen kein exaktes Modell

79

3 Stand der Technik und Wissenschaft

erstellbar ist und daher vage oder intuitive Einschätzungen zur Modellierung

herangezogenwerdenmüssen [85]. Das Potenzial solcher Systeme imBereich

von HLK-Anwendungen wurde unter anderem von Abuhussain et al. [2],

Pasha et al. [94] und Khalid et al. [63] untersucht. Fuzzy-Regler zeigten sich

darin besonders geeignet, Unsicherheiten zu handhaben und gleichzeitig eine

robuste Regelgüte zu erreichen. Die Wahl des Fuzzy-Regelansatzes erfolgte

in allen Fällen aufgrund typischer Herausforderungen in HLK-Systemen:

schwer modellierbares Nutzerverhalten, nichtlineare Dynamiken, externe

Störgrößen sowie variierende Nutzeranforderungen. Durch die regelbasierte

Struktur konnten Unsicherheiten (z. B. subjektives Temperaturempfinden)

kompensiert und dynamische Umgebungsbedingungen flexibel berücksich-

tigt werden. In einem Vergleich zwischen Fuzzy- und PID-Reglern beleg-

ten Pasha et al. [94] eine signifikant geringere Überschwingung sowie ein

schnelleres Einschwingverhalten beim Fuzzy-System. Khalid et al. [63] ent-

wickelten darüber hinaus einen adaptiven Fuzzy-Regler, der sich dynamisch

an wechselnde Nutzerprofile und Umweltbedingungen anpassen konnte.

Das Potenzial der modellprädiktiven Regelung (s. Kapitel 2.1.1) im Bereich

von HLK-Systemen wurde unter anderem in den Veröffentlichungen von

Eckstein et al. [36], He et al. [50] sowie Yan et al. [133] bewiesen. Dabei

konnte der MPC seine Stärken in Form von

• Guter Eignung für MIMO-Systeme

• Expliziter Behandlung von Störgrößen

• Berücksichtigung von Beschränkungen auf Stellgrößen und deren

Änderungsraten

entfalten. Die typischerweise hohen Zeitkonstanten von HLK-Systemen

wirken sich zudem positiv auf den Einsatz von modellprädiktiven Regel-

verfahren aus. Aufgrund der trägen Dynamik genügt ein grobes zeitliches

Abtastintervall, wodurch sich der Rechenaufwand reduziert. Gleichzeitig

wirken sich Modellungenauigkeiten weniger kritisch auf die Regelgüte aus

und die Optimierung kann energieeffiziente, kontinuierliche Stellgrößenver-

80

3.4 Regelungsstrategien für HLK-Systeme

läufe erzeugen.

Dennoch befindet sich der industrielle Einsatz weiterhin im Anfangsstadi-

um. Ein wesentlicher Hemmnisfaktor ist der hohe Aufwand für die Erstel-

lung eines präzisen Anlagenmodells sowie die aufwendige Parametrierung

des Reglers. Insbesondere bei komplexen Systemen – etwa großen Nicht-

wohngebäuden mit mehreren Zonen, variablen Luftvolumenströmen und

thermischen Speichern – kann ein MPC auf mehrere hundert bis über tau-

send Zustände und Parameter angewiesen sein [89], was im Vergleich zu

klassischen PID-Reglern mit deutlich höheren Anforderungen an Datenver-

fügbarkeit, Modellgenauigkeit und Rechenleistung einhergeht.

Zur Reduktion dieses Modellierungsaufwands werden zunehmend Verfahren

auf Basis künstlicher neuronaler Netze eingesetzt [4]. Diese ermöglichen es,

die zeitintensive physikbasierte Modellierung zu umgehen, welche tiefge-

hendes Verständnis der thermischen Systemdynamik erfordert.

In den vergangenen Jahren hat sich Reinforcement Learning (RL) aus dem

Bereich der künstlichen Intelligenz (KI) als vielversprechender Ansatz zur

Regelung von HLK-Systemen hervorgetan. Als modellfreier Lernansatz ist

RL besonders geeignet für hochgradig nichtlineare und dynamische Syste-

me, bei denen klassische modellbasierte Regler wie PID oder MPC an ihre

Grenzen stoßen. Durch Interaktion mit der Umgebung lernt ein RL-Agent,

langfristig optimale Steuerstrategien zu entwickeln – ohne dass ein explizites

physikalisches Modell erforderlich ist.

Wei et al. [126] zeigten in einer simulierten Bürogebäudeumgebung, dass ein

auf Deep Q-Learning basierender Agent den Energieverbrauch gegenüber

einem regelbasierten Baseline-Regler um 22% senken kann, während die

Komfortkriterien nach ASHRAE-Standard
2
eingehalten werden.

Li et al. [76] stellten einen Deep RL-basierten Regler für das Klimasys-

tem eines Elektrobusses vor. Als konventioneller Vergleichsmaßstab dient

2
https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-

environmental-conditions-for-human-occupancy

81

3 Stand der Technik und Wissenschaft

ein PID-Regler. Die Ergebnisse zeigen, dass der Deep RL-Regler den HLK-

Energieverbrauch im Vergleich zum PID-Regler um 7,3% reduzieren kann.

Trotz vielversprechender Simulationsergebnisse wird RL bislang kaum in

realen HLK-Systemen eingesetzt. Die Gründe liegen primär in langen Trai-

ningszeiten, fehlender Sicherheit während des Lernens sowie der begrenz-

ten Übertragbarkeit von simulierten auf reale Systeme. Darüber hinaus

erschweren mangelnde Interpretierbarkeit und die eingeschränkte Gene-

ralisierbarkeit den praktischen Einsatz. Aktuell findet RL vorwiegend in

simulationsgestützten Architekturen Anwendung.

3.5 Beitrag der Klimatisierung auf den
Gesamtenergieverbrauch eines BEB

Bei niedrigen Außentemperaturen kann der Beitrag der Klimatisierung im

BEB den energetischen Beitrag des Antriebsstrangs übertreffen. Die Ver-

öffentlichung von Rösch et al. liefert eine tiefere Analyse auf Basis von

Realdaten aus drei Solo-BEB aus dem laufenden Betrieb über den Zeitraum

eines gesamten Jahres [RRt
+
23]. Die Daten wurden über das Jahr gemit-

telt und anschließend in drei verschiedene Szenarien abhängig von der

Außentemperatur unterteilt. Dabei konnte auf die Daten der VDV-236 Vor-

schrift zurückgegriffen werden, die Kenngrößen für Kühl- und Heizbetrieb

eines Stadtbusses abhängig von Fahrzeuginnen- und Außentemperatur vor-

gibt [20]. Innerhalb der drei Szenarien wurden die Daten erneut in die drei

definierten Geschwindigkeitsprofile des Standardized on Road Test Cycles

(SORT) [120] unterteilt.

Bei einer Außentemperatur unterhalb von 10 ◦C und einer Durchschnittsge-

schwindigkeit unter 15 kmh−1
(SORT 1) liegt der Beitrag der Klimatisierung

bei 1,2 kWhkm−1
(60% des Gesamtenergieverbrauchs). Dieser Beitrag

sinkt bei steigender Temperatur und steigender Geschwindigkeit des Fahr-

82

3.5 Beitrag der Klimatisierung auf den Gesamtenergieverbrauch eines BEB

zeugs, da die Klimatisierung eines Fahrzeugs nicht von der zurückgelegten

Distanz, sondern von der Zeit abhängt (s. Abbildung 3.9).

v < v1 v> v2
0

0.5

1

1.5

2 0.06

0.02

0.24

0.1
1.2

0.35

0.49 0.58

e
i
n
k
W

h
/
k
m

TAußen < T1

v < v1 v> v2

0.08

0.02

0.2

0.080.58

0.14

0.49 0.55

T1 < TAußen < T2

v < v1 v > v2

0.07

0.020.24

0.10.34
0.14

0.48 0.52

TAußen > T2

Antriebsstrang HLK Nebenverbraucher Luftkompressor

T1 = 10 ◦C, T2 = 25 ◦C, v1 = 15 kmh−1
, v2 = 21 kmh−1

Die Geschwindigkeitswerte basieren auf den Standardized on Road Test Cycles

(SORT) 1-3 [120]

Die Temperaturwerte basieren auf den in der VDV-236 [20] definierten

Temperaturbereichen

Abbildung 3.9: Energieverbrauch einzelner Fahrzeugkomponenten im BEB (Solobus) [RRt
+
23]

Einflussfaktoren auf den Heiz- und Kühlbedarf

Die Analyse der Verbrauchsstruktur des Heiz- und Kühlbedarfs von Jef-

feries et al. [61] zeigt, dass in Stadtbussen die kombinierten Anteile der

Konvektions- und der solaren Strahlungswärmelast maßgeblich sind: Sie

machen in Kühlszenarien etwa 59% und in Heizszenarien etwa 50% der

von einem typischen HLK-System bereitgestellten Leistung aus (s. Abbil-

dung 3.10). Generell wird davon ausgegangen, dass für mitteleuropäische

Klimazonen der Heizbetrieb vonHLK-Systemen in batterieelektrischen Stadt-

bussen signifikanter ist als der Kühlbetrieb in Bezug auf den geschätzten

83

3 Stand der Technik und Wissenschaft

Frischluft

22%

Türöffnung

19%

Konvektion

59%

(a) Heizbetrieb,−15◦C

Kondensation

10%

Frischluft

19%

Passagiere

19%

Türöffnung

2%

Konvektion

50%

(b) Kühlbetrieb, 30◦C

Abbildung 3.10: Relative Anteile der einzelnen Einflussgrößen zum Heiz- und Kühlbetrieb im

Stadtbus [61]

Energieverbrauch pro Kilometer und daher den kritischeren Auslegungsfall

darstellt [46]. Neben den beiden Hauptfaktoren Umgebungslufttemperatur

und Sonneneinstrahlung stellen die Umgebungsfeuchte und die relative

Luftströmungsgeschwindigkeit in Bezug auf die Fahrzeuggeschwindigkeit

zusätzliche Faktoren dar, die die gesamte Umgebungswärmelast beeinflus-

sen [121]. Solange die Bustüren geschlossen sind, wirkt sich die Umgebungs-

feuchte nicht direkt auf das Businnere aus, aber sie beeinflusst durch ihre

Eigenenergie die Enthalpie der in die Lüftungsanlage angesaugten Frischluft

und kann somit die erforderliche Luftbe- bzw. -entfeuchtung beeinflussen,

was sich folglich auch auf die Leistungsaufnahme des HLK-Systems aus-

wirkt. Da sich die Enthalpie der angesaugten Frischluft aus der Summe

des Wasserdampfanteils der Luft und der Raumlufttemperatur ergibt, stellt

letztere eine doppelte Belastung dar. Da die Umgebungslufttemperatur die

Wärmeleitung der Fahrzeugkarosserie beeinflusst, führt sie letztlich auch

zu einem exponentiell ansteigenden Leistungsbedarf des HLK-Systems bei

steigenden Umgebungslufttemperaturen [49]. Die auf die Buskabine einwir-

kende relative Luftströmungsgeschwindigkeit setzt sich aus der natürlichen

absoluten Luftströmungsgeschwindigkeit, vereinfacht gesagt der Windge-

84

3.6 Lücken des Standes der Wissenschaft und Technik

schwindigkeit, und der durch die Busgeschwindigkeit verursachten Luft-

strömungsgeschwindigkeit zusammen. Beide gemeinsam beeinflussen die

Wärmeleitbelastung der Buskarosserie [49].

3.6 Lücken des Standes der Wissenschaft und
Technik

Die Analyse des aktuellen Stands der Technik zeigt, dass die Thematik der

Funktionsverlagerung im Automotive-Bereich bereits in verschiedenen wis-

senschaftlichen Arbeiten adressiert wurde. Die identifizierten Frameworks

und Use Cases basieren dabei überwiegend auf Konzepten der SOA.

Eine Gegenüberstellung der zu Beginn definierten Herausforderungen (Ka-

pitel 1.1) mit den in Kapitel 3.3.1 dargestellten Frameworks sowie den in

Kapitel 3.3.2 beschriebenen praktischen Use Cases zeigt, dass keine der

betrachteten Veröffentlichungen sämtliche Herausforderungen vollständig

adressiert (vgl. Tabelle 3.1).

Die Suitability Analysis Methodology (SAM) nach Milani (s. Kapitel 3.3.4)

konzentriert sich primär auf technische Kriterien zur Bewertung der Eig-

nung von Fahrzeugfunktionen für eine Cloud-Migration. Eine ganzheitliche

Betrachtung, die auch ökonomische Faktoren wie die Total Cost of Ownership
(TCO) oder Potenziale für adaptives Lernen berücksichtigt, bleibt jedoch

unberücksichtigt.

Die im Stand der Technik identifizierten Deploymentmodelle cloudbasierter

Fahrzeugfunktionen (Kapitel 5.6) entstammen überwiegend dem Bereich des

MCC. Ein systematisches, strukturiertes Verfahren zur Auswahl des jeweils

optimalen Deploymentmodells für spezifische Funktionen fehlt bislang. Ein

solches Vorgehen müsste unterschiedliche Anforderungen an Performance,

Latenz, Verfügbarkeit und Ressourcennutzung abwägen und als methodische

Entscheidungsgrundlage dienen. Aufgrund der hohen Sicherheitsanforde-

85

3 Stand der Technik und Wissenschaft

Tabelle 3.1: Bewertung der Frameworks und Use Cases hinsichtlich der Herausforderungen

HF-1 bis HF-3

Publikation HF-1 HF-2 HF-3

Kugele et al. (Elastic Service Provision) ja ja nein

Banijamali et al. (KUKSA) ja teilweise
1

teilweise
2

Ashok et al. (Computation Offloading) ja teilweise
3

teilweise
4

Deng et al. (Commercial Cloud Applications) ja teilweise
5

teilweise
6

Wang et al. (ADAS Digital Twin) ja teilweise
7

teilweise
8

Yang et al. (Bus Energy Optimization) ja teilweise
9

nein

Legende:

HF-1 = Dynamische Integration von lose gekoppelten Softwarekomponenten

HF-2 = Kontextadaptive und robuste Regelung trotz intermittierender Konnektivität und

Serviceausfällen

HF-3 = Lebenszyklusfähige und wartbare Regelalgorithmen für Cloud-Plattformen

1
Selbstadaptivität durch Microservice-Architektur, jedoch keine tiefergehende

Betrachtung von Connectivity-Ausfällen.

2
OTA-Updatefähigkeiten und servicebasierte Entwicklung vorhanden, aber kein

vollständiges Lifecycle-Management.

3
Ad-hoc-Offloading abhängig von Netzbedingungen, jedoch keine Resilienzstrategie bei

Verbindungsverlust.

4
Rechenlastverteilung zur Effizienzsteigerung, jedoch keine Erwähnung der Wartbarkeit.

5
Nutzung kommerzieller Clouds zur Skalierung, aber keine Absicherung gegen

spezifische Serviceausfälle oder Kontextabweichungen.

6
Adaptive Ressourcenverteilung thematisiert, aber keine Betrachtung von Wartbarkeit.

7
Digitale Zwillinge ermöglichen kontextsensitives Verhalten, aber keine robusten

Fallback-Strategien bei Connectivity-Verlust.

8
Updatefähigkeit theoretisch angesprochen.

9
Regelung berücksichtigt Fahrbedingungen, aber keine Ausfallsicherheit bei

Cloudverbindungsausfällen.

rungen im Automotive-Bereich ist zudem anzunehmen, dass weitere, über

das klassische MCC hinausgehende Deploymentmodelle erforderlich sind.

86

3.7 Beitrag dieser Dissertation im Kontext der Forschungsfragen

3.7 Beitrag dieser Dissertation im Kontext
der Forschungsfragen

Die Dissertation schließt Forschungslücken zur Identifikation cloudfähi-

ger Funktionen (FF 1), Auswahl geeigneter Deploymentmodelle (FF 2) und

Evaluation von Cloudverlagerungspotenzialen (FF 3). Zunächst wird ein

systematischer Prozess zur Identifikation cloudbasierter Fahrzeugfunktio-

nen entwickelt, der technische, energetische und ökonomische Kriterien

(z.B. TCO) sowie Potenziale wie maschinelles Lernen in Fahrzeugflotten

berücksichtigt (� FF 1).

Eine multikriterielle Entscheidungsanalyse (MCDA) integriert technische,

ökonomische und energetische Dimensionen für die fundierte Auswahl

geeigneter Deploymentmodelle (s. Kapitel 5.6) cloudbasierter Fahrzeugfunk-

tionen (� FF 2).

Die Evaluation erfolgt auf einer Testplattform, die die Simulationsumgebung

Carlamit einer vereinfachten E/E-Architektur bestehend aus Standard-ECUs

und einem HPC kombiniert. Eine serviceorientierte Softwarearchitektur auf

ROS 2-Basis ermöglicht die nahtlose Integration externer Services (s. Defi-

nition 2.2). Als Fallbeispiel wird die cloudbasierte HLK-Regelung für einen

batterieelektrischen Stadtbus prototypisch umgesetzt - sowohl als Nur Cloud-
als auch als Fallback-Deploymentmodell. Die Evaluation verdeutlicht die

Auswirkungen auf Energieeffizienz und Betriebsfähigkeit unter variierenden

Bedingungen (� FF 3).

87

4 Definition und
Identifikation cloudfähiger
Fahrzeugfunktionen

4.1 Die Definition einer cloudbasierten
Fahrzeugfunktion

Die in Kapitel 3.1 vorgestellte Beschreibung einer cloudbasierten Fahrzeug-

funktion dient als Ausgangspunkt für die eigene Definition.

Die Definition von Milani wird angepasst, da diese „Funktionen in der Cloud

ohne Einfluss auf die fahrzeuginterne Regelung bzw. Steuerung auf den

entsprechenden Steuergeräten“ nicht als cloudbasierte Fahrzeugfunktionen

betrachtet. Diese Grenze wird in der eigenen Definition nicht gezogen (vgl.

Tabelle 5.1). Zudem wird klargestellt, dass es sich um eine SWC (vgl. Eigen-

schaften einer SWC in Tabelle A.3) handelt, die Eingabewerte empfängt, mit

diesen eine spezifische Handlung ausführt und Ausgabewerte zurückgibt

(vgl. Definition 1.5).

89

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

Definition 4.1 Cloudbasierte Fahrzeugfunktionen: Cloudbasier-
te Fahrzeugfunktionen sind Softwarekomponenten, die anstelle der

verfügbaren Rechenkapazitäten des Fahrzeugs Rechen- und/oder Spei-

cherkapazitäten der Cloud nutzen. Sie können sowohl Informatio-

nen aus dem Fahrzeug als auch Daten aus der Cloud als Eingabe

verwenden. Die Ausgaben der verlagerten Funktionen optimieren

bestehende Funktionen im Fahrzeug, ersetzen sie oder bilden selbst

neue Funktionen.

4.2 Identifikation cloudfähiger
Fahrzeugfunktionen

4.2.1 Anforderungen

Die Eignung einer Fahrzeugfunktion, im Sinne einer Funktion als SWC (vgl.

Definition 1.5) zur Auslagerung in die Cloud wird anhand der folgenden

Anforderungen analysiert:

Req-1 (Funktion) Echtzeitanforderungen: Deadline Beschränkungen

bei der Fnktionsausführung (s. Definition 2.1)

Req-2 (Funktion) Safety- und Securityanforderungen: Erfüllung von

Sicherheits- und Securityanforderungen (s. Definitionen

4.2 & 4.3)

Req-3 (Funktion) Ressourcenanforderungen: Verfügbarkeit notwen-

diger Rechen- und energetischer Ressourcen für die

Ausführung (und den Datentransfer)

Req-4 (Funktion) Hardwareabhängigkeiten: Erfüllung hardwarebe-

dingter und baulicher Integrationsanforderungen

90

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

Req-5 (Funktion) ÖkonomischeAnforderungen:Hard-/Softwarekosten

und Servicekosten

Req-6 (Funktion) Qualitätsanforderungen: Generierung von Mehrwer-

ten (wie z.B. Flottenlernen) durch die Ausführung der

Funktion in der Cloud

Definition 4.2 Safety: Erwartung, dass ein System unter definierten

Bedingungen nicht zu einemZustand führt, in dem Leben, Gesundheit

oder Eigentum vonMenschen oder die Umwelt gefährdet werden [57].

Definition 4.3 Security: Schutz von Fahrzeughardware oder -

software vor versehentlichem oder böswilligem Zugriff, Verwendung,

Änderung, Zerstörung oder Offenlegung [57].

Securityanforderungen (Req-2 (Funktion)) betreffen Themen der Datensi-

cherheit, den Verlust sensibler Informationen durch den Datentransfer und

die Ausführung von Funktionen in der Cloud. Dieser Aspekt ist nicht Teil

dieser Abhandlung.

Hardwareabhängigkeiten (Req-4 (Funktion)) sind bei einer Funktion dann

vorhanden, wenn diese direkt auf spezifische HWC (s. Definition 1.3) zugreift,

beispielsweise durch Register-Zugriffe, Timing-kritische Operationen oder

die unmittelbare Verarbeitung von Sensor- und Aktorschnittstellen. Funktio-

nen, die auf höheren Abstraktionsebenen arbeiten und über standardisierte

APIs oder Middleware kommunizieren, weisen geringe Hardwareabhängig-

keiten auf. Im nachfolgenden Prozess wird eine geringe Hardwareabhängig-

keit der betrachteten Funktionen vorausgesetzt, da diese primär algorithmi-

sche Verarbeitung von bereits aufbereiteten Sensordaten durchführen.

91

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

4.2.2 Bewertung der Realisierbarkeit

Die technische Realisierbarkeit RCloud einer Cloudverlagerung wird durch

die Erfüllung von Echtzeit- (Req-1 (Funktion)) und Safety- und Securityan-

forderungen (Req-2 (Funktion)) bestimmt.

RS: Realisierbarkeitsanalyse der Sicherheitsanforderungen

Sicherheitsanforderungen im Fahrzeug beziehen sich auf die in Kapitel A.13

beschriebene Gefährdungs- und Risikoanalyse und die damit einhergehende

Einstufung von items in Automotive Safety Integrity Level (ASIL). Dieses

item wird im ersten Schritt als eine Funktion im Sinne einer SWC (vgl.

Definition 1.5) definiert.

Die Zuweisung einer SWC zu einem ASIL bedingt die Umsetzung von

Maßnahmen zur Risikominderung auf Systemebene. Teil 4 der ISO 26262

(s. Kapitel A.13) fordert die Entwicklung einer technischen Sicherheitskon-

zeption und die Ableitung einer funktionalen Systemarchitektur, in der

sicherheitsrelevante Funktionen auf Systemelemente wie Steuergeräte, Sen-

soren, Aktoren und Kommunikationsschnittstellen verteilt werden. Wird

eine SWC in die Cloud ausgelagert, erweitern sich diese Systemelemente

um die Kommunikationsstrecke zwischen Fahrzeug und Cloud sowie die

Cloud-Infrastruktur selbst. Beide stellen zusätzliche potenzielle Fehlerquel-

len dar, die in der Systemarchitektur und im Sicherheitskonzept explizit

berücksichtigt werden müssen.

Diese beiden zusätzlichen Systemelemente und die zugehörigen möglichen

Fehlerursachen führen dazu, dass die Maßnahmen der ISO 26262 nicht

mehr genügen, um das Risikopotenzial auf ein Restrisiko zu senken, das

unterhalb des tolerierbaren Risikos liegt (s. Abbildung 4.1).

Die in Tabelle 4.1 aufgeführtemögliche Fehlerursache „Unterbrechung“wird

beispielhaft näher betrachtet, um zu verdeutlichen, mit welchen Ausfall-

wahrscheinlichkeiten auf den hinzugefügten Schichten gerechnet werden

kann.

92

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

Tabelle 4.1: Potenzielle Fehlerursachen cloudbasierter Fahrzeugfunktionen (angelehnt an [75])

Systemelement Mögliche Fehlerursachen

Cloud

Cloud nicht verfügbar aufgrund von physikalischen Ausfäl-

len der Hardware

Fehler der Prozessabläufe in der Cloud durch Ressourcen-

schwankungen und unzureichende Priorisierung

Serviceausfälle aufgrund von abgelaufenen Servicezeiten

Kommunikation Hohe Latenz (Netzwerküberlastung, hohe Entfernung) und

niedrige Datenrate (begrenzte Bandbreite)

Unterbrechung (Abdeckung, Verfügbarkeit)

Niedrige Zuverlässigkeit (Hoher Paketverlust)

Beim Datenaustausch über Mobilfunknetze wird aktuell eine Betriebs-

zeit von 99,999% erreicht, was zu einer Ausfallwahrscheinlichkeit von

<10−5
[37] führt. In der Realität ist das Fahrzeug jedoch nicht als statio-

näres Objekt zu betrachten. Bei sich bewegenden Objekten sinkt die mobile

Breitbandverfügbarkeit je nach Dienstanbieter auf etwa 99,99% [37], was

einer Unterbrechungszeit von etwa 360ms h−1
(bzw. einer Ausfallwahr-

scheinlichkeit von <10−4 h−1
) entspricht

1
. Die Anzahl der Fahrzeuge in

der unmittelbaren Umgebung, die Landschaft und die Entfernung zu den

Basisstationen können die Ausfallzeit noch weiter erhöhen.

Der Einfluss dieser Ausfallwahrscheinlichkeiten auf die finale Restfehler-

rate einer Funktion ist kaum spezifizierbar, die ISO 26262 gibt hier aber

keine genauen Hinweise zur Ableitung solcher Restfehlerraten. Wilhelm

et al. [128] schlussfolgern aus der ISO bereits für ASIL A Funktionen, je
nach Herleitung des akzeptablen Restrisikos, die Notwendigkeit eines Nach-

weises von Ausfallwahrscheinlichkeiten <10−5 h−1
(alle 36ms h−1

). Die

genannte Ausfallwahrscheinlichkeit von 10−4 h−1
auf der neu hinzuge-

1
mit weiteren Verbesserungen ist in den kommenden Jahren zu rechnen

93

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

Tolerierbares Risiko

ASIL

Risikopotential

Restrisiko

Exposure

Severity

Controllability

Exposure

Severity

Abbildung 4.1: Verringerung des Risikopotenzials durch Umsetzung der erforderlichen Sicher-

heitsmaßnahmen des zugewiesenen ASIL

fügten Schicht Kommunikation ist demnach zu hoch für ASIL. Aus diesem

Grund werden Funktionen, denen auch bisher ein ASIL A bis D zugewiesen

wurde, als nicht in die Cloud verlagerbar eingestuft und im nachfolgenden

Prozess nicht weiter betrachtet.

REZ: Realisierbarkeitsanalyse der Echtzeitanforderungen

Harte Echtzeitsysteme (s. Definition 2.1) benötigen garantiert Antworten

innerhalb eines vorgegebenen Zeitintervalls (Deadline-Zeitpunkt). Wird

dieses Intervall überschritten, liegt ein Verstoß gegen die Echtzeitanforde-

rung vor, was zu schwerwiegenden Fehlfunktionen führen kann. Betrachtet

man ein System, das auf Antworten einer cloudbasierten Funktion wartet,

ist die Umsetzung harter Echtzeitanforderungen abhängig von der kon-

kret geforderten Deadline-Zeit. Die drahtlose Kommunikationsanbindung

zur Cloud stellt eine Herausforderung im Systemdesign dar. Die genaue

Beschreibung der Einflussfaktoren auf die drahtlose Mobilfunkkommu-

nikation wird in Kapitel 2.6.2 zusammengefasst. Je nach geforderter Re-

aktionszeit und implementierten Sicherheitsmaßnahmen könnten einige

94

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

Funktionen mit harten Echtzeitanforderungen möglicherweise in der Cloud

realisierbar sein. Aufgrund der genannten Gründe und der Schwierigkeit,

absolute Garantien für die Kommunikationslatenz zu geben, werden diese

Funktionen in der vorliegenden Arbeit jedoch nicht weiter betrachtet. Als

Beispiel für solche kritischen Funktionen seien hier regelnde oder steuernde

Komponenten des Motors genannt [104].

4.2.3 Bewertung der Eignung

Die Eignung einer Funktion für die Auslagerung wird mithilfe von Bewer-

tungsmetriken in einem Prozess ermittelt. Der Prozess orientiert sich an den

in Kapitel 4.2 beschriebenen Anforderungen und ermittelt einen Eignungs-

Score zur Auslagerung der Funktionen. Dabei wird auf der vorgestellten

Methodik von Milani aus Kapitel 3.3.4 aufgebaut und die genannten Lücken

bzw. Erkenntnisse aus der Arbeit für den eigenen Prozess (s. Abbildung 4.2)

überarbeitet.

Eignungs-Score Die Berechnung des Eignungs-Score ECloud beruht auf

fünf Bewertungen:

1. BRB: Diese Bewertung orientiert sich an den in Kapitel 3.3.5 beschrie-

benen Trade-Off zwischen benötigter Bandbreite (B) und Rechenan-

forderungen (R) (Req-3 (Funktion)). Die Transferdatenmenge wird

allerdings durch die aussagekräftigere Kennzahl der benötigten Band-

breite (B) ersetzt.

2. BZ: Bewertung der potenziellen Verkürzung der Ausführungszeit (Z)

einer Funktion bei einer Verlagerung in die Cloud.

3. BEE: Energieeinsparpotenziale (EE) im Fahrzeug durch die Verlagerung

des Ausführungsortes einer Funktion in die Cloud (Req-3 (Funkti-

on)).

95

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

4. BKosten: Bewertung der Kosteneinsparpotenziale (Kosten) durch eine

Cloudverlagerung (Req-5 (Funktion)).

5. BL: Bewertung der Potenziale durch die Ausführung der Funktion in

der Cloud und der Möglichkeit des (maschinellen) Lernens (L) aus

Flottendaten (Req-6 (Funktion)).

Eignung

Realisierbarkeit

Start
Realisierbarkeit der

Sicherheitsanforderungen RS

ASIL (A-D) zugewiesen?

Realisierbarkeit der
Echtzeitanforderungen REZ

Harte Echtzeit-
anforderungen?

Cloudbasierte
Fahrzeugfunktion nicht

realisierbar

Cloudbasierte
Fahrzeugfunktion nicht

realisierbar

Zuordnung einer
Mikrocontroller

Leistungskategorie

Klassifizierung des
Datentransfers

Berechnung des
Bewertungskriteriums BRB

Ermittlung der
Zeitdifferenz zwischen

cloudbasierter und lokaler
Ausführung

Berechnung des
Bewertungskriteriums BZ

Ermittlung der
Energieeinsparpotenziale

Berechnung des
Bewertungskriteriums BEE

Berechnung der
Kosteneinsparpotenziale

Berechnung des
Bewertungskriteriums

BKosten

Ermittlung von
Potenzialen durch die

Cloud-Ausführung und
Lernen auf Flottenebene

Berechnung des
Bewertungskriteriums BL

Berechnung des Eignungs-
Score ECloud

Ende

Ja Ja

NeinNein

Abbildung 4.2: Prozess zur Bewertung der Realisierbarkeit und Eignung von cloudbasierten

Fahrzeugfunktionen

96

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

BRB: Bewertungsmetrik für den Trade-Off zwischen Bandbreitenbe-

darf und Rechenaufwand

Die Rechenanforderungen (R) werden anhand der in Tabelle 4.2 dargestell-

ten Kategorisierung bewertet.

Tabelle 4.2: Kategorisierung von Funktionen nach Rechenanforderungen (angelehnt an [21])

Kategorie Rechenanforderung Typische Funktion

Sehr hoch (4) Multithreading,

Parallelisierung,

hoher RAM- und CPU-

Bedarf

Bildverarbeitung, Objek-

terkennung, Sensorfusion,

Pfadplanung

Hoch (3) Gleitkommaoperationen,

regelbasierte oder mo-

dellgestützte Algorith-

men

Fahrdynamikregelung,

modellbasierte Diagnose,

modellprädiktive Regelung

Medium (2) Zyklusgesteuerte Verar-

beitung,

geringe Parallelität,

moderate Speicher- und

CPU-Last

PID-Regelung, Licht- bzw.

Fenstersteuerung, einfache

Logikfunktionen

Gering (1) minimaler Speicherbe-

darf,

Sub-Millisekunden bis

wenige Millisekunden

Rechenzeit

Signalweiterleitung,

GPIO-Handling,

einfache Filter oder Trigger-

logik

Die Einordnung des Bandbreitenbedarfs (B) orientiert sich an den typischen

Datenübertragungsraten innerhalb der verschiedenen Fahrzeugdomänen

(s. Tabelle 4.3) und erfolgt ebenfalls in vier Kategorien. Die Kombinati-

on aus Rechenaufwand und Bandbreitenbedarf erlaubt anschließend die

Bestimmung des Bewertungsfaktors BRB gemäß Abbildung 4.3.

97

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

Tabelle 4.3: Klassifizierung der benötigten Bandbreiten in Fahrzeugnetzwerken [96] [97]

Kategorie Benötigte Bandbreite (B) Fzg.-Domäne

Sehr hoch (4) >25Mbit s−1
Fahrerassistenz

Hoch (3) 10Mbit s−1
bis 25Mbit s−1

Infotainment

Medium (2) 1Mbit s−1
bis 10Mbit s−1

Fahrwerk, Karosserie

Gering (1) <1Mbit s−1
Antriebsstrang

0 1 2 3

0

1

2

3

Rechenanforderungen R

Be
nö

tig
te

 B
an

db
re

ite
 B

4

4

10,7

0,7

0,5

0,90,8

0

0,19

0,37

0,44

0,25

0,56 0,67

0,55 0,63

0,540 0,25 0,5

0,19

Abbildung 4.3: Mögliche Werte für BRB entsprechend der Einordnung der Rechenanforderun-

gen (s. Tabelle 4.2) und der Transferdatenmenge (s. Tabelle 4.3)

98

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

BZ: Bewertungsmetrik der Ausführungszeit

Wenn der Datenaustausch zwischen dem Fahrzeug und der Cloud nicht

streaming-basiert (s. Kapitel A.5) ist und keine dauerhaft erhöhte CPU-

Auslastung vorliegt, kann die statische Zeitdifferenz zwischen der Ausfüh-

rung der Funktion im Fahrzeug und in der Cloud ermittelt werden.

Daher müssen die Formeln zur Berechnung der Antwortzeit der lokalen

Funktion und der cloudbasierten Funktion eingeführt werden.

Definition 4.4 Antwortzeit: Die Antwortzeit gibt an, wie viel Zeit
ein System benötigt, um auf eine bestimmte Situation zu reagieren.

Genauer gesagt gibt sie die Zeit an, die ein System benötigt, um

auf eingehende Eingangsdaten mit der entsprechenden Ausgabe zu

reagieren.

Die jeweiligen Antwortzeiten können verwendet werden, um die potenzi-

ellen Zeiteinsparungen durch Auslagerung der Funktion in die Cloud zu

ermitteln. Da potenziell mehrere Funktionen auf einem Steuergerät loka-

lisiert sind, wird angenommen, dass tAktivierung vernachlässigbar ist, da

das Steuergerät zwischen den Ausführungsintervallen nicht in den Ruhe-

zustand versetzt wird. Es werden die folgenden Formeln eingeführt:

tAntwort,Lokal = tExe,ECU + tBus,Lokal (4.1)

tAntwort,Cloud = tExe,Cloud + tTrans,Cloud + tLatenz + tBus,Lokal (4.2)

Die Ausführungszeit auf dem lokalen Steuergerät tExe,ECU ist von der Leis-

tungsklasse der CPU, der Arbeitslast etc. abhängig. Basierend auf der Arbeit

von Ashok et al. [9] wird von einer 10-mal schnelleren Ausführung der

Funktion in der Cloud im Vergleich zum lokalen Steuergerät ausgegangen.

Die benötigte Zeit zur Übertragung von Sensordaten an das lokale Steu-

ergerät tBus,Lokal bzw. bei der Cloud-Variante an das Übertragungsmodul

99

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

wird vernachlässigt, da davon ausgegangen wird, dass die Zeit in beiden

Fällen identisch ist. tTrans,Cloud wird folgendermaßen genauer definiert:

tTrans,Cloud = tUpload + tDownload (4.3)

tUpload und tDownload können unter Verwendung der durchschnittlichen

Datenraten für Upload RUp und Download RDown im deutschen LTE-

Mobilfunknetz (s. Kapitel 2.6.2) und der Datenmenge DUp und DDown (als

Orientierung der Transferdatenmengen kann hier die Quelle [83] herange-

zogen werden) berechnet werden.

tUpload + tDownload =
DUp

RUp
+

DDown

RDown
(4.4)

Die Latenzzeit tLatenz im LTE-Netz ist abhängig von vielen Parametern,

wird aber im Rahmen dieses Prozesses angelehnt an [132] auf 25ms festge-

setzt. Die Zeitdifferenz zwischen der lokalen und der Cloud-Variante wird

daher mithilfe der folgenden Gleichung ermittelt:

tDiff = tAntwort,Lokal − tAntwort,Cloud (4.5)

tDiff =
9

10
tExe,ECU − (

DUp

RUp
+

DDown

RDown
+ 25ms) (4.6)

Handelt es sich um eine zyklische Funktion mit unregelmäßigen Interval-

len (s. Kapitel A.5), muss die Bedeutung der Gleichung genauer erklärt

werden. In diesem Fall wird die Antwortzeit tAntwort,Cloud ausschließlich

ab dem Beginn der letzten Upload-Sequenz mit anschließender Berechnung

und Download berechnet. Die Zeitspanne, in der nur Daten in die Cloud

hochgeladen werden, ohne dass anschließend ein erhöhter Rechenaufwand

entsteht, wird nicht in die Analyse einbezogen.

Das Bewertungskriterium BZ wird mithilfe der in Abbildung 4.4 dargestell-

ten Beziehung ermittelt.

100

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

0ms tExe,ECU

1

0,5

tDiff

BZ

Abbildung 4.4: Bewertungsmetrik der Ausführungszeit bei der Funktionsverlagerung in die

Cloud

Die Obergrenze der zeitlichen Ersparnis orientiert sich an der lokalen Aus-

führungszeit der Funktion tExe,ECU. Im Falle einer höheren Zeitersparnis

wird BZ entsprechend auf 1 gesetzt:

−tExe,ECU ≤ tDiff ≤ tExe,ECU : BZ =
tDiff [ms]

tExe,ECU
+ 0, 5 (4.7)

tExe,ECU < tDiff : BZ = 1 (4.8)

−tExe,ECU > tDiff : BZ = 0 (4.9)

BEE: Bewertungsmetrik der Energieeinsparpotenziale im Fahrzeug

Insofern die Funktion in der Cloud und nicht mehr im Fahrzeug ausgeführt

wird, entstehen Energieeinsparpotenziale im Fahrzeug. Im Fahrzeug fällt

nur noch Energie für das Senden und Empfangen der notwendigen Input-

und Outputsignale der Funktion an.

Die Einsparpotenziale im Fahrzeug berechnen sich aus der Differenz zwi-

schen der benötigten Energie zur lokalen Ausführung der Funktion und

der benötigten Energie für den Datentransfer mit dem Backend.

Der Energieverbrauch des lokalen Steuergeräts für die Dauer der Aus-

führung tExe,ECU der Funktion ist abhängig von der durchschnittlichen

CPU/GPU-Auslastung δFunktion der Funktion (s. auch Kapitel 2.2). Der Ener-

101

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

gieverbrauch der Funktion auf einem lokalen Steuergerät ermittelt sich

folgendermaßen:

Elokal = PECU · tExe,ECU (4.10)

PECU entspricht der Leistungsklasse des Mikrocontrollers (s. Tabelle 2.1),

auf dem die Funktion ausgeführt wird.

Die benötigte Energie für den Datentransfer ETrans,Cloud berechnet sich

wie folgt:

ETrans,Cloud = PTrans,Up · DUp

RUp
+ PTrans,Down · DDown

RDown
(4.11)

Dabei sind folgende Aspekte für zyklische und streaming-basierte Funktio-
nen zu beachten:

• Zyklisch Fall 2: Aufgrund der Leerlaufzeit zwischen dem erneuten

Senden und dem Empfangen von Daten wird davon ausgegangen, dass

das Sendegerät in diesem Zeitraum in den Ruhezustand wechselt und

keine Energie verbraucht [54]. Da das Uploadintervall nicht identisch

zum Berechnungs- und Downloadintervall ist (s. Kapitel A.5), sollten

deshalb beide Intervalle getrennt betrachtet werden.

• Streaming-basiert: Das Intervall zwischen Senden und Empfangen

kann als zu kurz betrachtet werden, um das Steuergerät in den Ruhe-

zustand zu wechseln [54]. Es wird von einer Grundlast β (s. Kapitel

2.6.2) ausgegangen.

Die DifferenzEDiff aus der lokalen Ausführung und der benötigten Energie

für den Datentransfer

EDiff = ELokal − ETrans,Cloud (4.12)

102

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

dient zur Berechnung der Relation zur Gesamtenergie ETotal, die die Sum-

me von lokaler Ausführung und Datentransfer darstellt

EDiff,Ratio =
EDiff

ETotal
(4.13)

und wird schlussendlich zur Berechnung der Bewertungsmetrik der Ener-

gieeinsparpotenziale BEE herangezogen (s. Abbildung 4.5):

BEE =
EDiff,Ratio

2
+ 0, 5 (4.14)

0 1

1

0,5

EDiff,Ratio

BEE

Abbildung 4.5: Bewertungsmetrik der Energieeinsparung der Funktionsverlagerung in die

Cloud

Die dargestellte Betrachtung von Energieeinsparpotenzialen behandelt aus-

schließlich die Ebene der Steuergeräte und deren Energieverbrauch. Die

bereits in der Motivation (Kapitel 1.1) genannten Potenziale der optimierten

Gestaltung, bspw. in Form einer effizienteren Regelung, von Features in der

Cloud kann nicht bemessen werden, soll aber am Ende durch Forschungs-

frage 3 beantwortet werden.

BKosten: Kosteneinsparpotenziale durch die Cloudverlagerung

Die Kosten der Bereitstellung einer Funktion können nach dem TCO Mo-

dell berechnet werden (s. [BtS
+
24]). Sowohl im Fahrzeug als auch in der

Cloud entstehen Kosten für die Entwicklung CEntwicklung, das Deployment

CDeployment und die Ausführung CExe der Funktion.

103

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

• TCOFkt.,Fzg. = CEntwicklung,Fzg. + CDepl,Fzg. + CExe,Fzg.

Die Entwicklung der Funktion stellt Capital Expenditures (CapEx)

dar. Deploymentkosten im Fahrzeug beinhalten Investitionsausgaben

(CapEx) der Steuergeräte, deren Zusammensetzung Schäuffele in [104]

beschreibt. Die Ausführungskosten CExe,Fzg. beinhalten laufende

Kosten im Betrieb, z.B. Servicekosten durch OTA-Updates, Diagnose,

Wartung oder Supportmaßnahmen.

• TCOFkt.,Cloud = CEntwicklung,Cloud + CDepl,Cloud + CExe,Cloud

Eine Verlagerung der Funktion in die Cloud stellt einen Wechsel

von CapEx zu Operating Expenses (OpEx) dar. Während CDepl,Cloud

mit einem Wert von 0€ angenommen werden kann, entstehen OpEx

hauptsächlich durch die Bereitstellung der Rechenressourcen, entwe-

der intern oder durch einen Cloud Service Provider (CSP). CapEx für

die Entwicklung der Funktion bleiben erhalten.

Die Bewertung des Kosteneinsparpotenzials kann mithilfe einer Break-

Even-Analyse durchgeführt werden. Dabei wird die folgende Gleichung

(CapExCloud + OpExCloud · tBreak−Even,Fzg.)

−(CapExFzg. + OpExFzg. · tBreak−Even,Fzg.) = 0 (4.15)

nach tBreak−Even;Fahrzeug in Anzahl Monaten (aufgrund der monatlichen

Rechnungsstellung der OpEx) aufgelöst. Das BewertungskriteriumBKosten

wird mithilfe der Break-Even Dauer bis zu dem Zeitpunkt, ab dem die Bereit-

stellung der Funktion im Fahrzeug wieder kostengünstiger ist (in Jahren)

und dem Durchschnittsalter von Personenkraftwagen (bzw. Kraftomnibus-

sen) in Deutschland berechnet. Dieses Durchschnittsalter lag zum 1. Januar

2022 bei 10,1 Jahren für PKW und bei 8,3 Jahren für Omnibusse [66]. Über-

steigt die Break-Even Dauer den Wert von 10,1 Jahren (bzw. 8,3 Jahren), so

wird folgerichtig die maximale Bewertung von 1 angenommen.

104

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

Tabelle 4.4: Kategorisierung der Kosteneinsparpotenziale einer Funktionsverlagerung

Break-Even Dauer in Jahren Bewertungskriterium BKosten

0 ≥ tBreak−Even,Fzg. ≤ 2, 5 (bzw. 2) 0

2, 5(2) > tBreak−Even,Fzg. ≤ 5 (4) 0,25

5(4) > tBreak−Even,Fzg. ≤ 7, 5 (6) 0,5

7, 5(6) > tBreak−Even,Fzg. ≤ 10, 1 (8, 3) 0,75

tBreak−Even,Fzg. > 10, 1 (8, 3) 1

BL: Bewertung der Potenziale durch die Ausführung der Funktion

in der Cloud und der Möglichkeit des (maschinellen) Lernens (L)

aus Flottendaten

Neben den genannten quantifizierbaren Bewertungskriterien wird die qua-

litative Bewertung der Cloudverlagerung berücksichtigt, die sich aus den

Potenzialen einer Verlagerung ergibt. In Kapitel 3.3.5 wurden bereits eini-

ge Potenziale unter den Oberbegriffen des „Function Offloading“ und des

„Function partitioning“ vorgestellt. Diese werden nachfolgend aufgegriffen

und genauer spezifiziert sowie ergänzt:

• Ressourcenbeschränkungen reduzieren:Die Ressourcenbeschrän-

kungen im Fahrzeug können durch die Verwendung der skalierbaren

Ressourcen der Cloud überwunden werden. Die vorhandenen Res-

sourcen im Fahrzeug können für Funktionen verwendet werden, die

unumgänglich im Fahrzeug ausgeführt werden müssen.

• Reduzieren der Entwicklungs-/Servicekosten: Eine Funktion, die

partiell oder vollständig in der Cloud ausgeführt wird, kann dort

wesentlich unproblematischer weiterentwickelt, parametriert und

getestet werden ohne jeglichen Zugriff auf das Steuergerät im Fahr-

zeug. Durch diesen einfacheren Zugriff auf die Funktion sinken beim

Original Equipment Manufacturer (OEM), genauer gesagt dem Funk-

105

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

tionsentwickler, die Kosten, da keine Rückrufe von Fahrzeugen in

Werkstätten vonnöten sind.

• Erstellen von Datenbanken und Flottenlernen: Die kontinuier-

lich generierten Daten ganzer Fahrzeugflotten bieten die Möglichkeit,

Datenbanken in der Cloud immer aktuell und aussagekräftig zu hal-

ten (aufgrund der potenziell hohen Anzahl an Fahrzeugen), wovon

wiederum alle Fahrzeuge profitieren können. Beispielhaft bietet die

Speicherung der Passagieranzahl in einer Stadtbusflotte viele energe-

tische Einsparpotenziale für die Regelung des Fahrzeugkomforts.

• Anbinden von externen Echtzeit-Datenquellen: Externe Daten-

quellen können von einer cloudbasierten Funktion direkt angebunden

und weiterverarbeitet werden. Es entfällt somit die zusätzliche Daten-

übertragung der externen Datenquellen in das Fahrzeug.

Die Potenziale können nicht direkt bewertet werden. Eine qualitative Aus-

sage wird innerhalb des Prozesses anhand Tabelle 4.5 getroffen.

Tabelle 4.5: Kategorisierung der Potenziale der Cloudverlagerung

Potenziale der Verlagerung Bewertungskriterium BL

Keine 0

Gering 0,25

Medium 0,5

Hoch 0,75

Sehr Hoch 1

106

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

Berechnung des Eignungs-Score

Der Eignungs-Score ECloud ermöglicht es, die einzelnen Bewertungsmetri-

ken zu gewichten.

ECloud = wRBBRB+wZBZ+wEEBEE+wKostenBKosten+wLBL (4.16)

Dabei gilt für die Gewichte:

n∑
i=1

wi = 1 (4.17)

4.2.4 Anwendung des Prozesses auf die E/E-Architektur
eines Stadtbusses

Der vorgestellte Prozess dient dazu, die E/E-Architektur eines BEB im Hin-

blick auf die Cloud-Realisierbarkeit von Funktionen zu analysieren. Im ersten

Schritt wird die Verlagerbarkeit von Funktionen in die Cloud bewertet, wobei

insbesondere ASIL-Zuweisungen sowie Echtzeitanforderungen berücksich-

tigt werden. Grundlage dieser Bewertung ist die Analyse einer modernen

E/E-Architektur eines Stadtbusses, wie sie im Projekt INDU2-OTrace des
Innovationscampus Mobilität der Zukunft

2
durchgeführt wurde.

Mehr als 60% der in der Architektur aufgeführten Fahrzeug-Features sind

einem ASIL zugeordnet. Dies bedeutet jedoch nicht zwangsläufig, dass auch

die Funktionen, welche diese Features implementieren, einem ASIL unter-

liegen. Gemäß Teil 9 der ISO 26262 ist eine ASIL-Dekomposition möglich,

wodurch einzelne Software-Items keinem ASIL, sondern lediglich dem Qua-

litätsmanagement (QM) unterstellt sein können. Diese Möglichkeit wird im

Rahmen dieser Analyse nicht weiter verfolgt. Stattdessen werden ausschließ-

2 https://www.icm-bw.de/forschung/projektuebersicht/detailseite/indu2-

otrace

107

https://www.icm-bw.de/forschung/projektuebersicht/detailseite/indu2-otrace
https://www.icm-bw.de/forschung/projektuebersicht/detailseite/indu2-otrace

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

Tabelle 4.6: Beurteilung der Cloud-Realisierbarkeit von Funktionen exemplarischer E/E-

Features im Stadtbus

Domäne Exempl. Feature Exempl. Funktion

des Features

Cloud-

Real.

Antriebsstrang

Motorsteuerung Drehmoment-

begrenzung

✗

Rekuperations-

steuerung

Prädiktive Rekupera-

tion

✓

Prädiktive Instand-

haltung

Modelle der prädikti-

ven Instandhaltung

✓(E)

Reichweitenschätzung Energiever-

brauchsmodell

✓(B)

Fahrwerk Wankstabilisierung Dämpferregelung ✗

Infotainment Navigation Echtzeit-

Verkehrsinfos

✓(A)

Karosserie Heizung, Lüftung,

Klimatisierung

Kaskadierter HLK-

Regler

✓(D)

Fahrerassistenz

Müdigkeitserkennung Lidschlagfrequenz-

erkennung

✗

Abstandsregel-

tempomat

Abstandsregelung ✗

Notbremsassistent Echtzeit-

Objekterkennung

✗

Spurhalteassistent Spurzentrierung ✗

Erstellung von Fah-

rerprofilen

Verhaltensanalyse ✓(C)

108

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

lich Features und die zugehörigen Funktionen betrachtet, denen kein ASIL

zugewiesen wurde.

EinenAuszug der untersuchten Funktionen und derenCloud-Realisierbarkeit,

geordnet nach den in Abbildung 2.7 dargestellten Fahrzeugdomänen, zeigt

Tabelle 4.6.

Für die übrigen Funktionen erfolgt die Bewertung in der zweiten Stufe des

Prozesses unter Anwendung der Gewichtungen der jeweiligen Bewertungs-

kriterien, die im Rahmen des INDU2-OTrace Projekts in Zusammenarbeit

mit den Projektpartnern erarbeitet wurden:

wRB = 0, 3, wZ = 0, 1, wEE = 0, 15, wKosten = 0, 1 und wL = 0, 35

Tabelle 4.7 enthält die fünf Funktionen mit den höchsten Eignungs-Scores

für eine potenzielle Cloud-Auslagerung im Kontext eines Stadtbusses.

Tabelle 4.7: Cloud-Eignungs-Score der am höchsten bewerteten Funktionen im Stadtbus

Bezeichnung Eignungs-Score ECloud

(A) Echtzeit-Verkehrslage 0,9175

(B) Energieverbrauchsmodellierung 0,911

(C) Fahrerverhaltensanalyse 0,875

(D) Kaskadierter HLK-Regler 0,798

(E) Modelle der prädiktiven Instandhaltung 0,740

Die beiden am höchsten bewerteten Funktionen, Echtzeit-Verkehrslage und

Energieverbrauchsmodellierung, werden nicht weiter vertieft behandelt. Ers-

tere ist bereits in mehreren Serienfahrzeugen etabliert (vgl. [16]), während

Letztere in der wissenschaftlichen Literatur umfassend untersucht wurde

(vgl. [117]). Auch die Analyse des Fahrverhaltens (Funktion C) wird aufgrund

der Verarbeitung personenbezogener Daten und der damit verbundenen

Anforderungen der Datenschutz-Grundverordnung (DSGVO) nicht weiter

verfolgt. Damit rückt der kaskadierte HLK-Regler (Funktion D) in den Mit-

109

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

telpunkt der weiteren Betrachtung. Er bietet ein praxisnahes und zugleich

wissenschaftlich relevantes Anwendungsszenario, da die HLK-Regelung bei

BEB sowohl maßgeblich zur Energieeffizienz beiträgt als auch den Fahrgast-

komfort sicherstellt. Im folgenden Kapitel werden daher die Konzeption und

prototypische Umsetzung eines cloudbasierten HLK-Reglers für batteriel-

elektrische Stadtbusse vorgestellt.

Eignungs-Score der kaskadierten HLK-Regelung Die nachfolgenden

Daten, beispielsweise zu Berechnungszeiten oder Leistungsaufnahmen, be-

ziehen sich auf den Stand der Technik einer HLK-Regelung im Stadtbus

(s. Kapitel 3.4), in diesem Fall mittels PID-Regler. Wie diese in Zukunft

durch den cloudbasierten Ansatz aussehen könnte, wird durch das Bewer-

tungskriterium BL „Potenziale durch die Ausführung der Funktion in der

Cloud“ widergespiegelt.

BRB: Die Datenübertragung für die HLK-Regelung beschränkt sich auf das

Senden und Empfangen von Sensor- und Aktorwerten (B auf den Wert 1

gesetzt). Die Rechenanforderungen der State of the Art PID Regler (Kapitel

3.4) im Stadtbus sind gering (R auf den Wert 2 gesetzt). Aus Abbildung 4.3

ergibt sich hiermit ein Wert von 0,8 für BRB.

BZ: Eine mögliche Reduzierung der Ausführungszeit tDiff wird mithilfe der

Gleichung 4.6 berechnet. Die Ausführungszeit der HLK-Regelung auf dem

Steuergerät im Stadtbus wird mit 25ms angenommen. Bei einem Über-

tragungsdatenvolumen für Up- und Download von jeweils 1 kB und der

durchschnittlichen Up- und Downloadrate im deutschen Mobilfunknetz (s.

Kapitel 2.6.2) wird ein Wert von −2,5ms für tDiff errechnet. BZ berechnet

sich demnach auf den Wert 0,45.

BEE: Die Energie zur Ausführung der HLK-Regelung auf einem Steuerge-

rät wird anhand der Leistungsklassen typischer Steuergeräte im Fahrzeug

berechnet (Tabelle 2.1). Die HLK-Regelung wird auf einem Steuergerät der

Leistungsklasse Medium ausgeführt und lastet dieses zu 30% aus. Die ein-

110

4.2 Identifikation cloudfähiger Fahrzeugfunktionen

malige Ausführung der Regelung berechnet sich anhand der Gleichungen

2.3 und 2.4 und der Ausführungszeit von 25ms auf 0,037.5W s. Die für

den einmaligen Upload und Download der Daten (1 kB) der HLK-Regelung

benötigte Energie wird mithilfe von Gleichung 4.11 berechnet, da es sich

um eine zyklische Funktion des ersten Falls handelt (vgl. Kapitel A.5).

ETrans.Cloud summiert sich auf den Wert von 0,05W s. Die Differenz EDiff

beträgt−0,012.5W s. Infolgedessen wirdBEE auf den Wert 0,42 bestimmt.

BKosten: Formel 4.15 wird herangezogen, umBKosten zu berechnen. Hierfür

müssen folgende Annahmen getroffen werden:

1. Die Entwicklung einer Funktion für die Cloud ist aufgrund ihrer

einfacheren Skalierbarkeit und Flexibilität kostengünstiger als die

Entwicklung für ein definiertes Steuergerät mit einer automobilspezi-

fischen Laufzeitumgebung. Hier wird die Annahme getroffen, dass

der Kostenunterschied 20% beträgt.

2. Die Regelung wird in einer virtuellen Maschine (VM) oder als server-

less Anwendung
3
ohne weitere Komponenten wie Datenbanken etc.

bei einem CSP wie Microsoft Azure ausgeführt.

3. Die HLK-Regelung wird auf einem dedizierten Steuergerät ausgeführt.

Unter Berücksichtigung dieser Annahmen werden die Entwicklungskos-

ten des Features für das Fahrzeug auf den Wert 200.000€ und für die

Cloud auf 180.000€ gesetzt. Diese Kosten werden auf eine fiktive Flotte von

1.000 Fahrzeugen aufgeteilt. Die Kosten für das Steuergerät im Fahrzeug

CDepl,Fahrzeug werden angelehnt an die Kosten eines typischen Steuerge-

räts der Medium Leistungsklasse aus [112] unter Berücksichtigung der

Inflation auf 60€ festgelegt. Die OpEx der Cloud werden auf 3,50€ im Monat

bzw. 2€ im Monat im Fahrzeug definiert. Der Break-Even-Point, ab dem

ein Deployment im Fahrzeug wirtschaftlicher ist als in der Cloud, wird

3
s. auch https://www.redhat.com/de/topics/cloud-native-apps/what-is-serverless

111

4 Definition und Identifikation cloudfähiger Fahrzeugfunktionen

nach 10,9 Jahren erreicht. Nach Tabelle 4.4 ergibt das einen Wert von 1 für

BKosten.

BL: Die HLK-Regelung von Stadtbussen ist stark von Störfaktoren wie Tür-

öffnungen und variierenden Fahrgastzahlen beeinflusst, die sich dynamisch

während der Fahrt ändern. Um die Auswirkungen dieser Störfaktoren zu mi-

nimieren, können fortschrittliche Regelungstechniken genutzt werden, die

aufgrund von Ressourcenbeschränkungen oder aus Kostengründen nicht

direkt im Fahrzeug realisierbar sind. Der Austausch von Echtzeitdaten und

die Nutzung von cloudbasierten Datenbanken ermöglichen es, diese Stör-

faktoren bereits im Vorfeld der Fahrt zu antizipieren und entsprechende

Anpassungen vorzunehmen. Dies trägt nicht nur zur Verbesserung der Re-

gelungsgenauigkeit bei, sondern auch zur Reduzierung der Entwicklungs-

und Wartungskosten, da weniger Rechenleistung und Hardwareressour-

cen im Fahrzeug benötigt werden. Durch den Einsatz solcher Systeme

lassen sich auch die langfristigen Betriebskosten senken und die Effizienz

des gesamten Flottenmanagements steigern. Die Bewertungsstufe dieser

Maßnahmen wird als Sehr hoch eingestuft, mit einem Wert von 1 für BL.

Durch Einsetzen der einzelnen Werte der Bewertungskriterien in Gleichung

4.16 mit den oben genannten Gewichten ergibt sich folgende Gleichung für

den kaskadierten HLK-Regler:

ECloud = wRBBRB + wZBZ + wEEBEE + wKostenBKosten + wLBL

= 0, 3 · 0, 8 + 0, 1 · 0, 45 + 0, 15 · 0, 42 + 0, 1 · 1 + 0, 35 · 1
= 0, 798

112

5 Die cloudbasierte
HLK-Regelung eines BEB

Kapitel 2.4 gibt einen Überblick über verschiedene Klimatisierungskonzepte

für Elektrobusse. Unter den Begriff Elektrobus fallen auch hybride Varianten

sowie Brennstoffzellenbusse. In der vorliegenden Dissertation werden jedoch

ausschließlich BEB betrachtet. Bei diesen Bussen ist der Einsatz von Auf-

dachwärmepumpen (Variante 3 in Abbildung 2.2) mit dem Kältemittel R744

aufgrund ihrer hohen Effizienz üblich. Des Weiteren wird die Klimatisierung

einer Fahrzeugkabine betrachtet, die als eine einzelne Klimazone model-

liert ist und mit der genannten Wärmepumpentechnologie betrieben wird

(vgl. Definition 2.7). Zusatzheizer, beispielsweise fossile Zusatzheizgeräte

oder thermische Speicher (vgl. [100]), sowie der Fahrerarbeitsplatz bleiben

unberücksichtigt.

5.1 Der Use Case

Cloudbasierte Fahrzeugfunktionen werden in die vier Use Case-Kategorien

aus Tabelle 5.1 eingeteilt. Die Use Cases beziehen sich auf die Definition

einer cloudbasierten Fahrzeugfunktion (Definition 4.1).

Die im Stand der Wissenschaft und Technik (s. Kapitel 3.3.2) beschriebenen

Anwendungsfälle werden in Tabelle 5.2 den Use Case-Kategorien aus Tabelle

5.1 zugeordnet. Dabei zeigt sich, dass der Anwendungsfall von Yang et al. der

Kategorie COTA zugeordnet werden kann. Die kaskadierte HLK-Regelung

113

5 Die cloudbasierte HLK-Regelung eines BEB

Tabelle 5.1: Use Case-Kategorien und Beispiele für cloudbasierte Fahrzeufunktionen

Use Case-

Kategorie

Beschreibung Beispiel

(1) Eingabedaten

für fahrzeuginter-

ne Features

Die Rechenressourcen der

Cloud dienen als Datenvor-

verarbeitungsstelle für Fea-

ture im Fahrzeug

Datenvorverarbeitung meh-

rerer Sensorquellen

(2) Vorschläge

für fahrzeugin-

terne Features

Entscheidungsalgorithmen

in der Cloud berechnen

Vorschläge als Input für

Feature im Fahrzeug

Fahrzeuggeschwindigkeit

auf Basis von Verkehrsdaten,

Fahrwerkmodus auf Basis

von Straßendaten

(3) Regelstrategie

- COTA

Regelungen, deren Regel-

schleifen vom Fahrzeug über

die Cloud ausgeführt werden

HLK-Regelung

(4) Vorhersage-

modellierung

Rechenintensive Feature auf

Basis einer Vielzahl an Input-

quellen

Lebensdauermodelle von

Batterien, Reichweitenmo-

delle

eines Stadtbusses wird ebenfalls diesem Use Case COTA zugeordnet. Dabei

soll der äußere Regelkreis der kaskadierten Klimaregelung (s. Abbildung 3.8)

in die Cloud verlagert und somit eine Regelschleife vom Fahrzeug über die

Cloud und zurück geschlossen werden [100].

5.2 Die Auswahl des Reglers

Der kaskadierte HLK-Regler bietet den Vorteil, dass nur der äußere Regel-

kreis ersetzt werden kann, ohne dabei Einfluss auf die tatsächliche innere

Regelung einzelner Komponenten innerhalb des HLK-Systems Einfluss neh-

men zu müssen (vgl. Kapitel 3.4). Dieser Umstand ermöglicht den Einsatz

eines neuen Reglers im äußeren Regelkreis, welcher für ein breites Spektrum

von HLK-Systemen in Stadtbussen mit unterschiedlichen Antriebssträngen

114

5.2 Die Auswahl des Reglers

Tabelle 5.2: Einordnung der Use Cases aus dem Stand der Wissenschaft und Technik in die Use

Case-Kategorien aus Tabelle 5.1

Publikation Beschreibung Kate-

gorie

Begründung

Ashok et al. [9] Gestenerkennung (1) Cloud als Re-

chenressource

für Fahrzeug-

Infotainment

Deng et al. [33] Verkehrsauf-

kommensüberwachung in

der Cloud

(1) Cloud als Re-

chenressource

für Fahrzeug-

Navigation

Wang et al. [125] Fahrerassistenzsystem mit

digitalem Zwilling

(2) Anzeige von Vor-

schlägen für Aktor-

werte

Yang et al. [134] Energieoptimierung für

Plug-in-Hybrid-Stadtbusse

(3) Regelschleife über

die Cloud

einsetzbar ist, solange die benötigten Messwerte verfügbar sind, die Regel-

größen des HLK-Systems identisch bleiben und die kaskadierte Regelstruktur

beibehalten wird.

Für die Umsetzung des cloudbasierten HLK-Reglers des äußeren Regelkrei-

ses kommen die in Kapitel 3.4 beschriebenen Ansätze der Fuzzy-Regelung,
der modellprädiktiven Regelung, der PID-Regelung und des RL-Agenten in

Betracht.

Typische Metriken zur Bewertung der Performanz von HLK-Reglern sind [3]:

• Energie- und Kosteneinsparungen

• Verbesserung des Einschwingverhaltens (Verkürzung der Anstiegszeit,

Einschwingzeit und Spitzenzeit)

115

5 Die cloudbasierte HLK-Regelung eines BEB

• Steuerung von Variablen innerhalb von Grenzen

• Verringerung der Schwankungen von einem Sollwert

• Verbesserung des Wirkungsgrads und des COP

• Robustheit gegenüber Störungen und Änderungen der Betriebsbedin-

gungen

• Verbesserung der Raumluftqualität und des thermischen Komforts

• Verkürzung der Berechnungszeit

Diese Metriken werden für die Definition eigener Anforderungen herangezo-

gen. Die Anforderungen sind in MUSS und SOLL Anforderungen aufgeteilt,

die entsprechend doppelt oder einfach in der Bewertungstabelle (s. Tabelle

5.3) gewichtet werden:

Req-1 (Regler) Energieeffizienz [MUSS]: Aufgrund des hohen Beitrags

der HLK zum Gesamtenergieverbrauch des BEB (s. Kapi-

tel 3.5) muss die elektrische Leistungsaufnahme des HLK-

Systems möglichst gering gehalten werden.

Req-2 (Regler) Thermischer Komfort [MUSS]:Der thermische Komfort

für die Passagiere ist die Hauptaufgabe des HLK-Systems

und muss den Vorgaben der VDV-Schrift 236 (s. Kapitel

2.4.3) entsprechen.

Req-3 (Regler) Berücksichtigung von Beschränkungen [MUSS]: Die

Regelung muss physikalische, technische und sicherheits-

relevante Einschränkungen der HLK-Komponenten, wie

beispielsweise maximaler Wärmestrom der Wärmepumpe,

einhalten. Diese Systembeschränkungen müssen beim Ent-

wurf und in der Laufzeit des Reglers berücksichtigt werden

können, um eine realisierbare, sichere und verschleißarme

Betriebsführung zu gewährleisten.

116

5.2 Die Auswahl des Reglers

Req-4 (Regler) Nutzbarkeit von Störgrößenprädiktionen [SOLL]:

Störgrößenprädiktionen, wie beispielsweise die Passa-

gieranzahl oder Türöffnungen, können die Regelung opti-

mieren (vgl. [tSR21]). Insbesondere im Stadtbus kann durch

festgelegte Routen und Haltestellen eine Prädiktion ein

großes Potenzial erzeugen und soll deshalb genutzt werden

können.

Req-5 (Regler) Konfigurier- und Übertragbarkeit [SOLL]: Der Regler

soll auf verschiedene HLK-Anlagen konfigurierbar und bei

Bedarf erweiterbar sein.

Tabelle 5.3: Bewertung der potenziellen HLK-Regler auf Basis von [17]

Anforderung

G
e
w
i
c
h
t

Fuzzy PID MPC RL

P
u
n
k
t
e

P
u
n
k
t
e

P
u
n
k
t
e

P
u
n
k
t
e

Energieeffizienz [MUSS] 2 8 10 18 16

Thermischer Komfort [MUSS] 2 10 14 18 16

Berücksichtigung

von Beschränkungen [MUSS]

2 4 8 20 16

Nutzbarkeit von

Störgrößenprädiktionen [SOLL]

1 4 2 10 10

Konfigurier- und

Übertragbarkeit [SOLL]

1 8 7 5 3

Gesamtpunkte - 34 41 71 61

Bewertungsskala: 1 Punkt (nicht erfüllt/ungenügend) bis 10 Punkte (vollständig er-

füllt/sehr gut)

Die Wahl des cloudbasierten Reglers fällt zugunsten des MPC Ansatzes.

Diese Entscheidung basiert zum einen auf den in Kapitel 3.4 erwähnten

wissenschaftlichen Erkenntnissen in der Anwendung des MPC, aber haupt-

sächlich auf der nachfolgenden Erfüllung der gestellten Anforderungen

117

5 Die cloudbasierte HLK-Regelung eines BEB

durch den MPC. Hinsichtlich der Energieeffizienz (Req-1 (Regler)) lässt

sich die elektrische Leistungsaufnahme des HLK-Systems direkt als Kosten-

kriterium in die Optimierung integrieren. Der MPC kann somit energetisch

günstige Stellgrößenverläufe bevorzugen, ohne den thermischen Komfort

zu beeinträchtigen, der im Mittelpunkt der Anforderung (Req-2 (Regler))

steht. Die Komfortbedingungen gemäß der VDV-Schrift 236 lassen sich

dabei entweder als Nebenbedingungen oder als Komfortmetriken in der Ziel-

funktion abbilden. Die Berücksichtigung physikalischer Beschränkungen

(Req-3 (Regler)) stellt eine Kernkompetenz des MPC dar. Systemgrenzen

wie maximale Kompressorleistung, Temperaturbandbreiten oder Stellgrößen-

änderungsraten werden in Form von Nebenbedingungen berücksichtigt und

in jeder Optimierungsiteration eingehalten. Ähnliches gilt für die Nutzung

von Störgrößenprädiktionen (Req-4 (Regler)), die beim MPC explizit in das

Optimierungsproblem eingebunden werden können, während die anderen

genannten Regler entweder reaktiv arbeiten (wie der PID) oder heuristische

Regeln verwenden (z.B. Fuzzy). RL-Agenten bieten durch das Lernen von

Störgrößen eine vergleichbare Nutzbarkeit der Störgrößenprädiktion. Nicht

zuletzt trägt die Konfigurier- und Übertragbarkeit (Req-5 (Regler)) zur

Flexibilität des Reglers bei. Da der MPC auf einem mathematischen Modell

basiert, kann er durch Anpassung dieses Modells und der entsprechenden

Parameter auf andere HLK-Systeme oder Fahrzeugplattformen übertragen

werden. Die regelungstechnische Struktur bleibt erhalten, wodurch eine ein-

fache Skalierbarkeit und Erweiterbarkeit ermöglicht werden. Hier schneidet

insbesondere der RL-Ansatz aufgrund der Notwendigkeit eines erneuten

Lernvorgangs des Agenten nicht gut ab.

118

5.3 Die Regelstrecke

5.3 Die Regelstrecke

5.3.1 Das Fahrzeugkabinenmodell

Die Fahrzeugkabine und die sich einstellende Kabinentemperatur werden

mithilfe der thermischen Beschreibung aus Kapitel 2.4.4 modelliert. Es wird

ein Solobus (s. Kapitel 2.4.1) mit den Eigenschaften aus Tabelle 5.4 modelliert.

Das Systemverhalten der Fahrzeugkabine kann in der Form eines impliziten

differenzial-algebraischen Gleichungssystems beschrieben werden. Dieses

berücksichtigt die Energiebilanz in Form der Differenzialgleichung 2.34, die

Feuchtebilanz und den Zusammenhang zwischen allen Wärmeströmen aus

Gleichung 2.35:

F (ẋ(t), x(t), y(t), u(t),Θ) = 0 (5.1)

mit:

x =

 TKab

xKab

 , u =



TUmgebung

xUmgebung

Q̇HLK

Q̇Solar

ṁFrischluft

NPass

NTüren


(5.2)

y =
[
TKab

]
, Θ =


Θ1

.

.

.

Θn

 (5.3)

119

5 Die cloudbasierte HLK-Regelung eines BEB

Abbildung 5.1: Batterieelektrischer Stadtbus mit 3 Türen [41]

Dabei ist x der Zustandsvektor, y der Ausgangsgrößenvektor, u der Ein-

gangsgrößenvektor und Θ der Parametervektor. Das Kabinenmodell hat

insgesamt sieben Eingangsgrößen: die Umgebungstemperatur TUmgebung, den

Feuchtegrad der Umgebung xUmgebung, den bereitgestellten Wärmestrom

des HLK-Systems Q̇HLK, die Solarstrahlung Q̇Solar, den Frischluftmassen-

strom ṁFrischluft, die Anzahl der Passagiere NPassagiere, und die Anzahl der

geöffneten Türen NTüren (s. Abbildung 5.1). Die Ausgangsgröße ist die Tem-

peratur in der Fahrzeugkabine TKab. Die Modellparameter Θ (s. Tabelle 5.4)

werden als zeitlich konstant angenommen.

5.3.2 Wärmepumpe

Das HLK-System besteht aus einer Aufdachwärmepumpe für den Kühl- und

Heizbetrieb ohne Zuheizer (s. Tabelle 2.2). Die Modellierung der Wärmepum-

pe basiert auf dem Ansatz aus der Dissertation von Rösch [100], die anstatt

der vollständigen physikalischen Modellierung auf ein COP-Kennfeld setzt

(s. Kapitel A.2). Mittels Herstellerangaben
1
konnte das Kennfeld für den Um-

gebungstemperaturbereich −15 ◦C bis 25 ◦C erstellt werden (s. Abbildung

5.3). Mittels des Kennfelds lässt sich durch Interpolation, basierend auf der

gegebenen Umgebungstemperatur und dem angeforderten Wärmestrom,

1
Konvekta 700EM CO2 HP: https://www.konvekta.de/fileadmin/user_upload/do

cs/datenblaetter/busse/UltraLight_500-700EM_CO2_HP_dt_engl_0722.pdf

120

https://www.konvekta.de/fileadmin/user_upload/docs/datenblaetter/busse/UltraLight_500-700EM_CO2_HP_dt_engl_0722.pdf
https://www.konvekta.de/fileadmin/user_upload/docs/datenblaetter/busse/UltraLight_500-700EM_CO2_HP_dt_engl_0722.pdf

5.3 Die Regelstrecke

Tabelle 5.4: Fahrzeugparameter und Modellparameter der Fahrzeugkabine nach [39]

Fahrzeugparameter Wert

Minimale Passagieranzahl 1

Maximale Passagieranzahl 85

Anzahl Türen 3

Modellparameter der Fahrzeugkabine Wert

Masse der Luft in der Fahrzeugkabine 55 kg

spezifische Wärmekapazität Luft Fahrzeugkabine 1.005 J kg−1 K−1

Oberfläche Fahrzeugkabine 100m2

Masse Interieur 400 kg

Konvektionskoeffizient Interieur 2 kWK−1

spezifische Wärmekapazität Interieur 966 J kg−1 K−1

Emissionskonstante der Kabinenoberfläche 0.95

der tatsächlich bereitgestellte Wärmestrom sowie die dafür erforderliche

elektrische Leistung bestimmen. Liegt der angeforderte Wärmestrom jedoch

unterhalb der minimal möglichen Heizleistung Q̇min, so liefert die Wärme-

pumpe weiterhin mindestens Q̇min. Ein linearer Betriebspunkt unterhalb

dieser Grenze ist somit nicht erreichbar. In der Praxis wird überschüssige

Wärme zunächst in das Heizmedium eingebracht; überschreitet dieses die

Solltemperatur, schaltet die Wärmepumpe ab und bei erneutem Bedarf wie-

der zu. Das resultiert in einem Takten der Anlage, sofern keine weiteren

Regelstrategien wie die Abgabe der Überschusswärme an andere Kreise oder

eine vollständige Abschaltung greifen. Das dynamische Verhalten der Wär-

mepumpe kann durch ein Verzögerungsglied erster Ordnung (PT1-Glied) mit

einer Zeitkonstante τWärmepumpe = 20 s beschrieben werden (s. Abbildung

A.19).

121

5 Die cloudbasierte HLK-Regelung eines BEB

−15 −10 −5 0 5 10 15 20 25

5

10

15

20

TUmgebung in
◦C

Q̇
i
n
k
W

Q̇max

Q̇min

Abbildung 5.2: Minimale und maximale Wärmeleistung der modellierten Wärmepumpe

0
10

20
30

40
50

60
70

80
90
100 −15

−10
−5

0
5

10
15

20
25

1.6
1.8
2

2.2
2.4
2.6
2.8

Q̇/Q̇max in % TUmgebung in
◦C

C
O
P

1.6

1.8

2.0

2.2

2.4

2.6

2.8

COP

Abbildung 5.3: COP-Kennfeld der modellierten Wärmepumpe

122

5.4 Aufbau des MPC-Reglers

5.4 Aufbau des MPC-Reglers

In Abbildung 5.4 ist das Funktionsschema des MPC dargestellt. Die wesentli-

chen Bestandteile des Reglers sind: Optimierung der Kostenfunktion und

Prädiktion des dynamischen Systemverhaltens der Regelstrecke bestehend

aus Fahrzeugkabine und Wärmepumpe. Im Folgenden wird das im MPC

verwendete Modell als Anlagenmodell bezeichnet, während das Modell, das

das Verhalten der realen Anlage (Regelstrecke) in der Simulation abbildet,

als Simulationsmodell bezeichnet wird. Die zugrunde liegenden Modelle, das

Kabinenmodell und die Wärmepumpe, sind in beiden Fällen identisch, wobei

im Simulationsmodell zur Berücksichtigung realer Betriebsbedingungen ein

additives gaußsches Rauschen hinzugefügt wird. Die Optimierung berück-

sichtigt Nebenbedingungen der Stellgrößen wie die minimale und maximale

Leistung der Wärmepumpe. Die Kostenfunktion beinhaltet die Definition

von Komfort (s. Kapitel 2.4.3) und die Festlegung der Regelparameter wie der

Gewichtung einzelner Bestandteile der Kostenfunktion. Die Prädiktion von

Störgrößen kann in das Anlagenmodell einfließen und die Performance des

Reglers erhöhen. Die Rückkopplung von Messdaten aus der Regelstrecke

schließt den Regelkreis.

Die in Kapitel 5.3.1 eingeführten Größen zur Beschreibung des Kabinenmo-

dells werden verwendet, um eine Notation des MPC Schemas zu entwickeln

(s. Abbildung 5.4). Die Eingangsgrößen u werden in manipulierbare Stell-

größen u und nicht-manipulierbare Störgrößen unterteilt. Die Störgrößen

wiederum werden in messbare (vorhersagbare) d und nicht-messbare (nicht-

vorhersagbare) Störgrößen z unterteilt. Vorhergesagte Größen werden mit

dem Dach-Symbol gekennzeichnet (z.B. vorhergesagte Ausgangsgrößen des

Anlagenmodells).

Die Systemgleichungen des Kabinenmodells werden aufgrund der zeitdis-

kreten Funktionsweise des Reglers diskretisiert. Das bedeutet, die konti-

nuierliche Zeit t ∈ [t0, tp] mit dem Prädiktionshorizont tp wird mit dem

123

5 Die cloudbasierte HLK-Regelung eines BEB

Regelstrecke (Anlage)

Modellprädiktiver HLK-Regler

Optimierung

Kostenfunktion
J=J1+J2+...

Messwerte
x

Prädiktion mittels
Anlagenmodell

Modell der Aufdachwärmepumpe

Fahrzeugkabinenmodell

Störgrößen
d,z

arg min
u

𝐽

u*

𝑦 𝑢

Nebenbedingungen

Komfortkriterien

Störgrößenvorhersage

𝑑

Reglerparameter

Abbildung 5.4: Schematischer Aufbau der modellprädiktiven HLK-Regelung im Stadtbus (ange-

lehnt an [42])

Tabelle 5.5: Beschreibung der Notationen des kaskadierten äußeren HLK-Regelkreises

Notation Beschreibung Zugeordnete Größe

x Zustandsgrößen Temperatur in der Fahrzeugkabine, Feuchtegrad der Kabine

y Ausgangsgrößen Bereitgestellter Wärmestrom der Wärmepumpe

u Stellgrößen Soll-Wärmestrom der Wärmepumpe

d messbare Störgrößen Außentemperatur, Solarstrahlung, Feuchtegrad der Umgebung

z nicht-messbare Störgrößen Verhalten der Passagieranzahl, Türöffnungen

Θ Modellparameter Werte der thermischen Kapazitäten

Abtastintervall des Reglers∆tMPC in die Zeit k ∈ [0, 1, ..., Np−1] überführt

(es gilt: Np =
tp

∆tMPC
). Alle nachfolgenden Gleichungen werden deshalb in

zeitdiskreter Form dargestellt.

124

5.4 Aufbau des MPC-Reglers

Die Kostenfunktion des MPC-Reglers

Die Kostenfunktion besteht aus den Bestandteilen Energiekosten JEK(k),

den Komfortkosten JKK(k) und den Kosten für die Änderung der Stellgrö-

ßen J∆u(k). Das Optimierungsproblem lässt sich dadurch folgendermaßen

formulieren:

u∗(k) = argmin
û(k)

γEKJEK(k) + γKKJKK(k) + γ∆uJ∆u(k) (5.4)

mit den Nebenbedingungen:

F
(
ˆ̇xi(k), x̂i(k), ŷi(k), û(k), d̂i(k),Θi

)
= 0 (5.5)

umin ≤ û(k) ≤ umax (5.6)

Die Nebenbedingungen basieren auf der Modellierung des Kabinenmodells

(s. Kapitel 5.3.1) als zeitdiskretes System und den Nebenbedingungen der

Stellgröße û(k). Die Grenzen der Stellgröße der Wärmepumpe (s. Abbildung

5.2) sind als harte Beschränkung zu jedem Zeitpunkt einzuhalten. Die Mini-

mierung der Kostenfunktion liefert die optimierte Stellgrößenfolge u∗(k)

über den Prädiktionshorizont. Die Gewichtungsfaktoren γEK,γKK und γ∆u

müssen aufgrund unterschiedlicher Größenordnungen der Bestandteile der

Kostenfunktion skaliert werden.

Energiekosten

Die Energiekosten berechnen sich aus der Leistungsaufnahme der Aufdach-

wärmepumpe:

JEK =

Np−1∑
k=0

ûWP(k) (5.7)

125

5 Die cloudbasierte HLK-Regelung eines BEB

Komfortkosten

Komfortkosten berechnen sich aus der weichen Beschränkung der Regelgrö-

ße Temperatur in der Fahrzeugkabine TKab. Die Komfortgrenzen orientieren

sich an den Vorgaben der VDV-Schrift 236 (s. Kapitel 2.4.3). Diese beinhaltet

die Unterscheidung zwischen Heiz- und Kühlbetrieb. Während im Heiz-

betrieb die Solltemperatur TSoll um ±2 K angepasst werden darf, ist im

Kühlfall nur eine Änderung der Starttemperatur um ±2K möglich. Es wird

also die Variablem für den Modus eingeführt:

• m = 1 im Heizbetrieb

• m = 0 im Kühlbetrieb

Die Kostenfunktion gestaltet sich folgendermaßen:

JKK =

Np−1∑
k=0

ŝKab(k)
2

(5.8)

mit

ŝKab(k) = m ·max(0, |TKab − THeiz

Soll
| − 2)+

(1−m) ·max(0, |TKab − T Kühl

Soll
| − 2) (5.9)

ŝKab(k) ≥ 0 (5.10)

Kosten der Stellgrößenänderung

Die Kosten für Stellgrößenänderungen verhindern, dass sich die optimierte

Stellgröße sehr schnell oder häufig ändert. Dadurch kann ein übermäßig

126

5.5 Die serviceorientierte Architektur

schnelles Hoch- und Runterfahren des Kompressors der Wärmepumpe ver-

hindert werden.

J∆u =

Np−1∑
k=0

|∆û(k)| (5.11)

mit

∆û(k) = û(k)− û(k − 1) (5.12)

5.5 Die serviceorientierte Architektur

Die in Kapitel 2.3.1 erläuterte signalorientierte Architektur erweist sich

aufgrund ihrer statischen Kommunikationsstruktur als ungeeignet für eine

dynamische Erweiterung des Funktionsumfangs über eine Cloudanbindung

(vgl. [107]). In dieser klassischen Architektur sind die Kommunikations-

beziehungen zwischen Steuergeräten fest in einer Kommunikationsmatrix

hinterlegt. Das Hinzufügen eines Features bedingt einen K-Matrix Release.

Infolgedessenmuss in Steuergeräteprojekten die Basissoftware, insbesondere

die Komponenten, die die Netzwerkschnittstellen betreffen, an die verän-

derte Kommunikation angepasst werden [124]. Dieser Aufwand fällt in der

SOA (s. Kapitel 2.3.2), bei der das System aus lose gekoppelten Komponenten

besteht, weg.

Zentraler Vorteil der SOA ist die Fähigkeit, Kommunikationsbeziehungen

dynamisch zur Laufzeit zu etablieren, anstatt sie im Vorfeld definieren zu

müssen. Diese Herangehensweise erleichtert die Integration neuer cloudba-

sierter Fahrzeugfunktionen.

Für die Umsetzung einer solchen SOA wird die Implementierung von ROS 2

(s. Kapitel A.7) in Kombination mit der zugrunde liegenden DDS-Middleware

bevorzugt. ROS 2 ermöglicht die dynamische Registrierung, Entdeckung

und Konfiguration von Services (s. Definition 2.2) sowohl im Fahrzeug als

127

5 Die cloudbasierte HLK-Regelung eines BEB

auch in der Cloud. Für die Kommunikation zwischen Fahrzeug und Cloud

kommt anstelle von DDS das leichtgewichtigere Message Queuing Telemetry

Transport (MQTT)-Protokoll (s. Kapitel A.9) zum Einsatz, um Bandbreite zu

schonen und robust Daten auszutauschen.

Insgesamt bietet die SOA damit die notwendige technologische Grundlage,

um bestehende E/E-Architekturen in Richtung Cloudfähigkeit weiterzuent-

wickeln – und zwar skalierbar, wartbar und zukunftssicher.

Software Orchestrator

Der Software Orchestrator (s. Abbildung 5.5) dient als zentrales Modul in-

nerhalb der SOA im Fahrzeug. Das nachfolgende Konzept erweitert die

Arbeit von Schindewolf [106] um die Anbindung des Fahrzeugs an die

Cloud [tGSS25]. Dabei muss der Orchestrator nicht nur das interne Netzwerk
und die zugehörigen Services verwalten, sondern auch eine sichere Verbin-

dung zu externen Netzwerken herstellen können. Diese Netzwerke müssen

verwaltet und deren erreichbare Services dem Fahrzeug verfügbar gemacht

werden. Der Software Orchestrator besteht aus den folgenden Komponenten:

• Connection-Manager: Verwaltet die Verbindung zu externen Netz-

werken auf Basis der Informationen aus der Network-Database. Er

führt Statusprüfungen durch, registriert verfügbare Services in der

Service-Database und übernimmt sowohl die Authentifizierung als

auch die Sicherstellung einer verschlüsselten Kommunikation.

• Execution-Manager: Verantwortlich für die Ausführung von Fea-

tures. Vor der Ausführung prüft er anhand der Feature- und Service-

Database, ob die benötigten Services am vorgesehenenAusführungsort

verfügbar sind.

• Feature-Updater: Verwaltet die Feature-Database und ermöglicht

die dynamische Anpassung des Funktionsumfangs über OTA-Updates.

128

5.5 Die serviceorientierte Architektur

Features können dadurch hinzugefügt, modifiziert oder entfernt wer-

den.

• Status-Check und Fault-Manager: Der Status-Check überprüft re-

gelmäßig die Verfügbarkeit bekannter Services und erkennt neue,

integrierbare Services. Die Ergebnisse werden in der Service-Database

aktualisiert. Bei einem Serviceausfall wird der Fault-Manager aktiviert,

um geeignete Maßnahmen einzuleiten.

• Orchestrator-Plotter: Visualisiert Systemdaten zur Laufzeit und er-

möglicht so die Überwachung und Evaluierung des Gesamtsystems.

• Network-Database: Enthält alle bekannten Netzwerke einschließlich

zugehöriger Authentifizierungsinformationen.

• Service-Database: Enthält alle registrierten Services mit ihrer Be-

zeichnung, dem zugehörigen Service-Typ sowie dem aktuellen Status

(z.B. aktiv, inaktiv).

• Feature-Database: Listet alle vom Orchestrator ausführbaren Featu-

res.

• Arbiter: Wird vom Execution-Manager aufgerufen, wenn ein Service

aufgrund des Deploymentmodells sowohl lokal im Fahrzeug als auch

in der Cloud ausgeführt werden kann. Der Arbiter entscheidet auf

Basis aktueller Netzwerkparameter wie der Round-Trip-Time (RTT)

über den geeignetsten Ausführungsort.

Neben dem eigentlichen Orchestrator existiert der Orchestrator-Manager

als eigenständige Komponente außerhalb des zentralen Moduls. Er stellt

Service-Clients für den Connection-Manager und den Execution-Manager
bereit und ermöglicht es externen Komponenten, auf deren Funktionalität zu-

zugreifen. Der Orchestrator-Manager übernimmt damit eine koordinierende

Rolle und fungiert als Schnittstelle zwischen außenstehenden Modulen (wie

z.B. cloudbasierten Alternativen oder Diagnosesystemen) und den internen

Steuerkomponenten des Orchestrators. Über ihn können gezielt Aktionen

129

5 Die cloudbasierte HLK-Regelung eines BEB

wie das Starten von Features oder das Anstoßen von Netzwerkverbindun-

gen initiiert werden, ohne dass direkte Zugriffe auf den Orchestrator selbst

notwendig sind.

Orchestrator

«database»

Network-Database

manages manages

«database»

Service-Database

«database»

Feature-Database

«component»

Execution-Manager

«component»

Feature-Updater

«component»

Status-Check & Fault

Manager

«component»

Connection-Manager

«component»

Orchestrator Plotter

«component»

Arbiter

Abbildung 5.5: Komponentendiagramm des Orchestrators

5.6 Das Deploymentmodell

Das Konzept der cloudbasierten HLK-Regelung wird durch die Entscheidung

des Deploymentmodells (s. Definition 5.1) beeinflusst.

Definition 5.1 Deploymentmodell cloudbasierter Funktionen:
Ein Deploymentmodell beschreibt die strukturelle und funktiona-

le Architektur einer Softwareanwendung – insbesondere, wie und

wo eine SWC bereitgestellt (engl. deployed) und ausgeführt wird.

Im Kontext cloudbasierter Fahrzeugfunktionen legt es fest, ob eine

Funktion ausschließlich in der Cloud, lokal im Fahrzeug oder in einer

Kombination aus beidem bereitgestellt und ausgeführt wird.

130

5.7 MCDA zur Identifikation des optimalen Deploymentmodells cloudbasierter Funktionen

Die vier bekannten Deploymentmodelle Nur Cloud, Fallback, Dupliziert und
Elastisch (vgl. Kapitel 3.2) werden um das Deploymentmodell Parallele Aus-
führung [RtD

+
25] erweitert. Dabei wird die Funktion gleichzeitig auf zwei

Ausführungsknoten, im Fahrzeug und in der Cloud, betrieben. Ziel ist die

Erzeugung redundanter Ergebnisse, die zur Laufzeit abgeglichen werden

können.

Dieses Modell erhöht die Ausfallsicherheit und erlaubt die sofortige Detek-

tion von Abweichungen. Im Vergleich zum duplizierten Modell, bei dem

nur ein Knoten (Cloud oder Fahrzeug) aktiv ist, sind hier beide Knoten

permanent aktiv. Dadurch eignet sich das Modell besonders für sicherheits-

kritische, latenzempfindliche oder fehlertolerante Anwendungen, wie z. B.

Fahrerassistenzsysteme oder KI-gestützte Entscheidungsprozesse.

• Parallele Ausführung: Die Funktion wird auf zwei Ausführungskno-

ten (Fahrzeug und Cloud) parallel bereitgestellt und ausgeführt, um

redundante Ergebnisse zu erzielen.

Entsprechend der Ontologie aus Kapitel 3.3 können alle Deploymentmodelle

bis auf das Nur Cloud Modell als dynamisch eingestuft werden.

5.7 MCDA zur Identifikation des optimalen
Deploymentmodells cloudbasierter
Funktionen

5.7.1 Die Komponenten der MCDA

Die Komponenten der MCDA (s. Kapitel 2.7) sind in vier hierarchische

Ebenen gegliedert (s. Abbildung 5.6). Auf der obersten Ebene (Ebene 0) steht

das Hauptziel: die Identifikation eines optimalen Deploymentmodells, das

den spezifischen Anforderungen im Fahrzeugkontext gerecht wird.

131

5 Die cloudbasierte HLK-Regelung eines BEB

Optimales Cloud Deploymentmodell
Ebene 0:

Hauptziel

Ebene 1:
Ziele

Maximale
Robustheit

Maximale
Performanz

Maximale
Security

Minimale Kosten

Ebene 2:
Kriterien

Ebene 3:
Alternativen

Softwarever-
fügbarkeit

Netzwerk-
parameter

(z.B. Latenz)

Energiever-
brauch im
Fahrzeug

Rechenper-
formanz

Datensicher-
heit

Minimaler
Energieverbrauch

im Fahrzeug

Betriebs-
kosten

Elastisch Fallback Dupliziert Parallel Nur Cloud

Kapitalkosten

Abbildung 5.6: Aufbau der MCDA für Deploymentmodelle cloudbasierter Funktionen

Ebene 1 umfasst daraus abgeleitete zentrale Zielsetzungen. Diese reichen

von der Maximierung von Performanz, Robustheit und Sicherheit bis hin

zur Minimierung von Kosten und Energieverbrauch im Fahrzeug. Die Ziele

spiegeln die unterschiedlichen Anforderungen an eine cloudbasierte Fahr-

zeugfunktion wider und stehen häufig in einem Zielkonflikt zueinander.

In Ebene 2 werden diese Ziele durch konkrete Bewertungskriterien opera-

tionalisiert. Dazu gehören unter anderem Softwareverfügbarkeit, Netzwerk-

parameter (z.B. Latenz), Rechenleistung, Datensicherheit, Energieverbrauch

im Fahrzeug sowie Betriebs- und Kapitalkosten. Die Verbindungen zwischen

Zielen und Kriterien in Abbildung 5.6 zeigen, dass ein Kriterium mehrere

Ziele beeinflussen kann und umgekehrt.

Ebene 3 bildet schließlich die Handlungsebene ab, auf der die konkreten

Alternativen der Deploymentmodelle bewertet werden.

Im Folgenden werden ausschließlich die Bewertungskriterien aus Ebene 2

im Detail erläutert, da sie die Grundlage für die Bewertung der Alternati-

ven bilden, während die übergeordneten Ziele bereits implizit über deren

Verknüpfung berücksichtigt sind:

132

5.7 MCDA zur Identifikation des optimalen Deploymentmodells cloudbasierter Funktionen

Krit-1 Verfügbarkeit/Robustheit: Verfügbarkeit einer Funktion innerhalb

des Systems und Robustheit gegenüber Komponenten- oder Netzaus-

fällen. Eine redundant ausgeführte Funktion, die sowohl im Fahrzeug

als auch in der Cloud betrieben wird, weist im Vergleich zu rein lokal

oder nur cloudbasierten Deploymentmodellen eine erhöhte Verfüg-

barkeit und Robustheit auf. Durch die verteilte Ausführung kann

bei Ausfall einer Umgebung (z.B. fehlende Netzwerkanbindung oder

lokale Systemstörung) auf die jeweils andere Instanz zurückgegriffen

werden.

Krit-2 Latenz: Die Latenz der Datenübertragung erhöht sich unter an-

derem durch Faktoren wie Netzüberlastung, den zu benutzenden

Routing-Pfad sowie die physische Entfernung zwischen den Kom-

munikationspartnern. Folglich hat eine Funktion, die auf einer ECU

ohne externe Netzwerkkommunikation ausgeführt wird, die gerings-

te Latenz, während eine dynamische Funktionsverteilung (s. Kapitel

3.3) die höchste Latenz aufweist.

Krit-3 Performanz der Ausführungsknoten: Leistung und Skalierbar-

keit der Ausführungsknoten (s. Abbildung 3.2). Die Rechen- und

Speicherressourcen im Fahrzeug sind nicht skalierbar und daher

begrenzt. Andererseits sind virtualisierte Einheiten wie virtuelle

Maschinen in einer Cloud skalierbar.

Krit-4 Datensicherheit: Beschreibt die Möglichkeit, dass die Funktion

selbst oder Eingabe-/Ausgabedaten von externen Parteien kompro-

mittiert werden können. Daher weisen Funktionen, die nur im Fahr-

zeug verfügbar sind, den höchsten Sicherheitsgrad auf. Dynamisch

verteilte Funktionen, die zwischen Ausführungsknoten hin- und

herbewegt werden, weisen das höchste Risiko der Manipulationen

133

5 Die cloudbasierte HLK-Regelung eines BEB

auf und haben daher das niedrigste Security-Level.

Krit-5 Energieverbrauch im Fahrzeug: Energie, die für die Ausführung

einer Funktion erforderlich ist, einschließlich der Energie, die für

die Datenübertragung benötigt wird, wenn eine externe Funktion

angesprochen werden muss (s. Kapitel 2.6.2).

Krit-6 Betriebskosten (OpEx): Kosten, die bei der Ausführung der Funkti-

on anfallen. Die Ausführung im Fahrzeug umfasst potenzielle Kosten

für OTA-Updates und Nutzungskosten wie Stromverbrauch. Die Aus-

führung in der Cloud führt zu Kosten beim Cloud Service Provider

(s. Kapitel 4.2.3).

Krit-7 Kapitalkosten (CapEx): Umfasst Software-Entwicklungs- und

Hardwarekosten. Eine Funktion im Fahrzeug erfordert eine zugehöri-

ge ECU (s. Kapitel 2.2), die einmalig gekauft wird. Diese Kapitalkosten

fallen in der Cloudumgebung vollständig weg. Die Softwareent-

wicklungskosten zwischen Cloud und Fahrzeug unterscheiden sich

ebenfalls (s. Kapitel 4.2.3).

Die Erfüllung der einzelnen Kriterien für die Deploymentmodelle wird mit-

tels einer Bewertungsskala von 0 (nicht erfüllt) bis 100 (vollständig erfüllt)

durchgeführt (verbale Ordinalskala in Tabelle 5.6).

134

5
.7

M
C
D
A
z
u
r
I
d
e
n
t
i
fi
k
a
t
i
o
n
d
e
s
o
p
t
i
m
a
l
e
n
D
e
p
l
o
y
m
e
n
t
m
o
d
e
l
l
s
c
l
o
u
d
b
a
s
i
e
r
t
e
r
F
u
n
k
t
i
o
n
e
n

Tabelle 5.6: Entscheidungsmatrix der MCDA für Deploymentmodelle

Kriterium Elastisch Fallback Dupliziert Parallel Nur Cloud

Krit-1 Verfügbar-

keit/Robustheit

mittel

(Redeployment)

sehr hoch sehr hoch am höchsten am geringsten

Krit-2 Latenz abhängig von

Internetverbindung

abhängig von

Internetverbindung

(insb. beim

Redeployment)

abhängig von

Internetverbindung

gering abhängig von

Internetverbindung

Krit-3 Performanz

der Ausführungskno-

ten

nahezu unbegrenzt nahezu unbegrenzt nahezu unbegrenzt beschränkt auf

Fahrzeug-Speicher-

& Rechenressourcen

nahezu unbegrenzt

Krit-4 Datensicher-

heit

mittel hoch mittel mittel mittel

Krit-5 Energiever-

brauch im Fahrzeug

mittel (Transfer der

Funktion)

gering sehr gering maximaler

Verbrauch

am geringsten

Krit-6 Betriebskos-

ten

hoch hoch hoch am höchsten mittel

Krit-7 Kapitalkosten hoch hoch am höchsten hoch am geringsten

1
3
5

5 Die cloudbasierte HLK-Regelung eines BEB

5.7.2 Bewertung der Alternativen für die
HLK-Regelung

Die Bewertung der Alternativlösungen des Deploymentmodells für die HLK-

Regelung wird durch die Anforderungen der Funktion selbst beeinflusst (s.

Kapitel 4.2.1), wobei die Qualitätsanforderungen Req-6 (Funktion) in Form

von Flottenlernen für die Wahl des Deploymentmodells nicht von Bedeutung

sind. Die Anforderungen der modellprädiktiven HLK-Regelung (s. Tabelle

5.7) werden entsprechend den Kriterien auf Ebene 2 der MCDA zugeordnet

und ebenfalls mittels einer Skala von 0 (keine/niedrigste Anforderungen)

bis 100 (hohe Anforderungen) erhoben. Erfüllt ein Deploymentmodell eine

Anforderung vollständig, wird der zugehörige Kriterienwert auf das Maxi-

mum von 100 gesetzt. Bei einer Unterschreitung des Anforderungswerts

erfolgt eine lineare Abwertung (vgl. Abbildung 5.7). Wird ein Kriterium

durch mehrere Anforderungen beeinflusst, etwa Latenz durch Echtzeitanfor-

derungen und Hardwareabhängigkeit, wird der Mittelwert der beteiligten

Anforderungswerte verwendet, um das Deploymentmodell zu bewerten.

Die Berechnung des Gesamtnutzwerts erfolgt gemäß dem WSM nach Glei-

chung 2.40, wobei alle Kriterienwerte aij mit identischem Gewicht wj in die

Bewertung eingehen. Eine prozentuale Bewertung der Deploymentmodelle

kann mithilfe einer hypothetischen Funktion berechnet werden, die über die

niedrigsten Anforderungen verfügt und somit von jedem Deploymentmodell

vollumfänglich erfüllt wird. Die aufsummierte maximale Gesamtsumme bei

den entsprechenden Gewichten wird als Referenz herangezogen.

Be
w

er
tu

ng

100

0 Anforderung 100

Erfüllungsgrad des Kriteriums
Deploymentmodell A

Be
w

er
tu

ng

100

0 Anforderung 100

Erfüllungsgrad des Kriteriums
 Deploymentmodell B

Abbildung 5.7: Bewertungsmetrik eines Kriteriums für zwei verschiedene Deploymentmodelle

136

5
.7

M
C
D
A
z
u
r
I
d
e
n
t
i
fi
k
a
t
i
o
n
d
e
s
o
p
t
i
m
a
l
e
n
D
e
p
l
o
y
m
e
n
t
m
o
d
e
l
l
s
c
l
o
u
d
b
a
s
i
e
r
t
e
r
F
u
n
k
t
i
o
n
e
n

Tabelle 5.7: Anforderungen der modellprädiktiven HLK-Regelung

Anforderung Wert Begründung

Echtzeitanforderungen (Krit-1, Krit-2) 20 Für die Regelung des thermischen Komforts ist eine zeitnahe Berechnung der

Stellgrößen erforderlich. Aufgrund der trägen Dynamik der HLK-Regelung im

Stadtbus (vgl. Kapitel 6.4.5) sind Mobilfunklatenzen im Millisekundenbereich (vgl.

Kapitel 2.6.1) unkritisch. Die Verfügbarkeit der Funktion beeinflusst den Komfort,

ist jedoch nicht sicherheitskritisch.

Safety- und Securityanforderungen (Krit-4) 20 Die Sensordaten (Temperaturmesswerte etc.) und Regelgrößen sind für den Komfort

relevant und nicht sicherheitskritisch. Standard-Securitymaßnahmen bei Cloud-

Deployment wie verschlüsselte Kommunikation, sichere Authentifizierung und

Datenschutz.

Ressourcenanforderungen (Krit-3, Krit-5,

Krit-6)

70 Die modellprädiktive Regelung erfordert die Lösung eines Optimierungsproblems

in jedem Regelungsintervall, was im Vergleich zu klassischen Reglern (z.B. PID)

signifikante Rechenressourcen (Krit-3) (vgl. auch Tabelle 4.2) beansprucht. Dies

führt gleichzeitig zu einem erhöhten Energieverbrauch der ECU im Vergleich zum

bisherigen PID-Regler.

Hardwareabhängigkeiten (Krit-2) 10 Die Funktion der HLK-Regelung im Stadtbus ist im Vergleich zu typischen hard-

wareabhängigen Treiber- oder Sensorschnittstellen nicht hardwareabhängig. Die

HLK-Funktion arbeitet auf einer höheren Abstraktionsebene und berechnet Soll-

werte oder Reglerausgänge basierend auf physikalischen Messgrößen (Temperatur,

Feuchte etc.), ohne dabei direkt auf Register oder spezifische Hardwareschnittstellen

zuzugreifen. Der Einfluss von Latenz (Krit-2) ist, verglichen mit der Zeitkonstante

der Regelstrecke, gering.

Ökonomische Anforderungen (Krit-6, Krit-7) 50 Während Kapitalkosten aufgrund der benötigten Rechenressourcen der MPC als

hoch einzustufen sind, sind die Betriebskosten aufgrund des hohen Abtastintervalls

einer HLK-Regelung im Sekundenbereich (vgl. Millisekunden in der Motorsteue-

rung) als gering einzustufen.

1
3
7

5 Die cloudbasierte HLK-Regelung eines BEB

Für die in Kapitel 5.4 beschriebene modellprädiktive HLK-Regelung ergibt

sich folgende prozentuale Eignung der fünf verschiedenen Deploymentmo-

delle cloudbasierter Funktionen:

• Elastisch: 74,35 %

• Fallback: 91,68 %

• Dupliziert: 81,69 %

• Parallel: 52,12 %

• Nur Cloud: 96,55 %

5.8 Fazit zur Konzeptentwicklung

Das vorliegende Kapitel entwickelte ein umfassendes Konzept für eine cloud-

basierte HLK-Regelung in BEB, das sowohl technische als auch architektoni-

sche Herausforderungen adressiert.

Die Wahl der modellprädiktiven Regelung (MPC) als cloudbasierter Regler

erwies sich durch die systematische Anforderungsanalyse (s. Kapitel 5.2)

als optimal geeignet. Mit 71 von 80 möglichen Punkten übertrifft der MPC-

Ansatz deutlich die Alternativen Fuzzy (34), PID (41) und Reinforcement

Learning (61). Der MPC erfüllt alle kritischen Anforderungen durch direkte

Integration der Leistungsaufnahme in die Kostenfunktion, Abbildung der

VDV-236-Vorgaben sowie explizite Berücksichtigung von Systembeschrän-

kungen und Störgrößenprädiktionen.

Die serviceorientierte Architektur (SOA) (s. Kapitel 5.5) mit ROS 2 und

DDS-Middleware ermöglicht die notwendige Flexibilität für cloudbasierte

Fahrzeugfunktionen. Der entwickelte Software Orchestrator bildet das zen-

trale Modul für die dynamische Service-Verwaltung zwischen Fahrzeug und

Cloud.

138

5.8 Fazit zur Konzeptentwicklung

Die MCDA (s. Kapitel 5.7) identifizierte das Nur Cloud-Deploymentmodell

mit 96,55% als am besten geeignet für die HLK-Regelung, gefolgt vom Fall-
back-Modell mit 91,68%. Der geringe Bewertungsunterschied zwischen

beiden Deploymentmodellen zeigt, dass das Fallback-Modell eine nahezu

gleichwertige Alternative darstellt. Diese Bewertung resultiert aus den spe-

zifischen Anforderungen der Anwendung: moderate Echtzeitanforderungen,

geringe Security-Kritikalität, aber hohe Ressourcenanforderungen aufgrund

der rechenintensiven MPC-Optimierung (s. Tabelle 5.7).

139

6 Prototypische Umsetzung

E/E-Architekturen befinden sich derzeit in einem tiefgreifenden Wandel.

Während in der Vergangenheit stark domänenorientierte Architekturen mit

einer Vielzahl dezentral verteilter ECUs vorherrschend waren, zeichnet sich

im PKW-Bereich zunehmend ein Übergang hin zu zentralisierten Architek-

turen über den Zwischenschritt der Zonenarchitektur ab (s. Kapitel 2.3.1).

Diese setzen auf zentrale Hochleistungsrechner (engl. HPC) und das Konzept

der Serviceorientierung (s. Kapitel 2.3.2).

Der Stadtbus folgt dem technologischen Wandel, wenn auch mit zeitli-

cher Verzögerung. Dennoch ist absehbar, dass auch hier zentralisierte E/E-

Architekturen Einzug halten. Parallel dazu etabliert sich die Anbindung an

übergeordnete Systeme, insbesondere an Cloud-Infrastrukturen, zunehmend

als Standard. Diese Verbindung wird in der Regel über eine im Fahrzeug

verbaute Telematikeinheit realisiert (vgl. Abbildung A.21). Die Telematik-

einheit fungiert als zentrales Gateway zwischen der fahrzeuginternen E/E-

Architektur und externen Systemen. Wie in Abbildung 6.1 dargestellt, verbin-

det sie die verschiedenen fahrzeuginternen Sub-Netzwerke und ermöglicht

über verschiedene Inter-Fahrzeug-Kommunikationsprotokolle (WLAN IE-

EE 802.11, LTE/5G, Dedicated Short-Range Communications (DSRC)) die

Anbindung an cloudbasierte Funktionen oder andere Fahrzeuge (V2V) und

Infrastrukturelemente wie Road Side Unit (RSU). Die Cloud-Infrastruktur

selbst besteht aus verschiedenen cloudbasierten Funktionen, die über eine

Cloud-Application Programming Interface (API) zugänglich sind. An dieser

Stelle übernimmtwieder ein Gateway die Funktion der Protokollübersetzung,

Zugriffskontrolle und Weiterleitung an die entsprechenden Funktionen in

141

6 Prototypische Umsetzung

Telematikeinheit

Mobiles Netzwerk
(LTE, 5G)

Gateway

Cloudbasierte
Funktion (f1)

Hochleistungsrechner
(HPC) Zone B

Hochleistungsrechner
(HPC) Zone A

ECU

ECU

ECU

Cloudbasierte
Funktion (f2)

Cloudbasierte
Funktion (fn)

Cloud-Infrastruktur

Cloudbasierte Funktion

Cloud-API

Inter-Fahrzeug-
Kommunikation

Fahrzeuginterne
Kommunikation

E/E-Architektur

WLAN
(802.11)

DSRC
(802.11p)

Nicht betroffe ECUECU

ECU Betroffene ECU

Datenfluss

Abbildung 6.1: Cloudbasierte Funktionen im vernetzten Stadtbus (angelehnt an [81])

der Cloud. In der dargestellten Version cloudbasierter Funktionen im ver-

netzten Stadtbus ist ein Fall abgebildet, bei dem die cloudbasierte Funktion

einen Einfluss auf einzelne ECUs im Fahrzeug hat, was jedoch laut Definition

(vgl. Kapitel 4.1) nicht zwingend der Fall sein muss.

Vor demHintergrund dieser technologischen Entwicklungen wird im Folgen-

den eine E/E-Testplattform vorgestellt, die als Grundlage für die prototypi-

sche Umsetzung der in dieser Dissertation entwickelten Konzepte dient. Die

Plattform bildet zentrale Aspekte moderner Fahrzeugarchitekturen ab und

erlaubt deren experimentelle Validierung im Kontext des COTA-Ansatzes.

Aufgrund der im vorangegangenen Kapitel 5.6 dargelegten hohen Eignung

der beiden Deploymentmodelle Nur Cloud und Fallback werden auf der Platt-

form beide Deploymentmodelle umgesetzt. Ziel ist es, die zuvor theoretisch

bewerteten Konzepte zu validieren, ihre Auswirkungen auf die Regelungs-

142

6.1 ATLAS Testplattform

performanz zu untersuchen und zu klären, ob ein Fallback-Regler trotz der

Ergebnisse der MCDA notwendig ist.

6.1 ATLAS Testplattform

Regelstreckensimulation auf
Simulations-PC (Ausgabe) 4

PID-Regler auf Raspberry Pi 4B
als ECU 3

ROS 2 und Orchestrator auf
UpXtreme i12 als HPC

Router
2

Cloudbasierter MPC-Regler
1

Abbildung 6.2: Die zur Validierung verwendete Testplattform ATLAS

Die ATLAS Testplattform am ITIV (s. Abbildung 6.2) stellt einen Verbund von

Mikrocontroller-Boards zur Nachbildung einer vereinfachten zentralisierten

Fahrzeug E/E-Architektur dar. Die Kommunikation der Boards setzt sowohl

auf den CAN-Bus als auch auf IP-basierte Ethernet-Kommunikation. Der

Demonstrator dient als Plattform für die Umsetzung der cloudbasierten HLK-

Regelung. Zur Anwendung kommen nur die in Abbildung 6.3 dargestellten

Komponenten (s. auch Tabelle 6.1).

143

6 Prototypische Umsetzung

li

HPCSimulations-PC

Carla
 Server

PythonAPI
/Carla Interface

Regelstrecke

ROS 2 (DDS)

Szenario-
simulation

4 2

Router

Orchestrator

PID als Fallback
Regler

ECU 3

MPC als Cloud
Regler

Cloud 1

EthernetSoftware
 (Feature) SWC Software

 (Middleware)
Software

 (Simulation)

Legende

SWCSWC

Fahrzeug

Cloud

Abbildung 6.3: Hard- und Softwarekomponenten für die cloudbasierte HLK-Regelung auf der

ATLAS Testplattform

Zentraler Bestandteil der Plattform ist ein UpXtreme i12 Entwicklungsboard
1
,

das einen HPC 2 im Fahrzeug darstellt (ca. 204.000DMIPS vgl. Tabelle

2.1). Die Performanz des Boards bietet die Möglichkeit, verteilte und querver-

netzte Features (s. Kapitel A.15) auszuführen. Der Software Orchestrator (s.

Kapitel 5.5) wird hier als zentrale Middleware-Komponente (s. Kapitel A.11)

ausgeführt. Eine klassische ECU 3 , die hinsichtlich ihrer Leistungsfähig-

keit mit einer im Fahrzeug eingesetzten ECU der hohen Leistungsklasse (ca.

24.000DMIPS vgl. Tabelle 2.1) vergleichbar ist, wird herangezogen, um das

Fallback-Deploymentmodell mit einem PID-Regler im Fahrzeug umzusetzen.

1 https://up-shop.org/DE/up-xtreme-i12-series.html

144

https://up-shop.org/DE/up-xtreme-i12-series.html

6.1 ATLAS Testplattform

Weiterer Bestandteil ist eine Regelstreckensimulation, ausgeführt auf einem

Simulations-PC 4 . Auf diesem Rechner wird die Open-Source Simulations-

umgebung Carla [35] ausgeführt. In Carlawurde die Regelstrecke, bestehend
aus Fahrzeugkabine und Aufdachklimaanlage, mittels des Carla Python API

integriert. Alle Boards sind über einen Router in einem gemeinsamen Netz-

werk organisiert.

Die Cloud 1 ist ein performanter Laptop in einem externen Netzwerk zur

Ausführung des entwickelten MPC. Die Netzwerkverbindungen zwischen

ATLAS Demonstrator und Cloud können über Mobilfunk (4G/LTE oder

5G) hergestellt werden, sodass eine „Cellular-V2N“ Kommunikation (s. Ka-

pitel 2.6) zustande kommt. Diese Kommunikationsart stellt aufgrund der

hohen Verfügbarkeit und Reichweite die stabilste Verbindung für eine V2N-

Kommunikation bei einem sich mit hoher Geschwindigkeit bewegenden

Fahrzeug dar.

Das POSIX-kompatible (s. Definition A.6) Betriebssystem Ubuntu 22.04.5
wird auf dem UpXtreme i12, der Cloud und dem Simulations-PC ausgeführt.

Tabelle 6.1: Spezifikation der Hardware des ATLAS Testplattform

Bezeichnung Beschreibung Prozessor Kerne RAM

Cloud-PC 1 Laptop

AMD Ryzen™ 5

3500U

4 16GB

HPC 2

UpXtreme

i12 Board

12th Gen Intel
®

Core™ i7-1270PE

12 16GB

ECU 3

Raspberry Pi

Model 4 B

Cortex-A72 4 8GB

Simulations-PC 4 Desktop-PC

AMD Ryzen™ 9

7950X

16 64GB

145

6 Prototypische Umsetzung

6.2 Die integrierten Softwarekomponenten
des COTA-Ansatzes

Die Applikation der HLK-Regelung wird vom Orchestrator durch den Start

des HVAC-Client mittels ROS-Launch Datei aufgerufen. Dieser beinhaltet

für die beiden Deploymentmodelle jeweils einen HVAC-Cloud-Client und
einen HVAC-Vehicle-Client. Die Clients (s. Abbildung 6.4) kommunizieren

mit den HVAC-Servern (s. Abbildung 6.5) im Fall des MPC in der Cloud

asynchron (Publish-Subscribe) über das MQTT Protokoll und im Fall des

HVAC-PID-Controllers im Fahrzeug synchron (Request-Response) via dem

ROS-Service HvacControl. Der HVAC-MPC-Controller in der Cloud muss

seine Services aktiv dem Orchestrator kommunizieren. Dazu sendet er im

aktiven Zustand die nutzbaren Services über das MQTT-Topic cloud_services
an den Connection-Manager des Orchestrators. Dieser stellt sicher, dass die
Services in der Service-Database korrekt verwaltet werden. Schlussendlich
wird die Regelschleife über die beiden Topics HvacData und HvacControlVa-
lues zwischen der Simulation und den HVAC-Clients geschlossen.

Die Zuverlässigkeit der asynchronen Nachrichtenübermittlung zwischen

HVAC-Cloud-Client und HVAC-MPC-Controller kann jeweils für den MQTT-

Publisher und MQTT-Subscriber festgelegt werden. Die Quality of Service

(QOS)-Levels der Topics sind im System wie folgt spezifiziert:

• hvac_readings QOS-Level 0: Die Daten werden unter möglichen

Verlusten schnellstmöglich übertragen. Um sicherzustellen, dass der

HVAC-MPC-Controller in der Cloud die Berechnung der nächsten Stell-

größen auf Basis der aktuellsten Messwerte durchführt, muss die

Nachrichtenübermittlung so hochfrequent wie möglich erfolgen.

• hvac_control_valuesQOS-Level 2: Jede Nachricht wird genau einmal

übermittelt. Ein wiederholtes Anwenden von Stellgrößen im Simulati-

146

6.2 Die integrierten Softwarekomponenten des COTA-Ansatzes

onsmodell muss ebenso vermieden werden wie ein möglicher Verlust

einer Stellgröße während der Nachrichtenübermittlung.

• cloud_services QOS-Level 1: Jede Nachricht wird mindestens einmal

übermittelt. Die Übermittlung der Cloud-Services muss in bestimmten

Zeitabständen erfolgen, da sonst der Orchestrator davon ausgeht, dass

der jeweilige Cloud-Service nicht mehr zur Verfügung steht.

«component»

HVAC-Client

«component»

HVAC-Cloud-Client

Provided Interfaces

pub tpc hvac_control_values: HvacControlValues

mqtt_client hvac_cloud_client pub tpc hvac_readings

Required Interfaces

mqtt_client sub tpc hvac_control_values

sub tpc hvac_data: HvacData

«component»

HVAC-Vehicle-Client

Provided Interfaces

pub tpc hvac_control_values: HvacControlValues

sub tpc hvac_data: HvacData

Required Interfaces

cli hvac_control_vehicle: HvacControl

Use

Use

Use

Use

Use

starts

Use

Use

«component»

Orchestrator

«component»

Simulation

«ros_interface»

msg HvacControlValues

«ros_interface»

msg HvacData

«component»

HVAC-Server

«ros_interface»

srv HvacControl

Use

Abbildung 6.4: Komponentendiagramm des integrierten HVAC-Clients

Die Simulationsumgebung (s. Abbildung 6.6) in Carla umfasst neben dem

Simulationsmodell der Regelstrecke (s. Kapitel 5.3) auch eine Erweiterung

um Wettermesswerte über die Komponente Dynamic_Weather. Hier lassen
sich Temperaturverläufe eines Tages inklusive des Startzeitpunkts definie-

ren. Mithilfe des Bus_Agent können Bushaltestellen mit entsprechender

Haltedauer konfiguriert werden (s. Abbildung A.15). Während eines Halts

öffnen sich die Bustüren und das Ein- und Aussteigen von Passagieren wird

147

6 Prototypische Umsetzung

«component»

HVAC-Server

Use

Use

«component»

Prediction-Model

«component»

HVAC-MPC-Controller

Provided Interfaces

mqtt_client hvac_mpc_controller pub tpc

hvac_control_values

pub tpc cloud_services

Required Interfaces

sub tpc hvac_readings

«component»

HVAC-PID-Controller

Required Interfaces

srv hvac_control_vehicle: HvacControl

«component»

MPC_CabinModel

Artifacts

CabinProperties.mat

«component»

ContextPredictor

«component»

MPC_HeatPump

Artifacts

HeatPumpProperties.mat

Use

«ros_interface»

msg_collection

EvalData

«component»

HVAC-Client

«ros_interface»

srv HvacControl

Abbildung 6.5: Komponentendiagramm des integrierten HVAC-Servers

simuliert. Damit lassen sich die in Kapitel 3.5 identifizierten Einflussfaktoren

auf die HLK-Systeme innerhalb der Simulation abbilden.

Das Simulationsmodell wird mit der Methode NextTimeStep() und dem Zeit-

schritt delta_t_sim synchron zur CARLA-Simulation ausgeführt. Vor jedem

Simulationsschritt werden über die Methode SetContext() die aktuellen Ein-

gangsgrößen (s. Kapitel 5.3.1) an das Modell übergeben (vgl. Abbildung A.16

und Abbildung A.17). Die Prädiktion von Störgrößen (z.B. Passagieranzahl)

kann über die Komponente ContextPredictor (s. Abbildung 6.5, unten) erfol-

148

6.2 Die integrierten Softwarekomponenten des COTA-Ansatzes

gen. In diesem Zusammenhang wird auf die Publikation „Model Predictive

HVAC Control with disturbance variable forecasting for city buses“ [tSR21]

verwiesen.

«component»

Simulation

Use

«component»

Simulation_Model

«component»

Sim_Drive

Provided Interfaces

pub tpc network_data:

Networkdata

pub tpc hvac_data: HvacData

Required Interfaces

sub tpc hvac_control_values:

HvacControlValues

«component»

Dynamic_Weather

«component»

Vehicle

«carla_interface»

Use

«component»

Sim_HeatPump

Artifacts

HeatPumpProperties.mat

«component»

Bus_Agent

Use

Use UseUse

«component»

HVAC-Client

«ros_interface»

msg Networkdata

«ros_interface»

msg

«ros_interface»

msg CabinTemp

«component»

Orchestrator

«ros_interface»

msg_collection

«component»

Sim_CabinModel

Artifacts

CabinProperties.mat

Abbildung 6.6: Komponentendiagramm der integrierten Simulationsumgebung

149

6 Prototypische Umsetzung

Ein Ausfall bzw. die Inaktivität eines Services wird vom Status-Check und
Fault-Manager des Orchestrators (vgl. Kapitel 5.5) erkannt. Dieser vergleicht
die aktiven und die registrierten Services in der Service-Database. Dadurch
lassen sich neue Services registrieren und der Status bereits bekannter Ser-

vices überprüfen. Außerdem nutzt der Execution-Manager einen Callback,

um zu prüfen, ob alle Services zur Ausführung des Features für den jeweiligen

Ausführungsort noch aktiv sind (s. Abbildung 6.7). Verbindungsausfälle wer-

den hingegen vom Connection-Manager detektiert. Wurde die Verbindung zu

einem anderen Netzwerk unterbrochen, versucht der Connection-Manager
für einen definierbaren Zeitraum die Verbindung wieder aufzubauen (s. Ab-

bildung 6.8). Kann die Verbindung nicht wiederhergestellt werden, löscht der

Connection-Manager die entsprechenden Services aus der Service-Database.
Sind die Services, die zur Ausführung des HLK-Cloud-Features benötigt

werden, nicht mehr aktiv oder wurde die Cloud-Verbindung für den definier-

ten Zeitraum unterbrochen, versucht der Execution-Manager das Feature
weiterhin bereitzustellen. Hierfür wurden im Execution-Manager, abhängig
vom Deploymentmodell, die folgenden Mechanismen implementiert:

• Nur Cloud: Es werden die zwischengespeicherten Stellgrößen aus

dem Prädiktionshorizont des MPC zur Überbrückung der Unterbre-

chung verwendet. Sobald dieser Buffer überschritten ist, wird die letzte
Stellgröße konstant gesetzt. Da die Regelschleife in diesem Fall nicht

mehr geschlossen ist, handelt es sich hierbei nicht um eine Regelung,

sondern eine Steuerung. Dieser Betriebsmodus wird als Buffered Pre-

diction Horizon (BPH) bezeichnet.

• Fallback: Wechsel auf den lokalen Fallback PID-Regler.

Steht das HLK-Cloud-Feature nach einem Ausfall wieder zur Verfügung,

können die notwendigen Services erneut dynamisch integriert werden. Die

Cloud-Services sind für den Connection-Manager bei bestehender Verbin-
dung zur Cloud stets sichtbar, da eine Subscription auf das Topic cloud_services
besteht. Außerdem besitzen Services für gewöhnlich keinen Zustand, wes-

halb sich das Wiederherstellen eines Services auf das erneute Aufrufen

150

6.2 Die integrierten Softwarekomponenten des COTA-Ansatzes

reduziert.

Innerhalb des cloudbasierten MPC erfolgt die Detektion inkonsistenter

oder verzögerter Mess- und Stellgrößen über eine Plausibilitätsprüfung.

Dabei wird die Gültigkeit der Stellgrößen vor ihrer Weitergabe im System

sichergestellt (vgl. Abbildung A.17). Zu diesem Zweck wird ein Buffer mit

historischen Stellgrößen angelegt. Dieser dient sowohl zur Überwachung

der Änderungsrate zwischen aufeinanderfolgenden Stellgrößen als auch

zur Kontrolle der Zeitabstände, in denen diese bereitgestellt werden. Verzö-

gerungen bei der Übertragung von Messwerten oder bei der Berechnung

der Stellgrößen wirken sich auf diese Zeitabstände aus. Wird eine berech-

nete Stellgröße von der Plausibilitätsprüfung als ungültig erkannt, so wird

stattdessen die zuletzt als plausibel eingestufte Stellgröße verwendet.

151

6 Prototypische Umsetzung

:Execution-
Manager

:Service-
Database

:Feature-
Database

:Orchestrator-
Manager :Arbiter

User/Car

user_app

get_user_app()

alt

[if (vehicle_available) and (not cloud_available)]

ref_start_HVAC-<exec_loc>-Client

ref_start_HVAC-Vehicle-Client

ref_start_HVAC-Cloud-Client

reset_timer(app_name)

update_current_computation_location(app_name, exec_loc)

arbiter_decision(app_name)

new_loc

cost_function

_and_decision()

[else if (not vehicle_available) and (cloud_available)]

[else if (vehicle_available) and (cloud_available)]

get_user_action()

[user_action=start]
request.action,

request.app_name

client
app_control

service
app_control

response.success=True

check_service_availability
(required_services, exec_loc)

vehicle_available,
cloud_available

get_exec_loc(app_name)

exec_loc

get_required_services(app_name, exec_loc)

required_services

loop
running_apps_callback(app_name) checks periodically if the

application is executed on
the best location

reset_timer(app_name)

update_current_computation_location(app_name, exec_loc)

reset_timer(app_name)

update_current_computation_location(app_name, exec_loc)

Abbildung 6.7: Sequenzdiagramm der Ausführung eines Features im integrierten System

152

6.2 Die integrierten Softwarekomponenten des COTA-Ansatzes

:MQTT Broker

write_to_csv(live_data)

check_time_constraints()

:Orchestrator
Plotter

plot(live_data)

:ROS-Bridge:Connection-
Manager

:Orchestrator-
Manager

User/Car

get_user_action()

user_action
[request.action=start]

response.success

client
net_control service

net_control

connect as orchestrator

subscribe(topic: "cloud_services")

loop

subscribe(topic: "network_data")

check_cloud_connection()

loop
subscribe(topic: "cloud_eval_data")

subscribe(topic: "ecu_eval_data")

subscribe(topic: "sim_eval_data")

publish(topic: "live_data")
subscribe(topic: "live_data")

Abbildung 6.8: Sequenzdiagramm der Cloud Verbindung im integrierten System

153

6 Prototypische Umsetzung

6.3 Definition der Systemanforderungen und
Testszenarien

Die Validierung der cloudbasierten HLK-Regelung wird durch eine Syste-

mintegration und den anschließenden Test (s. Kapitel A.6) auf der ATLAS-

Plattform durchgeführt.

Die Anforderungen der Validierung teilen sich folgendermaßen in funktional

F und nichtfunktional NF und zugehörige Testszenarien TS:

Funktionale Anforderungen und zugehörige Testszenarien

F-Req-1 Energieeffizienz: Der Einsatz des cloudbasierten Reglers muss

unter identischen thermischen Bedingungen sowie ohne Verbin-

dungsabbrüche oder Serviceausfälle energetische Einsparpoten-

ziale gegenüber dem Stand der Technik, einem fahrzeuginternen

PID-Regler, aufzeigen.

TS 1.a Simulationsszenarien: Variation der thermischen Umge-

bungsbedingungen

F-Req-2 Thermischer Komfort: Der cloudbasierte Regler soll den thermi-

schen Komfort bei Verbindungsabbrüchen bzw. Serviceausfällen

und unter schwierigsten thermischen Umgebungsbedingungen

entsprechend der Regleranforderung Req-2 (Regler) (s. Kapitel

5.2) erfüllen.

TS 2.a Simulationsszenarien: Variation der thermischen Umge-

bungsbedingungen bei Verbindungsabbrüchen- und Ser-

viceausfällen

F-Req-3 Fehlerbehandlung und Wiederherstellung: Das System muss

Fehlerbehandlungsmechanismen umsetzen, um mit Serviceausfäl-

len, Netzverbindungsausfällen, Datenfehlern (inkonsistente Daten)

154

6.3 Definition der Systemanforderungen und Testszenarien

und Verzögerungen bei der Datenbereitstellung umgehen zu kön-

nen. Darüber hinaus muss das System in der Lage sein, den Betrieb

von Services nach einem Fehler wiederherzustellen.

TS 3.a Serviceausfall und Wiederherstellung: Stopp und Neu-

start des HLK-Cloud-Features

TS 3.b Verbindungsausfall: Trennung der Cloud-Verbindung

TS 3.c Datenfehler: Erzeugung von inkonsistenten Reglerstell-

größen

TS 3.d Datenverzögerungen: Einfügen synthetischer Verzöge-

rungen der Datenübertragung

F-Req-4 Einhaltung des Regler Abtastintervalls: Der cloudbasierte

MPC-Regler muss Stellgrößen in einem Zeitfenster kleiner als

das Abtastintervall berechnen. Es muss also folgende Gleichung

erfüllt werden:

∆tMPC > tExe,Cloud + tTrans,Cloud + tLatenz (6.1)

Es wird davon ausgegangen, dass der PID-Regler im Fallback De-

ploymentmodell aufgrund geringer Rechenanforderungen diese

Zeitanforderung jederzeit erfüllt.

TS 4.a Überprüfung der Zeitanforderung: Variation des Prädiktions-

bzw. Kontrollhorizonts des cloudbasierten MPC ausge-

hend von einem Basisfall.

Nichtfunktionale Anforderungen

NF-Req-1 Wartbarkeit und Erweiterbarkeit: Das System soll modular

aufgebaut sein, um Services problemlos zu aktualisieren. Die Ar-

chitektur soll so ausgelegt sein, dass zukünftige Erweiterungen

155

6 Prototypische Umsetzung

oder Anpassungen ohne Umstrukturierungsaufwand erfolgen

können.

• keine Testszenarien

NF-Req-2 Security: Die Übertragung von Daten zwischen Cloud und Fahr-

zeug/Simulation soll verschlüsselt erfolgen. Zusätzlich darf eine

Verbindung mit der Cloud nur nach erfolgreicher Authentifizie-

rung stattfinden.

• keine Testszenarien

6.4 Validierung der Anforderungen

6.4.1 Die Simulationsszenarien

Mit Hilfe der Dynamic_Weather-Komponente der Simulationsumgebung (s.

Kapitel 6.2) wurden zunächst drei repräsentative Klimaszenarien erstellt,

die typische Wetterverläufe abbilden. Grundlage dafür bilden Temperatur-

daten des Deutschen Wetterdienstes aus den Jahren 1960 bis 2020 für die

Städte Berlin, Hamburg, Köln, Mannheim und München. Die Auswertung

dieser Daten zeigt eine annähernd normalverteilte Temperatur mit einem

Mittelwert von µTemperatur = 9,805 ◦C und einer Standardabweichung von

σTemperatur = 8,007 ◦C. Auf Basis dieser Verteilung wurden, unter Verwen-

dung realer Wetterdaten der Stadt Köln, die in der Mitte der betrachteten

Städte liegt, drei Szenarien definiert.

Zur umfassenden Bewertung der Systemperformanz wurde zusätzlich ein

weiteres Szenario bei der unteren Grenztemperatur des COP-Modells der

Wärmepumpe berücksichtigt (vgl. Kapitel 5.3.2). Diese Simulation (Sim 4)

wurde bei einer nominalen Außentemperatur von −15 ◦C durchgeführt

(nicht auf Basis von realen Wetterdaten der Stadt Köln), um das Verhalten

des Systems am Rand des definierten Betriebsbereichs zu charakterisieren

156

6.4 Validierung der Anforderungen

und die Robustheit der beiden Deploymentmodelle unter extremen Witte-

rungsbedingungen zu evaluieren.

Insgesamt entstanden die in den folgenden Klimaszenarien beschriebenen

Simulationen:

Sim 1 Szenario mit durchschnittlichen nominalen Außentemperaturen,

Sim 2 Szenario mit Temperaturen eine Standardabweichung unterhalb des

Mittelwerts,

Sim 3 Szenario mit Temperaturen eine Standardabweichung oberhalb des

Mittelwerts,

Sim 4 Szenario bei der unteren Grenztemperatur des COP-Modells der

Wärmepumpe.

Da alle Klimaszenarien realistische Tagestemperaturverläufe mit natürlichen

Schwankungen simulieren, weichen die resultierenden Durchschnittstem-

peraturen geringfügig von den angestrebten Zielwerten ab. Die Bus_Agent
Komponente diente zur Konfiguration der Haltedauern an Bushaltestellen

und zur Parametrierung der Passagieranzahl, die sich an Haltestellen ändert.

Alle Parameter zusammen ergeben die Simulationsszenarien in Tabelle 6.2.

Zur Validierung der Einhaltung des Abtastintervalls (vgl. F-Req-4) sowie

zur Bewertung des Einflusses des Prädiktionshorizonts (s. Kapitel 2.1.1 auf

die Energieeffizienz (vgl. F-Req-2) wurde Sim 1 in drei Unterszenarien

unterteilt, die sich durch unterschiedliche Prädiktionshorizonte des MPC

unterscheiden.

Abtastung von Simulation und Regelung In der Simulationsumgebung

Carla wird eine Abtastrate von ∆tSim = 0,33 s verwendet. Diese hohe zeit-

liche Auflösung ist ausreichend, um die Dynamik sämtlicher thermischer

Massen im Fahrzeug präzise abzubilden. Der übergeordnete MPC wird mit

einem Abtastintervall von ∆tMPC = 10 s implementiert. Dieses Intervall

157

6 Prototypische Umsetzung

wurde auf Grundlage der Regelstreckendynamik gewählt, die maßgeblich

durch die thermische Trägheit der Fahrzeugkabine bestimmt wird. Aus den

in Tabelle 5.4 aufgeführten Modellparametern ergibt sich eine Zeitkonstan-

te der Fahrzeugkabine von τKabine = 193 s, was gut mit experimentellen

Messungen aus [Lin21] übereinstimmt.

Das gewählte Regler-Abtastintervall ist damit klein genug, um die Dyna-

mik der Kabine hinreichend genau zu erfassen. Gleichzeitig erlaubt es eine

mindestens zweifache Abtastung der Wärmepumpe innerhalb ihrer typi-

schen Zeitkonstante, wie in Abbildung A.19 dargestellt. Dadurch wird eine

angemessene Regelgüte sowohl für das Gesamtsystem als auch für die un-

tergeordneten thermischen Komponenten sichergestellt.

Tabelle 6.2: Rahmenbedingungen der Simulationen

Sim 1 (a,b,c)
‡

Sim 2 Sim 3 Sim 4

TUmgebung in
◦C 9,58 0,94 16,44 -14,87

tBusstopp in s 16,5 33 8,25 22,0

Q̇Solar inW 290 0 330 60

φUmgebung in% 34 51 33 80

NPassagiere
†

1–88 1–88 1–88 1–88

‡

Variation des Prädiktionshorizonts des MPC: a:NP = 10, b:NP = 20, c:NP = 30
†

Die Anzahl der Passagiere variiert bei jeder Bushaltestelle im Bereich von 1 bis 88.

6.4.2 F-Req-1: Energieeffizienz

Durchführung des Testszenarios Die funktionale Anforderung F-Req-1

wird auf Basis der in Tabelle 6.2 dargestellten Simulationsszenarien validiert.

Die Variation der Umgebungstemperatur in diesen Szenarien deckt das

Testszenario TS 1.a ab. Tabelle 6.3 zeigt den direkten Vergleich zwischen

einem PID-Regler, ausgeführt auf der ATLAS-ECU, und dem MPC im Nur
Cloud-Deploymentmodell (vgl. Kapitel 3.2) auf dem ATLAS Cloud PC (vgl.

158

6.4 Validierung der Anforderungen

Tabelle 6.1). Die Verbindung zur Cloud wurde in diesen Szenarien nicht

unterbrochen oder ein Serviceausfall generiert (vgl. Kapitel 6.4.4).

Tabelle 6.3: Vergleich der fahrzeuginternen PID- und der cloudbasierten MPC-Regelung im Nur

Cloud-Deploymentmodell ohne Service- oder Verbindungsausfälle

Simulation

(Szenariendauer 620 Sekunden)

PID (fahrzeugintern) MPC (Nur Cloud)

Sim 1a

TUmgebung = 9,58 ◦C
∆T = 0,75K
EWP,elektrisch = 1.392 kW s
tExe,ECU = 0,03ms

NP = NC = 10
∆T = 0,65K
EWP,elektrisch = 1.238 kW s
tExe,Cloud = 797,94ms

Sim 1b

TUmgebung = 9,58 ◦C
identisch wie Zeile 1 NP = NC = 20

∆T = 1,13K
EWP,elektrisch = 1.080 kW s
tExe,Cloud = 1.870ms

Sim 1c

TUmgebung = 9,58 ◦C
identisch wie Zeile 1 NP = NC = 30

∆T = 0,98K
EWP,elektrisch = 1.062 kW s
tExe,Cloud = 2.023,77ms

Sim 2:

TUmgebung = 0,94 ◦C
∆T = 1,34K
EWP,elektrisch = 2.834 kW s
tExe,ECU = 0,03ms

NP = NC = 10
∆T = 1,47K
EWP,elektrisch = 2.672 kW s
tExe,Cloud = 600,26ms

Sim 3:

TUmgebung = 16,44 ◦C
∆T = 0,59K
EWP,elektrisch = 1.046 kW s
tExe,ECU = 0,03ms

NP = NC = 10
∆T = 0,54K
EWP,elektrisch = 1.130 kW s
tExe,Cloud = 858,14ms

Sim 4:

TUmgebung = −14,87 ◦C
∆T = 2,05K
EWP,elektrisch = 5.740 kW s
tExe,ECU = 0,03ms

NP = NC = 10
∆T = 1,93K
EWP,elektrisch = 5.580 kW s
tExe,Cloud = 680,25ms

Hinsichtlich des elektrischen Energieverbrauchs der Wärmepumpe des HLK-

Systems demonstriert der MPC deutliche Vorteile. In den Simulationen 1a bis

1c kann der Energieverbrauch desMPC durch eine Erhöhung des Prädiktions-

und Kontrollhorizonts von 10 auf maximal 30 erheblich reduziert werden.

Den größten Effizienzvorteil zeigt Simulation 1c mit einer Einsparung von

330 kW s (von 1.392 kW s auf 1.062 kW s), was einer Reduzierung um bis

zu 23,7% entspricht. Auch in Simulation 2 und Simulation 4 bleibt der

MPC energieeffizienter. Lediglich in Simulation 3 bei wärmeren Umgebungs-

bedingungen zeigt der MPC einen leicht höheren Verbrauch (1.130 kW s

159

6 Prototypische Umsetzung

gegenüber 1.046 kW s), kompensiert dies jedoch durch eine verbesserte

Regelgüte.

Die Ergebnisse zeigen, dass Anforderung F-Req-1 als erfüllt gekennzeichnet

werden kann.

Anmerkung: Betrachtet man die Energieeffizienz des COTA-Ansatzes unter

Berücksichtigung von Verbindungs- und Serviceausfällen in beiden Deploy-

mentmodellen (vgl. Tabelle 6.4) im Vergleich zum fahrzeuginternen PID-

Regler (vgl. Tabelle 6.3), zeigt sich, dass der PID-Regler in allen Szenarien

energieeffizienter ist, mit Einsparungen zwischen 1,9% und 8,6% gegen-

über beiden cloudbasierten Deploymentmodellen des MPC-Reglers. Dabei

ist zu beachten, dass Service- bzw. Verbindungsausfälle rund ein Drittel der

Gesamtzeit der Simulationsszenarien ausmachen. Unter den beiden Deploy-

mentmodellen weist das Fallback-Modell in allen Szenarien einen geringeren

Energieverbrauch auf als das Nur Cloud-Modell.

6.4.3 F-Req-2: Thermischer Komfort

Durchführung des Testszenarios Für das Testszenario TS 2.a werden

erneut die vier Simulationsszenarien aus Tabelle 6.2 herangezogen, inner-

halb derer definierte Verbindungs- und Serviceausfälle erzeugt werden (s.

nachfolgende Validierung der Systemanforderung F-Req-3). Jedes Simulati-

onsszenario wurde mit beiden Deploymentmodellen durchgeführt, wobei

die Ausfälle immer identisch implementiert wurden, sodass ein direkter

Vergleich möglich ist.

Der thermische Komfort wird in drei der vier Simulationsszenarien in bei-

den Deploymentmodellen entsprechend den VDV-Vorgaben (s. Kapitel 2.4.3)

eingehalten (vgl. Tabelle 6.4). Im Kälteszenario von Sim 4 (TUmgebung =

−14,87 ◦C) wird die Vorgabe jedoch in beiden Modellen leicht überschritten,

da das mittlere Temperaturdelta über 2K liegt.

160

6.4 Validierung der Anforderungen

Insgesamt kann F-Req-2 nicht als vollständig erfüllt gekennzeichnet werden,

da bei extremen Wetterbedingungen die VDV-236 Vorgaben um 0,12K bzw.

0,25K überschritten werden.

Tabelle 6.4: Vergleich des Fallback- und Nur Cloud-Deploymentmodells in den Simulationssze-

narien mit Verbindungs- bzw. Serviceausfällen

Simulation

(Szenariendauer 620 Sekunden)

Fallback Nur Cloud

Sim 1a

TUmgebung = 9,58 ◦C
∆T = 0,76K
EWP,elektrisch = 1.509 kW s

∆T = 1,24K
EWP,elektrisch = 1.760 kW s

Sim 2:

TUmgebung = 0,94 ◦C
∆T = 1,44K
EWP,elektrisch = 2.978 kW s

∆T = 1,5K
EWP,elektrisch = 3.050 kW s

Sim 3:

TUmgebung = 16,44 ◦C
∆T = 0,61K
EWP,elektrisch = 1.140 kW s

∆T = 0,64K
EWP,elektrisch = 1.180 kW s

Sim 4:

TUmgebung = −14,87 ◦C
∆T = 2,12K
EWP,elektrisch = 5.850 kW s

∆T = 2,25K
EWP,elektrisch = 6.100 kW s

6.4.4 F-Req-3: Fehlerbehandlung und
Wiederherstellung

Durchführung der Testszenarien zu F-Req-3 Der Einfluss von Service-

und Verbindungsausfällen (s. TS 3.a und TS 3.b) auf die cloudbasierte Rege-

lung im Nur Cloud Deploymentmodell wird in Abbildung 6.10 in Simulati-

onsszenario 1a (vgl. Tabelle 6.2) dargestellt. Nach der Startphase befindet sich
das System in der Aufheizphase bis die Solltemperatur nach 160 s erreicht

wird. 50 Sekunden später ist der HLK-Cloud-Service nicht mehr abrufbar und

das Regelsystem wechselt automatisch auf den Cloud-BPH-Modus und wie-

der zurück (s. Kapitel 6.2), sobald der Cloud-Service wieder verfügbar ist. Bei

Sekunde 440 geht die Verbindung zur Cloud verloren (s. Cloud-Verbindung

in Abbildung 6.10). Der Connection-Manager versucht anschließend über

einen Zeitraum von 20 Sekunden in regelmäßigen Intervallen die Verbindung

erneut herzustellen, bevor die Cloud-Services aus der Datenbank gelöscht

werden und auf den BPH gewechselt wird (s. oberste Darstellung bei Sekun-

de 460 in Abbildung 6.10). In dieser Übergangsphase bleibt die Stellgröße

der Wärmepumpe konstant. Anschließend wird auf den zeitlich angepassten

161

6 Prototypische Umsetzung

BPH zurückgegriffen. Der Wechsel zurück in den regelnden Betrieb, sobald

die Cloud-Verbindung zum Ende des Szenarios wieder vorhanden ist, funk-

tioniert reibungslos.

Die angewendeten Stellgrößen der Wärmepumpe sind im BPH-Modus auf-

grund des fehlenden Feedbacks mit größeren Schwankungen behaftet.

Im Fallback-Deploymentmodell besteht für das System die Möglichkeit, bei

einem Verbindungsabbruch auf einen fahrzeuginternen PID-Regler zu wech-

seln. Hierbei kommt der Arbiter (s. Kapitel 5.5) des Orchestrators, der den
Wechselvorgang in die Wege leitet, zum Einsatz. Abbildung 6.11 (ebenfalls in

Simulation 1a) zeigt diesen Fall, bei dem der Arbiter aufgrund hoher gemes-

sener RTT der MQTT Nachrichten vom Fahrzeug zur Cloud und zurück vom

MPC- zum PID-Regler im Fahrzeug wechselt. Der Arbiter initiiert zweimal

den Wechsel auf den fahrzeuginternen PID-Regler, was sich unmittelbar in

den Stellgrößen der Wärmepumpe widerspiegelt. Diese schwanken beim

Einsatz des PID-Reglers wesentlich stärker, da diese Schwankungen nicht

wie beim MPC durch eine Kostenfunktion bestraft werden können. Die Ka-

binentemperatur oszilliert um den Sollwert stärker, als dies unter stabiler

Verbindung der Fall ist (vgl. Abbildung 6.9). Der Übergang zwischen lokalem

PID und cloudbasiertem MPC ist so realisiert, dass die aktuelle Stellgröße so

lange auf die Regelstrecke angewendet wird, bis eine neue Stellgröße zur

Verfügung steht.

Die Plausibilitätsprüfung wurde durch das Setzen von inkonsistenten Stell-

größen (s.TS 3.c) zur Laufzeit und durch das Hinzufügen von Verzögerungen

bei der Berechnung der Stellgrößen (s. TS 3.d) getestet (s. Abbildung 6.12).

Die zu Beginn des Szenarios auffällig hohen Berechnungszeiten des cloud-

basierten Reglers werden korrekt erkannt, und stattdessen wird die zuletzt

plausible Stellgröße angewendet. Dasselbe gilt für berechnete Stellgrößen,

die entweder aufgrund zu starker Änderungsrate oder aufgrund eines zu

hohen Wertes physikalisch nicht von der Wärmepumpe umgesetzt werden

können.

F-Req-3 kann als erfüllt gekennzeichnet werden.

162

6.4 Validierung der Anforderungen

0

10

20

T
i
n

◦ C

Ist-Kabinentemperatur MPC

Ist-Kabinentemperatur PID

Soll-Kabinentemperatur

0

5

10

15

Q̇
S
o
ll
i
n
k
W

MPC

PID

0

1

2

3

G
e
ö
ff
n
e
t
e
T
ü
r
e
n

0 100 200 300 400 500 600
0

20

40

60

S
t
a
r
t
p
h
a
s
e

t in s

P
a
s
s
a
g
i
e
r
a
n
z
a
h
l

Abbildung 6.9: Vergleich der fahrzeuginternen PID- und cloudbasierten MPC-Regelung (Nur

Cloud) in Simulation 1a

163

6 Prototypische Umsetzung

Fahrzeug

(PID)

Cloud

(MPC)

Not/Av.

Cloud

(BPH)

0

1

V
e
r
f
ü
g
b
a
r
k
e
i
t

Cloud Verbindung

HLK-Cloud-Service

HLK-Fahrzeug-Service

0

5

10

Q̇
S
o
ll
i
n
k
W

0 100 200 300 400 500 600

0

10

20

S
t
a
r
t
p
h
a
s
e

t in s

T
i
n

◦ C

Ist-Kabinentemperatur

Soll-Kabinentemperatur

Regelfehler

Abbildung 6.10: Umgang des cloudbasierten Regelungssystems mit Service- und Verbindungs-

ausfällen im Nur Cloud Deploymentmodell in Sim 1a

164

6.4 Validierung der Anforderungen

Fahrzeug

(PID)

Cloud

(MPC)

Not/Av.

Cloud

(BPH)

0

200

400

600

t R
T
T
,M

Q
T
T
i
n
m
s

0

5

10

Q̇
S
o
ll
i
n
k
W

0 100 200 300 400 500 600

0

10

20

S
t
a
r
t
p
h
a
s
e

t in s

T
i
n

◦ C

Ist-Kabinentemperatur

Soll-Kabinentemperatur

Regelfehler

Abbildung 6.11: Umgang des cloudbasierten Regelungssystems mit Verbindungsausfällen im

Fallback-Deploymentmodell in Simulation 1a

165

6 Prototypische Umsetzung

0

1

P
l
a
u
s
i
b
i
l
i
t
ä
t

Plausibilität von Q̇

0

10

20

30

Q̇
S
o
ll
i
n
k
W

Verwendete Stellgröße

Berechnete Stellgröße

0 100 200 300 400 500 600

0

2

4

6

8

t in s

t E
x
e
i
n
s

Abbildung 6.12: Plausibilitätsprüfung der cloudbasierten HLK-Regelung

166

6.4 Validierung der Anforderungen

6.4.5 F-Req-4: Einhaltung des Regler Abtastintervalls

Die Zeitanforderung aus Gleichung 6.1 wird durch den Connection-Manager
des Orchestrators überwacht. Zur Bestimmung von tExe,Cloud wird die Zeit

erfasst, die der MPC benötigt, um die nächste Stellgrößenfolge zu berechnen.

Das Abtastintervall ∆tMPC ist auf 10 s festgelegt (vgl. Kapitel 6.4.1). Die Da-

tenrate für das Mobilfunknetz wird entsprechend den Durchschnittswerten

aus dem deutschen Mobilfunknetz in Kapitel 2.6.2 im System festgesetzt.

Durchführung des Testszenarios zu F-Req-4 Gleichung 6.1 wird aus-

gehend von einem Basisfall des MPC mit NP = NC = 20 (s. TS 4.a) und

dem lokalen Optimierungsalgorithmus Powell2 überprüft. Dabei wurde die
RTT auf Basis des implementierten MQTT Protokolls gemessen und die-

se nicht weiter in die einzelnen Bestandteile Latenzzeit und Transferzeit,

wie in der genannten Gleichung genannt, aufgeteilt. Die gemessene durch-

schnittliche RTT von 173ms ist dabei vergleichbar mit Messwerten aus der

aktuellen Veröffentlichung von Dettinger et al. [DWW
+
25]. Die Ergebnisse

aus Tabelle 6.5 zeigen, dass die Zeitanforderung mit einem Puffer von 7,96 s

eingehalten werden kann. Dieser Puffer ermöglicht es,NP undNC des MPC

bei einer Cloud-Ausführung auf maximal 60 zu erhöhen oder auf einen

globalen Optimierungsalgorithmus zu wechseln. Bei einer Ausführung des

MPC auf der ATLAS ECU (s. Tabelle 6.1) ist NP = NC aufgrund der hohen

Berechnungszeit auf 20 beschränkt.

F-Req-4 kann als erfüllt gekennzeichnet werden.

2
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-powell.html

167

6 Prototypische Umsetzung

Tabelle 6.5: Messwerte der Ausführung des MPC (NP = NC = 20) auf der ATLAS ECU vs.

dem ATLAS Cloud PC

Parameter Wert

tExe,Cloud 1,87 s

tExe,ECU 6,3 s

tRTT,MQTT 173,00ms

LExe,ECU 26,13%

LIdle,ECU 0,5%

LTransfer 11,17%

PExe,ECU 1,96W

PIdle,ECU 0,04W

PTransfer 0,84W

6.4.6 NF-Req-1: Wartbarkeit und Erweiterbarkeit

Bedingt durch die SOA-Architektur und die Möglichkeit von OTA-Updates

durch den Feature-Updater (s. Kapitel 5.5), ist der Aufbau des Systems modu-

lar gestaltet und Services sowie Features können leicht aktualisiert werden.

Zusätzlich erfolgt die Konfiguration der Regelparameter und der Simula-

tion über YAML Ain’t Markup Language (YAML)-Dateien. Der Pfad der

YAML-Dateien kann beim Starten der zugehörigen Nodes angegeben werden.

Die Parametrisierung der Regelstrecke (Fahrzeugkabine und Wärmepum-

pe) kann ebenfalls durch die jeweilige Konfigurationsdatei angepasst werden.

NF-Req-1 kann als erfüllt gekennzeichnet werden.

168

6.5 Bewertung der Ergebnisse

6.4.7 NF-Req-2: Security

Die Authentifizierung zwischen Fahrzeug (Client) und Cloud (Broker) wird

durch die Mechanismen des MQTT Protokolls realisiert. Dazu authentifiziert

sich der Client beim Broker mittels Client-ID und einem Token. Der Client

erhält dazu einen Token, welchen er symmetrisch verschlüsselt an den

Broker sendet. Der Broker validiert diesen Token und überprüft infolgedes-

sen seine Berechtigungen. Eine zyklische Erneuerung der Token ist nicht

realisiert. Für die Anwendung in der Produktion müsste neben der sicheren

Speicherung der Token zusätzlich eine asymmetrische Verschlüsselung der

Tokens zwischen Client und Broker erfolgen. Die Nachrichten werden mit

dem Transport Layer Security (TLS) Protokoll unter der Verwendung von

Zertifikaten übermittelt.

NF-Req-2 kann als erfüllt gekennzeichnet werden.

6.5 Bewertung der Ergebnisse

Die Ergebnisse des cloudbasierten HLK-Reglers belegen die Eignung des

COTA-Ansatzes, sowohl in wirtschaftlicher Hinsicht als auch im Hinblick

auf die Performanz des Reglers.

• Performanz: Energetische Einsparungen (vgl. Req-2 (Regler)) im

Fahrzeug lassen sich sowohl auf der in Kapitel 4.2.3 beschriebenen

Steuergeräteebene als auch durch eine effizientere Auslegung und

Regelung von Fahrzeugfunktionen realisieren.

Die Einsparungen auf Steuergeräteebene können mithilfe der Glei-

chung 3.2 quantifiziert werden. Grundlage dafür bilden die Messwerte

aus Tabelle 6.5, auf deren Basis eine Energieeinsparung von 12,13W s

pro Regelungsschritt ermittelt wurde. Unter Annahme einer durch-

schnittlichen täglichen Betriebszeit von 9,35 h gemäß dem öffentlichen

169

6 Prototypische Umsetzung

Datensatz ZTBus [127] und einem Abtastintervall von ∆tMPC = 10 s

ergibt sich eine kumulierte Einsparung von 11,62Wh pro Tag. Bezo-

gen auf die Batteriekapazität eines Stadtbusses von bis zu 588 kWh

(vgl. Kapitel 2.4.1) ist dieser Wert als vernachlässigbar einzustufen –

er entspricht einer zusätzlichen Reichweite von lediglich rund 10m.

Deutlich größere Einsparpotenziale ergeben sich hingegen durch

den Einsatz effizienterer Regelungsstrategien. Die Ergebnisse des

Vergleichs zwischen dem fahrzeuginternen PID-Regler und dem cloud-

basierten MPC im Szenario Nur Cloud ohne Verbindungsabbrüche

(Simulation 1a, NP = 10) zeigen eine relative Energieeinsparung

von 11,06% (vgl. Tabelle 6.3). Hochgerechnet auf die angenom-

mene tägliche Betriebszeit entspricht dies einer absoluten Einspa-

rung von 2,4 kWh. Bei einem spezifischen Energieverbrauch von

1,15 kWhkm−1
(extrapoliert aus [15]) bei einer durchschnittlichen

Umgebungstemperatur von 9,58 ◦C (entspricht der Außentemperatur

in Simulation 1a) resultiert daraus eine rechnerische Reichweiten-

erhöhung von 2,1 km. Treten über längere Zeiträume Verbindungs-

abbrüche zur Cloud auf oder ist der Cloud-Service nicht verfügbar,

verringern sich die Einsparpotenziale erheblich, bis hin zu dem Punkt,

an dem der fahrzeuginterne PID-Regler dem cloudbasierten Ansatz

überlegen ist. Dies zeigt sich deutlich im Vergleich der Tabellen 6.3

und 6.4: In diesem Szenario erweist sich der lokale PID-Regler als effi-

zienter als beide cloudbasierten Deployment-Modelle des MPC, da die

Verbindungs- bzw. Serviceausfälle nahezu ein Drittel der Gesamtzeit

ausmachen.

Der thermische Komfort (vgl. Req-2 (Regler)) wird in drei von vier Si-

mulationsszenarien auch bei Verbindungsabbrüchen zur Cloud durch

beide Deploymentmodelle zuverlässig gewährleistet und entspricht

den Anforderungen der VDV-236. Einzig bei extremen Außentem-

peraturen von TUmgebung = −14,87 ◦C werden die Vorgaben leicht

170

6.5 Bewertung der Ergebnisse

überschritten. Das Fallback-Deploymentmodell zeigt dabei eine höhere

Regelgüte und Energieeffizienz im Vergleich zum Nur Cloud-Modell.

Zudem zeigt sich, dass der Cloud-PC (vgl. Tabelle 6.1) die Stellgrößen

des MPC signifikant schneller berechnet (vgl. Req-4 (Regler)) als ein

lokales Steuergerät, in diesem Fall ein Raspberry Pi 4 B. Der Vergleich

in Tabelle 6.5 verdeutlicht eine 3,3-fach schnellere Berechnungszeit der

Stellgrößen in der Cloud im Vergleich zur lokalen Ausführung, wobei

sich der Faktor auf 3,08 reduziert, wenn man auf die Berechnungszeit

in der Cloud auch die durchschnittliche RTT zur Cloud und zurück

addiert. Dies unterstreicht die Sinnhaftigkeit der Cloud-Nutzung, da

dadurch zusätzlicher Spielraum sowohl beim Prädiktionshorizont des

MPC als auch bei der Abtastrate des MPC entsteht, der im Fahrzeug

aufgrund der dort begrenzt verfügbaren Rechenleistung nicht reali-

sierbar wäre.

• Wirtschaftlichkeit: Das Fallback-Modell ist dem Nur Cloud Modell

hinsichtlich Komfort und Energieeffizienz überlegen. Dennoch stellt

sich aus wirtschaftlicher Sicht die Frage, ob sich der Mehraufwand

dieser Lösung auch langfristig rechtfertigen lässt.

Aus betriebswirtschaftlicher Perspektive eröffnet sich somit die Not-

wendigkeit, beide Ansätze im Rahmen einer TCO-Betrachtung ge-

genüberzustellen. Das Fallback-Modell verursacht zusätzliche Kosten

durch das Deployment einer Regelung im Fahrzeug, erhöhten Ent-

wicklungsaufwand für die parallele Ausführung von Funktionen in

Fahrzeug und Cloud sowie durch potenziell höheren Wartungs- und

Validierungsaufwand über den Lebenszyklus hinweg. Das Nur Cloud-
Modell hingegen erfordert eine zuverlässige Netzwerkinfrastruktur so-

wie eine hochverfügbare Cloud-Umgebung, was zu laufenden Betriebs-

und Kommunikationskosten führt, jedoch mit deutlich reduziertem

Aufwand auf Fahrzeugseite.

171

6 Prototypische Umsetzung

Für eine detaillierte Bewertung dieser Aspektewird auf das in [BtS
+
24]

vorgestellte TCO-Modell verwiesen. Es bietet einen strukturierten Rah-

men zur Analyse der wirtschaftlichen Auswirkungen verschiedener

Softwareverteilungsszenarien im Fahrzeugkontext, einschließlich Ent-

wicklung, Infrastruktur, Betrieb, Wartung und Skalierung.

172

7 Fazit und Ausblick

Cloudbasierte Fahrzeugfunktionen (s. Definition 4.1) verändern nicht nur

die Fahrzeugarchitektur grundlegend, sondern stellen insbesondere den

bisherigen E/E-Entwicklungsprozess infrage. Künftig muss bereits in frühen

Entwicklungsphasen bewertet werden, ob eine Funktion im Fahrzeug oder

in der Cloud ausgeführt werden soll. Vor diesem Hintergrund wird in der

Dissertation der Fokus auf den Ansatz des Control-Over-The-Air (COTA)

gesetzt, bei dem regelnde Funktionen aus dem Fahrzeug herausgelöst und in

die Cloud verlagert werden.

7.1 Beantwortung der Forschungsfragen

Forschungsfrage 1: Identifikation cloudfähiger Funktionen

Wie können in Fahrzeug-E/E-Architekturen potenziell cloudfähige

Funktionen systematisch identifiziert und deren Eignung für eine

Cloud-Migration bewertet werden?

Die Identifikation cloudfähiger Funktionen kann mithilfe des in Kapitel 4.2

vorgestellten zweistufigen Prozesses durchgeführt werden. Die erste Stufe

des Prozesses prüft, ob die Funktion in der Cloud realisierbar ist, während in

der zweiten Stufe ein Eignungs-Score zur Anwendung kommt. Der Eignungs-

Score beinhaltet insgesamt fünf Bewertungsmetriken (s. Kapitel 4.2.3), deren

Ergebnisse im finalen Eignungs-Score einzeln gewichtet werden können.

Anhand des Ergebnisses des Scores zwischen 0 (nicht für die Cloud geeignet)

173

7 Fazit und Ausblick

und 1 (optimal geeignet) kann eine Entscheidung getroffen werden, ob eine

Funktion im Fahrzeug verbleiben sollte oder ausgelagert werden kann.

Forschungsfrage 2: Deploymentmodelle

Welche Deploymentmodelle cloudbasierter Fahrzeugfunktionen sind

vorstellbar und wie lässt sich das am besten geeignete finden?

Die Wahl des Deploymentmodells erfolgt, nachdem eine cloudfähige Funk-

tion identifiziert wurde. Die Literaturrecherche ergab vier verschiedene

Möglichkeiten für das Deployment und die Ausführung cloudbasierter Funk-

tionen: Nur Cloud, Fallback, Dupliziert und Elastisch. Diese wurden um das

Modell Parallel erweitert. Mit der in Kapitel 5.7 vorgestellten MCDAwird das

passende Deploymentmodell abhängig von den Anforderungen der Funkti-

on bestimmt. Dabei berücksichtigt die MCDA sowohl technische (Latenz,

Verfügbarkeit) als auch wirtschaftliche (CapEx und OpEx) Kriterien. Auf

Basis der durchgeführten MCDA ging das Deploymentmodell Nur Cloud
mit geringem Vorsprung vor dem Fallback-Modell als optimale Lösung für

die cloudbasierte HLK-Regelung eines Stadtbusses mittels MPC hervor. Auf-

grund des knappen Ergebnisses wurden beide Modelle im weiteren Verlauf

implementiert und untersucht. Dabei zeigte das Fallback-Deploymentmodell

aus technischer Sicht, insbesondere hinsichtlich Regelgüte und Energieeffi-

zienz, die besseren Resultate.

Aus wirtschaftlicher Sicht sind beim Fallback-Modell jedoch zusätzliche

Aufwände durch die Umsetzung eines zusätzlichen Reglers im Fahrzeug zu

berücksichtigen. Die Entscheidung zwischen den beiden Varianten stellt

somit einen Abwägungsprozess zwischen technischer Leistungsfähigkeit

und wirtschaftlichem Aufwand dar. Welche Lösung letztlich umgesetzt wird,

hängt von den strategischen Zielen, der Infrastruktur sowie den betriebs-

wirtschaftlichen Prioritäten des OEM ab.

Die MCDA unterstützt diesen Entscheidungsprozess, indem sie technische,

wirtschaftliche und betriebliche Kriterien transparent gegenüberstellt. Bei

174

7.1 Beantwortung der Forschungsfragen

knappen Ergebnissen, wie im vorliegenden Fall, ist es jedoch sinnvoll, die

Entscheidung durch eine nachgelagerte Validierung abzusichern. Dies kann

etwa in Form von prototypischen Implementierungen, Simulationsstudien

oder Praxistests erfolgen, um die Eignung des gewählten Deploymentmodells

unter realen Bedingungen zu bestätigen.

Forschungsfrage 3: Potenziale der Cloudverlagerung

Welche Vorteile ergeben sich aus der Cloudverlagerung und wie

lassen sich diese messbar nachvollziehen?

Die Einbindung der Cloud erweitert das Fahrzeug um eine flexible und

anpassbare Rechenplattform. Dadurch ergeben sich zahlreiche Vorteile, ins-

besondere im Hinblick auf die Reduzierung von Ressourcenbeschränkungen

sowie eine vereinfachte Entwicklung und Wartbarkeit von Software (vgl.

Abschnitt „Potenziale durch die Ausführung der Funktion in der Cloud“ in

Kapitel 4.2.3). Besonders deutlich wurde das Potenzial durch die Verwen-

dung eines intelligenten Reglers in der Cloud: Der cloudbasierte MPC-Regler

ist rechenintensiv und profitiert daher stark von den verfügbaren Cloud-

Ressourcen. Die optimierte cloudbasierte Regelung ermöglichte eine Re-

duktion des Energieverbrauchs der Wärmepumpe des HLK-Systems um bis

zu 23,7% mit einem maximalen Prädiktionshorizont von NP = 30 bzw.

11,06% mit einem kleineren Prädiktionshorizont des MPC in moderaten

klimatischen Bedingungen von ca 10 ◦C ohne Service- oder Verbindungsab-

brüche zur Cloud.

Gleichzeitig wurde deutlich, dass der Energieverbrauch einzelner Steuerge-

räte bzw. die Ausführung typischer Funktionen auf diesen Steuergeräten

(vgl. Tabelle 2.1) im Vergleich zur Batteriekapazität moderner BEB vernach-

lässigbar ist. Eine Auslagerung dieser Funktionen zur Energieeinsparung

auf dieser Ebene ist daher nicht sinnvoll. Hinzu kommt der Energieaufwand

für die Übertragung von Daten zwischen Fahrzeug und Cloud, der ebenfalls

berücksichtigt werden muss (vgl. Kapitel 2.6.2).

175

7 Fazit und Ausblick

7.2 Ausblick

Der in Kapitel 4.2 beschriebene Prozess zur Identifikation cloudbasierter

Funktionen schließt sicherheitskritische und Funktionen mit harten Echt-

zeitanforderungen für eine Cloudverlagerung aus. Dies könnte sich mit der

Weiterentwicklung neuer drahtloser Netzwerktechnologien ändern. Wenn

diese Technologien die Zuverlässigkeit und Latenzzeit so weit verbessern,

dass ASIL und harte Echtzeitanforderungen erfüllt werden können, könnte

die erste Stufe des Prozesses entfallen.

Das Feld auslagerbarer Funktionen könnte durch die Erweiterung potenziel-

ler Ausführungsknoten erhöht werden. Edge-Nodes bieten eine zusätzliche,

dezentrale Rechenebene näher am Fahrzeug und eröffnen neue Möglichkei-

ten für die Verlagerung von Features, in der Hauptsache solcher, die in der

Cloud aufgrund von Latenz, Verfügbarkeit oder Sicherheitsanforderungen

nicht effizient genug betrieben werden können. Somit könnte ein gestufter

Auslagerungsansatz entstehen: Sicherheitskritische Funktionen verbleiben

im Fahrzeug, Funktionen mit geringer Zeitkritikalität wandern in die Cloud

und dazwischen bietet die Edge eine Zwischenebene, beispielsweise zur

Sensordatenvorverarbeitung.

Ein weiterer vielversprechender Ansatz für zukünftige Arbeiten ist die Mehr-

fachnutzung cloudbasierter Funktionen für ganze Fahrzeugflotten. Anstatt

jede Fahrzeuginstanz individuell mit dedizierten Funktionen zu versorgen,

können zentrale, skalierbare Funktionsinstanzen in der Cloud bereitgestellt

werden, die gleichzeitig mehrere Fahrzeuge bedienen (Stichwort Matching

Theory).

Das laufende Promotionsvorhaben von Baumann [68] zur cloudbasierten
Rekonfiguration lernender Softwarekomponenten zeigt, wie sich durch die

kontinuierliche Analyse von Umgebungs- und Fahrzeugdaten Funktionen

dynamisch an wechselnde Einsatzbedingungen anpassen lassen, etwa an

den Fahrmodus, die Wetterlage oder das Nutzerverhalten (s. Abbildung 7.1).

Insbesondere im Stadtbusbetrieb mit Flotten, wiederkehrenden Routen und

176

7.3 Das Barebone-Fahrzeug

Fahrzeug-
Sensorik

Clouddaten-
anreicherung

Kontext-
modellierung

SWC inkl.
Kontextdetektion

& Modellselektion

Service(anfrage)

Flottendatenbank:
Historische Daten

& Kontext

Datenbank:
Modelle

Rekonfiguration
der SWC

Trigger

TCU

Abbildung 7.1: Konzept rekonfigurierbarer, lernender cloudbasierter Fahrzeugfunktionen (Dar-

stellung aus dem laufenden Promotionsvorhaben von Daniel Baumann)

festen Fahrplänen können lernende Funktionen dynamisch an spezifische

Einsatzbedingungen angepasst werden. Beispielsweise lassen sich Antriebss-

trategien, Rekuperationsprofile oder Klimatisierungsparameter auf Basis

gesammelter Fahr- und Umweltdaten für einzelne Linien oder Haltestellen

dynamisch anpassen, wodurch Energieeffizienz und Fahrgastkomfort ge-

steigert werden. Dies stellt ein weiteres Potenzial der Cloudverlagerung im

Sinne von Forschungsfrage 3 dar.

7.3 Das Barebone-Fahrzeug

Ein zukunftsweisendes Konzept in der Fahrzeugentwicklung könnte das

Barebone-Fahrzeug sein, das sich auf die grundlegende Funktion des Fah-

rens beschränkt. In dieser Architektur dient das Fahrzeug primär als Hard-

wareplattform, auf der fortgeschrittene Softwarekomponenten nicht lokal

installiert sind, sondern dynamisch über die Cloud oder Edge-Computing-

Plattformen bereitgestellt werden.

177

7 Fazit und Ausblick

Im Wesentlichen wäre das Barebone-Fahrzeug mit minimaler, robuster In-

frastruktur für grundlegende Fahrzeugoperationen ausgestattet, etwa zur

Steuerung der Antriebseinheit, der Bremsen und grundlegend sicherheits-

relevanter Systeme. Alle weiteren Features, wie Infotainment, Fahrerassis-

tenzsysteme, Navigationssoftware und Regelungsalgorithmen, werden dyna-

misch heruntergeladen oder direkt als cloud- oder edgebasierte Funktionen

hinzugefügt.

178

A Anhang

A.1 Einige Grundbegriffe der
Thermodynamik

Definition A.1 Wasserdampfpartialdruck: Der Wasserdampfpar-

tialdruck pD (Einheit: Pa) ist der Teildruck des in der Luft vorhan-

denen Wasserdampfes und bildet zusammen mit dem Teildruck der

trockenen Luft pL den Gesamtdruck p (ugs. Luftdruck). [32]

Definition A.2 Sättigungsdruck:Der Sättigungsdruck pDS (Einheit:

Pa) beschreibt den maximalen Wasserdampfpartialdruck in feuchter

Luft. Der Sättigungsdruck ist eine Funktion der Temperatur und

unabhängig vom Luftdruck. [32]

Definition A.3 Relative Feuchte: Die relative Feuchte φ (Einheit:

%) beschreibt den Anteil der möglichen Wasserdampfaufnahme in

ungesättigter Luft:

φ =
pD
pDS

(A.1)

179

A Anhang

Definition A.4 Feuchtegrad: Der Feuchtegrad x (Einheit: kg kg−1
)

beschreibt die Masse an Wasserdampf im Verhältnis zur Masse der

trockenen Luft:

x =
mD

mL
(A.2)

A.2 Coefficient of Performance einer
Wärmepumpe

Definition A.5 Coefficient of Performance: Der Coefficient of

Performance (COP) bezeichnet bei einer Wärmepumpe das Verhältnis

von nutzbarer Wärme-/Kälteleistung Q̇Kond/Verd zu eingebrachter

Kompressorleistung ẆKomp [47]. Im Heiz- bzw. Kühlbetrieb berech-

net sich der COP folgendermaßen:

COPKühl =
Q̇Verd

ẆKomp

(A.3)

COPHeiz =
Q̇Kond

ẆKomp

=
Q̇Verd + ẆKomp

ẆKomp

= 1 + COPKühl (A.4)

A.3 Thermischer Komfort: Predicted Mean
Vote

Das Predicted Mean Vote (PMV)-Modell ist ein weitverbreitetes Verfahren

zur Bewertung des thermischen Komforts in Innenräumen. Es wurde von P.

O. Fanger [40] im Jahr 1970 entwickelt und basiert auf einem thermophy-

siologischen Modell des menschlichen Körpers. Das PMV-Modell berechnet

180

A.3 Thermischer Komfort: Predicted Mean Vote

eine thermische Komfortbewertung auf einer siebenstufigen Skala von -3

(kalt) bis +3 (heiß), wobei 0 als thermisch neutral gilt (vgl. Abbildung A.1).

kalt

-3

kühl

-2

etwas

kühl

-1

neutral

0

etwas

warm

1

warm

2

heiß

3

Abbildung A.1: Benennung der sieben Stufen der PMV-Skala

Grundlagen des PMV-Modells

Das PMV-Modell berücksichtigt sechs Hauptfaktoren, die den thermischen

Komfort eines Menschen beeinflussen:

• Lufttemperatur – Die Temperatur der Raumluft.

• Mittelstrahlungstemperatur – Die mittlere Temperatur der umge-

benden Oberflächen.

• Luftgeschwindigkeit – Die Geschwindigkeit der Luftbewegung im

Raum.

• Relative Luftfeuchtigkeit – Der Feuchtegehalt der Luft.

• MetabolischeRate (MET) –DieWärmeerzeugung durch denmensch-

lichen Stoffwechsel, abhängig von der Aktivität.

• Bekleidungswiderstand (CLO) – Der thermische Widerstand der

getragenen Kleidung.

Auf Basis dieser Parameter berechnet das PMV-Modell eine Durchschnitts-

bewertung des thermischen Empfindens einer Gruppe von Personen unter

den gegebenen Bedingungen.

181

A Anhang

Bedeutung des PMV für die Raumklimatisierung

Das PMV-Modell ist von großer Bedeutung für die Gestaltung und Steuerung

von Heizung, Lüftung, Klimatisierung (HLK)-Systemen. Ziel ist es, einen

PMV-Wert nahe 0 zu erreichen, um ein angenehmes Raumklima zu gewähr-

leisten. In internationalen Normen wie der ISO 7730
1
wird das PMV-Modell

als Maßstab für den thermischen Komfort herangezogen.

A.4 Mikrocontroller

Das Herz einer jeden Electronic Control Unit (ECU) bildet ein oder meh-

rere Mikrocontroller, Application-specific integrated circuit (ASIC)s oder

Field-Programmable Gate Array (FPGA)s. Diese verschiedenen Technologi-

en werden je nach Anwendungsanforderungen eingesetzt: Mikrocontroller

dienen als universelle Rechenplattformen für programmierbare software

components (SWCs), ASICs implementieren hochoptimierte, anwendungs-

spezifische Funktionen direkt in Hardware, und FPGAs ermöglichen rekon-

figurierbare Hardware-Implementierungen für spezielle Verarbeitungsauf-

gaben wie Signalverarbeitung oder parallele Algorithmen. Mikrocontroller

bestehen aus den in Abbildung A.2 dargestellten Komponenten.

Dabei ist zu beachten, dass eine zunehmende Integration der Komponenten

auf einen Chip durchgeführt wird. Dadurch wird der Mikrocontroller für

sich alleine funktionsfähig und kann je nach Anforderung durch zusätzliche

externe Bausteine wie Speicher ausgebaut werden. Moderne Mikrocontroller

zeichnen sich durch folgende Eigenschaften aus:

• Einsatz von Mehrkernprozessoren

• Einsatz von Grafikprozessoren

• Unterstützung von Kryptografie zur Verschlüsselung der Daten

1 https://www.din.de/de/meta/suche/62730!search?query=DIN+EN+ISO+7730

182

https://www.din.de/de/meta/suche/62730!search?query=DIN+EN+ISO+7730

A.4 Mikrocontroller

Mikrocontroller

Prozessorkern SRAM EEPROM/Flash
Counter/Timer

Module

Digital I/O
Module

Serielle
Interface
Module

Analog
Module

Interrupt
Controller

Interner Bus

Abbildung A.2: Basislayout eines Mikrocontrollers [44]

• Möglichkeit der drahtlosen Vernetzung über WLAN oder andere

Schnittstellen

Die Motivation für den Einsatz von Mehrkernsystemen ist auch hier bedingt

durch das Ziel der Kostenersparnis. Mehr und mehr Funktionen sollen auf

weniger ECUs zusammengeführt werden, sodass weniger Gehäuse, Elektro-

nik, Verkabelung und Bauaufwand benötigt wird [70]. Die Zusammenlegung

von Funktionen (unterschiedlicher Kritikalitätsstufen) auf eine ECU führt

allerdings zu höherer Komplexität und damit auch zu einem höheren Zertifi-

zierungsaufwand. Komplex wird in diesem Zusammenhang von der European
Aviation Safety Agency folgendermaßen definiert [43]:

• „Mehr als eine eingebettete CPU und es wird ein gemeinsames Bus-

system verwendet“

• „Mehrere Interfaces sind abhängig voneinander und tauschen Daten

miteinander aus“

183

A Anhang

A.5 Zyklische und Streaming-basierte
Funktionen im Automotive-Kontext

Im modernen Fahrzeug- und Cloud-Computing-Umfeld lassen sich Funk-

tionen grundlegend nach ihrem Ausführungs- und Kommunikationsverhal-

ten unterscheiden: zyklische und streaming-basierte Funktionen. Beide

Konzepte adressieren unterschiedliche Anforderungen an Rechenleistung,

Timing und Datenverarbeitung.

Streaming-basierte Funktionen

Streaming-basierte Funktionen zeichnen sich durch einen kontinuierlichen
Datenfluss aus, der über ein Netzwerk transportiert wird. Die eingehenden

Datenströmewerden laufend und nahezu in Echtzeit verarbeitet, was zu einer

kontinuierlich erhöhten CPU-Auslastung führt. Diese Art der Funktionen

finden sich typischerweise bei Anwendungen, die große Datenmengen oder

fortlaufende Sensordaten verarbeiten müssen.

Ein klassisches Beispiel ist das Video-Streaming von Kameras im Fahrzeug.

Hier werden Videodaten permanent übertragen und verarbeitet, wodurch

eine nachhaltige, hohe Rechen- und Kommunikationslast entsteht.

Zyklische Funktionen

Im Gegensatz dazu zeichnen sich zyklische Funktionen durch eine periodi-
sche, zeitgesteuerte Ausführung aus. Die CPU-Auslastung steigt dabei nur

für die Dauer der Funktionsverarbeitung kurz an und fällt danach auf ein

niedriges Niveau zurück, da keine permanente Berechnung erforderlich ist.

Die zyklische Verarbeitung lässt sich in zwei Falltypen unterteilen:

1. Fall 1 – Regulärer Zyklus mit festen Intervallen

184

A.5 Zyklische und Streaming-basierte Funktionen im Automotive-Kontext

Hierbei werden die Eingabedaten des Fahrzeugs in regelmäßigen, fes-

ten Zeitintervallen tintervall in die Cloud hochgeladen. Unmittelbar

nach dem Upload wird eine Berechnung durchgeführt und das Ergeb-

nis an das Fahrzeug zurückgesendet. Die gesamte Kette aus Upload,

Verarbeitung und Download wiederholt sich in genau definierten

Zeitabständen, wodurch ein deterministisches Verhalten entsteht.

Beispiel:

Die HLK-Regelung

Upload Berechnung Download Upload Berechnung Download

tintervall

Zeit t

tintervall

tintervall

Abbildung A.3: Zeitlicher Ablauf einer zyklischen Funktion: Fall 1

2. Fall 2 – Zyklische Verarbeitung mit unterschiedlichen Intervallen

In diesem Szenario unterscheiden sich das Upload-Intervall tUp und das

Intervall für Berechnung und Download tCD. Beispielsweise werden

Daten zunächst über einen längeren Zeitraum gesammelt, bevor sie

für die Berechnung verwendet werden. Das Ergebnis wird dann in

einem anderen Rhythmus zurückgesendet.

Beispiel:

Bestimmung des Fahrstils → Um den Fahrstil zu bestimmen, müssen

zunächst Informationen über einen bestimmten Zeitraum gesammelt

werden, bevor sie in die Berechnung einfließen können.

185

A Anhang

Berechnung Down

Zeit t

tUp

UpUp Berechnung Down Up Up

tCD

tCD

Abbildung A.4: Zeitlicher Ablauf einer zyklischen Funktion: Fall 2

A.6 X-in-the-Loop Testmethoden

Simulationen bzw. individuelle Simulationsmodelle sind ein wesentlicher

Bestandteil des Softwareentwicklungsprozesses. Im Folgenden werden wich-

tige Elemente simulationsbasierter Methoden nach dem XiL-Ansatz aus Sicht

der Testmethodik vorgestellt. Die Integration von Softwarefunktionen in das

Fahrzeug folgt einem schrittweisen Ansatz, bei dem noch nicht verfügbare

Hardwarekomponenten simuliert oder modelliert werden. Typischerweise

wird die folgende Sequenz ausgeführt:

• Model-in-the-Loop (MiL): In der frühen Phase des MiL-Testens liegen

nicht nur die Umgebungskomponenten, sondern auch das Testobjekt

nur als ausführbares oder mathematisches Modell vor. MiL-Tests kön-

nen auf Standard-PCs ausgeführt werden und für die Entwicklung von

Funktionen genutzt werden, die zukünftig nicht mehr mit Software

realisiert werden [104].

• Software-in-the-Loop (SiL): Der nächste Schritt erfolgt mit dem gene-

rierten Code der Vorgängermodelle. Dieser Code wird auf einer Platt-

form in der Nähe der Zielplattform getestet. SiL-Tests verwenden keine

realen elektronischen Steuergeräte, sodass die Simulationsmodelle der

Umgebung keine Echtzeitanforderungen erfüllen müssen [53].

186

A.6 X-in-the-Loop Testmethoden

• Hardware-in-the-Loop (HiL): Ein HiL-Test unterscheidet sich von den

zuvor genannten Verfahren dadurch, dass das zu testende System in der

Regel als reale Komponente vorliegt und in eine Simulationsumgebung

integriert ist. Einzelne Umgebungsteile wie Aktoren oder Sensoren

können auch als reale Hardware verfügbar sein, falls sie aufwändig

zu modellieren sind oder die Echtzeitfähigkeit ihrer entsprechenden

Modelle nicht gewährleistet ist [60].

Closed Loop Test HiL System

Ausgangssignale des
Systems

(Aktoren)

Eingangssignale des
Systems

(Sensoren)

Prüfling
(Device under Test)

Echtzeitsimulation
(Plant Model)

Abbildung A.5: Konzept Closed Loop Tests am HiL Prüfstand

Die genannten XiL-Verfahren lassen sich wiederum unterscheiden in soge-

nannte Closed-Loop und Open-Loop Tests. In der Open-Loop Testumgebung

werden im XiL-Kontext die zu testenden Modelle oder Algorithmen mit

Input-Daten simuliert. Die Output-Daten des Testobjekts werden von der

durchführenden Testperson untersucht und mit den erwarteten Ergebnissen

verglichen. Aufgrund der Einfachheit der Implementierung und des geringen

Aufwands bei der Testdurchführung ist dieser Ansatz weit verbreitet [118].

Das Closed-Loop Testen beinhaltet das Zurückspeisen der Ausgangssignale

des Systems an ein simuliertes Echtzeitmodell inklusive der Weiterleitung

der Signale dieses Modells zurück in das System (Abbildung A.5). Closed-

187

A Anhang

MiL

SiL

HiL

Implementierung

Moduldesign

Komponenten /

Subsystem Design

Softwareanalyse

& Design

Systemdesign

Kunden-

anforderungen

Modultest

Komponenten /

Subsystem Test

Software-

integration & Test

Systemintegration

& Test

Akzeptanztest

Ver.

Verifikation

Verifikation

Verifikation

Validierung

Abbildung A.6: V-Modell basierend auf [129] und [101]

Loop-Tests erfordern Echtzeitmodelle
2
, die der realen Test-Hardware ein

Feedback geben können, was mit einem hohen Implementierungsaufwand

verbunden ist.

Unter Berücksichtigung des V-Modells lässt sich der beschriebene Integrati-

onsablauf im Entwicklungsprozess von links nach rechts abbilden [129]. Die

Positionierung vonMiL, SiL und HiL in den einzelnen Schritten in Abbildung

A.6 kann dabei variieren, da der Übergang zwischen ihnen nicht eindeutig

einem bestimmten Schritt zugeordnet ist.

2
Unter Echtzeit wird der Betrieb eines Rechensystems verstanden, bei dem die Datenverarbei-

tung der anfallenden Daten derart durchgeführt wird, dass die Ergebnisse innerhalb einer

vorgegebenen Zeitspanne verfügbar sind [108].

188

A.7 ROS 2

A.7 ROS 2

Robot Operating System (ROS) 2 ist die Überarbeitung des ROS, das bei

Willow Garage für den Forschungsroboter PR2 entwickelt wurde. Der PR2

ist ein humanoid wirkender Roboter mit zwei Greifarmen. ROS unterstützte

dabei keine Echtzeitanforderungen und war auf stabile Netzwerke (kein

Mobilfunk) angewiesen. Die weitreichende Überarbeitung ROS 2 behebt

diese Thematiken und hat dadurch zu einem Durchbruch von ROS 2 aus

dem Bereich der Forschung in die Industrie
3
ermöglicht.

Aufbau der ROS 2 API

Die ROS 2 Schichten können den OSI Schichten (s. Tabelle A.2) zugeordnet

werden. Dabei wurde bei ROS 2 auf eine dezentrale Kommunikation gesetzt,

während die ursprüngliche ROS Implementierung noch auf einem zentralen

ROS-Master aufbaut. ROS Nodes bieten Services selbständig an oder abon-

nieren andere Services. Dabei wendet sich ROS 2 von der selbst entwickelten

Middleware ab und es kommt Data Distribution Service (DDS) als Kom-

munikationsumgebung zum Einsatz (Abbildung A.7). Analog zu AUTOSAR

Adaptive (Kapitel A.8) wird auch in ROS 2 jedes POSIX
4
-kompatible Betriebs-

system unterstützt. Dazu gehört neben Windows auch die verschiedenen

Linux Distributionen.

Die ROS 2 API verfügt über die zwei wesentlichen Schnittstellen der Middle-

ware rmw und des Benutzers rcl.

Die rmw API ist die Schnittstelle zwischen dem ROS 2 Software-Stack und

der zugrunde liegenden Middleware-Implementierung bestehend aus einer

DDS- oder RTPS-Implementierung. Die Rolle der rmw Schicht ist das Fin-

den, Abonnieren und Nutzen von Services mithilfe der unterschiedlichen

3
https://rosindustrial.org/ric/current-members

4
Portable Operating System Interface

189

A Anhang

7

5

4

2

1

3

6

OSI ROS 2

B
en

ut
ze

r
C

od
e

R
O

S
C

lie
nt

R
O

S
M

id
dl

e-
w

ar
e

B
et

ri
eb

s-
sy

st
em

H
ar

d-
w

ar
e

Abbildung A.7: ROS 2 Schichten und deren Zuordnung in das OSI-Modell

Mechanismen (Publish/Subscribe).

Die höher gelagerte rcl API stellt die Schnittstelle zu den Nutzeranwen-

dungen dar. Entscheidend ist hierbei die Möglichkeit für Anwender, in den

Sprachen C++, Python oder auch Java entwickeln zu können. ROS 2 bietet

hierfür sprachspezifische Schnittstellen (rclpy etc.), die die Implementierun-

gen der entsprechenden Datentypen zwischen den Programmiersprachen

übersetzen können.

Die Nachrichtentypen in ROS 2

ROS 2 stellt Übersetzungsmechanismen zur Verfügung, die eine Unabhängig-

keit der Nachrichtentypdefinition von der Middleware der Applikationssoft-

190

A.7 ROS 2

Connext DDSFast DDSCyclone DDS

Applikations-Software

rclcpp (C++ API) rclpy (Python API) rcljava (Java API)

rcl Benutzer-Schnittstelle (C oder C++)

rmw Middelware-Schnittstelle (C API)

ROS zu DDS

Pub/Sub mit QoS Services mit QoS Finden von Services Grafische Events

Services Parameter Zeit Konsolgen-Logging

oder oder

Kommunikation
zwischen
Prozessen

Abstraktion der
Datentypen

Abstraktion der
Datentypen

Abstraktion der
Datentypen

Kommunikation
zwischen
Prozessen

Kommunikation
zwischen
Prozessen

Abbildung A.8: ROS 2 API Überblick, nach [92]

ware gestatten. Die Mechanismen umfassen die Definition des Nachrichten-

formats in Form einer .msg Datei bis hin zur sprachspezifischen Umsetzung

in Form von Programmcode und Header-Files [111]. Die Übersetzung kann

statisch oder dynamisch erfolgen.

191

A Anhang

.msg-Datei

Messages sind zentraler Bestandteil des ROS 2 Interface. Innerhalb

der .msg-Dateien werden die Nachrichtentypen definiert, aus denen

wiederum mithilfe von ROS 2 Tools automatisch interpretierbarer

Quelltext für verschiedene Programmiersprachen erzeugt wird. .msg-
Dateien beinhalten Felder und Konstanten. Felder bestehen aus dem

Datentyp und der Bezeichnung. Die Datentypen entsprechen den

typischen Datentypen aus der C++ Umgebung. Definierte Nachrich-

tentypdefinitionen können selbst wieder Datentypen darstellen und

somit verschachtelt werden. Konstanten entsprechen Feldern mit

einem Standardwert, der zur Laufzeit nicht verändert werden kann.

Kommunikationsarten in ROS 2

Der Publisher-Subscriber-Mechanismus ermöglicht eine asynchrone, viele-

zu-viele Kommunikation über sogenannte Topics.

• Publisher senden Nachrichten zu einem bestimmten Topic.

• Subscriber empfangen Nachrichten von einem Topic.

• Mehrere Publisher und Subscriber können dasselbe Topic verwenden.

• Nachrichten werden nur empfangen, wenn ein Subscriber aktiv ist.

Das Service-Client-Modell ermöglicht synchrone Anfragen und Antworten

über definierte Services.

• Client-Knoten sendet eine Anfrage.

• Service-Knoten verarbeitet die Anfrage und sendet eine Antwort

zurück.

• Die Kommunikation erfolgt über eine Service-Schnittstelle mit einer

festgelegten Struktur (Request/Response).

192

A.8 AUTOSAR Adaptive

Actions sind eine Erweiterung des Service-Client-Modells für langlaufende

Prozesse mit Zwischenupdates.

• Der Client sendet eine Anfrage zur Ausführung einer Aktion.

• Der Server verarbeitet die Anfrage und sendet regelmäßige Statusup-

dates.

• Die Aktion kann während der Ausführung abgebrochen oder neu

gestartet werden.

Parameter bieten eine Möglichkeit zur Verwaltung von Konfigurationswer-

ten für Knoten.

• Jeder Knoten kann Parameter setzen, lesen und aktualisieren.

• Parameter sind oft für Einstellungen wie Sensorkalibrierung oder

Steuerungsparameter relevant.

• Sie können über die Kommandozeile oder über eine API geändert

werden.

Lifecycle Nodes ermöglichen eine gezielte Steuerung des Knotenzustands.

• Standardzustände: unconfigured, inactive, active, finalized.

• Ein Knoten kann erst aktiv werden, wenn alle Abhängigkeiten erfüllt

sind.

• Erhöht die Kontrolle über die Systeminitialisierung und das Fehler-

handling.

A.8 AUTOSAR Adaptive

Die AUTOSAR Adaptive Plattform [11] ist die Definition einer service-

orientierten Architektur bestehend aus Laufzeitsystem, Schnittstellen und

193

A Anhang

Funktionalitäten, die durch das AUTOSAR (AUTomotive Open System AR-

chitecture) Konsortium entwickelt wurde. Die Plattform versucht vor allem,

den steigenden Anforderungen der Rechenleistung im Fahrzeug gerecht zu

werden [136], für die die AUTOSAR Classic Plattform (Beginn der Arbeiten

im Jahr 2003) nicht ausgelegt ist. Die stark gestiegenen Anforderungen an

Rechenleistung und mögliche kontinuierliche Aktualisierbarkeit der Soft-

ware sind durch Funktionen wie automatisiertes Fahren und künstliche

Intelligenz, die im Fahrzeug Einzug halten, entstanden. AUTomotive Open

System ARchitecture (AUTOSAR) Classic wurde für Mikrocontroller mit

einem Prozessorkern entwickelt, während Adaptive die zunehmende Paralle-

lisierung durch Erhöhung der Anzahl der Prozessorkerne durch Multi-Core

Prozessoren unterstützt [111]. Neben der Möglichkeit, leistungsstärkere

Prozessoren zu verwenden, ist der Einsatz von Ethernet ein Technologietrei-

ber, der mit Adaptive im Fahrzeug stärker als bisher in Classic umgesetzt

wird. Der Ethernet-Standard ermöglicht nicht nur eine höhere Bandbreite

gegenüber den bisher verbreiteten signalbasierten Standards Controller Area

Network (CAN) und Local Interconnect Network (LIN) der Kommunikation

im Fahrzeug, sondern auch den Aufbau einer SOA.

Struktur von AUTOSAR Adaptive

Die Grundlage der logischen Struktur von AUTOSAR Adaptive (s. Abbildung

A.9) bildet die Hardware eines Steuergeräts oder einer virtuellen Maschine.

Darauf wird ein POSIX-kompatibles Betriebssystem aufgesetzt (s. Definition

A.6).

194

A.8 AUTOSAR Adaptive

Abbildung A.9: Komponenten der AUTOSAR Adaptive Software [136]

Definition A.6 POSIX: IEEE 1003.1 „IEEE Standard for Infor-

mation Technology – Portable Operating System Interface (PO-

SIX) Base Sepcifications“ bezeichnet POSIX als eine Standard-

Betriebssystemschnittstelle und -umgebung, inklusive Befehlsinter-

preter und allgemeinen Dienstprogrammen, die die Portabilität von

Programmen auf Quellcodeebene gewährleisten soll. [55]

Oberhalb des Betriebssystems sind die funktionellen Cluster angesiedelt.

Diese Cluster bilden die Schnittstelle zu den Adaptive Services. Dabei wird

zwischen Adaptive Platform Foundation und Adaptive Platform Services un-
terschieden. Die Foundation umfasst die fundamentalen Funktionalitäten

des Adaptive Stacks, während letztere Standard-Services von AUTOSAR

Adaptive beschrieben werden. Die oberste Ebene ist die AUTOSAR Runtime

Environment, auf der schließlich die Adaptive Applikationen ausgeführt

werden können.

195

A Anhang

Relevante funktionelle Cluster der AUTOSAR Adaptive
Plattform

Communication Management

Das Communication Management ist für die Kommunikation zwischen An-

wendungen auf derselben ECU, also auch für die Kommunikation zwischen

Anwendungen in verteilten Systemen auf verschiedenen ECU zuständig.

AUTOSAR Adaptive (AUTOSAR Adaptive R22-11) unterstützt die service-

orientierte Kommunikation mittels der Middleware Protokolle SOME/IP

(s. Anhang A.12) und DDS (s. Anhang A.12), sowie IPC
5
und Signal PDU

(als signalbasierte Kommunikationsform). Die serviceorientierte Kommu-

nikation von AUTOSAR bietet einen dynamischen Aufbau von Kommu-

nikationspfaden. Die zentrale Komponente für die Laufzeiterkennung ist

die Service Registry. Applikationen, die Dienste anbieten, registrieren diese

in der Service Registry. Konsumenten finden diese Dienste, indem sie die

Registry abfragen. Danach können sie Dienste direkt beim Anbieter aufrufen.

Dieser Vorgang wird als Service Discovery bezeichnet. Ähnlich wie beim

Dienstzugriff werden auch die Service-Discovery-Aufrufe auf das spezifische

Middleware-Protokoll abgebildet [6].

Execution Management

Das Execution Management ist für die Verwaltung der Ausführung der Platt-

form und der Anwendungen zuständig. Dazu gehört unter anderem die

Initialisierung der Plattform sowie das Starten und Herunterfahren von An-

wendungen. Das Execution Management konfiguriert die Plattform und die

Anwendungen gemäß einem Manifest, dem Execution Manifest. AUTOSAR-
Manifeste sind XML-basierte Dateien, die Dienste, Anwendungen, die zu-

grunde liegenden Maschinen und deren Konfiguration beschreiben. Ein

5
Interprozesskommunikation

196

A.9 Weitere Netzwerkprotokolle

wichtiger Aspekt ist zudem die Zusammenarbeit zwischen dem Execution
Manager und dem Betriebssystem für die Konfiguration von Scheduling Po-
licies. Mithilfe dieser können kritischere Anwendungen mit einer höheren

Priorität eingeplant werden.

Entwicklungsprozess in AUTOSAR Adaptive

Das Entwicklungsvorgehen in AUTOSAR Adaptive beschreibt Services, An-

wendungen, Maschinen sowie deren Konfiguration und Verhalten unterein-

ander. Der gesamte Entwicklungsprozess ist in Abbildung A.10 abgebildet

und wird farblich zwischen ausführbaren Anwendungen in Orange, Be-

schreibungen und Manifesten in Hellorange und Arbeitsschritten in Grau

unterschieden.

A.9 Weitere Netzwerkprotokolle

Für die Integration der Cloud in die Architektur des Fahrzeuges ist eine netz-

werkübergreifende Kommunikation auf der Applikationsschicht notwendig.

Message Queuing Telemetry Transport (MQTT) und Hypertext Transfer

Protocol (HTTP) sind zwei gängige Protokolle für die Datenübertragung in

netzwerkbasierten Anwendungen [22]. Während MQTT analog zu den To-

pics aus ROS 2 dem Publish-Subscribe-Modell zugrunde liegt, basiert HTTP

auf dem Request-Response-Modell wie auch die ROS 2-Services. Beide Proto-

kolle unterstützen das Verschlüsselungsprotokoll Transport Layer Security

(TLS), wobei lediglich MQTT eine Konfiguration der Quality of Service

(QOS)-Levels bietet. HTTP ist auf das Versenden von Textnachrichten be-

schränkt und erlaubt die Kommunikation immer nur zwischen genau einem

Server und einem Client. Die Nachrichtengröße ist bei MQTT auf 256MB

beschränkt, wohingegen bei HTTP diesbezüglich kein Limit vorliegt [28,29].

197

A Anhang

Abbildung A.10: Entwicklungsprozess in AUTOSAR Adaptive [11]

A.10 Software Architektur von Steuergeräten

Das Software Design innerhalb der Automobilindustrie wird durch die Rand-

bedingungen der Robustheit und Zuverlässigkeit geprägt, weswegen einige

Softwarearchitekturstile aus der IT-Welt nicht in der Automobilwelt Einzug

halten [110]. Die Grundlage aller Automotive Software Architekturen bildet

die Schichtenarchitektur (engl. layered architecture), die auf das Prinzip

der Hierarchie aufbaut (vgl. AUTOSAR Classic in Abbildung A.11). Kom-

ponenten werden aufeinander aufgesetzt und Funktionsaufrufe sind nur

in eine Richtung von höheren Ebenen zu niedrigeren Ebenen möglich (s.

Abbildung 2.12). Die Applikationssoftware auf der obersten Ebene ist klar

von der Hardware durch verschiedene Abstraktionsschichten getrennt.

198

A.11 Middleware

Application Layer

Runtime Environment

Microcontroller Abstraction Layer

Services Layer

ECU Abstraction Layer

Complex
Drivers

Microcontroller

Abbildung A.11: Das AUTOSAR Classic Schichtenmodell

A.11 Middleware

Eine Middleware Architektur postuliert einen zentralen Broker, der die Kom-

munikation zwischen Anwendungen und Ressourcen so vermittelt, dass die

Komplexität dieser Anwendungen und ihrer Infrastruktur für den Benut-

zer nicht sichtbar ist. Die Middleware stellt also die Vermittlungsplattform

zwischen verschiedensten Anwendungen dar, die auf unterschiedlichen Re-

chenumgebungen innerhalb eines verteilten Informationssystems ausgeführt

werden können [113].

Die typischen Dienste einer Middleware sind [19]:

• Kommunikationsmanagement: Peer-to-Peer messaging, remote proce-

dure call...

• Systemmanagement: Event notification service, recovery coordinator...

• Informationsmanagement: Dateimanager, Datenbanksystem...

• Ablaufkontrollmanagement: Thread manager, resource broker...

• Berechnungsdienste: Datenkonvertierung, Sortierverfahren...

Middleware Architekturen sind im Bereich des Cloud Computing nicht

mehr wegzudenken und spielen durch die Vernetzung des Fahrzeugs mit

199

A Anhang

Middleware

Applikation
Infotainment

Plattform
-Betriebssystem

-Hardware

Applikation
Internetzugang

Plattform
-Betriebssystem

-Hardware

API API

Plattform Schnittstellen

Abbildung A.12: Struktur einer Middleware Architektur

der Cloud auch innerhalb des Fahrzeugs eine immer wichtigere Rolle. Die

Einordnung einer Middleware in das OSI-Schichtenmodell kann in Anhang

A.14 nachgelesen werden.

A.12 Middleware Kommunikationsprotokolle

Data Distribution Service (DDS)

DDS wurde für den Einsatz im Umfeld von Industrie 4.0 entwickelt und

erhält durch die Umsetzung in ROS 2 und AUTOSAR Adaptive auch Einzug

in Fahrzeuge. Zentrales Element ist das Publish-Subscriber Konzept, welches

zudem die Einstellung verschiedener QoS-Policies ermöglicht (s. Kapitel A.4).

Das tatsächliche Protokoll, mit den Implementierungen über verschiedene

Netzwerkprotokolle Daten austauschen, wird nicht von DDS vorgegeben.

Somit ist DDS über der Transportschicht des OSI Schichtenmodells einzu-

ordnen (s. Kapitel A.14) und baut auf einem entsprechenden Protokoll zur

Übertragung der Nutzdaten (auch wire protocol genannt) auf.

200

A.12 Middleware Kommunikationsprotokolle

Scalable Service-Oriented Middleware over IP (SOME/IP)

SOME/IP stellt ein Middleware Protokoll auf den Open Systems Interconnec-

tion (OSI) Schichten (s. Kapitel A.14) Session, Presentation und Application

dar und ist Teil des AUTOSAR Adaptive-Standards. SOME/IP ist für den

Einsatz in serviceorientierten Architekturen geeignet und bietet somit die

grundsätzlichen Möglichkeiten, Daten schnell und effizient zwischen Ser-

vices auszutauschen. SOME/IP unterstützt die folgenden vier Kommunikati-

onskonzepte:

• RPCs Entfernte Methodenaufrufe (engl. Remote Procedure Calls) wer-

den in Fire & Forget und Request-Response unterschieden. Bei der ersten
Variante ruft der Client die angebotene Methode auf und erwartet

keinen Rückgabewert. Bei der Request-Response Variante erhält der
Client eine Antwortnachricht.

• Ereignis (Event) Ein Service kann eine oder mehrere Eventgruppen

anbieten, welche von interessierten Clients abonniert werden können.

Sobald sich der Zustand der zur Eventgruppe gehörenden Felder in

einer definierten Weise ändert, sendet der Service ein Benachrichti-

gungsframe (Event) mit dem neuen Zustand an alle abonnierenden

Clients.

• Felder Datenfelder, die einen Wert repräsentieren und ein Event aus-

lösen, falls sich der Wert verändert. Felder können durch den Client

ausgelesen oder geändert werden.

Die Services finden und registrieren sich durch das Service Discovery Pro-

tokoll des Standards [10]. Das Protokoll unterscheidet auch hier zwischen

zwei Mechanismen für die dynamische Adressermittlung von Services. Die

erste Möglichkeit besteht darin, dass der Server mittels zyklischer Multicast

Nachrichten den Service im gesamten Netzwerk offeriert. Die Alternative

besteht in der aktiven Suche eines Services durch den Client mithilfe des

Find-Packet.

201

A Anhang

Client Server Client Server

Client Server Client Server

d) Ereignis: Client abonniert eine angebotene
Eventgruppe des Servers und erhält fortan

Benachrichtigungen über Events

c) Felder: Setzen bzw. Auslesen der Datenfelder
eines anderen Service

b) RPC: Request-Response Methodenaufrufa) RPC: Fire & Forget Methodenaufruf

Abbildung A.13: SOME/IP Kommunikationsparadigmen

A.13 Funktionale Sicherheit im Automobil

Die ISO 26262 (Functional Safety for Road Vehicles) ist der internationale

Standard für die funktionale Sicherheit von Straßenfahrzeugen mit einem

zulässigen Gesamtgewicht von max. 3,5 t. Entsprechend dieses Standards

wird die funktionale Sicherheit als das „Nichtvorhandensein eines unange-

messenen Risikos aufgrund von Gefahren, die durch fehlerhaftes Verhalten

von E/E Systemen verursacht werden“ definiert. Das Rahmenwerk ist in

zehn Teile gegliedert. Die Teile 3 bis 7 beziehen sich auf den Lebenszyklus

eines Fahrzeugs, während die übrigen Teile hiervon unabhängig sind:

• Teil 1: Glossar

• Teil 2: Management der funktionalen Sicherheit

202

A.13 Funktionale Sicherheit im Automobil

• Teil 3: Konzeptphase

• Teil 4: Produktentwicklung Systemebene

• Teil 5: Produktentwicklung Hardware-Ebene

• Teil 6: Produktentwicklung Software-Ebene

• Teil 7: Produktion und Betrieb

• Teil 8: Unterstützende Prozesse

• Teil 9: ASIL und sicherheitsorientierte Analysen

• Teil 10: Orientierungshilfen

Die Konzeptphase des dritten Teils des Standards ist für diese Dissertation

relevant. Dieser Teil befasst sich mit der Betrachtung von Gefährdungen und

der Einschätzung von Risiken, welche im Zusammenhang mit der funktio-

nalen Sicherheit von sicherheitsbezogenen Fahrzeugsystemen bestehen [52].

Hauptbestandteil ist die Klassifizierung von Gefährdungen in sogenannte

Automotive Safety Integrity Level (ASIL), die wiederum als Basis für die

Anforderungen an die betrachteten Systeme oder Teilsysteme dienen. Inner-

halb der ISO wird dabei der Begriff item benutzt. Im ersten Schritt ist das

Item zu definieren. Unter einem Item versteht die ISO 26262 eine Funktion,

ein System oder eine Kombination von Systemen, die auf Fahrzeugebene

eine bestimmte Aufgabe realisieren. Die Definition des item steht laut ISO

26262 am Anfang eines jeden Entwicklungsprojekts.

Gefährdungs- und Risikoanalyse

Die Bestimmung eines ASIL erfolgt durch die Gefährdungs- und Risikoana-

lyse (engl. Hazard analysis and risk assessment (HARA)) des item.

Gefährdungen werden anhand folgender Faktoren und deren Bewertungs-

stufen klassifiziert:

• Schwere eines möglichen Schadens (engl. Severity S)
S0: Keine Verletzungen

S1: Leichte bis mittlere Verletzungen

S2: Schwere Verletzungen, Überleben wahrscheinlich

203

A Anhang

S3: Lebensgefährliche Verletzungen, Überleben unwahrscheinlich

• Häufigkeit der Fahrsituationen (engl. Probability of Exposure E)
E0: Unvorstellbar

E1: Sehr niedrige Wahrscheinlichkeit

E2: Niedrige Wahrscheinlichkeit

E3: Mittlere Wahrscheinlichkeit

E4: Hohe Wahrscheinlichkeit

• Beherrschbarkeit durch den Fahrer (engl. Controllability C)
C0: Im Allgemeinen beherrschbar

C1: Einfach beherrschbar

C2: Normalerweise beherrschbar

C3: Schwierig oder nicht beherrschbar

Auf Grundlage der Einstufung des Items in den Faktoren Severity, Exposure
und Controllability erfolgt die Festlegung des ASIL (s. Tabelle A.1), wel-

ches die Werte QM, A, B, C oder D annehmen kann. QM steht für „Qua-

litätsmanagement“ und repräsentiert den niedrigsten Kritikalitätsgrad. In

Fällen, in denen der ASIL-Wert mit QM eingestuft wird, sind keine spe-

ziellen sicherheitsgerichteten Maßnahmen gemäß ISO 26262 erforderlich.

Die Entwicklung erfolgt hier lediglich unter Berücksichtigung allgemeiner

Qualitätsanforderungen.

Anders verhält es sich bei ASIL A bis D: Hier sind spezifische sicherheitsbe-

zogene Maßnahmen verpflichtend, um das mit der jeweiligen Gefährdung

verbundene Risiko auf ein akzeptables Maß zu reduzieren. ASIL D stellt dabei

die höchste Stufe dar und erfordert den umfassendsten Maßnahmenkatalog

im Hinblick auf funktionale Sicherheit. Zu den typischen sicherheitsgerich-

teten Maßnahmen zählen unter anderem: systematische Risikoanalysen,

sicherheitsrelevante Design- und Architekturentscheidungen, formale Re-

views sowie Verifikations- und Validierungsaktivitäten. Ergänzend werden

Maßnahmen auf Hardware- und Softwareebene ergriffen, wie etwa die Im-

plementierung von Fehlererkennungsmechanismen, Redundanzkonzepten

oder Sicherheitsüberwachungsfunktionen. Ziel all dieser Maßnahmen ist es,

204

A.13 Funktionale Sicherheit im Automobil

Tabelle A.1: ASIL Bestimmung nach ISO 26262

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

potenzielle Fehler frühzeitig zu erkennen, ihre Auswirkungen zu begrenzen

oder das System in einen sicheren Zustand zu überführen.

205

A Anhang

A.14 OSI Referenzmodell

Das OSI-Modell ist ein von der International Telecommunication Union

(ITU) entwickelte und herausgegebene Spezifikation zur Klassifikation von

Kommunikation zwischen verschiedenen Netzwerkteilnehmern. Das Modell

unterteilt sich in 7 Schichten, mit einer steigenden Abstraktion von Schicht 1

bis 7 (s. Tabelle A.2). Grundsätzlich kann das OSI-Modell auf verschiedenste

Systeme angewendet werden. Die Software-Architektur im Fahrzeug (s. Ka-

pitel A.10) oder in der Cloud kann ebenfalls durch die sieben Schichten des

OSI-Modells abgebildet werden. Oftmals werden in diesem Zusammenhang

die Schichten 4 bis 6 zu einer sogenannten Middleware-Schicht zusammen-

gefasst (Kapitel A.12), die auf den Schichten Betriebssystem (Schichten 2

und 3 des OSI-Modells) und Hardware (Schicht 1 des OSI-Modells) aufbaut.

Tabelle A.2: Schichten des OSI-Modells [80]

Schicht Titel Funktionen Standard

(ISO-OSI)

Beispiel Protokoll

7 Application Austausch der Nutzdaten

spezieller Anwendungen

ISO 8649 HTTP, CANopen

6 Presentation Systemunabhängige Bereit-

stellung

ISO 8823 ASN.1

5 Session Steuerung logischer Verbin-

dungen

ISO 8326 ISO 8327

4 Transport Übertragung der Nutzdaten ISO 8073 TCP, UDP

3 Network Schalten von Verbindungen ISO 8348 IP

2 Data Link Sicherung der Übertragung ISO 8886 Ethernet

1 Physical Elektrische Konnektivität ISO 10022 WLAN, RS232

206

A.15 Hierarchieebenen von E/E-Features

A.15 Hierarchieebenen von E/E-Features

Die nachfolgenden Hierarchieebenen basieren auf der Dissertation von Bach

[12]. Beispielhafte Features der Ebenen sind in Abbildung A.14 dargestellt.

• Integrierte Features Eng mit der mechanischen Domäne des Fahr-

zeugs verknüpft. Dadurch entsteht eine unmittelbare Nähe zu spezifi-

schen mechanischen Einheiten, die häufig eine Ausführung auf einer

dedizierten ECU mit sich bringt. Sensoren und Aktoren, die für die

Aufgabe der ECU erforderlich sind, sind direkt an die dedizierte ECU

angeschlossen.

• Verteilte Fatures Kombination einzelner Komponenten unterschied-

licher Domänen, um neue Funktionalitäten zu ermöglichen. Diese

Features erfordern nicht zwingend mechanische Hardwarekomponen-

ten.

• Quervernetzte Features Verbindung mehrerer Funktionselemente

miteinander. Das funktionale Verhalten hängt von der koordinierten

Beeinflussung der unabhängigen Komponenten getrennter Domänen

ab. Nutzen des Sensornetzwerks des gesamten Fahrzeugs für eine

vollständige Repräsentation des Fahrzeugzustandes.

207

A Anhang

Integrierte Features

Verteilte Features

Quervernetzte Features

Antriebsstrang

Karosserie

Klima und Komfort

Infotainment

Chassis

Bordnetz Safety

Automatikgetriebe

Traktionskontrolle Anfahrhilfe

Motorsteuerung

Schließsystem

Lenkradsperre

Fenster und Scheibenwischer

Lichtsteuerung

Sitze und Komfortsysteme

Heizung, Lüftung, Klima

Navigation Kommunikation

Audio und Video HMI

Batteriemanagement

Umrichterregelung

Airbags

Gurtstraffer

Hinweisend

Unterstützend Assistierend

Automatisierend

Hinweisend Unterstützend

Stabilitätskontrolle

Audio und Video

ABS und ESP

Audio und Video

Tempolimit Warnung

Effizienzempfehlung

Reichweitenschätzung

Verkehrsadaptive
Routenführung

Abstandswarnung Spurverlassenswarnung

Totwinkelwarner Einparkhilfe

Adaptives Fernlicht

Start-Stop Automatik

Adaptives Kurvenlicht

Heckaufprallschutz

Abstandsregeltempomat

Spurhalteassistent

Notbremsassistent

Parkassistent

Staupilot Autobahnpilot Automatisierter Parkservice Automatisiertes Fahren

Straßenzustandswarner

Assistierend

Verkehrszeichener-
kennung

Reichweitenoptimierung Notruf

Rekuperationssteuerung Kollisionsvermeidung

Prädiktiver
Abstandsregeltempomat

Spurwechselassistent

Abbildung A.14: Features im Fahrzeug und deren Einordnung bezüglich der Vernetzung [12]

208

A.16 Tabellen

A.16 Tabellen

Tabelle A.3: Schlüsselmerkmale einer generischen Softwarekomponente [114]

Merkmal Beschreibung

Modularität Unterteilt ein System in eigenständige, austauschbare Einheiten, die

jeweils eine spezifische Funktion erfüllen.

Kapselung Bündelt Daten und die darauf operierenden Methoden, schränkt den di-

rekten Zugriff ein und verbirgt interne Details hinter einer öffentlichen

Schnittstelle.

Abstraktion Vereinfacht komplexe Systeme, indem nur wesentliche Eigenschaften

offengelegt und irrelevante Details verborgen werden.

Wiederverwendbarkeit Ermöglicht die Integration von Komponenten in verschiedene Anwen-

dungen oder deren Nutzung in verschiedenen Teilen derselben Anwen-

dung.

Substituierbarkeit Eine Komponente kann durch eine andere ersetzt werden, die dieselbe

Schnittstelle einhält, ohne die Systemfunktionalität zu beeinträchtigen.

Interoperabilität Komponenten können miteinander kommunizieren und zusammenar-

beiten, auch wenn sie mit unterschiedlichen Technologien oder Platt-

formen erstellt wurden.

Unabhängigkeit Komponenten haben minimale Abhängigkeiten von anderen Kompo-

nenten und können in verschiedenen Umgebungen und Kontexten

funktionieren.

Klar definierte Schnittstellen Die Kommunikation zwischen Komponenten erfolgt ausschließlich über

explizite, präzise spezifizierte Schnittstellen, die die Interaktion regeln.

209

A Anhang

Tabelle A.4: Die QOS Policies des Basis Profils in ROS 2 [91]

Bezeichnung Beschreibung

History Keep last: Maximal N Werte werden gespeichert

Keep all: Alle Werte bis zum Limit der zugrundeliegenden Middlewa-

re werden gespeichert.

Depth Im History Fall keep last wird die Anzahl zu speichernder Werte angegeben.

Reliability Best effort: Es wird versucht Werte zu senden, es können jedoch

Werte bei unzuverlässiger Netzwerkverbindung verloren gehen.

Reliable: Garantie, dass alle Werte zugestellt werden. Notfalls werden

Werte mehrfach gesendet.

Durability Transient local: Der Publisher ist dafür verantwortlich

Werte für später beitretende Subscriber zu vorzuhalten.

Volatile: Werte für noch nicht verbundene Subscriber werden nicht

zwischengespeichert.

Deadline Duration: Die erwartete maximale Zeitspanne zwischen zwei aufeinanderfol-

genden Nachrichten eines Topics

Lifespan Lifespan: Die maximale Zeitspanne zwischen dem Senden und Empfangen

einer Nachricht, bevor diese als ungültig erachtet und verworfen wird.

Liveliness Automatic: Das System nimmt an, dass alle Publisher eines No-

de lebendig sind, sobald ein Publisher eine Nachricht versendet hat.

Manual by topic: Publisher muss dem System aktiv mitteilen, dass er noch

lebendig ist.

Lease Duration Duration:Maximale Zeitdauer, die das System wartet, bevor es einen Publisher

als tot erachtet.

210

A.17 Grafiken

A.17 Grafiken

Abbildung A.15: Busroute mit Bushaltestellen in der CARLA Simulationsumgebung

211

A Anhang

:Sim_CabinModel:SimDrive:Bus-Agent:HVAC-PID-
Controller

GetNextSetValue()

:Sim_HeatPump

subscribe(topic: "hvac_data")

service
hvac_control_vehicle

:HVAC-Vehicle-
Client :ROS-Bridge :Vehicle:Dynamic-

Weather

publish(topic: "hvac_control_values")

update_vehicle_data()

update_weather_data()

publish(topic: "sim_eval_data")

 set_initial_values(qsetvalue_init)

lower latency and
higher datarates

higher latency and
lower datarates

alt

[if tunnel_status=True]

cabin_temp, rH

publish(topic: "hvac_data")

loop

loop

response.qsetvalue

request.cabintemp, request.set_cabintemp

publish(topic: "network_data")

publish(topic: "network_data")

publish(topic: "ecu_eval_data")

set_cabin_temp,

fresh_air_mass_flow_rate,
 control_accuracy

fresh_air_mass_flow_rate

SetContext(contextdata)

NextTimeStep(qsetvalue)

SetContext(contextdata)

NextTimeStep(Q_out)

Q_out, P_hvac

subscribe(topic: "hvac_control_values")

Init(HeatPumpProperties.mat, delta_t_sim)

Init(CabinProperties.mat, rHinit, Tinit, delta_t_sim)

calculate_network_data()

calculate_network_data()

client
hvac_control_vehicle

[else]

Abbildung A.16: Sequenzdiagramm der Ausführung des integrierten fahrzeuginternen PID-

Reglers

212

A.17 Grafiken

:MPC_HeatPump:HVAC-Cloud-
Client :ROS-Bridge :HVAC-MPC-

Controller

check_plausibility(Q_SetValue)

calc_costfunction()

:MPC_CabinModel:MQTT Broker

subscribe(topic: "hvac_data")

publish(topic: "hvac_control_values")

loop
connect as hvac_mpc_controller

publish(topic: "cloud_services")

subscribe(topic: "hvac_readings")

publish(topic: "hvac_control_values")

subscribe(topic: "hvac_control_values")

publish(topic: "cloud_eval_data")

GetNextSetValues(contextdata_input)

:ContextPredictor

- get contextdata_input
from hvac_readings

connect as hvac_cloud_client

publish(topic: "hvac_readings")

GetContextDataPrediction(contextdata_input, NPredict)

contextdata

set_cabin_temp(cabin_temp)

Init(CabinProperties.mat, rHinit, Tinit, NPredict, delta_t_mpc)

Init(HeatPumpProperties.mat, NPredict, delta_t_mpc)

SetContext(contextdata)

SetContext(contextdata)

GetConstraints()

Q_min, Q_max

loop:

optimization
GetPrediction(Q_SetValues)

GetPrediction(Q_out, P_hvac)

Q_out, P_hvac

cabin_temp, rH

Q_out, P_hvac

NextTimeStep(Q_out, P_hvac)

cabin_temp, rH

NextTimeStep(Q_SetValue)

Abbildung A.17: Sequenzdiagramm der Ausführung des integrierten cloudbasierten MPC

213

A Anhang

Legende

SWC A

Hardware

SWC B SWC C

Laufzeitumgebung

I/O-, Speicher-,
Mikrocontroller-, und

Komm.- treiber

Basissoftware
System-, Speicher- und

Kommunikations-
services

I/O Hardware-,
Speicherhardware-

und Komm.-
hardwareabstraktion

Sensor

Bussystem

Softwarekomponente
(Anwendungsschicht)

Anwendungsabstraktions-
schicht

Mikrocontroller
Abstraktionsschicht

Serviceschicht

Steuergeräteabstraktion
und

komplexe Treiber

Abbildung A.18: Softwarekomponenten innerhalb der AUTOSAR Classic Schichtenarchitektur

[112]

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Zeit t in s

Q̇
i
n
k
W

Messwert

PT1-Modellierung

Abbildung A.19: Sprungantwort der modellierten Wärmepumpe [100]

214

A.17 Grafiken

Abbildung A.20: Wärmeabgabe eines Menschen [34]

1: mittlere Raumtemperatur TMittel[℃] 4: sensible Wärme [W]

2: Wärmeabgabe [W] 5: latente Wärme [W]

3: Wärme gesamt [W]

215

A Anhang

Abbildung A.21: Aufbau der fahrzeuginternen Telematikeinheit als Gateway [48]

216

Abbildungsverzeichnis

1.1 Evolution der E/E-Architekturen im Automobil 3

1.2 Produktlebenszyklen verschiedener Fahrzeugtypen in Jahren . . 4

1.3 Zeitliche Entwicklung des Technologieumfangs im Automobil . 5

1.4 Ontologie der Begriffe System, Komponente, Funktion und Feature 7

2.1 Struktur einer modellprädiktiven Regelung 12

2.2 Strategie einer modellprädiktiven Regelung 15

2.3 Beispiel einer prädizierten Stellgrößenfolge 16

2.4 Fuzzifizierung der Eingangsgrößen Temperatur und Geschwin-

digkeit mittels Dreiecks- und Gaußscher Zugehörigkeitsfunktionen 17

2.5 Ablauf eines Fuzzy-Reglers . 18

2.6 Steuergerät als eingebettetes System im Fahrzeug 20

2.7 Zuordnung der elektronischen ECUs zu den funktionalen Do-

mänen des Fahrzeugs . 22

2.8 Energieverbrauch in Abhängigkeit von der CPU-Last eines

Raspberry Pi Model B . 24

2.9 Verteilte E/E-Architektur . 25

2.10 Zonenarchitektur des UNICARagil Projekts 27

2.11 Vergleich zwischen signalorientierter und serviceorientierter

Architektur . 28

2.12 Grundlegende Komponenten einer Automotive-Softwarearchi-

tektur . 29

2.13 Ebenen der serviceorientierten Architektur 30

2.14 Komponenten eines Services . 31

2.15 Sankey-Diagramm des Energieflusses im BEB 35

2.16 Anteil an abdeckbaren Umlaufplänen des deutschen Busver-

kehrssystems bei gegebener Reichweite eines Busses 36

217

Abbildungsverzeichnis

2.17 Darstellung der Aufdachanlage mit dem Wirkprinzip des Kühl-

kreislaufs . 37

2.18 Schematischer Aufbau unterschiedlicher HLK-Systeme eines

Elektrobusses . 39

2.19 Mögliche Economy- und Komfort-Kennlinien nach Verband

Deutscher Verkehrsunternehmen (VDV)-Schrift 236 sowie da-

von abgeleitete Temperaturdifferenz 43

2.20 Wärme- und Massenströme in einem Stadtbus 44

2.21 Enthalpieströme zwischen den Klimazonen im Stadtbus 49

2.22 Vehicle-to-X Kommunikationsarten 53

2.23 Zusammenfassung der V2X Service Kategorien 54

2.24 Vergleich der Schlüsselfunktionen von IMT-Advanced (4G) mit

IMT-2020 (5G) . 55

2.25 Energieverbrauch im LTE-Netz abhängig vom Datendurchsatz

im Up- und Download . 57

3.1 Arten cloudbasierter Fahrzeugfunktionen 63

3.2 Ontologie für die statische und dynamische Funktionsverteilung 65

3.3 KUKSA Framework . 68

3.4 Architektur des cloudbasierten Fahrerassistenzsystems 70

3.5 Use Case der Rampenzusammenführung von Straßen für den

Test des cloudbasierten Fahrerassistenzsystems 71

3.6 Suitability Analysis Methodology (SAM) für die Funktionsverla-

gerung in die Cloud . 74

3.7 Trade-Off zwischen Transferdatenmenge und Rechenanforde-

rungen bei einer Funktionsverlagerung im Bereich des Mobile

Cloud Computing . 78

3.8 Typische Kaskadenregelung der Klimatisierung im Stadtbus . . 79

3.9 Energieverbrauch einzelner Fahrzeugkomponenten im BEB . . . 83

3.10 Relative Anteile der einzelnen Einflussgrößen zum Heiz- und

Kühlbetrieb im elektrischen Stadtbus 84

4.1 Verringerung des Risikopotenzials durch Umsetzung der erfor-

derlichen Sicherheitsmaßnahmen des zugewiesenen ASIL 94

218

Abbildungsverzeichnis

4.2 Prozess zur Bewertung der Realisierbarkeit und Eignung von

cloudbasierten Fahrzeugfunktionen 96

4.3 Mögliche Werte für BRB entsprechend der Einordnung der Re-

chenanforderungen und der Transferdatenmenge 98

4.4 Bewertungsmetrik der Ausführungszeit bei der Funktionsverla-

gerung in die Cloud . 101

4.5 Bewertungsmetrik der Energieeinsparung der Funktionsverla-

gerung in die Cloud . 103

5.1 Batterieelektrischer Stadtbus mit 3 Türen 120

5.2 Minimale und maximale Wärmeleistung der modellierten Wär-

mepumpe . 122

5.3 COP-Kennfeld der modellierten Wärmepumpe 122

5.4 Schematischer Aufbau der modellprädiktiven HLK-Regelung im

Stadtbus . 124

5.5 Komponentendiagramm des Orchestrators 130

5.6 Aufbau der MCDA für Deploymentmodelle cloudbasierter Funk-

tionen . 132

5.7 Bewertungsmetrik eines Kriteriums für zwei verschiedene De-

ploymentmodelle . 136

6.1 Cloudbasierte Funktionen im vernetzten Stadtbus 142

6.2 Die zur Validierung verwendete Testplattform ATLAS 143

6.3 Hard- und Softwarekomponenten für die cloudbasierte HLK-

Regelung auf der ATLAS Testplattform 144

6.4 Komponentendiagramm des integrierten HVAC-Clients 147

6.5 Komponentendiagramm des integrierten HVAC-Servers 148

6.6 Komponentendiagramm der integrierten Simulationsumgebung 149

6.7 Sequenzdiagramm der Ausführung eines Features im integrier-

ten System . 152

6.8 Sequenzdiagramm der Cloud Verbindung im integrierten System 153

6.9 Vergleich der fahrzeuginternen PID- und cloudbasierten MPC-

Regelung (Nur Cloud) in Simulation 1a 163

6.10 Umgang des cloudbasierten Regelungssystems mit Service- und

Verbindungsausfällen im Nur Cloud Deploymentmodell in Sim 1a 164

219

Abbildungsverzeichnis

6.11 Umgang des cloudbasierten Regelungssystems mit Verbindungs-

ausfällen im Fallback-Deploymentmodell in Simulation 1a . . . 165

6.12 Plausibilitätsprüfung der cloudbasierten HLK-Regelung 166

7.1 Konzept rekonfigurierbarer, lernender cloudbasierter Fahrzeug-

funktionen . 177

A.1 Benennung der sieben Stufen der PMV-Skala 181

A.2 Basislayout eines Mikrocontrollers 183

A.3 Zeitlicher Ablauf einer zyklischen Funktion: Fall 1 185

A.4 Zeitlicher Ablauf einer zyklischen Funktion: Fall 2 186

A.5 Konzept Closed Loop Tests am HiL Prüfstand 187

A.6 V-Modell . 188

A.7 ROS 2 Schichten und deren Zuordnung in das OSI-Modell 190

A.8 ROS 2 API Überblick . 191

A.9 Komponenten der AUTOSAR Adaptive Software 195

A.10 Entwicklungsprozess in AUTOSAR Adaptive 198

A.11 Das AUTOSAR Classic Schichtenmodell 199

A.12 Struktur einer Middleware Architektur 200

A.13 SOME/IP Kommunikationsparadigmen 202

A.14 Features im Fahrzeug und deren Einordnung bezüglich der Ver-

netzung . 208

A.15 Busroute mit Bushaltestellen in der CARLA Simulationsumgebung 211

A.16 Sequenzdiagramm der Ausführung des integrierten fahrzeugin-

ternen PID-Reglers . 212

A.17 Sequenzdiagramm der Ausführung des integrierten cloudbasier-

ten MPC . 213

A.18 Softwarekomponenten innerhalb der AUTOSAR Classic Schich-

tenarchitektur . 214

A.19 Sprungantwort der modellierten Wärmepumpe 214

A.20 Wärmeabgabe eines Menschen 215

A.21 Aufbau der fahrzeuginternen Telematikeinheit als Gateway . . . 216

220

Tabellenverzeichnis

2.1 Leistungsklassen typischer ECU im Fahrzeug 23

2.2 Übliche HLK-Systeme in Elektrobussen 37

2.3 Wesentliche Eigenschaften des Cloud Computing 51

2.4 Vergleich der Funktionsausführung auf ECU und Cloud 51

3.1 Bewertung der Frameworks und Use Cases hinsichtlich der Her-

ausforderungen HF-1 bis HF-3 86

4.1 Potenzielle Fehlerursachen cloudbasierter Fahrzeugfunktionen . 93

4.2 Kategorisierung von Funktionen nach Rechenanforderungen . . 97

4.3 Kategorisierung der benötigten Bandbreiten in Fahrzeugnetz-

werken . 98

4.4 Kategorisierung der Kosteneinsparpotenziale einer Funktions-

verlagerung . 105

4.5 Kategorisierung der Potenziale der Cloudverlagerung 106

4.6 Beurteilung der Cloud-Realisierbarkeit von Funktionen exem-

plarischer E/E-Features im Stadtbus 108

4.7 Cloud-Eignungs-Score der am höchsten bewerteten Funktionen

im Stadtbus . 109

5.1 Use Case-Kategorien und Beispiele für cloudbasierte Fahrzeu-

funktionen . 114

5.2 Einordnung der Use Cases aus dem Stand der Wissenschaft und

Technik in die Use Case-Kategorien 115

5.3 Bewertung der potenziellen HLK-Regler 117

5.4 Fahrzeugparameter und Modellparameter der Fahrzeugkabine . 121

221

Tabellenverzeichnis

5.5 Beschreibung der Notationen des kaskadierten äußeren HLK-

Regelkreises . 124

5.6 Entscheidungsmatrix der MCDA für Deploymentmodelle 135

5.7 Anforderungen der modellprädiktiven HLK-Regelung 137

6.1 Spezifikation der Hardware des ATLAS Testplattform 145

6.2 Rahmenbedingungen der Simulationen 158

6.3 Vergleich der fahrzeuginternen PID- und der cloudbasierten

MPC-Regelung im Nur Cloud-Deploymentmodell ohne Service-

oder Verbindungsausfälle . 159

6.4 Vergleich des Fallback- und Nur Cloud-Deploymentmodells in

den Simulationsszenarien mit Verbindungs- bzw. Serviceausfällen 161

6.5 Messwerte der Ausführung des MPC auf der ATLAS ECU vs.

dem ATLAS Cloud PC . 168

A.1 ASIL Bestimmung nach ISO 26262 205

A.2 Schichten des OSI-Modells . 206

A.3 Schlüsselmerkmale einer generischen Softwarekomponente . . . 209

A.4 Die QOS Policies des Basis Profils in ROS 2 210

222

Abkürzungsverzeichnis

API Application Programming Interface 141, 145, Glossar: API

ASIC Application-specific integrated circuit 9, 182, Glossar: ASIC

ASIL Automotive Safety Integrity Level 92–94, 107, 109, 176, 203, 204

AUTOSAR AUTomotive Open System ARchitecture 30, 194, 196, 197, 200

AWS Amazon Web Services 69

BEB batterieelektrischer Bus 33, 34, 82, 107, 110, 113, 116, 138, 175

BPH Buffered Prediction Horizon 150, 161, 162

CAN Controller Area Network 25, 28, 70, 143, 194

CapEx Capital Expenditures 104, 134, 174, Glossar: CapEx

CBVF Cloud-based vehicle functions 61, 62

CC Cloud Computing 50

COP Coefficient of Performance 41, 116, 120, 156, 157, 180

COTA Control-Over-The-Air 5, 113, 114, 142, 160, 169, 173, Glossar: COTA

CPU Central Processing Unit 21–23, 99, 101, Glossar: CPU

223

Abkürzungsverzeichnis

CSP Cloud Service Provider 104, 111

DDS Data Distribution Service 30, 127, 128, 138, 189, 200

DSGVO Datenschutz-Grundverordnung 109

DSRC Dedicated Short-Range Communications 141

DVI Driver-Vehicle-Interface 70

E/E Elektrik/Elektronik 2, 5, 6, 10, 23, 26, 66, 87, 107, 128, 141, 143

ECU Electronic Control Unit 19–21, 23, 25–27, 50, 51, 61, 87, 133, 134, 137,

141, 142, 144, 158, 167, 182, 183, 196, 207, Glossar: ECU

FAP Fahrerarbeitsplatz 42, 48

FGR Fahrgastraum 42, 48, 49

FPGA Field-Programmable Gate Array 9, 182, Glossar: FPGA

GPU Graphics Processing Unit 23, 101

HARA Hazard analysis and risk assessment 203

HiL Hardware-in-the-Loop 72, 187, 188

HLK Heizung, Lüftung, Klimatisierung 8, 37, 38, 45, 46, 78–84, 87, 108–116,

118, 120, 136–139, 143, 148, 150, 154, 155, 159, 169, 174, 175, 182, 185

HPC High-Performance Computer 27, 87, 141, 144, Glossar: HPC

HTTP Hypertext Transfer Protocol 197

IoT Internet of Things 52, 61

IP Internet Protocol 28, 143

224

Abkürzungsverzeichnis

IT Informationstechnik 26, 50

KI künstliche Intelligenz 81, 131

LIN Local Interconnect Network 25, 194

LTE Long Term Evolution 53, 54, 56, 100

MCC Mobile Cloud Computing 76, 85, 86, Glossar: MCC

MCDA Multiple-Criteria Decision Analysis 58, 87, 131, 136, 139, 143, 174,

Glossar: MCDA

MiL Model-in-the-Loop 186, 188

MIMO Multiple Input Multiple Output 79, 80

MPC Model Predictive Control 11, 13, 16, 80, 81, 117, 118, 123, 137–139, 145,

146, 150, 151, 155, 157–160, 162, 167, 170, 171, 174, 175

MQTT Message Queuing Telemetry Transport 128, 146, 162, 167, 169, 197

OEM Original Equipment Manufacturer 105, 174

OpEx Operating Expenses 104, 111, 134, 174, Glossar: OpEx

OSI Open Systems Interconnection 29, 201, 206

OTA Over-The-Air 4, 6, 52, 104, 128, 134, 168, Glossar: OTA

PDU Protocol Data Unit 28

PKW Personenkraftwagen 26, 38, 104, 141

PMV Predicted Mean Vote 180

PTC Positive Temperature Coefficient 40

225

Abkürzungsverzeichnis

QOS Quality of Service 146, 147, 197, Glossar: QOS

RL Reinforcement Learning 81, 82, 115, 118, Glossar: RL

ROS Robot Operating System 30, 31, 87, 127, 138, 189, 190, 192, 200, 220

RSU Road Side Unit 141

RTT Round-Trip Time 56, 129, 162, 167, 171

SiL Software-in-the-Loop 186, 188

SINR Signal-to-Interference-plus-Noise Ratio 56

SOA serviceorientierte Architektur 27–30, 85, 127, 128, 138, 168, Glossar:
SOA

SORT Standardized on Road Test Cycles 82, Glossar: SORT

StVZO Straßenverkehrs-Zulassungs-Ordnung 33

SWC software component 29, 56, 63–66, 89, 90, 92, 130, 182

TCO Total Cost of Ownership 75, 87, 103, 171, 172, Glossar: TCO

TFLOPS Tera Floating Point Operations Per Second 50, 51

TLS Transport Layer Security 169, 197

UNECE United Nations Economic Commission for Europe 33

VDV Verband Deutscher Verkehrsunternehmen 42, 43, 82, 126, 218, Glossar:
VDV

VM virtuelle Maschine 111

WSM Weighted Sum Model 58, 136

226

Abkürzungsverzeichnis

YAML YAML Ain’t Markup Language 168, Glossar: YAML

zGM zulässige Gesamtmasse 32

ÖPNV öffentlicher Personennahverkehr 32

227

Glossar

API Programmierschnittstelle, die Funktionalitäten der zugrundeliegenden

Implementierung abstrahiert und anderen Anwendungen zur Verfü-

gung stellt.

ASIC Integrierte Schaltung, die für eine spezifische Anwendung oder Funk-

tion entwickelt und hergestellt wird. Im Gegensatz zu universellen

Prozessoren ist die Logik eines ASICs fest implementiert und nicht

veränderbar, was zu hoher Effizienz bei spezialisierten Aufgaben führt.

CapEx CapEx (dt. Investitionsausgaben) bezeichnet Ausgaben für langlebi-

ge Vermögenswerte, die zur Erweiterung, Verbesserung oder Erhal-

tung der betrieblichen Infrastruktur eines Unternehmens oder einer

Organisation dienen. Dazu zählen insbesondere Investitionen in phy-

sische Anlagen wie Gebäude, Maschinen, Fahrzeuge oder technische

Infrastruktur.

COTA Ansatz bei dem regelnde Softwarekomponenten in der Cloud aus-

geführt werden und somit eine Regelschleife vom Fahrzeug über die

Cloud und zurück geschlossen wird.

CPU Die zentrale Verarbeitungseinheit eines digitalen Rechensystems. Sie

stellt die wesentliche Recheneinheit eines Computers dar und ist ver-

229

Glossar

antwortlich für die Ausführung von Befehlen, die Steuerung der Ab-

läufe im System sowie die Verarbeitung von Daten.

ECU Auch Steuergerät genannt. Es handelt sich hierbei um ein beliebiges

eingebettetes System im Fahrzeug, das Regelungs-, Steuerungs- oder

Überwachungsaufgaben basierend auf Eingabewerten von Sensoren

übernimmt.

Edge-Node Ein Edge-Node in Automobilanwendungen ist ein stationärer

oder mobiler Rechenknoten, der in unmittelbarer Netzwerk- oder geo-

grafischer Nähe zu Fahrzeugen eingesetzt wird. Er bietet lokale Kom-

munikationsschnittstellen sowie begrenzte Rechen- und Speicherres-

sourcen, um latenzkritische Kooperation und/oder die teilweise bzw.

vollständige Auslagerung von Fahrzeugfunktionen zu ermöglichen.

FPGA Ein FPGA ist ein integrierter Schaltkreis, der nach seiner Herstellung

beim Kunden mittels einer Hardware Description Language (HDL)

programmiert werden kann. Daher die Bezeichnung „field program-

mable“.

HPC Ein Automotive High-Performance Computer bezeichnet einen zentra-

lisierten Hochleistungsrechner innerhalb der Fahrzeugarchitektur, der

Rechen- und Steuerungsaufgaben verschiedener Domänen integriert.

Er stellt die notwendige Rechenleistung für Fahrerassistenzsysteme,

Infotainment, Konnektivitätsdienste sowie automatisierte Fahrfunk-

tionen bereit. Durch die Konsolidierung zuvor verteilter Steuergeräte

gilt der Automotive HPC als Schlüsseltechnologie für die Entwicklung

softwaredefinierter Fahrzeuge.

Matching Theory Matching Theory ist ein Teilgebiet der Spieltheorie und

der algorithmischen Ökonomie, das sich mit der optimalen Zuordnung

zweier Mengen von Akteuren oder Ressourcen befasst, beispielsweise

230

Glossar

Studenten zu Universitäten oder Arbeitskräfte zu Stellenangeboten.

Ziel ist es, stabile und effiziente Paarungen unter Berücksichtigung

individueller Präferenzen, Kapazitäten und Rahmenbedingungen zu

finden. Im Kontext cloudbasierter Fahrzeugsoftwarekomponenten er-

möglicht Matching Theory die modellbasierte Zuweisung von Softwa-

rekomponenten zu Fahrzeugen, wobei kontextuelle Anforderungen

(z.B. Fahrzeugsensorik, Einsatzszenarien, Rechenressourcen) berück-

sichtigt werden können. Sie bietet damit eine methodische Grundlage

für die dynamische, bedarfsgerechte und skalierbare Verteilung von

Softwarefunktionen in vernetzten Fahrzeugflotten.

MCC Mobile CloudComputing bezeichnet die Nutzung vonCloud-Computing-

Diensten über mobile Endgeräte wie Smartphones oder Tablets. Dabei

werden Rechenleistung, Speicher und Anwendungen nicht lokal auf

dem Gerät, sondern in der Cloud bereitgestellt, um die begrenzten

Ressourcen mobiler Geräte zu erweitern.

MCDA Die Multi-Criteria Decision Analysis (MCDA) bezeichnet eine Klas-

se methodischer Ansätze zur strukturierten Entscheidungsunterstüt-

zung in multidimensionalen Problemsituationen, bei denen mehrere,

teils konkurrierende Zielkriterien simultan berücksichtigt werden

müssen. MCDA zielt darauf ab, Entscheidungsprozesse durch forma-

lisierte Bewertungs- und Aggregationsmechanismen transparenter,

nachvollziehbarer und systematischer zu gestalten.

OpEx OpEx (dt. Betriebsausgaben) bezeichnet die laufenden Ausgaben, die

im Rahmen des täglichen Geschäftsbetriebs anfallen. Dazu zählen

Kosten für Wartung, Energieverbrauch, Personal, Dienstleistungen,

Verbrauchsmaterialien oder Softwarelizenzen im Rahmen des operati-

ven Betriebs.

OTA Over-the-Air bezeichnet die drahtlose Übertragung von Softwareak-

tualisierungen, Konfigurationen oder Daten an Endgeräte wie Smart-

phones, IoT-Geräte oder eingebettete Systeme. Diese Technologie er-

231

Glossar

möglicht die Fernwartung und -aktualisierung von Gerätesoftware,

einschließlich Betriebssystemen, Sicherheitspatches undAnwendungs-

software, ohne physischen Zugriff auf das Gerät.

QOS Einsatz von Mechanismen oder Technologien in einem Netzwerk,

um den Datenverkehr zu kontrollieren und die Leistung wichtiger

Anwendungen bei begrenzter Netzwerkkapazität sicherzustellen.

RL Reinforcement Learning ist ein Teilbereich desmaschinellen Lernens, bei

dem ein Agent durch Interaktion mit einer Umgebung lernt, optimale

Handlungen auszuführen. Der Agent erhält dabei Rückmeldungen

in Form von Belohnungen oder Strafen und passt sein Verhalten so

an, dass langfristig die kumulative Belohnung maximiert wird. RL

wird häufig in Bereichen wie Robotik, automatisiertes Fahren oder zur

Erstellung von KI-Agenten für Spiele eingesetzt.

SOA Definiert eineMöglichkeit, Softwarekomponenten über Serviceschnitt-

stellen wiederverwendbar und interoperabel zu machen. Services

verwenden gemeinsame Schnittstellenstandards und ein Architek-

turmuster, sodass sie schnell in neue Anwendungen integriert werden

können.

SORT Standardisierter, reproduzierbarer Fahrzyklus für den Vergleich des

Energeiverbrauchs von Bussen.

TCO Bezeichnet die gesamten Kosten, die mit dem Erwerb, dem Betrieb

und der Wartung eines Produkts oder Systems über dessen gesamte

Lebensdauer verbunden sind. TCO umfasst nicht nur die anfänglichen

Anschaffungskosten, sondern auch alle folgenden Betriebskosten, wie

etwa Energieverbrauch, Wartungs- und Reparaturkosten, Betriebsres-

sourcen (z.B. Personalaufwand) sowie Kosten für Ersatzteile und Soft-

ware. Besonders in technischen und industriellen Bereichen ist TCO

232

Glossar

eine wichtige Kennzahl, um die langfristige Rentabilität und Effizienz

von Investitionen zu bewerten.

VDV Der Verband Deutscher Verkehrsunternehmen (VDV) ist der Bran-

chenverband des öffentlichen Verkehrs, in dem über 630 Unternehmen

des öffentlichen Personenverkehrs (ÖPV) und des Schienengüterver-

kehrs organisiert sind.

YAML YAML ist ein menschenlesbares Datenformat zur Konfiguration und

zum Datenaustausc. Es wird häufig in Konfigurationsdateien (z.B. für

Docker, Kubernetes, CI/CD-Pipelines) sowie für den Datenaustausch

in Webanwendungen verwendet.

233

Literaturverzeichnis

[1] 5G Automotive Association e.V.: Connected Mobility: C-V2X explained.
Technischer Bericht, 2025. https://5gaa.org/c-v2x-explaine

d/.

[2] Abuhussain, H., Alqahtani, A., Alharthi, A. und Alshahrani, S.: Ad-
aptive HVAC System Based on Fuzzy Controller Approach. Applied

Sciences, 13(20):11354, 2023.

[3] Afram, Abdul und Janabi-Sharifi, Farrokh: Theory and applications
of HVAC control systems–A review of model predictive control (MPC).
Building and Environment, 72:343–355, 2014.

[4] Afram, Abdul, Janabi-Sharifi, Farrokh, Fung, Alan S. und Raahemifar,

Kaamran:Artificial neural network (ANN) basedmodel predictive control
(MPC) and optimization of HVAC systems: A state of the art review and
case study of a residential HVAC system. Energy and Buildings, 141:96

– 113, 2017, ISSN 0378-7788. http://www.sciencedirect.com/sc

ience/article/pii/S0378778816310799.

[5] Andrew Putrayudha, S., Kang, Eun Chul, Evgueniy, E., Libing, Y. und

Lee, Euy Joon: A study of photovoltaic/thermal (PVT)-ground source
heat pump hybrid system by using fuzzy logic control. Applied Thermal

Engineering, 2015.

[6] Arestova, Anna, Martin, Maximilian, Hielscher, Kai Steffen Jens und

German, Reinhard: A service-oriented real-time communication scheme
for AUTOSAR adaptive using OPC UA and time-sensitive networking.
Sensors, 21(7):2337, 2021.

235

https://5gaa.org/c-v2x-explained/
https://5gaa.org/c-v2x-explained/
http://www.sciencedirect.com/science/article/pii/S0378778816310799
http://www.sciencedirect.com/science/article/pii/S0378778816310799

Literaturverzeichnis

[7] Arthurs, Peter, Gillam, Lee, Krause, Paul, Wang, Ning, Halder, Kaus-

hik und Mouzakitis, Alexandros: A Taxonomy and Survey of Edge
Cloud Computing for Intelligent Transportation Systems and Connected
Vehicles. IEEE Transactions on Intelligent Transportation Systems,

23(7):6206–6221, 2022.

[8] Ashok, Ashwin, Steenkiste, Peter und Bai, Fan: Enabling Vehicular
Applications Using Cloud Services throughAdaptive Computation Offloa-
ding. In: Proceedings of the 6th International Workshop on Mobile Cloud
Computing and Services, MCS ’15, Seite 1–7, New York, NY, USA, 2015.

Association for Computing Machinery, ISBN 9781450335454.

[9] Ashok, Ashwin, Steenkiste, Peter und Bai, Fan: Vehicular Cloud Com-
puting through Dynamic Computation Offloading. Computer Commu-

nications, 120:125–137, 2018.

[10] AUTOSAR: SOME/IP Service Discovery Protocol Sepcification,
2017. https://www.autosar.org/fileadmin/standards/R22-

11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf,

abgerufen am 03.03.2022.

[11] AUTOSAR: Explanation of Adaptive Platform Design, 2019.

https://www.autosar.org/fileadmin/standards/R24-

11/AP/AUTOSAR_AP_EXP_PlatformDesign.pdf, abgerufen am

10.02.2026.

[12] Bach, Johannes: Methoden und Ansätze für die Entwicklung und den
Test prädiktiver Fahrzeugregelungsfunktionen. Dissertation, Karlsruher
Institut für Technologie (KIT), 2018.

[13] Balbierer, Norbert: Energiemanagement Ethernet-basierter Fahrzeug-
netze. Dissertation, TU Ilmenau, 2018.

[14] Banijamali, Ahmad, Kuvaja, Pasi, Oivo, Markku und Jamshidi, Pooyan:

Kuksa: Self-adaptive Microservices in Automotive Systems. In: Interna-
tional Conference on Product-Focused Software Process Improvement,
Seiten 367–384. Springer, 2020.

236

https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R24-11/AP/AUTOSAR_AP_EXP_PlatformDesign.pdf
https://www.autosar.org/fileadmin/standards/R24-11/AP/AUTOSAR_AP_EXP_PlatformDesign.pdf

Literaturverzeichnis

[15] Bareiß, Mario und Vorgerd, Daniel: Thermomanagement für elek-
trisch angetriebene Stadtbusse. ATZ - Automobiltechnische Zeitschrift,

121(2):52–55, 2019, ISSN 2192-8800. https://doi.org/10.1007/

s35148-018-0227-9.

[16] Bayerische Motorenwerke (BMW) AG: Real Time Traffic Information,
2025. https://www.bmw.de/de/shop/ls/dp/Base_RTTIOffer_

de.

[17] Behrooz, Farinaz, Mariun, Norman, Marhaban, Mohammad Hamiru-

ce, Mohd Radzi, Mohd Amran und Ramli, Abdul Rahman: Review of
Control Techniques for HVAC Systems—Nonlinearity Approaches Ba-
sed on Fuzzy Cognitive Maps. Energies, 11(3), 2018, ISSN 1996-1073.

https://www.mdpi.com/1996-1073/11/3/495.

[18] Belton, Valerie und Stewart, Theodor: Multiple criteria decision ana-
lysis: an integrated approach. Springer Science & Business Media,

2002.

[19] Bernstein, Philip A:Middleware: a model for distributed system services.
Communications of the ACM, 39(2):86–98, 1996.

[20] Birkel, Harald, Bronnenberg, Peter, Krawinkel, Elmar, Roch, Robert

und Walter, Karsten: Klimatisierung von Linienbussen der Zulassungs-
klassen I (Stadtbus) und II (Überlandbus), für konventionell angetriebene
Diesel- und Gasbusse als auch für Hybrid-, Brennstoffzellen- und Elek-
trobusse. VDV-Schrift 236, November 2018.

[21] Blanco, David Fernández, Le Mouël, Frédéric, Lin, Trista und Escudié,

Marie Pierre: A comprehensive survey on Software as a Service (SaaS)
transformation for the automotive systems. IEEE Access, 11:73688–

73753, 2023.

[22] Blanco, David Fernández, Le Mouël, Frédéric, Lin, Trista und Escudié,

Marie Pierre: A Comprehensive Survey on Software as a Service (SaaS)
Transformation for the Automotive Systems. IEEE Access, 11:73688–

73753, 2023.

237

https://doi.org/10.1007/s35148-018-0227-9
https://doi.org/10.1007/s35148-018-0227-9
https://www.bmw.de/de/shop/ls/dp/Base_RTTIOffer_de
https://www.bmw.de/de/shop/ls/dp/Base_RTTIOffer_de
https://www.mdpi.com/1996-1073/11/3/495

Literaturverzeichnis

[23] Bormann, René, Fink, Philipp, Holzapfel, Helmut, Rammler, Ste-

phan, Sauter-Servaes, Thomas, Tiemann, Heinrich, Waschke, Thomas

und Weirauch, Boris: The future of the German automotive industry.
Friedrich-Ebert-Stiftung Shanghai Representative Office, 2018.

[24] Braess, Hans Hermann und Seiffert, Ulrich: Vieweg Handbuch
Kraftfahrzeugtechnik (ATZ/MTZ Fachbuch). Springer Vieweg,

ISBN 9783834810113. http://dnb.d-nb.de, 7. Auflage, 2013.

[25] Bucaioni, Alessio und Pelliccione, Patrizio: Technical architectures for
automotive systems. In: 2020 IEEE International Conference on Software
Architecture (ICSA), Seiten 46–57. IEEE, 2020.

[26] Buyya, Rajkumar, Yeo, Chee Shin, Venugopal, Srikumar, Broberg,

James und Brandic, Ivona: Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation computer systems, 25(6):599–616, 2009.

[27] Camacho, Eduardo F und Bordons, Carlos: Introduction to model pre-
dictive control. In: Model Predictive Control, Seiten 1–11. Springer,

2007.

[28] Craggs, Ian: MQTT Vs. HTTP for IoT, 2022. https://www.hivemq

.com/blog/mqtt-vs-http-protocols-in-iot-iiot/, besucht:

01.10.2024.

[29] Dallinger, Laurenz: HTTP vs MQTT: Choose the Best Protocol for your
IoT Project. Cedalo, 12.10.2022. https://cedalo.com/blog/http-
vs-mqtt-for-iot/, besucht: 01.10.2024.

[30] Das Europäische Parlament und der Rat der Europäischen Union:

Richtlinie 2001/85/EG über besondere Vorschriften für Fahrzeuge zur
Personenbeförderung mit mehr als acht Sitzplätzen außer dem Fahrersitz
und zur Änderung der Richtlinien 70/156/EWG und 97/27/EG, 2001.

[31] Das Europäische Parlament und der Rat der Europäischen Union:

Richtlinie 2007/46/EG zur Schaffung eines Rahmens für die Genehmigung
von Kraftfahrzeugen und Kraftfahrzeuganhängern sowie von Systemen,

238

http://dnb.d-nb.de
https://www.hivemq.com/blog/mqtt-vs-http-protocols-in-iot-iiot/
https://www.hivemq.com/blog/mqtt-vs-http-protocols-in-iot-iiot/
https://cedalo.com/blog/http-vs-mqtt-for-iot/
https://cedalo.com/blog/http-vs-mqtt-for-iot/

Literaturverzeichnis

Bauteilen und selbstständigen technischen Einheiten für diese Fahrzeuge,
2007.

[32] Dehli, Martin, Doering, Ernst und Schedwill, Herbert: Grundlagen der
Technischen Thermodynamik: Für eine praxisorientierte Lehre. Springer
Fachmedien Wiesbaden GmbH, Wiesbaden, 10. auflage 2023 Auflage,

2023, ISBN 9783658412500. https://link.springer.com/978-3-

658-41250-0.

[33] Deng, Hsien Wen, Rahman, Mizanur, Chowdhury, Mashrur, Salek, M

Sabbir und Shue, Mitch: Commercial Cloud Computing for Connected
Vehicle Applications in Transportation Cyberphysical Systems: A Case
Study. IEEE Intelligent Transportation Systems Magazine, 13(1):6–19,

2021.

[34] Deutsches Institut für Normung: DIN EN 14750 - 2025-02 Bahnanwen-
dungen – Luftbehandlung in Schienenfahrzeugen des städtischen, Vorort-
und Regionalverkehrs – Behaglichkeitsparameter und Typprüfungen.
Norm, 2025.

[35] Dosovitskiy, Alexey, Ros, German, Codevilla, Felipe, Lopez, Antonio

und Koltun, Vladlen: CARLA: An Open Urban Driving Simulator. In:
Proceedings of the 1st Annual Conference on Robot Learning, Seiten
1–16, 2017.

[36] Eckstein, Julian, Lüke, Christopher, Brunstein, Frederik, Friedel, Pa-

trick, Köhler, Ulrich und Trächtler, Ansgar: A novel approach using
model predictive control to enhance the range of electric vehicles. Proce-
dia Technology, 26:177–184, 2016.

[37] Elmokashfi, Ahmed, Zhou, Dong und Baltrünas, Džiugas: Adding
the Next Nine: An Investigation of Mobile Broadband Networks Availa-
bility. In: Proceedings of the 23rd Annual International Conference
on Mobile Computing and Networking, MobiCom ’17, Seite 88–100,

New York, NY, USA, 2017. Association for Computing Machine-

ry, ISBN 9781450349161. https://doi.org/10.1145/3117811.

3117842.

239

https://link.springer.com/978-3-658-41250-0
https://link.springer.com/978-3-658-41250-0
https://doi.org/10.1145/3117811.3117842
https://doi.org/10.1145/3117811.3117842

Literaturverzeichnis

[38] European Telecommunications Standards Institute (ETSI): Why do
we need 5G? https://www.etsi.org/technologies/5G?jjj=

1649405459019, 29.07.2015. abgerufen am: 08.04.2022.

[39] EvoBus GmbH: Der eCitaro. Technische Informationen.
https://www.mercedes-benz-bus.com/de_DE/models/e

citaro/facts/facts-ecitaro.pdf, abgerufen am 10.06.2020.

[40] Fanger, P. O.: Thermal comfort. Analysis and applications in environ-
mental engineering. Copenhagen: Danish Technical Press., 1970.

[41] Free3D: Stadtbus mit drei Türen 3D-Modell. https://free3d.com/d
e/3d-model/city-bus-three-doors-1776.html, 2025. Online;

abgerufen am: 03-Juli-2025.

[42] Freund, Svenne: Modellbasierte prädiktive Regelung komplexer gebäu-
detechnischer Anlagen zur Optimierung der Energieeffizienz und des
Komforts. Dissertation, TU Hamburg, 2023.

[43] Fulton, Randall und Vandermolen, Roy: Airborne Electronic Hardware
Design Assurance: A Practitioner’s Guide to RTCA/DO-254. CRC Press,

2017.

[44] Girdling, Gunther und Weiss, Bettina: Introduction to Microcontrollers.
Vienna University of Technology, Institute of Computer Engineering,

2007.

[45] Goeb, Andreas: SOA und Softwarequalität. Dissertation, Technische
Universität München, 2013.

[46] Göhlich, Dietmar, Fay, Tu Anh, Jefferies, Dominic, Lauth, Enrico,

Kunith, Alexander und Zhang, Xudong: Design of urban electric bus
systems. Design Science, 4:1–28, 2018, ISSN 20534701.

[47] Grassi, Walter: Heat pumps: fundamentals and applications. Springer,
2017.

[48] Hbaieb, Amal, Rhaiem, Olfa Ben und Chaari, Lamia: In-car Gateway
Architecture for Intra and Inter-vehicular Networks. In: 2018 14th In-
ternational Wireless Communications & Mobile Computing Conference
(IWCMC), Seiten 1489–1494, 2018.

240

https://www.etsi.org/technologies/5G?jjj=1649405459019
https://www.etsi.org/technologies/5G?jjj=1649405459019
https://www.mercedes-benz-bus.com/de_DE/models/ecitaro/facts/facts-ecitaro.pdf
https://www.mercedes-benz-bus.com/de_DE/models/ecitaro/facts/facts-ecitaro.pdf
https://free3d.com/de/3d-model/city-bus-three-doors-1776.html
https://free3d.com/de/3d-model/city-bus-three-doors-1776.html

Literaturverzeichnis

[49] He, H, Jia, H, Sun, C und Sun, F: Stochastic Model Predictive Control of
Air Conditioning System for Electric Vehicles: Sensitivity Study, Compa-
rison, and Improvement. IEEE Transactions on Industrial Informatics,

14(9):4179–4189, 2018, ISSN 1941-0050.

[50] He, Hongwen, Yan, Mei, Sun, Chao, Peng, Jiankun, Li, Menglin und

Jia, Hui: Predictive air-conditioner control for electric buses with pas-
senger amount variation forecast. Applied Energy, 227:249–261, 2018,

ISSN 0306-2619. https://www.sciencedirect.com/science/ar

ticle/pii/S0306261917312084, Transformative Innovations for a

Sustainable Future – Part III.

[51] Heutschi, Roger: Architekturmanagement und Servicedesign. Service-
orientierte Architektur: Architekturprinzipien und Umsetzung in die

Praxis, Seiten 119–181, 2007.

[52] Hillenbrand, Martin: Funktionale Sicherheit nach ISO 26262 in der Kon-
zeptphase der Entwicklung von Elektrik/Elektronik Architekturen von
Fahrzeugen. Dissertation, Karlsruher Institut für Technologie (KIT),
2012.

[53] Holzmann, Henning: Anwendungsorientierte Übersicht kommerzieller
Fahrzeug-Simulations-Systeme. In: Fahrdynamik-Regelung, Seiten 93–

116. Springer, 2006.

[54] Huang, Junxian, Qian, Feng, Gerber, Alexandre, Mao, Z Morley, Sen,

Subhabrata und Spatscheck, Oliver:A close examination of performance
and power characteristics of 4G LTE networks. In: Proceedings of the 10th
international conference on Mobile systems, applications, and services,
Seiten 225–238, 2012.

[55] IEEE: IEEE Standard for Information Technology–Portable Operating
System Interface (POSIX) Base Specifications, Issue 7. Standard, 2018.

[56] International Organization for Standardization: ISO/IEC 26550:2015
Software and systems engineering — Reference model for product line
engineering and management. Standard, 2015.

241

https://www.sciencedirect.com/science/article/pii/S0306261917312084
https://www.sciencedirect.com/science/article/pii/S0306261917312084

Literaturverzeichnis

[57] International Organization for Standardization: ISO/IEC/IEEE
24765:2017(E) International Standard - Systems and software
engineering–Vocabulary. Standard, 2017.

[58] International Organization for Standardization: ISO/IEC/IEEE
26514:2022 Systems and software engineering — Design and develop-
ment of information for users. Standard, 2022.

[59] Isermann, R.: Automotive Control - Modeling and Control of Vehicles.
Springer-Verlag GmbH, Berlin, 2022.

[60] Isermann, R., Schaffnit, J. und Sinsel, S.: Hardware-in-the-loop
simulation for the design and testing of engine-control systems.
Control Engineering Practice, 7(5):643–653, 1999, ISSN 0967-0661.

https://www.sciencedirect.com/science/article/pii/

S0967066198002056.

[61] Jefferies, Dominic, Tu-Anh Ly, Alexander Kunith und Göhlich, Diet-

mar: Energiebedarf verschiedener Klimatisierungssysteme für Elektro-
Linienbusse. In: Deutsche Kälte- und Klimatagung, 2015.

[62] Kaup, Fabian, Gottschling, Philip und Hausheer, David: PowerPi: Mea-
suring and modeling the power consumption of the Raspberry Pi. In: 39th
Annual IEEE Conference on Local Computer Networks, Seiten 236–243.

IEEE, 2014.

[63] Khalid, W. et al.: Fuzzy Energy Management Controller and Scheduler
for Smart Homes. Sustainable Cities and Society, 47:101475, 2019.

[64] Knote, T., Haufe, B. und Saroch, L.: E-Bus-Standard: Ansätze zur Stan-
dardisierung und Zielkosten für Elektrobusse. Fraunhofer-Institut für
Verkehrs- und Infrastruktursysteme (IVI), 2017. https://books.go

ogle.de/books?id=SVLhuQEACAAJ.

[65] Kovachev, Dejan, Cao, Yiwei und Klamma, Ralf: Mobile Cloud Compu-
ting: A Comparison of Application Models, 2011. https://arxiv.or
g/abs/1107.4940.

242

https://www.sciencedirect.com/science/article/pii/S0967066198002056
https://www.sciencedirect.com/science/article/pii/S0967066198002056
https://books.google.de/books?id=SVLhuQEACAAJ
https://books.google.de/books?id=SVLhuQEACAAJ
https://arxiv.org/abs/1107.4940
https://arxiv.org/abs/1107.4940

Literaturverzeichnis

[66] Kraftfahrt-Bundesamt: Bestand an Kraftfahrzeugen und Kraft-
fahrzeuganhängern nach Fahrzeugalter, 1. Januar 2022 (FZ15).
https://www.kba.de/DE/Statistik/Produktkatalog/pro

dukte/Fahrzeuge/fz15_b_uebersicht.html, 2024. Online;

abgerufen am: 27-Februar-2024.

[67] Krafzig, Dirk, Banke, Karl und Slama, Dirk: Enterprise SOA: Wege und
Best Practices für serviceorientierte Architekturen;[Einführung, Umset-
zung, Praxis; SOA-Definition, Architektur, Infrastruktur; Organisation,
Strategie, Projektmanagement; vier konkrete Fallstudien]. MITP-Verlags

GmbH & Co. KG, 2010.

[68] Kraus, David, Baumann, Daniel, Vučinić, Veljko und Sax, Eric: Cloud-
Enabled Reconfiguration of Electrical/Electronic Architectures for Mo-
dular Electric Vehicles. World Electric Vehicle Journal, 16(2), 2025,

ISSN 2032-6653. https://www.mdpi.com/2032-6653/16/2/111.

[69] Kreissl, Jochen: Absicherung der SOME/IP Kommunikation bei Adaptive
Autosar. Diplomarbeit, Universität Stuttgart, 2017.

[70] Kreuzberger, Christoph: Integration und Evaluierung eines 3-Ebenen Si-
cherheitskonzepts auf einer Echtzeit Mehrkern-Plattform. Diplomarbeit,

2015.

[71] Kruppok, Kurt und Otten, Stefan: Analyse der Energieverbraucher im
batterieelektrischen Stadtbus. Projektbericht in Kooperation mit Evo-

Bus GmbH, 2019.

[72] Kugele, Stefan, Hettler, David und Shafaei, Sina: Elastic Service Provisi-
on for Intelligent Vehicle Functions. In: 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), Seiten 3183–3190, 2018.

[73] Kugele, Stefan, Obergfell, Philipp und Sax, Eric: Model-based resour-
ce analysis and synthesis of service-oriented automotive software ar-
chitectures. In: Software and Systems Modeling (2021), March 2020.

https://doi.org/10.1007/s10270-021-00896-9.

243

https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz15_b_uebersicht.html
https://www.kba.de/DE/Statistik/Produktkatalog/produkte/Fahrzeuge/fz15_b_uebersicht.html
https://www.mdpi.com/2032-6653/16/2/111
https://doi.org/10.1007/s10270-021-00896-9

Literaturverzeichnis

[74] Kumar, Karthik und Lu, Yung Hsiang: Cloud Computing for Mobile
Users: Can Offloading Computation Save Energy? Computer, 43(4):51–

56, 2010.

[75] Kumari, Priti und Kaur, Parmeet: A survey of fault toleran-
ce in cloud computing. Journal of King Saud University

- Computer and Information Sciences, 33(10):1159–1176, 2021,

ISSN 1319-1578. https://www.sciencedirect.com/science/ar

ticle/pii/S1319157818306438.

[76] Li, Liqiang, Ma, Hao und Gao, Yong: Reinforcement Learning-Based
Control for Electric Bus HVAC Systems under Dynamic Conditions. IEEE
Transactions on Intelligent Transportation Systems, 24(2):1523–1534,

2023.

[77] Liu, Jieyao, Ahmed, Ejaz, Shiraz, Muhammad, Gani, Abdullah, Buyya,

Rajkumar und Qureshi, Ahsan: Application partitioning algorithms
in mobile cloud computing: Taxonomy, review and future directions.
Journal of Network and Computer Applications, 48:99–117, 2015.

[78] Mazza, Daniela, Tarchi, Daniele und Corazza, Giovanni E.: A partial
offloading technique for wireless mobile cloud computing in smart ci-
ties. In: 2014 European Conference on Networks and Communications
(EuCNC), Seiten 1–5, 2014.

[79] Mell, Peter und Grance, Timothy: The NIST Definition of Cloud Com-
puting. Recommendations of the National Institute of Standards and

Technology NIST.–2011.–SP, Seiten 800–145, 2011.

[80] Meroth, Ansgar und Sora, Petre: Sensornetzwerke in Theorie und Praxis.
Springer, 2018.

[81] Milani, Farzaneh: Suitability Analysis Methodology for Cloud-based
Vehicle Functions. Dissertation, Technische Universität Darmstadt,

2020.

[82] Milani, Farzaneh und Beidl, Christian: Cloud-based Vehicle Functi-
ons: Motivation, Use-cases and Classification. In: 2018 IEEE Vehicular
Networking Conference (VNC), Seiten 1–4, 2018.

244

https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://www.sciencedirect.com/science/article/pii/S1319157818306438

Literaturverzeichnis

[83] Milani, Farzaneh, Foell, Mike und Beidl, Christian: A Data-based Ap-
proach to Predict the Response Time of Cloud-based Vehicle Functions.
In: 2019 IEEE International Conference on Connected Vehicles and Expo
(ICCVE), Seiten 1–6. IEEE, 2019.

[84] Montgomery, Ross und McDowall, Robert: Fundamentals of HVAC
control systems. Elsevier, 2008.

[85] Nellessen, Philipp: Vortriebssynchrone Prognose der Setzungen bei Flüs-
sigkeitsschildvortrieben auf Basis der Auswertung der Betriebsdaten mit
Hilfe eines Neuro-Fuzzy-Systems. Cuvillier Verlag. 1. Auflage, 2005.

[86] NVIDIA: Jetson AGX Orin Series. https://developer.nvid

ia.com/downloads/drive/secure/drive-orin/drive-agx-

orin-devkit-qsg-du-11049-001.pdf. Online; abgerufen am:

27.01.2025.

[87] NVIDIA: Jetson AGX Orin Series (including AGX Orin Industrial)
Thermal Design Guide. https://developer.nvidia.com/downl

oads/jetson-agx-orin-series-thermal-design-guide. On-

line; abgerufen am: 27.01.2025.

[88] NXP: AN13249 i.MX 8QuadMax Current Drain with Low- and High-
Power Use Cases . https://www.nxp.com/docs/en/application-
note/AN13249.pdf. abgerufen am: 09.05.2023.

[89] Oldewurtel, Frauke, Sturzenegger, David und Morari, Manfred: Im-
portance of occupancy information for building climate control. Applied
Energy, 101:521–532, 2013.

[90] Open Group: Initial Architecture Repository and the SOA Reference
Architecture. https://www.opengroup.org/soa/source-book/t
ogaf/p4.htm, 2022. abgerufen am: 06.05.2022.

[91] Open Source Robotics Foundation: ROS 2 Documentation: About Quali-
ty of Service settings. https://docs.ros.org/en/humble/Concep
ts/About-Quality-of-Service-Settings.html. abgerufen am:

13.01.2023.

245

https://developer.nvidia.com/downloads/drive/secure/drive-orin/drive-agx-orin-devkit-qsg-du-11049-001.pdf
https://developer.nvidia.com/downloads/drive/secure/drive-orin/drive-agx-orin-devkit-qsg-du-11049-001.pdf
https://developer.nvidia.com/downloads/drive/secure/drive-orin/drive-agx-orin-devkit-qsg-du-11049-001.pdf
https://developer.nvidia.com/downloads/jetson-agx-orin-series-thermal-design-guide
https://developer.nvidia.com/downloads/jetson-agx-orin-series-thermal-design-guide
https://www.nxp.com/docs/en/application-note/AN13249.pdf
https://www.nxp.com/docs/en/application-note/AN13249.pdf
https://www.opengroup.org/soa/source-book/togaf/p4.htm
https://www.opengroup.org/soa/source-book/togaf/p4.htm
https://docs.ros.org/en/humble/Concepts/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/humble/Concepts/About-Quality-of-Service-Settings.html

Literaturverzeichnis

[92] Open Source Robotics Foundation: ROS 2 Documentation: Internal
API Architecture Overview. https://docs.ros.org/en/humble

/Concepts/About-Internal-Interfaces.html. abgerufen am:

11.01.2023.

[93] OPENSIGNAL: Deutschland Erlebnisbericht zum Mobilfunknetz -
November 2024 . https://www.opensignal.com/de/reports/

2024/11/germany/mobile-network-experience. abgerufen am:

22.01.2025.

[94] Pasha, M. et al.: Comparison of Fuzzy and PID Techniques in Controlling
a HVAC System. International Journal of Engineering Research and

Technology, 2(5):1–6, 2009.

[95] Patan, Krzysztof: Robust and Fault-Tolerant Control. In: Robust and
Fault-Tolerant Control, Seiten 59–76. Springer, 2019.

[96] Protzmann, Robert, Huebner, Karl Karl, Ascheuer, Norbert, Bauknecht,

Uwe, Enderle, Tobias, Gebhard, Ulrich, Raack, Christian und Witt,

Arthur: Large-scale modeling of future automotive data traffic towards
the edge cloud. In: Photonic Networks; 20th ITG-Symposium, Seiten 1–3.

VDE, 2019.

[97] Ragesh, NK: Data traffic in new generation vehicles. CSI Communicati-

ons, 35:12, 2012.

[98] Reinhardt, D. und Kucera, M.: Domain Controlled Architecture. In:

Domain Controlled Architecture - A New Approach for Large Scale
Software Integrated Automotive Systems, 2015.

[99] Rony, Rajib Uddin, Yang, Huojun, Krishnan, Sumathy und Song,

Jongchul: Recent Advances in Transcritical CO2 (R744) Heat Pump
System: A Review. Energies, 12(3), 2019, ISSN 1996-1073. https:

//www.mdpi.com/1996-1073/12/3/457.

[100] Rösch, Tobias: Optimierung der Wärmebereitstellung in Thermomana-
gementsystemen elektrisch betriebener Stadtbusse. Dissertation, Karls-
ruher Institut für Technologie (KIT), 2024.

246

https://docs.ros.org/en/humble/Concepts/About-Internal-Interfaces.html
https://docs.ros.org/en/humble/Concepts/About-Internal-Interfaces.html
https://www.opensignal.com/de/reports/2024/11/germany/mobile-network-experience
https://www.opensignal.com/de/reports/2024/11/germany/mobile-network-experience
https://www.mdpi.com/1996-1073/12/3/457
https://www.mdpi.com/1996-1073/12/3/457

Literaturverzeichnis

[101] Sax, Eric (Herausgeber): Automatisiertes Testen Eingebetteter Systeme
in der Automobilindustrie. Hanser eLibrary. Hanser, München and

Wien, 2008, ISBN 9783446419018. http://www.hanser-elibrary

.com/doi/book/10.3139/9783446419018.

[102] Sax, Eric: Wagen, fahr schon mal den Harry vor. FKFS Stuttgart, Auto-
Test, 27.09.2018.

[103] Sax, Eric, Reussner, Ralf, Henle, Jacqueline, Otten, Stefan, Krach, Sebas-

tian, Henß, Jörg, Hohl, Carl Philipp, Guissouma, Houssem und Saglam,

Timur: Themenpapier Cluster Elektromobilität Süd-West: Analyse der
Aktivitäten und Entwicklungsfortschritte im Bereich der Fahrzeugelek-
tronik mit Fokus auf fahrzeugeigene Betriebssysteme, 2020.

[104] Schäuffele, Jörg und Zurawka, Thomas: Automotive Software Engi-
neering: Grundlagen, Prozesse, Methoden und Werkzeuge. Springer,

2024.

[105] Schild, Kai: Wärmeschutz: Grundlagen – Berechnung – Bewertung.
SpringerLink Bücher. Vieweg+Teubner Verlag / Springer Fachmedien

Wiesbaden GmbHWiesbaden, Wiesbaden, 2011, ISBN 9783834881458.

[106] Schindewolf, Marc, Grimm, Daniel, Lingor, Christian und Sax, Eric:

Toward a Resilient Automotive Service-Oriented Architecture by using
Dynamic Orchestration. In: 2022 IEEE 1st International Conference on
Cognitive Mobility (CogMob), Seiten 147–154, 2022.

[107] Schindewolf, Marc, Stoll, Hannes, Guissouma, Houssem, Puder, An-

dreas, Sax, Eric, Vetter, Andreas, Rumez, Marcel und Henle, Jacqueline:

A Comparison of Architecture Paradigms for Dynamic Reconfıgurable
Automotive Networks. In: 2022 International Conference on Connected
Vehicle and Expo (ICCVE), Seiten 1–7, 2022.

[108] Scholz, Peter: Echtzeit, Echtzeitsysteme, Echtzeitbetriebssysteme. Soft-
wareentwicklung eingebetteter Systeme: Grundlagen, Modellierung,

Qualitätssicherung, Seiten 39–73, 2005.

247

http://www.hanser-elibrary.com/doi/book/10.3139/9783446419018
http://www.hanser-elibrary.com/doi/book/10.3139/9783446419018

Literaturverzeichnis

[109] Schüppel, Fabian: Optimierung des Heiz- und Klimakonzepts zur Re-
duktion der Wärme- und Kälteleistung im Fahrzeug. Cuvillier Verlag,
2015, ISBN 9783736990296.

[110] Staron, Miroslaw: Automotive software architectures - An Introduction.
Springer Cham, 2021.

[111] Stoll, Hannes Frank: Die (re-)konfigurierbare Fahrzeugarchitektur. Dis-
sertation, Karlsruher Institut für Technologie (KIT), 2021.

[112] Streichert, Thilo und Traub, Matthias: Elektrik/Elektronik-
Architekturen im Kraftfahrzeug: Modellierung und Bewertung
von Echtzeitsystemen. Springer Berlin Heidelberg, Berlin, Heidelberg,

2012, ISBN 978-3-642-25477-2.

[113] Sunyaev, Ali: Internet Computing – Principles of Distributed Systems
and Emerging Internet-Based Technologies. Springer International

Publishing, 1. ed. edition, 2020, ISBN 978-3-030-34956-1.

[114] Szyperski, Clemens, Gruntz, Dominik undMurer, Stephan: Component
software: beyond object-oriented programming. Pearson Education,

2002.

[115] Taherdoost, Hamed und Madanchian, Mitra: Multi-Criteria Decision
Making (MCDM)Methods and Concepts. Encyclopedia, 3(1):77–87, 2023,
ISSN 2673-8392. https://www.mdpi.com/2673-8392/3/1/6.

[116] Tanyeri, Mustafa und Baslamisli, S.: Prediction of the annual heat load
of an articulated electric urban bus. Journal of Thermal Sciences and

Technology, 2019.

[117] Thorgeirsson, Adam: Probabilistic Prediction of Energy Demand and
Driving Range for Electric Vehicles with Federated Learning. KIT Scien-

tific Publishing, Karlsruhe, Sep 2024.

[118] Ulsoy, Galip, Peng, Huei und Çakmakci, Melih: Automotive control
systems. Cambridge University Press, 2012.

248

https://www.mdpi.com/2673-8392/3/1/6

Literaturverzeichnis

[119] Umweltbundesamt: EU-Richtlinie zu Emissionen aus Pkw-
Klimaanlagen. https://www.umweltbundesamt.de/themen/kl

ima-energie/fluorierte-treibhausgase-fckw/rechtliche-

regelungen/eu-richtlinie-zu-emissionen-aus-pkw-

klimaanlagen. abgerufen am 04.07.2024.

[120] Union Internationale des Transports Publics: UITP SORT & E-SORT
brochures. https://www.uitp.org/publications/uitp-sort-

e-sort-brochures/. abgerufen am: 20.12.2022.

[121] Vatanparvar, K und Al Faruque, M A: Design and analysis of battery-
aware automotive climate control for electric vehicles. ACM Transacti-

ons on Embedded Computing Systems, 17(4), 2018.

[122] Verband Deutscher Verkehrsunternehmen: VDV-Schrift 230: Rahmen-
empfehlung für Stadt-Niederflur-Linienbusse, Ausgabe 07/14.

[123] Verband Deutscher Verkehrsunternehmen: VDV-Schrift 236: Klima-
tisierung von Linienbussen der Zulassungsklassen I (Stadtbus) und II
(Überlandbus), für konventionell angetriebene Diesel-und Gasbusse als
auch für Hybrid-, Brennstoffzellen- und Elektrobusse, Ausgabe 11/2018.

[124] Vetter, Andreas: Hierarchische Versionierung in der Entwicklung von
Fahrzeugnetzwerken. Dissertation, Karlsruher Institut für Technologie
(KIT), 2025.

[125] Wang, Ziran, Liao, Xishun, Zhao, Xuanpeng, Han, Kyungtae, Tiwari,

Prashant, Barth, Matthew J. und Wu, Guoyuan: A Digital Twin Pa-
radigm: Vehicle-to-Cloud Based Advanced Driver Assistance Systems.
In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring),
Seiten 1–6, 2020.

[126] Wei, Tianjun, Wang, Yanzhi und Zhu, Qing: Deep Reinforcement Lear-
ning for Building HVAC Control. In: Proceedings of the 54th Annual
Design Automation Conference (DAC). ACM, 2017.

[127] Widmer, Fabio, Ritter, Andreas und Onder, Christopher H: ZTBus: A
large dataset of time-resolved city bus driving missions. Scientific Data,
10(1):687, 2023.

249

https://www.umweltbundesamt.de/themen/klima-energie/fluorierte-treibhausgase-fckw/rechtliche-regelungen/eu-richtlinie-zu-emissionen-aus-pkw-klimaanlagen
https://www.umweltbundesamt.de/themen/klima-energie/fluorierte-treibhausgase-fckw/rechtliche-regelungen/eu-richtlinie-zu-emissionen-aus-pkw-klimaanlagen
https://www.umweltbundesamt.de/themen/klima-energie/fluorierte-treibhausgase-fckw/rechtliche-regelungen/eu-richtlinie-zu-emissionen-aus-pkw-klimaanlagen
https://www.umweltbundesamt.de/themen/klima-energie/fluorierte-treibhausgase-fckw/rechtliche-regelungen/eu-richtlinie-zu-emissionen-aus-pkw-klimaanlagen
https://www.uitp.org/publications/uitp-sort-e-sort-brochures/
https://www.uitp.org/publications/uitp-sort-e-sort-brochures/

Literaturverzeichnis

[128] Wilhelm, Ulf, Ebel, Susanne und Weitzel, Alexander: Funktionale Si-
cherheit und ISO 26262, Seiten 85–103. Springer Fachmedien Wiesba-

den, Wiesbaden, 2015, ISBN 978-3-658-05734-3. https://doi.org/

10.1007/978-3-658-05734-3_6.

[129] Winner, Hermann, Hakuli, Stephan, Lotz, Felix und Singer, Christina:

Handbuch Fahrerassistenzsysteme. Springer Fachmedien Wiesbaden,

Wiesbaden, 2015, ISBN 978-3-658-05733-6.

[130] Wirtschaftskommission für Europa der Vereinten Nationen: Regelung
Nr. 107: Einheitliche Bestimmungen für die Genehmigung von Fahrzeu-
gen der Klassen M2 oder M3 hinsichtlich ihrer allgemeinen Konstrukti-
onsmerkmale, 2018-02-23.

[131] Wu, Huaming: Multi-objective decision-making for mobile cloud offloa-
ding: A survey. IEEE Access, 6:3962–3976, 2018.

[132] Xu, Yuzhe: Latency and bandwidth analysis of LTE for a smart grid.
Diplomarbeit, Königlich Technische Hochschule, Stockholm, 2011.

[133] Yan, Mei, He, Hongwen, Jia, Hui, Li, Menglin und Xue, Xue:Model Pre-
dictive Control of the Air-conditioning System for Electric Bus. Energy
Procedia, 105:2415–2421, 2017, ISSN 1876-6102. https://www.scie

ncedirect.com/science/article/pii/S1876610217307579,

8th International Conference on Applied Energy, ICAE2016, 8-11

October 2016, Beijing, China.

[134] Yang, Chao, Li, Liang, You, Sixiong, Yan, Bingjie und Du, Xi-

an: Cloud computing-based energy optimization control frame-
work for plug-in hybrid electric bus. Energy, 125:11–26, 2017,

ISSN 0360-5442. https://www.sciencedirect.com/science/ar

ticle/pii/S0360544217302840.

[135] Zaheri, Dorsa, Niedballa, Dennis, Leuffen, Marc und Bilkei-Gorzo,

Gergely: Praktische Implementierung einer Zonenarchitektur für au-
tomatisierte Fahrzeuge in UNICARagil. ATZelektronik, 18(1):16–21,
2023.

250

https://doi.org/10.1007/978-3-658-05734-3_6
https://doi.org/10.1007/978-3-658-05734-3_6
https://www.sciencedirect.com/science/article/pii/S1876610217307579
https://www.sciencedirect.com/science/article/pii/S1876610217307579
https://www.sciencedirect.com/science/article/pii/S0360544217302840
https://www.sciencedirect.com/science/article/pii/S0360544217302840

Literaturverzeichnis

[136] Zimmer, Bastian und Oertel, Markus: Mehr Leistung mit Autosar Ad-
aptive. ATZelektronik, 14(5):38–43, 2019, ISSN 1862-1791.

[137] Zimmermann, Werner und Schmidgall, Ralf: Bussysteme in der Fahr-
zeugtechnik. Springer, 2006.

251

Eigene Veröffentlichungen

[BtD
+
24] Baumann, Daniel ; Sommer, Martin ; Dettinger, Falk ;

Rösch, Tobias ; Weyrich, Michael ; Sax, Eric: Connected

Vehicle: Ontology, Taxonomy and Use Cases. In: 2024 IEEE
International Systems Conference (SysCon), 2024, S. 1–6

[BtS
+
24] Baumann, Daniel ; Sommer, Martin ; Sax, Eric ; Dettinger,

Falk ; Weyrich, Michael: Total Cost of Ownership: Cloud-

based vs. Onboard Vehicle Software Components. In: The 1st
International Conference on Systems Scalability and Expandabili-
ty, International Academy, Research, and Industry Association

(IARIA), 2024. – ISBN 978–1–68558–216–6, S. 6 S.

[BtSS22] Baumann, Daniel ; Sommer, Martin ; Schrempp, Yannick

; Sax, Eric: Use of Deep Learning Methods for People Coun-

ting in Public Transport. In: 2022 International Conference on
Connected Vehicle and Expo (ICCVE), 2022, S. 1–6

[DWW
+
25] Dettinger, Falk ; Weiss, Matthias ; Weyrich, Michael ; Bau-

mann, Daniel ; Sommer, Martin: Directives for Function

Offloading in 5G Networks Based on a Performance Charac-

teristics Analysis. In: IEEE International Automated Vehicle
Validation Conference, 2025

[GLt
+
20] Grimm, Daniel ; Leiner, Simon ; Sommer, Martin ; Pis-

torius, Felix ; Sax, Eric: Flow-based aggregation of CAN

frames with compressed payload. In: 2020 IEEE International
Conference on Smart Computing (SMARTCOMP) IEEE, 2020, S.
202–207

253

Eigene Veröffentlichungen

[LStS23] Lüntzel, Vitus ; Schade, Florian ; Sommer, Martin ; Sax,

Eric: Modularized Platform for an Embedded Systems Case

Study: Concept and Design. In: Human Interaction & Emer-
ging Technologies (IHIET 2023): Artificial Intelligence & Future
Applications 111 (2023), Nr. 111

[LtFS20] Lauber, Andreas ; Sommer, Martin ; Fuchs, Kevin ; Sax,

Eric: Evolutionary Algorithms to Generate Test Cases for

Safety and IT-Security in Automotive Systems. In: 2020 IEEE
International Systems Conference (SysCon) IEEE, 2020, S. 1–6

[RRt
+
23] Rösch, Tobias ; Raghuraman, Sunilkumar ; Sommer, Mar-

tin ; Junk, Carolin ; Baumann, Daniel ; Sax, Eric: Multi-layer

Approach for Energy Consumption Optimization in Electric

Buses. In: 2023 IEEE 97th Vehicular Technology Conference
(VTC2023-Spring), Institute of Electrical and Electronics Engi-

neers (IEEE), 2023 (IEEE Vehicular Technology Conference). –

ISBN 979–83–503–1114–3, S. 1–6

[RtD
+
25] Ruhnau, Jan ; Sommer, Martin ; Dettinger, Falk ; Kraus,

David ; Becker, Steffen ; Sax, Eric ; Weyrich, Michael: Vehicle

Function Offloading: Finding the Optimal Cloud/Edge Appli-

cation Model (OptiCAM). In: Arai, Kohei (Hrsg.): Advances
in Information and Communication. Cham : Springer Nature

Switzerland, 2025. – ISBN 978–3–031–84457–7, S. 556–571

[RtH
+
23] Ruhnau, Jan ; Sommer, Martin ; Henle, Jacqueline ; Walz,

Alexander ; Becker, Steffen ; Sax, Eric: Ontology for Vehicle

Function Distribution. In: 2023 IEEE International Systems Con-
ference (SysCon), Vancouver, Canada, 17-20 April 2023, Institute
of Electrical and Electronics Engineers (IEEE), 2023. – ISBN

978–1–66543–994–7, S. 1–6

[RtS21] Rossel, Nicole ; Sommer, Martin ; Sax, Eric: Automated

and networked city buses – Optimized, demand-oriented ser-

vice through intelligent use of data. Version: 2021. http:

254

http://dx.doi.org/10.51202/9783181023808-215
http://dx.doi.org/10.51202/9783181023808-215

Eigene Veröffentlichungen

//dx.doi.org/10.51202/9783181023808-215. In: VDI

Wissensforum GmbH (Hrsg.): Commercial Vehicles 2021: Truck,
Bus, Van, Trailor. Düsseldorf : VDI Verlag, 2021. – DOI

10.51202/9783181023808–215. – ISBN 978–3–18–102380–8, S.

215–228

[RtS22] Rösch, Tobias ; Sommer, Martin ; Sax, Eric: Adaptive ap-

plication development and integration process for modern

automotive software. In: ICCTA ’22: Proceedings of the 2022 8th
International Conference on Computer Technology Applications,
Association for Computing Machinery (ACM), 2022. – ISBN

978–1–4503–9622–6, S. 85–90

[SBS
+
20] Stock, Simon ; Bertemes, Alain ; Stang, Marco ; Böhme,

Martin ; Grimm, Daniel ; Stork, Wilhelm: Feedi-a smart

wearable foot-band for navigation and guidance using haptic

feedback. In: International Conference on Human Interaction
and Emerging Technologies Springer, 2020, S. 349–355

[StB
+
20] Stang, Marco ; Sommer, Martin ; Baumann, Daniel ; Zijia,

Yuan ; Sax, Eric: Adaptive Customized Forward Collision

Warning System Through Driver Monitoring. In: Proceedings
of the Future Technologies Conference (FTC) 2020, Volume 2.
Ed.: K. Arai Bd. 1289, Springer International Publishing, 2020
(Advances in Intelligent Systems and Computing). – ISBN

978–3–030–63088–1, S. 757–772

[StKS24] Stang, Marco ; Sommer, Martin ; Kraus, David ; Sax, Eric:

Improving the Validation of Automotive Self-Learning Systems

through the Synergy of Scenario-Based Testing and Metamor-

phic Relations. In: Proceedings of the IEEE/ACM 10th Inter-
national Conference on Big Data Computing, Applications and
Technologies. New York, NY, USA : Association for Computing

Machinery, 2024 (BDCAT ’23). – ISBN 9798400704734

[StS19] Stang, Marco ; Böhme, Martin ; Sax, Eric: Applied Machine

Learning: Reconstruction of Spectral Data for the Classifica-

255

http://dx.doi.org/10.51202/9783181023808-215
http://dx.doi.org/10.51202/9783181023808-215
http://dx.doi.org/10.51202/9783181023808-215

Eigene Veröffentlichungen

tion of Oil-Quality Levels. In: 5th International Conference on
Research in Engineering, Technology and Science (ICRETS 2019),
Lissabon, P, February 3-7, 2019 Bd. 5, ISRES Publishing, 2019

(The Eurasia Proceedings of Science, Technology, Engineering

& Mathematics (EPSTEM)). – ISSN 2602–3199, S. 1–13

[tBR
+
24] Sommer, Martin ; Baumann, Daniel ; Rösch, Tobias ;

Dettinger, Falk ; Sax, Eric ; Weyrich, Michael: Process

for the Identification of Vehicle Functions for Cloud Offloading.

In: Arai, Kohei (Hrsg.): Intelligent Computing. Cham : Springer

Nature Switzerland, 2024, S. 596–608

[tGSS25] Sommer, Martin ; Guissouma, Houssem ; Schindewolf,

Marc ; Sax, Eric: An Orchestrator for the Dynamic Extension

of Automotive E/E Architectures to the Cloud. In: Aiello,

Marco (Hrsg.) ; Barzen, Johanna (Hrsg.) ; Dustdar, Schahram

(Hrsg.) ; Leymann, Frank (Hrsg.): Service-Oriented Computing.
Cham : Springer Nature Switzerland, 2025, S. 24–41

[tJRS21] Sommer, Martin ; Junk, Carolin ; Rösch, Tobias ; Sax, Eric:

Intelligent Control of HVAC Systems in Electric Buses. In:

Human Interaction, Emerging Technologies and Future Appli-
cations IV : Proceedings of the 4th International Conference on
Human Interaction and Emerging Technologies: Future Appli-
cations (IHIET – AI 2021), April 28-30, 2021, Strasbourg, France.
Ed.: T. Ahram Bd. 1378, Springer International Publishing, 2021

(Advances in Intelligent Systems and Computing). – ISBN

978–3–030–74009–2, S. 68–75

[tLS
+
20] Böhme, Martin ; Lauber, Andreas ; Stang, Marco ; Pan,

Luyi ; Sax, Eric: Using Machine Learning to Optimize Ener-

gy Consumption of HVAC Systems in Vehicles. In: Human
Interaction and Emerging Technologies. Ed.: T. Ahram Bd. 1018,

Springer International Publishing, 2020 (Advances in Intelli-

gent Systems and Computing). – ISBN 978–3–030–25629–6, S.

706–712

256

Eigene Veröffentlichungen

[tRS23] Sommer, Martin ; Rösch, Tobias ; Sax, Eric: Fleet data used

for self-learning functions in commercial vehicles. In: 17th
International Conference Commercial Vehicles 2023 Bd. 2417,

VDI Verlag, 2023 (VDI-Berichte). – ISBN 978–3–18–092417–5,

S. 81–91

[tSMS20] Sommer, Martin ; Stang, Marco ; Muetsch. Ferdinand ;

Sax, Eric: TalkyCars: A Distributed Software Platform for Co-

operative Perception among Connected Autonomous Vehicles

based on Cellular-V2X Communication. In: IEEE Intelligent
Vehicles Symposium, October 19 - November 13, 2020, (Virtual)
Las Vegas, NV, 2020

[tSR21] Sommer, Martin ; Sax, Eric ; Rösch, Tobias: Model Predicti-

ve HVAC Control with disturbance variable forecasting for city

buses. In: 2021 International Conference on Electrical, Compu-
ter, Communications and Mechatronics Engineering (ICECCME)
Mauritius, 7-8 Oct. 2021, Institute of Electrical and Electronics

Engineers (IEEE), 2021. – ISBN 978–1–6654–2943–6, S. 1–7

[tSS25] Sommer, Martin ; Seidel, Luca ; Sax, Eric: Control-over-

the-air (COTA) for automotive comfort functions. In: 11th
International Conference on Control, Decision and Information
Technologies (CoDIT), 2025

257

Betreute studentische Arbeiten

[Bau24] Bausch, Jens: Auslegung und techno-ökonomische Analyse von
Schnellladeparks unter Einbindung von automatisiertem Fahren und
Laderobotern, Karlsruher Institut für Technologie, Masterarbeit,

2024

[Bre23] Brenk, Joshua B.: Entwurf und Implementierung eines Orchestrator
Middleware Moduls innnerhalb der serviceorientierten Fahrzeug-
architektur, Karlsruher Institut für Technologie, Bachelorarbeit,
2023

[Che21] Chen, Yalin: Continuously Learning of Deep Neural Networks for
Applications utilizing Incremental Data, Karlsruher Institut für
Technologie, Masterarbeit, 2021

[Eic20] Eichhorn, Nadine: Modellierung eines Fahrgastraummodells inner-
halb einer Modellprädiktiven Klimaregelung für einen Elektrobus,
Karlsruher Institut für Technologie, Bachelorarbeit, 2020

[Gan23] Ganz, Jan-Luca: Process for identifying functions in a vehicle for
possible relocation to the cloud, Karlsruher Institut für Technologie,
Bachelorarbeit, 2023

[Gu20] Gu, Renxin: A Reinforcement-Learning Approach for Optimal Hea-
ting, Ventilation and Air-Conditioning Control, Karlsruher Institut
für Technologie, Masterarbeit, 2020

[Hen20] Hennhöfer, Aaron: Entwicklung und Modellierung einer modell-
prädiktiven Klimaregelung für einen Elektrobus, Karlsruher Institut
für Technologie, Masterarbeit, 2020

259

Betreute studentische Arbeiten

[Het20] Hetzel, Moritz: Knowledge Discovery in Databases: Entwicklung
eines Algorithmus zur Berechnung von Passagieraufkommen, Karls-
ruher Institut für Technologie, Bachelorarbeit, 2020

[Hor22] Hornstein, Justus: Integration und Evaluation eines vernetzten
HLK-Regelungssystems für einen Stadtbus in einer MiL-Umgebung,
Karlsruher Institut für Technologie, Bachelorarbeit, 2022

[Jun20] Junk, Carolin: Vergleich von Reinforcement Learning undModellprä-
diktiver Regelung zur Klimaregelung in Elektrobussen, Karlsruher
Institut für Technologie, Masterarbeit, 2020

[Jun23] Jung, Ulf: Modellierung, Simulation und energetische Optimierung
von Wärmequellen elektrisch betriebener Stadtbusse, Karlsruher
Institut für Technologie, Masterarbeit, 2023

[Koc24] Koch, Laurin: Gesamtintegration eines „Control over the Air“ An-
satzes für eine automotive Komfortfunktion, Karlsruher Institut für
Technologie, Masterarbeit, 2024

[Kuh23] Kuhn, Michael: Erhöhung der Portabilität von Cloudsystemen mit-
tels eines generalisierten Orchestrierungsinterfaces am Beispiel eines
Fahrzeugbackends, Karlsruher Institut für Technologie, Masterar-

beit, 2023

[Li20] Li, Hui: Predicting of Thermal Disturbance Variables to improve
Thermal Management of Electric Vehicles, Karlsruher Institut für
Technologie, Masterarbeit, 2020

[Lin21] Linek, Simon: Entwicklung einer auf neuronalen Netzen basierenden
modellprädiktiven Klimaregelung für Stadtbusse, Karlsruher Institut
für Technologie, Masterarbeit, 2021

[Lom22] Lomen Árpád: Modellierung der Regelstrecke einer Klimaregelung
für einen Stadtbus an einem HiL Prüfstand, Karlsruher Institut für
Technologie, Masterarbeit, 2022

[Mit21] Mitsios, Dionysis: Modellierung einer Stadtbus HLK-Funktion
mithilfe von künstlichen neuronalen Netzen, Karlsruher Institut für
Technologie, Bachelorarbeit, 2021

260

Betreute studentische Arbeiten

[Mü20] Mütsch, Ferdinand: TalkyCars: A Distributed Software Platform
for Cooperative Perception among Connected Autonomous Vehic-
les based on Cellular-V2X Communication, Karlsruher Institut für
Technologie, Masterarbeit, 2020

[Osw23] Oswald, Kai: Entwicklung eines Testkonzepts für serviceorientierte
Architekturen im Automobilbereich, Karlsruher Institut für Techno-
logie, Bachelorarbeit, 2023

[Rau21] Rau, Robin: Implementing a federated averaging algorithm for a
neural network model predictive control of the HVAC system in city
buses, Karlsruher Institut für Technologie, Bachelorarbeit, 2021

[Rom21] Romier, Lucas: Disturbance Forecasting for a Model Predictive
Control of HVAC Systems, Karlsruher Institut für Technologie, Ba-
chelorarbeit, 2021

[Sch20] Schrempp, Yannick: Einsatz von Deep Learning Methoden zur
Personenzählung im öffentlichen Nahverkehr, Karlsruher Institut
für Technologie, Masterarbeit, 2020

[Sch22a] Schmid, Tobias: Systemintegration und Bereitstellung eines mo-
dellprädiktiven Reglers im Kontext serviceorientierter Architekturen,
Karlsruher Institut für Technologie, Bachelorarbeit, 2022

[Sch22b] Schmidt, Sören: Design eines Entscheidungsalgorithmus für die Ver-
schiebung von cloudbasierten Funktionen in vernetzten Fahrzeugen,
Karlsruher Institut für Technologie, Bachelorarbeit, 2022

[Sto22] Stolbrink, Vincent: Erweiterung eines HIL-Demonstrators um ein
Closed-Loop-Fahrzeugmodell für das Testen cloudbasierter Funktio-
nen, Karlsruher Institut für Technologie, Bachelorarbeit, 2022

261

	Einleitung
	Hintergrund und Motivation
	Cloudbasierte Fahrzeugfunktionen
	Allgemeine Begriffsdefinitionen
	Forschungsfragen

	Technische und begriffliche Grundlagen
	Regelungstechnik
	Modellprädiktive Regelung
	Fuzzy-Regler
	PID-Regler

	Steuergeräte
	Die Elektrik/Elektronik (E/E)-Architektur
	Historische Entwicklung der E/E-Architektur
	Die serviceorientierte Architektur

	Klimatisierung im Stadtbus
	Typenvielfalt im Busverkehr
	HLK-Systeme im Stadtbus
	Regelwerk zur Klimatisierung von Linienbussen des Verbands deutscher Verkehrsunternehmen
	Die thermische Modellierung der HLK-Vorgänge im Stadtbus

	Cloud Computing
	Vehicle-to-X-Kommunikation
	Cellular-V2X
	Einflüsse auf die erreichbaren Datenraten im Mobilfunknetz

	Multikriterielle Entscheidungsanalyse

	Stand der Technik und Wissenschaft
	Cloudbasierte Fahrzeugfunktionen
	Deploymentmodelle cloudbasierter Fahrzeugfunktionen
	Statische und dynamische Funktionsverteilung im Fahrzeug
	Frameworks für die Funktionsverteilung
	Use Cases cloudbasierter Applikationen
	Fazit zu den Anwendungsfällen und Frameworks aus der Wissenschaft
	Wissenschaftliche Methode zur Bewertung des Ausführungsortes einer Fahrzeugfunktion
	Stand der Wissenschaft hinsichtlich der Ziele einer Funktionsverlagerung

	Regelungsstrategien für HLK-Systeme
	Beitrag der Klimatisierung auf den Gesamtenergieverbrauch eines BEB
	Lücken des Standes der Wissenschaft und Technik
	Beitrag dieser Dissertation im Kontext der Forschungsfragen

	Definition und Identifikation cloudfähiger Fahrzeugfunktionen
	Die Definition einer cloudbasierten Fahrzeugfunktion
	Identifikation cloudfähiger Fahrzeugfunktionen
	Anforderungen
	Bewertung der Realisierbarkeit
	Bewertung der Eignung
	Anwendung des Prozesses auf die E/E-Architektur eines Stadtbusses

	Die cloudbasierte HLK-Regelung eines BEB
	Der Use Case
	Die Auswahl des Reglers
	Die Regelstrecke
	Das Fahrzeugkabinenmodell
	Wärmepumpe

	Aufbau des MPC-Reglers
	Die serviceorientierte Architektur
	Das Deploymentmodell
	MCDA zur Identifikation des optimalen Deploymentmodells cloudbasierter Funktionen
	Die Komponenten der MCDA
	Bewertung der Alternativen für die HLK-Regelung

	Fazit zur Konzeptentwicklung

	Prototypische Umsetzung
	ATLAS Testplattform
	Die integrierten Softwarekomponenten des COTA-Ansatzes
	Definition der Systemanforderungen und Testszenarien
	Validierung der Anforderungen
	Die Simulationsszenarien
	F-Req-1: Energieeffizienz
	F-Req-2: Thermischer Komfort
	F-Req-3: Fehlerbehandlung und Wiederherstellung
	F-Req-4: Einhaltung des Regler Abtastintervalls
	NF-Req-1: Wartbarkeit und Erweiterbarkeit
	NF-Req-2: Security

	Bewertung der Ergebnisse

	Fazit und Ausblick
	Beantwortung der Forschungsfragen
	Ausblick
	Das Barebone-Fahrzeug

	Anhang
	Einige Grundbegriffe der Thermodynamik
	Coefficient of Performance einer Wärmepumpe
	Thermischer Komfort: Predicted Mean Vote
	Mikrocontroller
	Zyklische und Streaming-basierte Funktionen im Automotive-Kontext
	X-in-the-Loop Testmethoden
	ROS 2
	AUTOSAR Adaptive
	Weitere Netzwerkprotokolle
	Software Architektur von Steuergeräten
	Middleware
	Middleware Kommunikationsprotokolle
	Funktionale Sicherheit im Automobil
	OSI Referenzmodell
	Hierarchieebenen von E/E-Features
	Tabellen
	Grafiken

	Verzeichnisse
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Abkürzungsverzeichnis
	Glossar
	Literaturverzeichnis
	Eigene Veröffentlichungen
	Betreute studentische Arbeiten

