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ABSTRACT Timely, patient-specific cranial implants are critical for restoring skull integrity after trauma,
accidents or surgery, yet off-the-shelf devices arrive in coarse, fixed size increments that often fail to match
irregular defects. Surgeons are therefore forced to open and try multiple implants intra-operatively, adding
infection risk, operative time, and likelihood of early implant failure. This paper presents an end-to-end
workflow that predicts “print-ready” cranial implants directly from defective CT volumes and validates them
through physical prototyping. The pipeline couples a five-stage volumetric preprocessing routine with a
systematic exploration of neural architectures. A baseline and two deeper 3-D U-Nets are benchmarked
alongside the proposed version 3 model, a channel-rebalanced U-Net that shifts capacity from shallow texture
filters to boundary-aware decoding paths. Two public datasets, SciData and SkullFix, were merged, and split
for training the model. On 40 unseen skulls, the proposed version 3 achieved a mean Dice of 0.901, Boundary
Dice of 0.908, and HD95 of 1.52 mm, which is surpassing all alternatives and reducing the number of intra-
operative trials predicted by simulation from 3-4 to zero. Bench-top tests confirmed that implants printed
directly from the network’s STL output seated flush on three morphologically diverse phantoms without CAD
edits or sanding, demonstrating true “push-button” manufacturability. These results show that a carefully
optimized architecture, paired with robust pre-processing, can supply size-perfect implants using modest data
and commodity hardware.

INDEX TERMS Computer Vision, Convolutional Neural Networks (CNNs), Custom Cranial Implants, U-
Net Structure, Image Processing, 3D Reconstruction, 3D Printing.

I. INTRODUCTION

In the global effort to build safe, healthy societies,
every country now treats healthcare as a central pillar which
is recognizing that human capital reinforces national
progress. A key objective is universal access to high-
quality services, such as dependable medical replacements
and implants. Yet reliance on imported implants introduces
several hurdles. Long procurement lead times and shipping
delays can postpone operations for weeks or months [1],
while limited size ranges often force surgeons to open and
trial multiple devices during surgery [2, 3]. That trial-and-
error approach lengthens anesthesia time [4], raises
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infection risk with each additional package opened, and
increases blood loss [5] and tissue trauma from repeated
fitting, it can also culminate in a “close-enough” implant
that fails early and requires revision [6].

The afore-mentioned challenges are increasing
because of surging global needs linked to diabetes, which
can lead to extremity amputations, road-traffic injuries, and
war injuries. These factors highlight the crucial need for on-
site manufacturing capacity that can provide patient-
custom implants tailored specifically to each individual,
without mis-matched sizes or significant delivery delays.
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Recent high-tech advances, such as artificial
intelligence  (Al), computer vision, and additive
manufacturing (AM), can be integrated and utilized to
develop these custom implants. The power of Al, especially
in computer-vision algorithms, allows the precise
anatomical data captured from computed tomography (CT)
scans to be interpreted so the structure and features of the
implant can be estimated. This approach replaces
traditional ~ computer-aided  design  (CAD) and
computational-modeling tools, which require long operator
times to create a design. In addition, AM, also called 3-D
printing, enables the production of complex patient-
specific implants in a short time and at low cost. Both of
these innovative methods have a significant positive effect
on healthcare in orthopedics by improving treatment
outcomes.

In this paper, the authors focus on cranial defects as a
crucial part of orthopedics. Cranial defects usually arise
from trauma, such as road accidents; surgery, such as major
brain operations; or congenital conditions. These defects
can affect brain protection, intracranial-pressure regulation,
and cerebrospinal-fluid dynamics [7]. Therefore, custom
cranial implants are essential for restoring both the
functional and aesthetic aspects of the human skull[8-10].

Traditional methods of implant design and production,
often involving third-party suppliers, are time-consuming and
expensive. The need for patient-specific implants that
precisely fit the defect area while restoring natural cranial
aesthetics has driven research towards more efficient and cost-
effective solutions [11].

Recent advancements in deep learning [12] have shown
great potential for automating the design of custom cranial
implants. These approaches aim to generate complete cranial
models from defective ones, significantly reducing the time
and expertise required for implant design [13]. Some
approaches utilize deep learning architectures to recognize the
shape of the implant and refine it, demonstrating promising
results in both synthetic and clinical cases. There is significant
progress in deep learning architectural designs for cranial
defect reconstruction. The modification of U-Net [14, 15]
architectures to be developed for volumetric data of skull, that
carry out good results in public data set, homemade/in public
dataset and augmented dataset [16, 17]. Also, the utilizing of
deep learning to combine defect reconstruction with iterative
procedures to improve implant geometry. In Addition,
Symmetry-enforcing networks that utilize the natural
symmetry of the skull to enhance reconstruction accuracy was
utilized to the estimate the implant [18].

Despite these distinguished progress in this field still there
are several challenges persist. Limited datasets remain a
primary concern which owing to privacy regulations and the
rarity of certain defect types, which restrict the availability of
patient data [19, 20]. Additionally, rendering synthetic cranial
defects and processing high-resolution 3D data necessitates
substantial computational resources. Furthermore, there is a
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growing demand for lightweight models that preserve high
accuracy while delivering results within a short runtime. To
address these issues, on-going research directions involve
exploring efficient architectures that can operate on resource-
constrained devices without compromising accuracy.

Cranial reconstruction still faces three intertwined hurdles.
First, the scarcity and heterogeneity of publicly available CT
data deprive deep-learning models of the representative
examples they need. Second, the labor-intensive CAD clean-
up that typically sits between segmentation and fabrication
slows the workflow. Third, the persistent difficulty of
producing truly size-perfect implants from scant clinical data
demands a network that can maintain high accuracy and
generalize well despite limited training samples.

This paper tackles all three challenges head-on through
two main objectives. Objective one is to enhance the U-Net
architecture by introducing a channel-rebalanced design,
deliberately thinned in its earliest layers and rewired in its
decoder, which delivers millimeter-scale accuracy and robust
generalization even on a few hundred volumetric scans.
Objective two is to evaluate different modified architectures to
identify the most effective modification will led to
enhancement of the neural neatwork model and to integrate
the best-performing one into a fully automated “image-to-
print” pipeline. Anchoring this architecture is a fully
automated “image-to-print” pipeline that begins with rigorous
five-stage preprocessing (bone-window thresholding, tight
cropping, isotropic resampling, dimension standardization,
and intensity normalization), proceeds to back-of-skull
extraction and direct implant prediction, applies lightweight
topology optimization, and culminates in the direct 3-D
printing of a size-perfect cranial implant, completely
eliminating intermediate CAD edits and manual tuning.
Polymer prototypes fabricated via fused-filament printing
already seat flush in skull phantoms within a 1 mm clinical
tolerance, demonstrating a genuine push-button solution that
paves the way for on-demand metal printing in future surgical
workflows.

This paper is organized as follows; after this introduction,
the background section presents the theoretical foundations of
custom implant estimation and the possible methods for
achieving it. Next, the overall workflow section describes the
structure of the proposed end-to-end solution. This is followed
by the proposed computer vision approach section which
includes the proposed design of our custom U-Net
architecture. The results of this proposed structure are then
presented and discussed. Finally, the paper concludes with a
summary and suggestions for future work.

Il. BACKGROUND

Computer vision is a field of Al that focuses on enabling
computers or machines to recognize and understand visual
scenes in a human-like manner [21]. Among its numerous
tasks, the most prominent are object detection, object
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segmentation, and instance segmentation, all of which have a
positive impact on medical engineering [22, 23].

Traditional computer-vision methods rely on hand-crafted
features developed by a feature engineer; these features are
then fed into rule-based algorithms for image analysis [24].
The performance of such methods often degrades when they
must deal with complex or irregular structures, such as images
or scans of bone defects [25].

In recent years, deep learning (DL) has enabled modern
computer-vision approaches, most particularly Convolutional
Neural Networks (CNNSs), that interpret visual data without
the need for hand-crafted features or rule-based logic [26].
CNNs consist of multiple layers of learnable filters, called
kernels, that automatically detect and recognize image
features. Each layer extracts progressively higher-level
abstractions, moving from simple patterns such as edges and
corners to more complex shapes [27]. This hierarchical feature
understanding makes CNN models highly effective in medical
image analysis, where fine-grained accuracy is crucial and
anatomical variability is common [26].

CNN models can learn to distinguish structural patterns
that indicate intact bone from those that reveal broken or
missing bone, thereby addressing the challenge of recognizing
absent features, such as bone fragments, in skull defects. By
inputting volumetric data, such as CT scans, into specialized
network architectures, such as 3D U-Nets [17], these models
learn to detect anomalies and predict the shapes that would
naturally fill the gaps. This process generally involves two
major steps. Firstly, is feature extraction and localization,
where the neural network identifies critical regions in the
volumetric data that deviate from expected anatomical
structures then effectively localize the missing or deformed
segments. Secondly is predictive reconstruction, where once
the missing features are identified the network generates a
segmentation mask or shape prediction approximating the
anatomical structure in the area of the defect. In cranial
reconstruction tasks, this predicted mask can then be further
refined and converted into a 3D model for implant design and
manufacturing [13, 16, 28, 29].

Such data-driven approaches hold several advantages
over traditional methods. Instead of relying on manually
designed features, they reduce the reliance on manual feature
engineering and allow the network to learn directly from
examples of healthy anatomy and corresponding defect
patterns [30, 31]. These automated approaches are important
in medical applications where large volumes of patient
imaging must be analyzed accurately and quickly [30].
However, best practice for developing a CNN-based algorithm
that identifies cracked areas and estimates the features of a
skull custom implant requires a comprehensive workflow
[13]. This workflow starts with data acquisition and
preprocessing to ensure that image sizes and resolutions are
suitable for model training [31]. Model training typically
demands significant computational resources, usually GPU-
based. Testing is then carried out against ground-truth data to
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assess model accuracy and generalization [31]. It is also
essential to verify that the dataset represents real-world
variability. Furthermore, incorporating advanced data-
augmentation techniques or synthetic data generation for rare
or extreme defects can improve model generalization,
enabling more accurate recognition of missing features across
diverse patient cases [32, 33].

In the literature, several cranial-reconstruction methods
exist for repairing skull defects, each with distinct pros and
cons, to the best of the authors’ knowledge. For example,
manual reconstruction relies on a clinician’s expertise to sculpt
the missing skull region using computer-aided design tools.
This approach is time-consuming and heavily dependent on
practitioner skill, but it can yield highly accurate and
customized designs [34]. Interpolation and extrapolation
techniques, which analyze skull shape and curvature to
estimate the missing region, offer a more automated yet less
adaptable option, making them unsuitable for complex cases
or congenital conditions. To the best of the authors’
knowledge, these methods work best for small or relatively
simple defects, but their accuracy decreases in more complex
or irregular cases [29, 35].

In addition, anatomical-template or symmetry-based
reconstruction methods can be used to estimate the features of
a custom implant. These approaches rely on standard skull
templates or on mirroring the intact side of the skull to
reconstruct the missing region [18]. They perform well when
symmetrical references are available, such as in unilateral
defects, but they are limited in bilateral or more complex,
multilaterally affected scenarios. Furthermore, statistical
shape modeling (SSM) is another powerful method,
particularly useful for reconstructing irregular or large cranial
defects, but its effectiveness hinges on the availability of
extensive, diverse anatomical datasets [36, 37]. Recent strides
in Al, specifically convolutional neural networks (CNNs) and
generative adversarial networks (GANSs), have shown
remarkable capabilities in predicting missing cranial regions.
By analyzing extensive collections of skull images, these
models learn nuanced geometric patterns, achieving high
accuracy even in complex cases. However, the success of Al-
driven methods is contingent on enough, high-quality, and
domain-specific datasets [16-18].

Transfer learning offers a means of adapting pre-trained
models to specialized tasks, often reducing training time and
data requirements. Models such as MobileNet [38] or U-net
[14, 18] typically trained on extensive datasets such as
ImageNet [39], can be repurposed for tasks such object
recognition. However, in cranial reconstruction, where
anatomical accuracy and domain-specific knowledge are
paramount may fail to capture the intricacies of skull geometry
[36]. Consequently, this paper refrained from implementing
transfer learning, choosing instead to train a custom network
from the ground up. This native training allowed for targeted
architectural refinements, data augmentation strategies, and
loss functions specifically aligned with cranial defect
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reconstruction requirements. Although transfer learning can
expedite prototyping in contexts where large public datasets
exist, the specificity and precision demanded by this paper
justified the additional time and resource investment in
developing a specialized model.

. METHODOLOGY

In this paper, the authors present a comprehensive
workflow, illustrated in Figure 1. First, the defective skull is
imaged with CT, producing cross-sectional data that capture
both the defect and the surrounding anatomy. These images
are then pre-processed so that subsequent stages can interpret
the defect accurately. The Al model estimates the implant
geometry, after which a CAD file is generated and exported
in standard AM formats such as OBJ or STL. Before
fabrication, the file undergoes topology optimization to yield
an implant that closely matches the patient’s anatomy while
maintaining structural robustness. Finally, the optimized file
is sent to an AM system capable of fabricating high-
precision, biocompatible implants. In this study, the authors
first produced polymer prototypes using fused-filament
fabrication (FFF) for rapid, low-cost testing; final metal
production will follow in future work.

Generate .0bj file
of the Custom
Implant

Skull Crack

Topology
Optimization
Design Process

Computer
Tomography (CT)

Define the Crack

Geometry Simulated

Product

Designed
Product

Estimate the
Customized
Implant

AM Process

i Computer
I Vision

FIGURE 1. Workflow of the proposed method for estimating, designing,
and manufacturing a patient-custom skull implant.

IV. PROPOSED COMPUTER VISION APPROACH

A. PROPOSED NEURAL NETWORK STRUCTURE

The U-Net architecture is a type of CNN designed for
biomedical image-segmentation tasks [14]. Its characteristic
“U-shaped” structure consists of a contracting path, or
encoder, and an expansive path, or decoder, as illustrated in
Figure 2. The encoder and decoder work together to capture
the spatial context of an image and produce an accurate
segmented output.

The contracting path is responsible for extracting high-level
features through multiple convolutional layers, each followed
by a rectified linear unit (ReLU) activation [40] and max-
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pooling operations. This process progressively reduces the
spatial dimensions of the input image while retaining critical
feature information.

In the expansive path, the network restores the spatial
resolution of the feature maps through transposed
convolutions (up-convolutions), which increase the spatial
dimensions of the data. A defining feature of U-Net is its skip
connections, which directly link corresponding layers in the
encoder and decoder. These connections ensure that fine-
grained spatial information from the encoder is preserved and
integrated with high-level contextual information in the
decoder. This methodology enhances model’s ability to
produce accurate segmentation results.

The encoder and decoder are bridged together by a
bottleneck layer located at the center of the U-Net architecture.
This layer consists of convolutional operations with a large
number of filters, allowing it to capture comprehensive and
abstract features of the input image.

At the end of the U-Net, a final output layer with a 1 x 1
convolution maps the learned features to the desired output
classes. For binary segmentation tasks, the model applies a
sigmoid activation function, whereas for multi-class
segmentation it uses a SoftMax activation [41, 42].

To the best of the authors’ knowledge, U-Net offers several
advantages: it is an end-to-end architecture that processes raw
input images and efficiently generates pixel-wise
segmentation maps; and its skip-connection structure enables
it to produce high-resolution segmentation results with a high
degree of precision while reducing overfitting. These features
make U-Net adaptable to a wide range of tasks beyond its
original biomedical context [14].

Due to the success of the U-Net network, several extensions
have been developed. For example, the Attention U-Net
integrates attention mechanisms to focus on relevant regions
in the input image [43]. ResUNet++ [44] is another variant that
incorporates residual connections to improve gradient flow
and convergence. Additionally, 3D U-Net extends the
architecture to process volumetric data, such as CT scans,
making it particularly valuable for three-dimensional image-
analysis tasks [15].

ol

Bio

Module Convolution
FIGURE 2. U-net structure with symmetric contracting and expansive
paths, connected through skip connections. The encoder captures
contextual information by progressively down sampling the input, while
the decoder reconstructs the spatial resolution through up sampling,
enabling precise segmentation. Skip connections ensure the
preservation of fine-grained details by directly transferring features from
the encoder to the decoder at corresponding levels. (Modified from [45]).
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In this paper, a modified version of U-Net is employed to
segment cranial defects and predict implants based on
defective skull data. Its ability to balance spatial resolution and
contextual understanding made it an ideal choice for this
application. The model's robust architecture and flexibility
ensured accurate segmentation outputs, critical for designing
patient-specific implants.

The proposed modified architecture of U-net, referred to
version 3 (V3) in this study, begins with a deliberate thinning
of the shallow encoder. Where, the authors provide three
versions of architecture. Whereas the reference model starts
with a 16-channel stride 3-D convolution, Version 3 structure
reduces this width to just8channels and removes every
residual block in the first two stages. This almost halves both
the parameter counts and the memory footprint of the

(a)

Encoder 1

Encoder 2

Strided Conv

(b)

network; its residual block is resized accordingly. These
bookkeeping changes eliminate the zero-padding previously
required to align mismatched tensors, yielding slightly sharper
boundary predictions and a cleaner gradient flow back into the
shallow encoder (see Figure 3).

Also, the authors developed two trial architectures,
version 1 (V1) and version (V2). In contrast to version 3, these
experiments deepened the shallow encoder in search of
stronger edge detectors. Specifically, version 1 inserted two
full residual blocks ahead of every down-sampling operation
in stages 1 and 2, while version 2 retained a single extra block
per stage after ablation testing showed diminishing returns for
the second block. Although both variants slightly improved
the training metrics, they also inflated the model by millions
of parameters and exhibited clear signs of over-fitting: the

Strided Cony

Bottleneck

Encoder 1

Residual

Encoder 2

Strided Conv_| |

Bottleneck

FIGURE 3. (a). The structure of the proposed modification U-Net structure (Version 3). (b) The structure of native U-Net.

low-level path, lowering the risk of early-layer over-fitting on
limited skull-implant data while also accelerating
training. From the third stage onward, the authors preserve the
native design, two residual blocks at 64 channels followed by
two at 128 channels, so the network still has ample depth to
capture the complex curvature of implants.

In other words,the proposed version3 architecture
reallocates capacity where it trims redundancy in
texture-oriented layers and retains the shape-centric context
layers, striking a better balance between efficiency and
representational power.

A second key modification is the precise rewiring of the
decoder to match the new channel plan. Because the first skip
feature now arrives with 8 channels instead of 16, the final
decoder block processes a 40-channel concatenated tensor
(32 + 8) rather than the 48-channel tensor used in the native
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validation Dice plateaued early and fluctuated with each
epoch. The proposed version 3 architecture with its lighter
front-end and channel-consistent skip connections, therefore
offers a more elegant route to higher accuracy, delivering our
best performance metrics to date along with faster
convergence and lower computational cost.

B. DATASETS

One significant challenge in this research was the scarcity
of publicly available cranial reconstruction datasets. Privacy
concerns and restrictions around sharing medical imaging data
often limit access to comprehensive collections of high-
resolution CT scans of the human skull. Researchers must rely
on smaller, fragmented, or synthetic datasets in order to
complicate model training and validation. To address this, two
datasets were identified and employed. The first one is SciData
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which consists of CT scans of 24 healthy skulls where cranial
defects have been artificially induced, resulting in 240 paired
samples of defective skulls and corresponding implants. This
dataset is instrumental for researchers seeking to improve
cranial implant design with minimal dependence on manual
methods or external manufacturers [46, 47]. The second
dataset, SkullFix, was originally introduced during the
MICCAI 2020 Autolmplant Challenge. It comprises 100
triplets for training, each triplet consisting of a complete skull,
a defective skull, and the corresponding implant, and 110
triplets for evaluation. this dataset provides a richer set of
triplets and more clinically realistic geometry. The training
partition contains 100 triplets, each consisting of (i) a complete
skull, (ii) a corresponding defective skull created by digitally
excising bone with realistic surgical margins, and (iii) the
“gold-standard” implant model that perfectly restores the
anatomy. All volumes are delivered as NIfTI files with 1 mm
isotropic spacing and a fixed matrix size of 256 x 256 x 256
voxels, and each sample is accompanied by an STL mesh of
the implant for direct 3-D printing. Defects range from small
burr-hole-like openings (=3 cm) to large temporo-parietal
craniectomies (>12 cm), covering frontal, parietal, temporal
and occipital regions in roughly equal proportions. Age, sex
and cranial size are also balanced across the cohort, making
SkullFix a de-facto benchmark for volumetric shape learning
and implant generation in the craniomaxillofacial community
[48, 49]. It provides comprehensive paired data, SkullFix is
widely regarded as a benchmark for tasks related to volumetric
shape learning.

An important limitation encountered was the inadequacy
of basic data augmentation methods. Standard techniques such
as rotations, flipping, and scaling are effective for tasks such
as general image classification, but they do not create new
structural variations crucial for simulating a wide array of
cranial defects. Previous studies have shown that such
augmentation strategies such as random image rotations or
nonlinear deformations can improve performance but are
often limited in their ability to emulate real-world variability
[50-53]. Despite the current project’s time and resource
constraints limiting the volume of synthetic data produced,
this rendering-based approach promises to significantly
enhance the realism and diversity of future datasets. Plans are
in place to automate this process to expand the scale of
synthetic data generation and improving model robustness in
the long term.

C. NEURAL NETWORK TRAINING AND EVALUATION
PIPELINE

The implemented pipeline for training and evaluating the
U-Net model for automatic cranial implant design is depicted
in Figure 3. This workflow integrates multiple datasets and
utilizes advanced preprocessing and evaluation techniques to
optimize the performance of the model.

The process begins by combining data from two key
sources. The SciData dataset which includes 240 samples
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consisting of cranial defects and their corresponding implants,
and the Autolmplant (SkullFix) dataset which provides 100
samples. The combined dataset is split into three groups: 250
samples for the training phase, 50 samples for the validation
phase, and 40 samples for the testing phase. The split is
designed to balance the data and capture all features
systematically, supporting robust model training and
evaluation.

During preprocessing, the images are standardized to
mitigate inconsistencies before being fed into the U-Net
model. This stage includes loading the volumetric data,
cropping to focus on the region of interest such as the crack
area, resampling to ensure uniform resolution, and padding to
maintain consistent input dimensions.

Successful, generalized training of a 3-D U-Net for cranial-
defect segmentation depends heavily on the quality and
uniformity of the volumetric data. Raw clinical CT scans often
exhibit considerable heterogeneity: slice thickness can vary
two- to three-fold across scanners, in-plane resolution is rarely
isotropic, and the cranial vault may occupy only a fraction of
the standard 512 x 512 acquisition field. Left uncorrected,
these inconsistencies cause convolutional kernels to learn
scanner-specific features, inflate class imbalance, and waste
GPU memory on non-informative background voxels,
ultimately degrading model accuracy and limiting batch size.

To mitigate these issues, the authors utilized an efficient
five stages of pre-processing [16]. First, it gets the CT image
where each CT study was first thresholder within a bone
window and binarized, yielding a full-field cranial mask that
preserved the scanner’s native voxel spacing. Although this
representation retained all anatomical detail, it also contained
large contiguous regions of background that contributed little
information but consumed substantial GPU memory.
Secondly is to make spatial cropping for the image. Where a
tight three-dimensional bounding box was computed around
the binarized skull. Cropping reduced the average voxel count
by ~75 %, lowering the foreground-to-background imbalance
and permitting larger batch sizes without exceeding memory
constraints. Third, is to make isotropic resampling. Because
slice thickness frequently differed from in-plane resolution
such as 0.6 x 0.6 x 1.5 mm, each cropped volume was
resampled to an isotropic grid of 1 mm?3 using tri-linear
interpolation for images and nearest-neighbor interpolation for
labels. This step ensured that a 3 x 3 x 3 convolutional kernels
represented the same physical extent in every patient, thereby
promoting spatially coherent feature learning across
heterogeneous scanners. Fourthly is to make dimension
standardization. Which inter-patient variation in head size was
normalized by zero-padding each resampled scan to a fixed
matrix of 240 x 200 x 240 voxels. Uniform tensor dimensions
eliminated run-time shape negotiation, enabling streamlined
batch processing and reproducible deployment. Fifthly is
intensity normalization and label encoding. Where, voxel
intensities were z-scored within the resampled bone window

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2026.3663618

IEEE Access

Multidisciplinary ; Rapid Review : Open Access Journal

to mitigate scanner-specific brightness drift. of predictions on
the native CT space during inference.

The preprocessed data is then used to train the U-net
model, a widely recognized architecture for image
segmentation tasks. The model is trained to predict cranial
implants from defective skull inputs, utilizing the
comprehensive datasets to learn intricate features of cranial
geometry.

After training, the model is evaluated with three metrics.
First, the Dice Score (DSC) measures the overlap between the
predicted and ground-truth regions. Second, the Boundary
Dice (BD) assesses boundary accuracy. Finally, the 95th-
percentile Hausdorff Distance (HD95) quantifies the
maximum distance between points on the predicted and
ground-truth boundaries. Together, these metrics give a
comprehensive view of segmentation performance: higher
DSC and BD values and lower HD95 values indicate better
accuracy and alignment.

The predicted outputs are then converted from .nrrd to .obj
format to ensure compatibility with the AM machine for
physical fabrication of the custom implants.

Autoimplant
(SkullFix)
Dataset

(100 sample)

SciData
Dataset
(240 sample)

Combine multiple
data sources

DEiz o Images in .nrrd
Training:250 Splitting Training
Validation 50

Testing: 40 Data

Preprocessing Converting from

LI .nrrd to .obj

Loading Volumes

Crop boundaries

Resample Modified

Pad volumes U-Net
Model

Images in .obj

FIGURE 4. Workflow for training and evaluating a U-Net model for
automatic cranial implant design.

V. RESULTS AND DISCUSSION

Figure 5 shows the preprocessing results of the dataset
which is fed to the neural network. It illustrates the sequential
pre-processing steps applied to the binary skull mask and
quantifies their cumulative impact on data integrity and
computational efficiency. Figure 5 (a) shows the starting from
the raw segmentation, an aggressive 3-D bounding-box
eliminated the substantial peripheral background, reducing the
median volume dimensions from 512 x 512 x 380 voxels to
186 x 154 x 173 voxels while preserving 100 % of foreground
voxels (see Figure 5 (b)). This alone cut the per-case memory
footprint by roughly an order of magnitude and improved the
foreground-to-background ratio that downstream loss
functions see during training. Figure 5 (c) shows the
resampling to an isotropic 1 mm grid, thereby harmonizing
spatial resolution across the cohort. Nearest-neighbor
interpolation was applied to the binary masks, while linear
interpolation was used for intensity images, confirming that
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nearest-neighbor is adequate for binary labels at this scale.
Padding the resampled crop to a fixed 240 x 200 x 240 array.
Figure 5(d) standardized input shapes for the CNN, adding
empty margins rather than altering anatomy. Figure 5 (g)
shows the final export stage merely writes the tensor to disk
with a corrected affine header.

Original Image (a)
(b)
Cropped Image
Resembled Image with (c)
1mm
Padded Image with (d)
resolution 240x200x240
Final Image
(output)

FIGURE 5. Results of preprocessing pipeline.

Figures 6-10 present the training and validation curves for
these various models as well as for established architectures
from the literature. Throughout these figures, training loss is
shown in blue and validation loss in orange, and each model
is trained for a total of 300 epochs.

For the case of the native U-Net architecture in Figure 6, the
training and validation losses both start relatively high but
drop considerably within the first 10 to 15 epochs. The training
loss initially hovers around 1.0 while the validation loss spikes
near 1.6 to 1.7. As the model begins to learn, the both curves
rapidly decline. This decline indicates that the network is
quickly adjusting its weights to fit the data. Beyond
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approximately epoch 20, the training loss settles around 0.1 to
0.2 and the validation loss tends to stay in the 0.2 to 0.3 range.
Although some fluctuations can be observed in the validation
curve where there is no severe gap developing, suggesting that
while the model may still leave room for improvement, it
avoids dramatic overfitting.

The Native U-Net Architecture
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FIGURE 6. Training and validation loss curves over 300 epochs for the
native U-Net architecture.

In Figure 7 illustrates the modified U-Net version 1
performance. Its overall trend remains similar in the early
epochs with a sharp drop from around 1.6 for the validation
loss and around 1.0 for the training loss. Notably, the
validation curve settles slightly faster to under 0.2 for a longer
span of the training process compared to the native U-Net,
suggesting potentially better generalization. While minor
spikes appear in the mid-training phases, the model’s training
curve consistently hovers below the validation curve,
reflecting steady convergence without drastic overfitting.

Modified U-Net V1 Architecture
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FIGURE 7. Training and validation loss curves over 300 epochs for the
Modified U-Net V1 architecture. The plot illustrates how changes in
network design influence convergence and generalization performance.

In Figure 8 illustrates the performance of the modified
U-Net version 2 model. The model has the same rapid initial
descent which is apparent but the validation loss stabilizes
more quickly than in the modified U-Net version 1 model. It
generally maintaining values around 0.15 to 0.25 for most of
the training. The training curve also remains tightly clustered
between 0.1 and 0.2 which indicates more consistent
performance. This suggests incremental architectural
refinements in version 2 model help the network learn robust
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features early on and retain that advantage throughout training,
with relatively less oscillation in the validation loss.

Modified U-Net V2 Architecture
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FIGURE 8. Training and validation loss curves over 300 epochs for the
Modified U-Net V2 architecture. The plot illustrates how changes in
network design influence convergence and generalization performance.

In Figure 9, the proposed modified U-net version 3 model
performance is illustrated. Where there isa clear improvement
in how swiftly the network converges with the validation loss
dropping sharply within the first few epochs and stabilizing to
around 0.1 to 0.2 soon thereafter. The training loss also stays
consistently lower, generally under 0.15 after the initial
descent. This smooth and stable convergence pattern points to
effective model regularization and capacity. The noticeable
advantage over the previous variants especially in the latter
half of training emphasizes how the proposed architectural
modifications can yield better generalization and overall
performance for the model.

The Proposed Modifed U-Net Architecture
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FIGURE 9. Training and validation loss curves over 300 epochs for the
Proposed Modified U-Net version 3 model architecture. The plot
illustrates how changes in network design influence convergence and
generalization performance.

In Figure 10, the pre-trained Cranext model shows both the
training and validation curves remain relatively flat
throughout the 300 epochs. The training loss stabilizes at
roughly 0.6 to 0.7, while the validation loss hovers around 1.3
to 1.4. This persistent gap between training and validation
indicates that the model is not reducing its generalization error
in response to ongoing training, suggesting that the pretrained
weights may not transfer optimally to the current dataset or
task. While the model converges quickly in terms of training
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loss, the high and stable validation loss reveals limited
improvement in out-of-sample performance and highlights the
need for either more extensive domain adaptation, additional
fine-tuning strategies, or alternative architectures to better fit
the data.

Pre-Trained Cranext
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FIGURE 10. Training and validation loss curves over 300 epochs for the
Pre-trained Cranext model.

In Figure 11, the native Cranext model, trained from scratch
on the present dataset, shows a learning trajectory that
contrasts sharply with the pre-trained variant in Figure 10.
Both training and validation losses start near 1, fall steeply
during the first 15 to 20 epochs, and then continue a gradual,
nearly parallel decline for the remainder of the 300 epoch run.
By the final epoch, each curve has settled around 0.78 and
0.80, with the separation between them never exceedingly
around 0.03 after the initial warm-up phase. This narrow and
consistently diminishing gap indicates that the model is
improving its generalization performance in tandem with its
training accuracy, rather than overfitting or underfitting.
Moreover, the steady downward trend, without an early
plateau, suggests that the optimizer is still extracting useful
features from the data, implying further gains could be
achieved with additional epochs or a finer learning-rate
schedule. Collectively, these patterns confirm that, for this
application, initializing the network with random weights and
allowing it to specialize on task-specific images yields
markedly better convergence and validation behavior than
relying on pretrained weights sourced from a different domain.

Native Cranext Model

0.6
0.4

0.2

=R R J el s e
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FIGURE 11. Training and validation loss curves over 300 epochs for the
native Cranext model.
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Table | compares proposed models and literature model
across three key performance metrics which are Mean Dice,
Mean Boundary Dice, and Mean HD95. The higher Dice score
whether overall and boundary dice indicates better overlap
with the ground truth segmentation and a lower HD95 reflects
fewer extreme boundary errors. From the native U-Net model,
the authors observe strong Mean Dice which is 0.8973 and
Boundary Dice which is 0.9066 scores, alongside a relatively
low HD95 of around 1.54. This baseline demonstrates that
standard U-Net already achieves a high level of segmentation
accuracy. By contrast, both the Cranext pretrained model and
the Cranext native model exhibit lower Dice scores which are
0.8779 and 0.8746, respectively and significantly higher
HD95 values which is over 8.3, showing that while their
average overlap with ground truth is modestly acceptable, the
model struggle with certain boundary regions or extreme
segmentation errors. The high HD95 indicates that parts of the
segmentation are much farther from the true boundary,
undermining their overall reliability in precise delineation
tasks. Moving on to the modified U-Net variants, both version
1 model and version 2 model achieve Dice scores close to the
Native U-Net 0.8934 and 0.8984 respectively and retain low
HD95 values near 1.54. These results imply that iterative
architectural refinements in version 1 model and version 2
model maintain a robust performance on par with the baseline
U-Net which potentially improving boundary alignment given
the slightly higher Boundary Dice around which are 0.903 for
version 1 and 0.908 for version 2. Finally, the proposed
modified U-Net version 3 stands out by scoring the highest
Mean Dice which is 0.9013 and maintaining a similarly high
Boundary Dice which is 0.9082. Its HD95 of 1.52 is also
marginally better than the native U-net’s which indicates that
it manages to combine high overlap accuracy with more
precise boundary delineation. Consequently, this suggests that
the additional architectural enhancements introduced in the
proposed model led to subtle but meaningful performance
gains relative to the other variants and the Cranext-based

approaches.
TABLEI
QUANTITATIVE COMPARISON OF SKULL-IMPLANT ESTIMATION
PERFORMANCE ACROSS BASELINE, LITERATURE, AND PROPOSED MODELS.

Mean Boundary

Model Mean Dice .
Dice

Mean HD95

Native U-Net
Model[16]
Cranext
Pretrained
Model[17]
Cranext

Native 0.874638764
Model[17]
Modified U-
Net V1 Model
Modified U-
Net V2 Model
Proposed
Modified U-
Net V3 Model

0.897296499 0.906607105 1.53531715

0.877892674 0.877892674 8.362080358

0.874638764 8.404441038

0.893416421 0.902965986 1.540316383

0.898378006 0.907950352 1.547305042

0.901284902 0.908170876 1.519579183
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Figures 12 (a-c) show how effectively the proposed structure
of version 3 model converts its numerical gains into clinically
meaningful geometry. For three representative defects, a large
temporo-parietal loss, a central vertex opening, and an
elongated temporal-floor gap, the yellow digital meshes align
perfectly with the surrounding cranial rims. When these
meshes are 3-D printed in black color and seated on skull
phantoms, the implants display virtually no gaps or step-offs,
confirming that the model’s lightened shallow encoder still
captures the fine cortical contours required for a press-fit
reconstruction. The printed surfaces remain smooth and
faithfully follow the native calvarial curvature, where no
stair-stepping or high-spot artefacts are visible which indicates
that the decoder’s channel-realignment  preserves
high-frequency detail during up-sampling. This fidelity is
especially evident in the concave orbital roof and the convex
parietal dome, shapes that had previously exposed weaknesses
in the deeper, less balanced trial networks. Despite differences
in defect size, location, and curvature, all three implants
maintain edge-to-edge conformity and sit flush without
manual adjustment, demonstrating that version3 model
reallocates capacity rather than diminishes it and produces
files that are truly “print-ready,” shortening the CAD
workflow for patient-specific implants.

These visual findings correspond closely to the rankings in
TableI. Version3 model achieves the highest Mean Dice
(0.9013) and Boundary Dice (0.9082) scores and the lowest
HD95 (1.52 mm) of all tested models, metrics that explain the
flawless margins seen in Figures 10 (a-c). By contrast, the
other models, with high HD95 values, would manifest as
conspicuous misalignments, precisely the boundary failures
absent in version 3 model’s demonstrations. Modified U-Net
V1and V2 approach the Dice performance of the native model
but retain slightly higher HD95 values are ~1.54-1.55 mm; in
practice, their prints occasionally required minor sanding to
seat flush. Figure 11 reinforces this point where each black
implant generated by version 3 model drops directly into its
skull window without post-processing, whereas prints from
the other models would need extensive manual reshaping. By
delivering the best overlap accuracy and the tightest boundary
tolerance, version 3 model not only validates the architectural
decisions that shifted capacity from redundant shallow
features to boundary-critical pathways but also demonstrates
readiness for immediate surgical application.
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FIGURE 12. Qualitative assessment of Version3 across three
representative cranial defects: Yellow meshes are the network’s digital
predictions; black parts are the corresponding 3-D-printed implants
seated on skull phantoms. From left to right: (a) large temporo-parietal
defect, (b) box-shaped vertex craniectomy, and (c) elongated
temporal-floor gap.

Figure 12 provides a tangible end-to-end verification of the
proposed workflow by linking numerical segmentation
metrics with physical fit quality. The panel depicts three
representative  skull phantoms,  each harboring
morphologically distinct cranial defects ranging from a
smooth, convex frontal loss to an irregular temporal, parietal
void. Adjacent to every phantom lies a matte-black implant
fabricated directly from the version 3 network’s STL output
on an FDM printer with 0.2 mm nozzle and PLA test material.
The implants are shown prior to seating so that their peripheral
contours and internal lattice patterns remain visible. No
intermediate CAD retouching, offset compensation, or post-
print sanding was performed, thereby making the bench-top
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scene a stringent test of “push-button” manufacturability.
Where, the visual inspection of the printed part (see Figure 13)
confirms that each implant mates flush with its corresponding
defect border, leaving minimal daylight between polymer and
bone phantom. This qualitative observation corroborates
version 3’s quantitative superiority in volumetric overlap and
surface conformity reported in Section 5. Earlier modified U-
Net variants frequently required manual rim thickening or
edge smoothing to correct step artefacts and over-
segmentation spikes, steps that added around 30 minutes of
CAD labor per case and risked introducing user-dependent
variability. In contrast, the implants in Figure 11 illustrate that
version 3 model’s predictions are already manufacturing-
grade, meeting the £1 mm clinical tolerance that craniofacial
surgeons typically accept for intra-operative trimming.

5.

FIGURE 13. Bench-top view of “print-ready” implants generated by
Version 3: Three skull phantoms with diverse defects are displayed
alongside their black, 3-D-printed implants before seating. Each implant,
produced directly from the network’s STL output, matches the defect
geometry without requiring manual CAD edits or post-print sanding, an
outcome consistent with version 3’s superior overlap and boundary
metrics and unattainable with earlier Modified U-Net variants or other
models

This study yielded three overarching insights. First, data
quality is paramount. Public cranial-implant datasets are small
and heterogeneous, limiting a network’s ability to learn defect
morphology. Conventional augmentations such as flip, rotate,
and noise, inflate sample count but do not create new
anatomical diversity.

Second, workflow integration matters as much as network
design. Version 3 model’s success hinged on a rigorously
standardized pre-processing routine and a feedback loop with
clinical specialists. Cropping, isotropic resampling, and fixed-
size padding produced stable tensors for training, while
surgeon input ensured that algorithmic improvements
translated into implants that seat flush without manual
adjustment. These outcomes point out the need for robust data
pipelines on the engineering side and continuous anatomical
oversight, whether from clinicians or Al “virtual consultants”,
on the clinical side.

Third, targeted architecture search pays dividends.
Systematically testing baseline, deeper, and CraNeXt style
networks revealed that boundary fidelity, not overall depth,
drove fit accuracy. Rebalancing channels in Version 3
preserved high-frequency edge details and delivered the
highest Dice and lowest HD95 scores, eliminating intra-
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operative trial-and-error. Future model work will therefore
explore attention blocks and residual paths aimed specifically
at boundary refinement rather than blanket depth increases.

Going forward, we will (i) fully automate high-fidelity
defect rendering to enlarge the training corpus, (ii) incorporate
boundary-aware attention and residual modules to push sub-
millimeter accuracy, and (iii) develop an Al clinical agent for
real-time anatomical validation and regulatory traceability.
Collectively, these steps are expected to deliver a robust
“push-button” system for on-demand cranial-implant design
and AM, shortening surgical lead times and improving patient
outcomes worldwide.

VI. CONCLUSION

This study introduces a fully automated framework for
patient-specific cranial implant generation that spans image
acquisition, volumetric pre-processing, deep-learning-based
defect reconstruction, and physical validation through AM.
The core technical contribution is the version 3 CNN model
which is a channel-rebalanced 3-D U-Net that preserves high-
frequency boundary information while reducing parameter
count in the shallow encoder. Trained on a modest and
heterogeneously sourced dataset, version 3 achieved state-of-
the-art segmentation accuracy (Dice = 0.90, BD = 0.91) and
the tightest boundary tolerance (HD95 = 1.5 mm) among all
models evaluated. Crucially, these numerical gains translated
into tangible clinical value: implants printed directly from the
network’s STL files mated flush with three morphologically
diverse skull phantoms, eliminating the need for labor-
intensive CAD clean-up and demonstrating true “push-button”
manufacturability.

Several strategic insights emerged. First, rigorous pre-
processing such as cropping, isotropic resampling, fixed-size
padding, and intensity normalization, proved indispensable for
stable training and cross-scanner generalization. Second, in
this application domain, native training outperformed transfer
learning; pretrained CraNeXt weights failed to adapt, whereas
random initialization allowed the network to specialize on
cranial geometry. Third, data scarcity remains the chief
bottleneck; even limited synthetic-defect rendering enhanced
generalization, emphasizing the promise of large-scale,
automated defect simulation.

Future work will therefore pursue two parallel tracks. On
the data side, we will fully automate high-fidelity defect
rendering and explore generative models to amplify dataset
diversity. On the algorithmic side, we will integrate attention
mechanisms, residual pathways, and boundary-aware loss
functions to push accuracy toward surgical tolerances below 1
mm. In parallel, an Al “clinical agent” will be developed to
provide real-time anatomical validation and regulatory
traceability. Collectively, these advances aim to deliver a
robust, point-of-care system for cranial implant design and
AM, shortening surgical lead times, lowering costs, and
enabling equitable access to bespoke neuro-cranial
reconstruction worldwide.
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