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ABSTRACT Timely, patient-specific cranial implants are critical for restoring skull integrity after trauma, 

accidents or surgery, yet off-the-shelf devices arrive in coarse, fixed size increments that often fail to match 

irregular defects. Surgeons are therefore forced to open and try multiple implants intra-operatively, adding 

infection risk, operative time, and likelihood of early implant failure. This paper presents an end-to-end 

workflow that predicts “print-ready” cranial implants directly from defective CT volumes and validates them 

through physical prototyping. The pipeline couples a five-stage volumetric preprocessing routine with a 

systematic exploration of neural architectures. A baseline and two deeper 3-D U-Nets are benchmarked 

alongside the proposed version 3 model, a channel-rebalanced U-Net that shifts capacity from shallow texture 

filters to boundary-aware decoding paths. Two public datasets, SciData and SkullFix, were merged, and split 

for training the model. On 40 unseen skulls, the proposed version 3 achieved a mean Dice of 0.901, Boundary 

Dice of 0.908, and HD95 of 1.52 mm, which is surpassing all alternatives and reducing the number of intra-

operative trials predicted by simulation from 3-4 to zero. Bench-top tests confirmed that implants printed 

directly from the network’s STL output seated flush on three morphologically diverse phantoms without CAD 

edits or sanding, demonstrating true “push-button” manufacturability. These results show that a carefully 

optimized architecture, paired with robust pre-processing, can supply size-perfect implants using modest data 

and commodity hardware. 

INDEX TERMS Computer Vision, Convolutional Neural Networks (CNNs), Custom Cranial Implants, U-

Net Structure, Image Processing, 3D Reconstruction, 3D Printing.  

I. INTRODUCTION 

In the global effort to build safe, healthy societies, 

every country now treats healthcare as a central pillar which 

is recognizing that human capital reinforces national 

progress. A key objective is universal access to high-

quality services, such as dependable medical replacements 

and implants. Yet reliance on imported implants introduces 

several hurdles. Long procurement lead times and shipping 

delays can postpone operations for weeks or months [1], 

while limited size ranges often force surgeons to open and 

trial multiple devices during surgery [2, 3]. That trial-and-

error approach lengthens anesthesia time [4], raises 

infection risk with each additional package opened, and 

increases blood loss [5] and tissue trauma from repeated 

fitting, it can also culminate in a “close-enough” implant 

that fails early and requires revision [6].  

The afore-mentioned challenges are increasing 

because of surging global needs linked to diabetes, which 

can lead to extremity amputations, road-traffic injuries, and 

war injuries. These factors highlight the crucial need for on-

site manufacturing capacity that can provide patient-

custom implants tailored specifically to each individual, 

without mis-matched sizes or significant delivery delays. 
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Recent high-tech advances, such as artificial 

intelligence (AI), computer vision, and additive 

manufacturing (AM), can be integrated and utilized to 

develop these custom implants. The power of AI, especially 

in computer-vision algorithms, allows the precise 

anatomical data captured from computed tomography (CT) 

scans to be interpreted so the structure and features of the 

implant can be estimated. This approach replaces 

traditional computer-aided design (CAD) and 

computational-modeling tools, which require long operator 

times to create a design. In addition, AM, also called 3-D 

printing, enables the production of complex patient-

specific implants in a short time and at low cost. Both of 

these innovative methods have a significant positive effect 

on healthcare in orthopedics by improving treatment 

outcomes. 

In this paper, the authors focus on cranial defects as a 

crucial part of orthopedics. Cranial defects usually arise 

from trauma, such as road accidents; surgery, such as major 

brain operations; or congenital conditions. These defects 

can affect brain protection, intracranial-pressure regulation, 

and cerebrospinal-fluid dynamics [7]. Therefore, custom 

cranial implants are essential for restoring both the 

functional and aesthetic aspects of the human skull[8-10]. 

Traditional methods of implant design and production, 

often involving third-party suppliers, are time-consuming and 

expensive. The need for patient-specific implants that 

precisely fit the defect area while restoring natural cranial 

aesthetics has driven research towards more efficient and cost-

effective solutions [11]. 

Recent advancements in deep learning [12] have shown 

great potential for automating the design of custom cranial 

implants. These approaches aim to generate complete cranial 

models from defective ones, significantly reducing the time 

and expertise required for implant design [13]. Some 

approaches utilize deep learning architectures to recognize the 

shape of the implant and refine it, demonstrating promising 

results in both synthetic and clinical cases. There is significant 

progress in deep learning architectural designs for cranial 

defect reconstruction. The modification of U-Net [14, 15] 

architectures to be developed for volumetric data of skull, that 

carry out good results in public data set, homemade/in public 

dataset and augmented dataset [16, 17]. Also, the utilizing of 

deep learning to combine defect reconstruction with iterative 

procedures to improve implant geometry. In Addition, 

Symmetry-enforcing networks that utilize the natural 

symmetry of the skull to enhance reconstruction accuracy was 

utilized to the estimate the implant [18].  

Despite these distinguished progress in this field still there 

are several challenges persist. Limited datasets remain a 

primary concern which owing to privacy regulations and the 

rarity of certain defect types, which restrict the availability of 

patient data [19, 20]. Additionally, rendering synthetic cranial 

defects and processing high-resolution 3D data necessitates 

substantial computational resources. Furthermore, there is a 

growing demand for lightweight models that preserve high 

accuracy while delivering results within a short runtime. To 

address these issues, on-going research directions involve 

exploring efficient architectures that can operate on resource-

constrained devices without compromising accuracy.  

Cranial reconstruction still faces three intertwined hurdles. 

First, the scarcity and heterogeneity of publicly available CT 

data deprive deep-learning models of the representative 

examples they need. Second, the labor-intensive CAD clean-

up that typically sits between segmentation and fabrication 

slows the workflow. Third, the persistent difficulty of 

producing truly size-perfect implants from scant clinical data 

demands a network that can maintain high accuracy and 

generalize well despite limited training samples. 

This paper tackles all three challenges head-on through 

two main objectives. Objective one is to enhance the U-Net 

architecture by introducing a channel-rebalanced design, 

deliberately thinned in its earliest layers and rewired in its 

decoder, which delivers millimeter-scale accuracy and robust 

generalization even on a few hundred volumetric scans. 

Objective two is to evaluate different modified architectures to 

identify the most effective modification will led to 

enhancement of the neural neatwork model and to integrate 

the best-performing one into a fully automated “image-to-

print” pipeline. Anchoring this architecture is a fully 

automated “image-to-print” pipeline that begins with rigorous 

five-stage preprocessing (bone-window thresholding, tight 

cropping, isotropic resampling, dimension standardization, 

and intensity normalization), proceeds to back-of-skull 

extraction and direct implant prediction, applies lightweight 

topology optimization, and culminates in the direct 3-D 

printing of a size-perfect cranial implant, completely 

eliminating intermediate CAD edits and manual tuning. 

Polymer prototypes fabricated via fused-filament printing 

already seat flush in skull phantoms within a ±1 mm clinical 

tolerance, demonstrating a genuine push-button solution that 

paves the way for on-demand metal printing in future surgical 

workflows. 

This paper is organized as follows; after this introduction, 

the background section presents the theoretical foundations of 

custom implant estimation and the possible methods for 

achieving it. Next, the overall workflow section describes the 

structure of the proposed end-to-end solution. This is followed 

by the proposed computer vision approach section which 

includes the proposed design of our custom U-Net 

architecture. The results of this proposed structure are then 

presented and discussed. Finally, the paper concludes with a 

summary and suggestions for future work. 

II. BACKGROUND  

Computer vision is a field of AI that focuses on enabling 

computers or machines to recognize and understand visual 

scenes in a human-like manner [21]. Among its numerous 

tasks, the most prominent are object detection, object 
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segmentation, and instance segmentation, all of which have a 

positive impact on medical engineering [22, 23]. 

Traditional computer-vision methods rely on hand-crafted 

features developed by a feature engineer; these features are 

then fed into rule-based algorithms for image analysis [24]. 

The performance of such methods often degrades when they 

must deal with complex or irregular structures, such as images 

or scans of bone defects [25]. 

In recent years, deep learning (DL) has enabled modern 

computer-vision approaches, most particularly Convolutional 

Neural Networks (CNNs), that interpret visual data without 

the need for hand-crafted features or rule-based logic [26]. 

CNNs consist of multiple layers of learnable filters, called 

kernels, that automatically detect and recognize image 

features. Each layer extracts progressively higher-level 

abstractions, moving from simple patterns such as edges and 

corners to more complex shapes [27]. This hierarchical feature 

understanding makes CNN models highly effective in medical 

image analysis, where fine-grained accuracy is crucial and 

anatomical variability is common [26]. 

CNN models can learn to distinguish structural patterns 

that indicate intact bone from those that reveal broken or 

missing bone, thereby addressing the challenge of recognizing 

absent features, such as bone fragments, in skull defects. By 

inputting volumetric data, such as CT scans, into specialized 

network architectures, such as 3D U-Nets [17], these models 

learn to detect anomalies and predict the shapes that would 

naturally fill the gaps. This process generally involves two 

major steps. Firstly, is feature extraction and localization, 

where the neural network identifies critical regions in the 

volumetric data that deviate from expected anatomical 

structures then effectively localize the missing or deformed 

segments. Secondly is predictive reconstruction, where once 

the missing features are identified the network generates a 

segmentation mask or shape prediction approximating the 

anatomical structure in the area of the defect. In cranial 

reconstruction tasks, this predicted mask can then be further 

refined and converted into a 3D model for implant design and 

manufacturing [13, 16, 28, 29]. 

Such data-driven approaches hold several advantages 

over traditional methods. Instead of relying on manually 

designed features, they reduce the reliance on manual feature 

engineering and allow the network to learn directly from 

examples of healthy anatomy and corresponding defect 

patterns [30, 31]. These automated approaches are important 

in medical applications where large volumes of patient 

imaging must be analyzed accurately and quickly [30]. 

However, best practice for developing a CNN-based algorithm 

that identifies cracked areas and estimates the features of a 

skull custom implant requires a comprehensive workflow 

[13]. This workflow starts with data acquisition and 

preprocessing to ensure that image sizes and resolutions are 

suitable for model training [31]. Model training typically 

demands significant computational resources, usually GPU-

based. Testing is then carried out against ground-truth data to 

assess model accuracy and generalization [31]. It is also 

essential to verify that the dataset represents real-world 

variability. Furthermore, incorporating advanced data-

augmentation techniques or synthetic data generation for rare 

or extreme defects can improve model generalization, 

enabling more accurate recognition of missing features across 

diverse patient cases [32, 33]. 

In the literature, several cranial-reconstruction methods 

exist for repairing skull defects, each with distinct pros and 

cons, to the best of the authors’ knowledge. For example, 

manual reconstruction relies on a clinician’s expertise to sculpt 

the missing skull region using computer-aided design tools. 

This approach is time-consuming and heavily dependent on 

practitioner skill, but it can yield highly accurate and 

customized designs [34]. Interpolation and extrapolation 

techniques, which analyze skull shape and curvature to 

estimate the missing region, offer a more automated yet less 

adaptable option, making them unsuitable for complex cases 

or congenital conditions. To the best of the authors’ 

knowledge, these methods work best for small or relatively 

simple defects, but their accuracy decreases in more complex 

or irregular cases [29, 35]. 

In addition, anatomical-template or symmetry-based 

reconstruction methods can be used to estimate the features of 

a custom implant. These approaches rely on standard skull 

templates or on mirroring the intact side of the skull to 

reconstruct the missing region [18]. They perform well when 

symmetrical references are available, such as in unilateral 

defects, but they are limited in bilateral or more complex, 

multilaterally affected scenarios. Furthermore, statistical 

shape modeling (SSM) is another powerful method, 

particularly useful for reconstructing irregular or large cranial 

defects, but its effectiveness hinges on the availability of 

extensive, diverse anatomical datasets [36, 37]. Recent strides 

in AI, specifically convolutional neural networks (CNNs) and 

generative adversarial networks (GANs), have shown 

remarkable capabilities in predicting missing cranial regions. 

By analyzing extensive collections of skull images, these 

models learn nuanced geometric patterns, achieving high 

accuracy even in complex cases. However, the success of AI-

driven methods is contingent on enough, high-quality, and 

domain-specific datasets [16-18].  

Transfer learning offers a means of adapting pre-trained 

models to specialized tasks, often reducing training time and 

data requirements. Models such as  MobileNet [38] or U-net 

[14, 18] typically trained on extensive datasets such as 

ImageNet [39], can be repurposed for tasks such object 

recognition. However, in cranial reconstruction, where 

anatomical accuracy and domain-specific knowledge are 

paramount may fail to capture the intricacies of skull geometry 

[36]. Consequently, this paper refrained from implementing 

transfer learning, choosing instead to train a custom network 

from the ground up. This native training allowed for targeted 

architectural refinements, data augmentation strategies, and 

loss functions specifically aligned with cranial defect 
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reconstruction requirements. Although transfer learning can 

expedite prototyping in contexts where large public datasets 

exist, the specificity and precision demanded by this paper 

justified the additional time and resource investment in 

developing a specialized model. 

III. METHODOLOGY 

In this paper, the authors present a comprehensive 

workflow, illustrated in Figure 1. First, the defective skull is 

imaged with CT, producing cross-sectional data that capture 

both the defect and the surrounding anatomy. These images 

are then pre-processed so that subsequent stages can interpret 

the defect accurately. The AI model estimates the implant 

geometry, after which a CAD file is generated and exported 

in standard AM formats such as OBJ or STL. Before 

fabrication, the file undergoes topology optimization to yield 

an implant that closely matches the patient’s anatomy while 

maintaining structural robustness. Finally, the optimized file 

is sent to an AM system capable of fabricating high-

precision, biocompatible implants. In this study, the authors 

first produced polymer prototypes using fused-filament 

fabrication (FFF) for rapid, low-cost testing; final metal 

production will follow in future work. 

 
FIGURE 1. Workflow of the proposed method for estimating, designing, 
and manufacturing a patient-custom skull implant.  

IV. PROPOSED COMPUTER VISION APPROACH 

A. PROPOSED NEURAL NETWORK STRUCTURE  

The U-Net architecture is a type of CNN designed for 

biomedical image-segmentation tasks [14]. Its characteristic 

“U-shaped” structure consists of a contracting path, or 

encoder, and an expansive path, or decoder, as illustrated in 

Figure 2. The encoder and decoder work together to capture 

the spatial context of an image and produce an accurate 

segmented output.  

The contracting path is responsible for extracting high-level 

features through multiple convolutional layers, each followed 

by a rectified linear unit (ReLU) activation [40] and max-

pooling operations. This process progressively reduces the 

spatial dimensions of the input image while retaining critical 

feature information. 

In the expansive path, the network restores the spatial 

resolution of the feature maps through transposed 

convolutions (up-convolutions), which increase the spatial 

dimensions of the data. A defining feature of U-Net is its skip 

connections, which directly link corresponding layers in the 

encoder and decoder. These connections ensure that fine-

grained spatial information from the encoder is preserved and 

integrated with high-level contextual information in the 

decoder. This methodology enhances model’s ability to 

produce accurate segmentation results. 

The encoder and decoder are bridged together by a 

bottleneck layer located at the center of the U-Net architecture. 

This layer consists of convolutional operations with a large 

number of filters, allowing it to capture comprehensive and 

abstract features of the input image. 

At the end of the U-Net, a final output layer with a 1 × 1 

convolution maps the learned features to the desired output 

classes. For binary segmentation tasks, the model applies a 

sigmoid activation function, whereas for multi-class 

segmentation it uses a SoftMax activation [41, 42]. 

To the best of the authors’ knowledge, U-Net offers several 

advantages: it is an end-to-end architecture that processes raw 

input images and efficiently generates pixel-wise 

segmentation maps; and its skip-connection structure enables 

it to produce high-resolution segmentation results with a high 

degree of precision while reducing overfitting. These features 

make U-Net adaptable to a wide range of tasks beyond its 

original biomedical context [14]. 

Due to the success of the U-Net network, several extensions 

have been developed. For example, the Attention U-Net 

integrates attention mechanisms to focus on relevant regions 

in the input image [43]. ResUNet++ [44] is another variant that 

incorporates residual connections to improve gradient flow 

and convergence. Additionally, 3D U-Net extends the 

architecture to process volumetric data, such as CT scans, 

making it particularly valuable for three-dimensional image-

analysis tasks [15]. 

 
FIGURE 2. U-net structure with symmetric contracting and expansive 
paths, connected through skip connections. The encoder captures 
contextual information by progressively down sampling the input, while 
the decoder reconstructs the spatial resolution through up sampling, 
enabling precise segmentation. Skip connections ensure the 
preservation of fine-grained details by directly transferring features from 
the encoder to the decoder at corresponding levels.  (Modified from [45]). 
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In this paper, a modified version of U-Net is employed to 

segment cranial defects and predict implants based on 

defective skull data. Its ability to balance spatial resolution and 

contextual understanding made it an ideal choice for this 

application. The model's robust architecture and flexibility 

ensured accurate segmentation outputs, critical for designing 

patient-specific implants.  

The proposed modified architecture of U-net, referred to 

version 3 (V3) in this study, begins with a deliberate thinning 

of the shallow encoder. Where, the authors provide three 

versions of architecture. Whereas the reference model starts 

with a 16‑channel stride 3‑D convolution, Version 3 structure 

reduces this width to just 8 channels and removes every 

residual block in the first two stages. This almost halves both 

the parameter counts and the memory footprint of the 

low‑level path, lowering the risk of early‑layer over‑fitting on 

limited skull‑implant data while also accelerating 

training. From the third stage onward, the authors preserve the 

native design, two residual blocks at 64 channels followed by 

two at 128 channels, so the network still has ample depth to 

capture the complex curvature of implants. 

 In other words, the proposed version 3 architecture 

reallocates capacity where it trims redundancy in 

texture‑oriented layers and retains the shape‑centric context 

layers, striking a better balance between efficiency and 

representational power. 

A second key modification is the precise rewiring of the 

decoder to match the new channel plan. Because the first skip 

feature now arrives with 8 channels instead of 16, the final 

decoder block processes a 40‑channel concatenated tensor 

(32 + 8) rather than the 48‑channel tensor used in the native 

network; its residual block is resized accordingly. These 

bookkeeping changes eliminate the zero‑padding previously 

required to align mismatched tensors, yielding slightly sharper 

boundary predictions and a cleaner gradient flow back into the 

shallow encoder (see Figure 3). 

Also, the authors developed two trial architectures, 

version 1 (V1) and version (V2). In contrast to version 3, these 

experiments deepened the shallow encoder in search of 

stronger edge detectors. Specifically, version 1 inserted two 

full residual blocks ahead of every down‑sampling operation 

in stages 1 and 2, while version 2 retained a single extra block 

per stage after ablation testing showed diminishing returns for 

the second block. Although both variants slightly improved 

the training metrics, they also inflated the model by millions 

of parameters and exhibited clear signs of over‑fitting: the 

validation Dice plateaued early and fluctuated with each 

epoch. The proposed version 3 architecture with its lighter 

front‑end and channel‑consistent skip connections, therefore 

offers a more elegant route to higher accuracy, delivering our 

best performance metrics to date along with faster 

convergence and lower computational cost. 

B. DATASETS  

One significant challenge in this research was the scarcity 

of publicly available cranial reconstruction datasets. Privacy 

concerns and restrictions around sharing medical imaging data 

often limit access to comprehensive collections of high-

resolution CT scans of the human skull. Researchers must rely 

on smaller, fragmented, or synthetic datasets in order to 

complicate model training and validation. To address this, two 

datasets were identified and employed. The first one is SciData 

FIGURE 3. (a). The structure of the proposed modification U-Net structure (Version 3). (b) The structure of native U-Net. 
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which consists of CT scans of 24 healthy skulls where cranial 

defects have been artificially induced, resulting in 240 paired 

samples of defective skulls and corresponding implants. This 

dataset is instrumental for researchers seeking to improve 

cranial implant design with minimal dependence on manual 

methods or external manufacturers [46, 47]. The second 

dataset, SkullFix, was originally introduced during the 

MICCAI 2020 AutoImplant Challenge. It comprises 100 

triplets for training, each triplet consisting of a complete skull, 

a defective skull, and the corresponding implant, and 110 

triplets for evaluation. this dataset provides a richer set of 

triplets and more clinically realistic geometry. The training 

partition contains 100 triplets, each consisting of (i) a complete 

skull, (ii) a corresponding defective skull created by digitally 

excising bone with realistic surgical margins, and (iii) the 

“gold-standard” implant model that perfectly restores the 

anatomy. All volumes are delivered as NIfTI files with 1 mm 

isotropic spacing and a fixed matrix size of 256 × 256 × 256 

voxels, and each sample is accompanied by an STL mesh of 

the implant for direct 3-D printing. Defects range from small 

burr-hole–like openings (≈3 cm) to large temporo-parietal 

craniectomies (>12 cm), covering frontal, parietal, temporal 

and occipital regions in roughly equal proportions. Age, sex 

and cranial size are also balanced across the cohort, making 

SkullFix a de-facto benchmark for volumetric shape learning 

and implant generation in the craniomaxillofacial community 

[48, 49]. It provides comprehensive paired data, SkullFix is 

widely regarded as a benchmark for tasks related to volumetric 

shape learning. 

An important limitation encountered was the inadequacy 

of basic data augmentation methods. Standard techniques such 

as rotations, flipping, and scaling are effective for tasks such 

as general image classification, but they do not create new 

structural variations crucial for simulating a wide array of 

cranial defects. Previous studies have shown that such 

augmentation strategies such as random image rotations or 

nonlinear deformations can improve performance but are 

often limited in their ability to emulate real-world variability 

[50-53]. Despite the current project’s time and resource 

constraints limiting the volume of synthetic data produced, 

this rendering-based approach promises to significantly 

enhance the realism and diversity of future datasets. Plans are 

in place to automate this process to expand the scale of 

synthetic data generation and improving model robustness in 

the long term. 

C. NEURAL NETWORK TRAINING AND EVALUATION 
PIPELINE 

The implemented pipeline for training and evaluating the 

U-Net model for automatic cranial implant design is depicted 

in Figure 3. This workflow integrates multiple datasets and 

utilizes advanced preprocessing and evaluation techniques to 

optimize the performance of the model. 

The process begins by combining data from two key 

sources. The SciData dataset which includes 240 samples 

consisting of cranial defects and their corresponding implants, 

and the AutoImplant (SkullFix) dataset which provides 100 

samples. The combined dataset is split into three groups: 250 

samples for the training phase, 50 samples for the validation 

phase, and 40 samples for the testing phase. The split is 

designed to balance the data and capture all features 

systematically, supporting robust model training and 

evaluation. 

During preprocessing, the images are standardized to 

mitigate inconsistencies before being fed into the U-Net 

model. This stage includes loading the volumetric data, 

cropping to focus on the region of interest such as the crack 

area, resampling to ensure uniform resolution, and padding to 

maintain consistent input dimensions. 

Successful, generalized training of a 3-D U-Net for cranial-

defect segmentation depends heavily on the quality and 

uniformity of the volumetric data. Raw clinical CT scans often 

exhibit considerable heterogeneity: slice thickness can vary 

two- to three-fold across scanners, in-plane resolution is rarely 

isotropic, and the cranial vault may occupy only a fraction of 

the standard 512 × 512 acquisition field. Left uncorrected, 

these inconsistencies cause convolutional kernels to learn 

scanner-specific features, inflate class imbalance, and waste 

GPU memory on non-informative background voxels, 

ultimately degrading model accuracy and limiting batch size. 

To mitigate these issues, the authors utilized an efficient 

five stages of pre-processing [16]. First, it gets the CT image 

where each CT study was first thresholder within a bone 

window and binarized, yielding a full-field cranial mask that 

preserved the scanner’s native voxel spacing. Although this 

representation retained all anatomical detail, it also contained 

large contiguous regions of background that contributed little 

information but consumed substantial GPU memory. 

Secondly is to make spatial cropping for the image. Where a 

tight three-dimensional bounding box was computed around 

the binarized skull. Cropping reduced the average voxel count 

by ~75 %, lowering the foreground-to-background imbalance 

and permitting larger batch sizes without exceeding memory 

constraints. Third, is to make isotropic resampling. Because 

slice thickness frequently differed from in-plane resolution 

such as 0.6 × 0.6 × 1.5 mm, each cropped volume was 

resampled to an isotropic grid of 1 mm³ using tri-linear 

interpolation for images and nearest-neighbor interpolation for 

labels. This step ensured that a 3 × 3 × 3 convolutional kernels 

represented the same physical extent in every patient, thereby 

promoting spatially coherent feature learning across 

heterogeneous scanners. Fourthly is to make dimension 

standardization. Which inter-patient variation in head size was 

normalized by zero-padding each resampled scan to a fixed 

matrix of 240 × 200 × 240 voxels. Uniform tensor dimensions 

eliminated run-time shape negotiation, enabling streamlined 

batch processing and reproducible deployment. Fifthly is 

intensity normalization and label encoding. Where, voxel 

intensities were z-scored within the resampled bone window 
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to mitigate scanner-specific brightness drift. of predictions on 

the native CT space during inference. 

The preprocessed data is then used to train the U-net 

model, a widely recognized architecture for image 

segmentation tasks. The model is trained to predict cranial 

implants from defective skull inputs, utilizing the 

comprehensive datasets to learn intricate features of cranial 

geometry.  

After training, the model is evaluated with three metrics. 

First, the Dice Score (DSC) measures the overlap between the 

predicted and ground-truth regions. Second, the Boundary 

Dice (BD) assesses boundary accuracy. Finally, the 95th-

percentile Hausdorff Distance (HD95) quantifies the 

maximum distance between points on the predicted and 

ground-truth boundaries. Together, these metrics give a 

comprehensive view of segmentation performance: higher 

DSC and BD values and lower HD95 values indicate better 

accuracy and alignment. 

The predicted outputs are then converted from .nrrd to .obj 

format to ensure compatibility with the AM machine for 

physical fabrication of the custom implants. 

 
FIGURE 4. Workflow for training and evaluating a U-Net model for 
automatic cranial implant design. 

V. RESULTS AND DISCUSSION 

Figure 5 shows the preprocessing results of the dataset 

which is fed to the neural network. It illustrates the sequential 

pre-processing steps applied to the binary skull mask and 

quantifies their cumulative impact on data integrity and 

computational efficiency. Figure 5 (a) shows the starting from 

the raw segmentation, an aggressive 3-D bounding-box 

eliminated the substantial peripheral background, reducing the 

median volume dimensions from 512 × 512 × 380 voxels to 

186 × 154 × 173 voxels while preserving 100 % of foreground 

voxels (see Figure 5 (b)). This alone cut the per-case memory 

footprint by roughly an order of magnitude and improved the 

foreground-to-background ratio that downstream loss 

functions see during training. Figure 5 (c) shows the 

resampling to an isotropic 1 mm grid, thereby harmonizing 

spatial resolution across the cohort. Nearest-neighbor 

interpolation was applied to the binary masks, while linear 

interpolation was used for intensity images, confirming that 

nearest-neighbor is adequate for binary labels at this scale. 

Padding the resampled crop to a fixed 240 × 200 × 240 array.  

Figure 5(d) standardized input shapes for the CNN, adding 

empty margins rather than altering anatomy. Figure 5 (e) 

shows the final export stage merely writes the tensor to disk 

with a corrected affine header. 

 

 

FIGURE 5. Results of preprocessing pipeline. 

Figures 6-10 present the training and validation curves for 

these various models as well as for established architectures 

from the literature. Throughout these figures, training loss is 

shown in blue and validation loss in orange, and each model 

is trained for a total of 300 epochs.  

For the case of the native U‑Net architecture in Figure 6, the 

training and validation losses both start relatively high but 

drop considerably within the first 10 to 15 epochs. The training 

loss initially hovers around 1.0 while the validation loss spikes 

near 1.6 to 1.7. As the model begins to learn, the both curves 

rapidly decline. This decline indicates that the network is 

quickly adjusting its weights to fit the data. Beyond 
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approximately epoch 20, the training loss settles around 0.1 to 

0.2 and the validation loss tends to stay in the 0.2 to 0.3 range. 

Although some fluctuations can be observed in the validation 

curve where there is no severe gap developing, suggesting that 

while the model may still leave room for improvement, it 

avoids dramatic overfitting. 

 
FIGURE 6. Training and validation loss curves over 300 epochs for the 
native U-Net architecture.  

In Figure 7 illustrates the modified U‑Net version 1 

performance. Its overall trend remains similar in the early 

epochs with a sharp drop from around 1.6 for the validation 

loss and around 1.0 for the training loss. Notably, the 

validation curve settles slightly faster to under 0.2 for a longer 

span of the training process compared to the native U‑Net, 

suggesting potentially better generalization. While minor 

spikes appear in the mid-training phases, the model’s training 

curve consistently hovers below the validation curve, 

reflecting steady convergence without drastic overfitting.  

 
FIGURE 7. Training and validation loss curves over 300 epochs for the 
Modified U-Net V1 architecture. The plot illustrates how changes in 
network design influence convergence and generalization performance. 

In Figure 8 illustrates the performance of the modified 

U‑Net version 2 model. The model has the same rapid initial 

descent which is apparent but the validation loss stabilizes 

more quickly than in the modified U‑Net version 1 model. It 

generally maintaining values around 0.15 to 0.25 for most of 

the training. The training curve also remains tightly clustered 

between 0.1 and 0.2 which indicates more consistent 

performance. This suggests incremental architectural 

refinements in version 2 model help the network learn robust 

features early on and retain that advantage throughout training, 

with relatively less oscillation in the validation loss. 

 
FIGURE 8. Training and validation loss curves over 300 epochs for the 
Modified U-Net V2 architecture. The plot illustrates how changes in 
network design influence convergence and generalization performance. 

In Figure 9, the proposed modified U‑net version 3 model 

performance is illustrated.  Where there is a clear improvement 

in how swiftly the network converges with the validation loss 

dropping sharply within the first few epochs and stabilizing to 

around 0.1 to 0.2 soon thereafter. The training loss also stays 

consistently lower, generally under 0.15 after the initial 

descent. This smooth and stable convergence pattern points to 

effective model regularization and capacity. The noticeable 

advantage over the previous variants especially in the latter 

half of training emphasizes how the proposed architectural 

modifications can yield better generalization and overall 

performance for the model. 

 
FIGURE 9. Training and validation loss curves over 300 epochs for the 
Proposed Modified U-Net version 3 model architecture. The plot 
illustrates how changes in network design influence convergence and 
generalization performance. 

In Figure 10, the pre-trained Cranext model shows both the 

training and validation curves remain relatively flat 

throughout the 300 epochs. The training loss stabilizes at 

roughly 0.6 to 0.7, while the validation loss hovers around 1.3 

to 1.4. This persistent gap between training and validation 

indicates that the model is not reducing its generalization error 

in response to ongoing training, suggesting that the pretrained 

weights may not transfer optimally to the current dataset or 

task. While the model converges quickly in terms of training 
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loss, the high and stable validation loss reveals limited 

improvement in out-of-sample performance and highlights the 

need for either more extensive domain adaptation, additional 

fine-tuning strategies, or alternative architectures to better fit 

the data. 

 
FIGURE 10. Training and validation loss curves over 300 epochs for the 
Pre-trained Cranext model. 

In Figure 11, the native Cranext model, trained from scratch 

on the present dataset, shows a learning trajectory that 

contrasts sharply with the pre-trained variant in Figure 10. 

Both training and validation losses start near 1, fall steeply 

during the first 15 to 20 epochs, and then continue a gradual, 

nearly parallel decline for the remainder of the 300  epoch run. 

By the final epoch, each curve has settled around 0.78 and 

0.80, with the separation between them never exceedingly 

around 0.03 after the initial warm-up phase. This narrow and 

consistently diminishing gap indicates that the model is 

improving its generalization performance in tandem with its 

training accuracy, rather than overfitting or underfitting. 

Moreover, the steady downward trend, without an early 

plateau, suggests that the optimizer is still extracting useful 

features from the data, implying further gains could be 

achieved with additional epochs or a finer learning-rate 

schedule. Collectively, these patterns confirm that, for this 

application, initializing the network with random weights and 

allowing it to specialize on task-specific images yields 

markedly better convergence and validation behavior than 

relying on pretrained weights sourced from a different domain. 

 
FIGURE 11. Training and validation loss curves over 300 epochs for the 
native Cranext model. 

Table I compares proposed models and literature model 

across three key performance metrics which are Mean Dice, 

Mean Boundary Dice, and Mean HD95. The higher Dice score 

whether overall and boundary dice indicates better overlap 

with the ground truth segmentation and a lower HD95 reflects 

fewer extreme boundary errors. From the native U‑Net model, 

the authors observe strong Mean Dice which is 0.8973 and 

Boundary Dice which is 0.9066 scores, alongside a relatively 

low HD95 of around 1.54. This baseline demonstrates that 

standard U‑Net already achieves a high level of segmentation 

accuracy. By contrast, both the Cranext pretrained model and 

the Cranext native model exhibit lower Dice scores which are 

0.8779 and 0.8746, respectively and significantly higher 

HD95 values which is over 8.3, showing that while their 

average overlap with ground truth is modestly acceptable, the 

model struggle with certain boundary regions or extreme 

segmentation errors. The high HD95 indicates that parts of the 

segmentation are much farther from the true boundary, 

undermining their overall reliability in precise delineation 

tasks. Moving on to the modified U‑Net variants, both version 

1 model and version 2 model achieve Dice scores close to the 

Native U‑Net 0.8934 and 0.8984 respectively and retain low 

HD95 values near 1.54. These results imply that iterative 

architectural refinements in version 1 model and version 2 

model maintain a robust performance on par with the baseline 

U‑Net which potentially improving boundary alignment given 

the slightly higher Boundary Dice around which are 0.903 for 

version 1 and 0.908 for version 2. Finally, the proposed 

modified U‑Net version 3 stands out by scoring the highest 

Mean Dice which is 0.9013 and maintaining a similarly high 

Boundary Dice which is 0.9082. Its HD95 of 1.52 is also 

marginally better than the native U‑net’s which indicates that 

it manages to combine high overlap accuracy with more 

precise boundary delineation. Consequently, this suggests that 

the additional architectural enhancements introduced in the 

proposed model led to subtle but meaningful performance 

gains relative to the other variants and the Cranext-based 

approaches. 
TABLE I 

QUANTITATIVE COMPARISON OF SKULL‑IMPLANT ESTIMATION 

PERFORMANCE ACROSS BASELINE, LITERATURE, AND PROPOSED MODELS. 

Model Mean Dice 
Mean Boundary 

Dice 
Mean HD95 

Native U-Net 

Model[16] 
0.897296499 0.906607105 1.53531715 

Cranext 
Pretrained 

Model[17] 

0.877892674 0.877892674 8.362080358 

Cranext 
Native 

Model[17] 

0.874638764 0.874638764 8.404441038 

Modified U-

Net V1 Model 
0.893416421 0.902965986 1.540316383 

Modified U-

Net V2 Model 
0.898378006 0.907950352 1.547305042 

Proposed 

Modified U-

Net V3 Model 

0.901284902 0.908170876 1.519579183 
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Figures 12 (a-c) show how effectively the proposed structure 

of version 3 model converts its numerical gains into clinically 

meaningful geometry. For three representative defects, a large 

temporo‑parietal loss, a central vertex opening, and an 

elongated temporal‑floor gap, the yellow digital meshes align 

perfectly with the surrounding cranial rims. When these 

meshes are 3‑D printed in black color and seated on skull 

phantoms, the implants display virtually no gaps or step‑offs, 

confirming that the model’s lightened shallow encoder still 

captures the fine cortical contours required for a press‑fit 

reconstruction. The printed surfaces remain smooth and 

faithfully follow the native calvarial curvature, where no 

stair‑stepping or high‑spot artefacts are visible which indicates 

that the decoder’s channel‑realignment preserves 

high‑frequency detail during up‑sampling. This fidelity is 

especially evident in the concave orbital roof and the convex 

parietal dome, shapes that had previously exposed weaknesses 

in the deeper, less balanced trial networks. Despite differences 

in defect size, location, and curvature, all three implants 

maintain edge‑to‑edge conformity and sit flush without 

manual adjustment, demonstrating that version 3 model 

reallocates capacity rather than diminishes it and produces 

files that are truly “print‑ready,” shortening the CAD 

workflow for patient‑specific implants. 

These visual findings correspond closely to the rankings in 

Table I. Version 3 model achieves the highest Mean Dice 

(0.9013) and Boundary Dice (0.9082) scores and the lowest 

HD95 (1.52 mm) of all tested models, metrics that explain the 

flawless margins seen in Figures 10 (a-c). By contrast, the 

other models, with high HD95 values, would manifest as 

conspicuous misalignments, precisely the boundary failures 

absent in version 3 model’s demonstrations. Modified U‑Net 

V1 and V2 approach the Dice performance of the native model 

but retain slightly higher HD95 values are ~1.54-1.55 mm; in 

practice, their prints occasionally required minor sanding to 

seat flush. Figure 11 reinforces this point where each black 

implant generated by version 3 model drops directly into its 

skull window without post‑processing, whereas prints from 

the other models would need extensive manual reshaping. By 

delivering the best overlap accuracy and the tightest boundary 

tolerance, version 3 model not only validates the architectural 

decisions that shifted capacity from redundant shallow 

features to boundary‑critical pathways but also demonstrates 

readiness for immediate surgical application. 

 

 
FIGURE 12. Qualitative assessment of Version 3 across three 
representative cranial defects: Yellow meshes are the network’s digital 
predictions; black parts are the corresponding 3‑D‑printed implants 

seated on skull phantoms. From left to right: (a) large temporo‑parietal 
defect, (b) box‑shaped vertex craniectomy, and (c) elongated 

temporal‑floor gap. 

Figure 12 provides a tangible end-to-end verification of the 

proposed workflow by linking numerical segmentation 

metrics with physical fit quality. The panel depicts three 

representative skull phantoms, each harboring 

morphologically distinct cranial defects ranging from a 

smooth, convex frontal loss to an irregular temporal, parietal 

void. Adjacent to every phantom lies a matte-black implant 

fabricated directly from the version 3 network’s STL output 

on an FDM printer with 0.2 mm nozzle and PLA test material. 

The implants are shown prior to seating so that their peripheral 

contours and internal lattice patterns remain visible. No 

intermediate CAD retouching, offset compensation, or post-

print sanding was performed, thereby making the bench-top 
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scene a stringent test of “push-button” manufacturability. 

Where, the visual inspection of the printed part (see Figure 13) 

confirms that each implant mates flush with its corresponding 

defect border, leaving minimal daylight between polymer and 

bone phantom. This qualitative observation corroborates 

version 3’s quantitative superiority in volumetric overlap and 

surface conformity reported in Section 5. Earlier modified U-

Net variants frequently required manual rim thickening or 

edge smoothing to correct step artefacts and over-

segmentation spikes, steps that added around 30 minutes of 

CAD labor per case and risked introducing user-dependent 

variability. In contrast, the implants in Figure 11 illustrate that 

version 3 model’s predictions are already manufacturing-

grade, meeting the ±1 mm clinical tolerance that craniofacial 

surgeons typically accept for intra-operative trimming. 

 

 
FIGURE 13. Bench‑top view of “print‑ready” implants generated by 

Version 3: Three skull phantoms with diverse defects are displayed 
alongside their black, 3‑D‑printed implants before seating. Each implant, 
produced directly from the network’s STL output, matches the defect 
geometry without requiring manual CAD edits or post‑print sanding, an 

outcome consistent with version 3’s superior overlap and boundary 
metrics and unattainable with earlier Modified U‑Net variants or other 
models 

This study yielded three overarching insights. First, data 

quality is paramount. Public cranial-implant datasets are small 

and heterogeneous, limiting a network’s ability to learn defect 

morphology. Conventional augmentations such as flip, rotate, 

and noise, inflate sample count but do not create new 

anatomical diversity. 

Second, workflow integration matters as much as network 

design. Version 3 model’s success hinged on a rigorously 

standardized pre-processing routine and a feedback loop with 

clinical specialists. Cropping, isotropic resampling, and fixed-

size padding produced stable tensors for training, while 

surgeon input ensured that algorithmic improvements 

translated into implants that seat flush without manual 

adjustment. These outcomes point out the need for robust data 

pipelines on the engineering side and continuous anatomical 

oversight, whether from clinicians or AI “virtual consultants”, 

on the clinical side. 

Third, targeted architecture search pays dividends. 

Systematically testing baseline, deeper, and CraNeXt style 

networks revealed that boundary fidelity, not overall depth, 

drove fit accuracy. Rebalancing channels in Version 3 

preserved high-frequency edge details and delivered the 

highest Dice and lowest HD95 scores, eliminating intra-

operative trial-and-error. Future model work will therefore 

explore attention blocks and residual paths aimed specifically 

at boundary refinement rather than blanket depth increases. 

Going forward, we will (i) fully automate high-fidelity 

defect rendering to enlarge the training corpus, (ii) incorporate 

boundary-aware attention and residual modules to push sub-

millimeter accuracy, and (iii) develop an AI clinical agent for 

real-time anatomical validation and regulatory traceability. 

Collectively, these steps are expected to deliver a robust 

“push-button” system for on-demand cranial-implant design 

and AM, shortening surgical lead times and improving patient 

outcomes worldwide. 

VI. CONCLUSION 

This study introduces a fully automated framework for 

patient-specific cranial implant generation that spans image 

acquisition, volumetric pre-processing, deep-learning-based 

defect reconstruction, and physical validation through AM. 

The core technical contribution is the version 3 CNN model 

which is a channel-rebalanced 3-D U-Net that preserves high-

frequency boundary information while reducing parameter 

count in the shallow encoder. Trained on a modest and 

heterogeneously sourced dataset, version 3 achieved state-of-

the-art segmentation accuracy (Dice ≈ 0.90, BD ≈ 0.91) and 

the tightest boundary tolerance (HD95 ≈ 1.5 mm) among all 

models evaluated. Crucially, these numerical gains translated 

into tangible clinical value: implants printed directly from the 

network’s STL files mated flush with three morphologically 

diverse skull phantoms, eliminating the need for labor-

intensive CAD clean-up and demonstrating true “push-button” 

manufacturability. 

Several strategic insights emerged. First, rigorous pre-

processing such as cropping, isotropic resampling, fixed-size 

padding, and intensity normalization, proved indispensable for 

stable training and cross-scanner generalization. Second, in 

this application domain, native training outperformed transfer 

learning; pretrained CraNeXt weights failed to adapt, whereas 

random initialization allowed the network to specialize on 

cranial geometry. Third, data scarcity remains the chief 

bottleneck; even limited synthetic-defect rendering enhanced 

generalization, emphasizing the promise of large-scale, 

automated defect simulation. 

Future work will therefore pursue two parallel tracks. On 

the data side, we will fully automate high-fidelity defect 

rendering and explore generative models to amplify dataset 

diversity. On the algorithmic side, we will integrate attention 

mechanisms, residual pathways, and boundary-aware loss 

functions to push accuracy toward surgical tolerances below 1 

mm. In parallel, an AI “clinical agent” will be developed to 

provide real-time anatomical validation and regulatory 

traceability. Collectively, these advances aim to deliver a 

robust, point-of-care system for cranial implant design and 

AM, shortening surgical lead times, lowering costs, and 

enabling equitable access to bespoke neuro-cranial 

reconstruction worldwide. 
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