
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

Anomaly Detection for Vehicle Diagnostics based
on OBD Snapshots with Cause Investigation
Veljko Vučinić1, Luca Seidel1, Nikola Lukežić1, Frank Hantschel2, Thomas Kotschenreuther2,
Dragan Aleksendrić3, and Eric Sax1
1Institute for Information Processing Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2RA Consulting GmbH, 76646 Bruchsal, Germany
3University of Belgrade Faculty of Mechanical Engineering, Automotive department, 11120 Belgrade, Serbia

Corresponding author: Veljko Vučinić (e-mail: veljko.vucinic@kit.edu).

ABSTRACT Vehicle diagnostic systems are crucial for the normal operation of vehicles and their propulsion-
related systems. Undetected unusual behaviour of such systems makes the vehicle diagnostic system
unreliable. Current diagnostic systems, such as On-Board Diagnostics (OBD), are limited to monitoring only
specific systems in order to make fault decision. However, various anomalies, including drastic performance
drops, vehicle tampering, and changes in the driving environment, often go undetected during OBD system
testing, validation, and inspection. This research presents a novel explainable OBD anomaly detection
pipeline that is able to detect anomalies based only on OBD data snapshots during processes of OBD
validation and inspection. The novel approach is implemented using combined dimension reduction and
data clustering methodologies. First, the data is transformed into a latent space using t-distributed Stochastic
Neighbor Embedding (t-SNE), where the general structure of the anomaly in the data can be exploited.
Subsequently, clustering using Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
is applied to group similar normal data and identify anomalous patterns. The novelty of the solution is
further extended with a feedback loop that suggests the root cause of OBD signals for individual anomalies
using explainable AI (XAI) methodology, in this case Shapley additive explanations (SHAP). The proposed
concept was verified and evaluated using real OBD snapshots with synthetically generated anomalies in two
scenarios with different engine status, engine off and on, with an achieved accuracy of 92.89% and 96.45%
for anomaly detection, respectively. The majority of anomaly causes in the form of specific OBD signals
from propulsion- and emission-related systems were successfully explained using SHAP.

INDEX TERMS anomaly detection, dimension reduction, clustering, explainable AI, OBD, validation,
vehicle diagnostics

LIST OF ABBREVIATIONS1

CTC Clean Truck Check
DBSCAN Density-Based Spatial Clustering

of Applications with Noise
ECM Engine Control Module
ECU Electronic Control Unit
DTC Diagnostic Trouble Code
FN False Negative
FP False Positive
ICE Internal Combustion Engine
IF Isolation Forest
KL Kullback–Leibler
LOF Local Outlier Factor
OBD On-Board Diagnostic
PCA Principal Component Analysis

PID Parameter Identification
PVE Production Vehicle Evaluation
RF Random Forest
SHAP Shapley Additive Explanations
t-SNE t-distributed Stochastic Neighbor Embedding
TN True Negative
TP True Positive
TPR True Positive Rate
UMAP Uniform Manifold Approximation

and Projection
XAI Explainable Artificial Intelligence
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THE purpose of vehicle diagnostic systems is to monitor3

the vehicle emissions and the operation of propulsion-4

related systems. The On-Board Diagnostic (OBD) system5

has the intended function of making a fault decision, in-6

cluding fault detection, isolation, and identification [1]. In7

this context, the diagnostic system must answer the question8

of when a fault occurred, while also pinpointing the faulty9

components with the fault effect magnitude. All this makes10

vehicle diagnostics essential for the reliability of vehicles and11

their systems, especially considering the importance of main-12

taining the normal operation of critical systems, like active13

safety [2]. However, modern vehicle diagnostic applications,14

such as OBD, have various limitations due to the conventional15

approach of diagnostics [3]. Firstly, they monitor only spe-16

cific propulsion- and emission-related systems, and not all17

critical systems on the vehicle. Secondly, they can make a18

fault decisions only for a finite number of faults, excluding19

all malfunction possibilities [4]. Lastly, they do not cover20

the detection of vehicles’ and diagnostic systems’ unusual21

behaviours, such as tampering, drastic system performance22

drops, changes in driving environment, etc. These limitations23

often make various anomalies undetected by classical OBD24

systems, which can lead to critical consequences [5]. More25

general anomaly detection has proven to be a valuable ap-26

proach for ensuring the safety and security [6]. In addition27

to these limitations, the design space of modern vehicle plat-28

forms contributes to an increasingly high-dimensional build29

space due to a multitude of software and hardware configu-30

rations across vehicle variants [7]. This leads to significant31

challenges in validating diagnostic behavior across all possi-32

ble variants. With this in mind, vehicle diagnostic validation33

engineers, testers, and inspectors cannot fully rely on the34

output of current OBD systems when checking for problems35

and status.36

This research presents an innovative pipeline of anomaly37

detection with root detection based on OBD snapshot em-38

bedded into the processes of OBD testing, validation, and39

inspection. The pipeline contains anomaly detection based40

on OBD signals, able to detect anomalies based only on41

snapshots of OBD data. A snapshot is a single measurement42

or observation of a system’s state at a specific moment. The43

proposed solution does not require labeled data, but can be44

applied to various datasets with an unknown number and45

types of anomalies. This makes it applicable for investigating46

specific in-vehicle system problems, but also for general use,47

such as vehicle systems or data tampering detection. The pro-48

posed anomaly detection employs a two-stage OBD snapshot49

processing pipeline combining dimension reduction and data50

clustering techniques. First, the high-dimensional OBD data51

is transformed into a latent space where the general structure52

of the anomaly in the data can be exploited. One general53

example of dimension reduction used on real OBD vehicle54

snapshots data is represented in Figure 1. Subsequently, di-55

mension reduction keeps the grouped structural patterns of56

normal and unexpected data in low latent spaces, and makes57

them visualizable and deducible using clustering techniques.58

The methodology is extended with the root cause suggestion 59

of OBD signals for individual anomalies using the explanable 60

AI approach, mainly Shapley Additive Explanations (SHAP) 61

technique [8]. The overall methodology benefits validation 62

and workshop engineers as an innovation tool during system 63

validation after production and in the aftermarket vehicle use 64

case. 65

FIGURE 1: Representation of OBD snapshot data after di-
mension reduction and general clustering.

In the context of vehicle diagnostic validation, novel data 66

processing applications have the potential to enhance the 67

reliability and durability of vehicle systems in testing phases 68

[9], by marking potential weak points in design and control 69

strategies. For example, the SAE J1699-3 is a diagnostic 70

compliance test procedure done as part of Production Vehicle 71

Evaluation (PVE), and is used to validate the operation and 72

communication of diagnostic systems and main propulsion- 73

related controllers [10]. The methodology proposed in this 74

paper for anomaly detection could extend the standardized 75

SAE J1699-3 test by introducing snapshot-based anomaly 76

detectionwith root detection. This holds a potential to identify 77

anomalous behaviour and its roots before a vehicle enters the 78

market, significantly improving diagnostic and propulsion- 79

related systems’ reliability and overall vehicle safety. 80

Beyond pre-market validation, similar anomaly detection 81

techniques also play an important role for in-use compliance 82

and emissions monitoring. Tampering with the OBD systems 83

of diesel trucks is becoming a critical issue worldwide, as 84

it directly leads to a significant increase in emissions [11], 85

[12]. Another practical application of OBD snapshot-based 86

anomaly detection could be to aid California’s Clean Truck 87

Check (CTC). The initiative is motivated by minimizing the 88

pollution effect from heavy-duty vehicles, and deals with 89

active monitoring of the emission-related systems (covered 90

by the OBD system) for on-road trucks [13]. As part of the 91

CTC initiative, truck drivers and fleet managers are obligated 92

to provide periodical OBD snapshots to ensure their trucks 93

comply with the emission regulations. The solution proposed 94

in this paper can help catch anomalies such as system, scan 95
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tool, or data tampering on a large scale and further ensure the96

emission minimization effect in the area.97

The paper is organized in a way that section II discusses98

the research gap, state of the art, and principal paper con-99

tributions. Section III contains the background about the ve-100

hicle and OBD anomalies with their generation for the later101

concept verification and evaluation. The following section IV102

proposes a novel concept of anomaly detection with cause103

investigation usingOBD snapshots. Experiments with evalua-104

tion scenarios are described in the section V, where results are105

visualized and later discussed in section VI. The conclusions106

and future work are stated in section VII.107

II. RELATED WORKS108

The development of OBD was primarily motivated by the109

need to reduce carbon emissions and to standardize diag-110

nostics across all vehicle manufacturers. The functionality111

of OBD for diagnostics is straightforward and rule-based.112

For example, if a signal exceeds a predefined threshold, a113

fault is detected and a Diagnostic Trouble Code (DTC) is114

raised. With this in mind, rule-based diagnostics fail to cap-115

ture the complexity of various real-world vehicle anomaly116

patterns. This makes them incapable of handling variations117

for different vehicle types and environmental situations [14].118

Together with that, existing OBD approaches cover only a119

predefined number of finite faults for which the OBD moni-120

tors the thresholds. This set of detectable DTCs with regular121

OBD is defined with standard SAE J2012, which is updated122

periodically [15], [16]. Even if OBD detected a problem,123

multiple DTCs are often triggered, making it challenging to124

pinpoint the exact root cause. There are no indicators which125

signals were out of order, and only a handful of signal values126

are recorded when a fault is detected.127

Anomaly detection has been widely explored in many128

fields to catch problems and has been deployed in, but not129

limited to healthcare [6], finance [17], and cybersecurity [18].130

In the automotive sector, anomaly detection methods focus on131

emission control, driving behavior, energy consumption, and132

cybersecurity. Table 1 summarizes a comparison of anomaly133

detection methods for fault detection in vehicles. Data is134

mainly based on CAN data, while lesser research focuses135

on OBD-specific data [3]. Anomaly detection methods fo-136

cused on emission control and prediction can also identify137

malfunctions and manipulations. Although several successful138

approaches have been implemented and tested, most methods139

operate online and rely on historical driving data [19]–[21].140

Anomaly detection methods have also been widely explored141

in the field of vehicle cybersecurity, where standardized OBD142

data is used as a base for intrusion detection [22]. However,143

such approaches often rely on time series data and cannot be144

applied to snapshot data [23]–[25]. The majority of them use145

supervised machine learning methods that are unsuitable for146

a wide range of vehicle types and unknown problems outside147

of the training dataset [24]–[26].148

The authors of [27] propose an anomaly detection approach149

in vehicles using Principal Component Analysis (PCA) for150

dimensionality reduction. Anomalies are identified using One 151

Class Support Vector Machines (SVM), Isolation Forest, and 152

Local Outlier Factor, while the best results were achieved by 153

One Class SVM, reaching an accuracy as high as 96.12%. 154

The approach processes the timeseries data and their trends, 155

limiting its deployment to snapshot data. 156

The authors of [24] developed a method for anomaly de- 157

tection on CAN sensor timeseries data. The method com- 158

pares Long Short Term Memory-, Gated recurrent unit-, and 159

Convolutional neural networks-based anomaly detectors. The 160

best results were achieved with Long Short Term Memory- 161

anomaly detectors with a successful detection of 86%. The 162

system has its limitations as it requires labeled timeseries 163

data for model training, meaning it cannot cope with snapshot 164

data, nor anomalies outside of the training data range. The 165

authors of [28] introduced a KL divergence-based method for 166

detecting lateral deviation anomalies in autonomous mining 167

vehicles by segmenting road intervals and applying threshold 168

determination. While this method could be adopted for snap- 169

shot data, it would rely on historical data. 170

Recent advancements showed that related works inte- 171

grated machine learning with Explainable Artificial Intelli- 172

gence (XAI) in vehicle diagnostics [29]–[32]. It enables the 173

transition from simple problem detection to comprehensive 174

root cause analysis. For instance, authors of [29] proposed 175

a framework for heavy-duty diesel vehicles that identifies 176

high-emission trucks and utilizes XGBoost alongside model 177

interpretation methods like Partial Dependence Plots to trace 178

the underlying causes of specific emissions. Similarly, the 179

work [30] developed a model-based diagnostic framework 180

using Random Forest and SHAP to pinpoint the specific 181

OBD parameters responsible for low in-use monitor perfor- 182

mance ratio output. Furthermore, authors of [31] established a 183

hybrid CNN-LSTM-Transformer architecture that integrates 184

XAI with Local Interpretable Model-agnostic Explanations 185

(LIME) and SHAP to provide interpretability formaintenance 186

technicians. Another application of XAI used SHAP and In- 187

dividual Conditional Expectation to analyze diesel particulate 188

filter regeneration states in urban bus fleets to optimize main- 189

tenance management [32]. Despite these OBD root detection 190

innovations with XAI, existing research predominantly relies 191

on continuous time-series data and large historical datasets. 192

Various vehicle and diagnostic anomaly detection have 193

been implemented and studied so far. While the majority of 194

related works focus on known problems (supervised learning) 195

and timeseries data, the research gap remains for general 196

explainable anomaly detection based on only OBD snapshots. 197

This is crucial for the use cases of OBD testing and inspection. 198

Furthermore, the related works showed no published research 199

that aimed to optimize the OBD testing, validation, or in- 200

spection concerning explainable anomaly detection. Primary 201

contributions of the current paper can be summarized as 202

follows: 203

• Novel pipeline for snapshot-based OBD anomaly detec- 204

tion during processes of OBD validation and inspection 205
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TABLE 1: Comparison of existing anomaly detection methods for fault detection in vehicles.

Approach Method Dataset Performance Limitations
Cherdo et al. (2023) [24] Long Short Term Memory CAN data fromAlpine Re-

nault car
86% accuracy Timeseries data and non

standardized signals
Aloqaily et al. (2025) [25] Random Forest and LightGBM DoS, Fuzzy, Gear and

RPM OBD intrusion
datasets

99.9% accuracy Known anomalies only
(supervised learning)

Van Wyk et al. (2024) [26] Convolutional Neural Network and
Kalman filtering

N.A 85.4-95.3% accuracy Limited to known DTC
anomalies

Jain et al. (2023) [27] Principal Component Analysis and
One-Class Support Vector Machine

OBD-II Data from electric
off-road vehicles

96.12% accuracy Classification of anoma-
lies based on DTC

Zhang et al. (2024) [28] Kullback-Leibler divergence Autonomous vehicle data
in mining areas

91.4% accuracy Detection based on vehi-
cles driving on the same
road intervals

using a combination of dimension reduction and cluster-206

ing methodology embedded in the mentioned processes.207

• OBD system anomaly detection based on discrete data208

snapshots collection, avoiding the need for continuous209

timeseries data.210

• Cause detection for anomalies in vehicles and OBD211

systems using Explainable AI methodology based on212

data snapshots.213

III. BACKGROUND214

A. VEHICLE AND OBD SYSTEMS ANOMALIES215

The normal operational behavior of a vehicle system can be216

defined as the expected range of system states and signal217

patterns that occur under standard usage conditions, defined218

by manufacturer specifications. It is typically marked by219

consistent statistical properties and repeatable parameter re-220

lationships. Anomalies in vehicle systems represent devia-221

tions from the normal operational behavior of those systems222

that can originate from various sources, such as physical223

component malfunctions, software failures, or cyberattacks224

targeting the vehicle’s communication networks [33]. In the225

sense of vehicle diagnostics, all faults are considered anoma-226

lies, but not all anomalies are faults. The fault is defined by227

the hypothesized cause of the system failure, where failure228

represents an event that occurs when the delivered system229

service deviates from the service implementing the system230

function [34]. Vehicle systems and diagnostic anomaliesman-231

ifest as unexpected events or data patterns that deviate from232

established baselines and usually can be detected through the233

in-vehicle network or by specific processing of the sensors,234

actuators, and Electronic Control Unit (ECU) data. Anomaly235

detection can be represented as a task of detecting these236

anomalous pieces of data that exhibit different patterns from237

normal data [35]. There are various categories of anomalies238

in sensor data [36], and such anomalies can be described as239

one or a successive series of signal vectors that deviate from240

the current data and therefore represent a singularity [37].241

In the course of this paper, the anomalies will be considered242

as all unexpected measured system behaviours that do not243

cause direct system failure (i.e., system performance drop),244

and the system failure causes (faults) that are out of the scope245

of the OBD II system (i.e,. vehicle system, data, external scan246

tool tampering). The focus of this work are anomalies of hard-247

ware and software components of passenger and commer- 248

cial vehicle propulsion- and emission-related systems, that 249

are detectable within vehicle OBD II data. Propulsion- and 250

emission-related systems are a group of original equipment 251

systems, components, and parts whose failure will directly 252

impact the ability to propel the vehicle or raise direct vehicle 253

emissions above the legal limit. Such systems are involved 254

in refueling/recharging the vehicle, storing and transferring 255

fuel/energy, the combustion process, and propelling or de- 256

celerating the vehicle, together with systems in charge of 257

delivering torque to the wheel. Included in that group are 258

components used to control or thermally manage such sys- 259

tems and their emissions. The novel concept will be verified 260

using Internal Combustion Engine (ICE) passenger vehicles 261

data that have high intersimilarity due to the standardization 262

of OBD systems among them. Anomalies defined as such are 263

undetectable using state of the art vehicle diagnostic system, 264

therefore will be the contribution of this paper. 265

Detecting vehicle systems and OBD anomalies is pivotal 266

before the vehicle enters the market, but also in the vehicle 267

exploitation. In the phases of vehicle testing and validation 268

during production, OEMs can still actively fix the root prob- 269

lems, ensuring higher vehicle system reliability. This is the 270

purpose for which PVE is introduced for the OBD system 271

before entering the market. PVE is a requirement introduced 272

as a worldwide standard to ensure the functionality of OBD in 273

production vehicles. It comprises three stages: J1, J2, and J3 274

tests, where all stages are used in the USA and China markets, 275

while only J1 is used for vehicles produced in Europe. The 276

J1 test verifies the conformity of OBD communication in 277

accordance with SAE J1699-3. It ensures that the vehicle’s 278

OBD interface supports the required protocols (e.g., CAN, 279

UDS, ISO9141, ISO15765) and transmits diagnostic data in 280

accordance with SAE J1979. In the J2 test, all DTCs that 281

trigger the malfunction indicator lamp (MIL) are checked. 282

Faults must be simulated using hardware-based methods and 283

checked over several driving cycles. The test confirms the 284

generation of pending, confirmed, and permanent fault codes 285

and the activation of the MIL. The J3 test evaluates the in- 286

use performance of OBD monitoring by collecting in-use 287

performance ratio data from vehicles in the field over a period 288

of 6 to 12months. To ensure representative results, the vehicle 289

sample must reflect normal use and be selected statistically 290
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from national data sets [38].291

Due to the conventional way of fault detection, not all292

anomalies are being detected with OBD. One example of this293

represents tampering with the vehicle, data, network, OBD294

system, external tools, etc. This is being done for engine295

tuning, ECU enhancements, upgrading infotainment systems,296

or simply misrepresentation of the real vehicle systems and297

subsystems status, such as emissions. A popular case of298

tampering is the Dieselgate scandal, including one of the299

biggest worldwide OEMs [39]. Other examples of anomalies300

can be specific vehicle systems problems that are outside the301

monitoring and analysis of OBD, such as drastic vehicle per-302

formance drops that affect fuel consumption and emissions,303

or changes in the driving environment. Such anomalies do not304

raise any particular faults, but affect the vehicle’s compliance,305

driving, or overall safety.306

The current state of the vehicle E/E architecture supports307

a wide variety of in-vehicle signals from sensors, actuators,308

and controllers. A subset of those signals is made available309

through the OBD system. A standardized OBD system has310

10 different diagnostic services 01-0A (hexadecimal) with311

various purposes, where services 01 and 09 give current312

powertrain data and in-use performance metrics and parame-313

ters, respectively [40]. According to the standard SAE J1979314

digital annex, OBD services 01 and 09 support more than 250315

signals [41], whereas in reality, a modern vehicle supports316

around 50 [9]. Support of the OBD signals from mode 1,317

Parameter Identification (PID)s, depends upon the vehicle318

model, fuel type, model year, manufacturer, etc. Quantity,319

quality, and representability of such signals are a solid ground320

base for anomaly detection. Data available from OBD mode321

01 will be used in the course of this work for designing and322

implementing a novel anomaly detection method.323

B. GENERATION OF SPECIFIC OBD ANOMALIES324

In order to evaluate and verify the novel anomaly detection325

solution proposed in the following section, specific cases of326

anomalies are generated. The anomaly generation was done327

using real OBD data snapshots that represent normal cases.328

Specific or random parameters were adjusted to generate329

different use cases of anomalies with OBD data, depending330

on the anomaly types replicated. As it is customary in the331

literature [35], [36], [42]–[44], we use this strategy to test332

the performance boundaries of the anomaly detection method333

proposed. Anomaly detection will be covered in four specific334

cases of OBD and vehicle system anomalies in this work:335

1) Vehicle system operating performance drop336

2) Engine coolant system problem337

3) Fuel system problem338

4) Engine ECU tampering339

The first type of anomaly addressed within this work is340

the vehicle system operating performance drop. Since perfor-341

mance drops with the vehicle systems can be very generic,342

it cannot be expected that a specific set of parameters is343

problematic. It represents the anomaly where data patterns344

and correlations are out of scope from the normal data, but 345

for a random set of OBD PID signals. One example is the 346

battery energy storage capacity drop, impacting the ability 347

to charge the battery to its original manufacturer-specified 348

capacity [45]. For this purpose, snapshots representing this 349

anomaly type are generated on random OBD PIDs xobdi using 350

the Lorenz Attraction model, also known as Chaos theory 351

[46], [47]. This anomaly generation technique utilizes a set of 352

differential equations (1a)-(1c), where small input differences 353

allow recreation of general anomalies, fitting the use case of 354

vehicle system performance drop. In the course of this work, 355

the equations of the Lorenz model (1a)-(1c) are solved for 356

parameters σ = 10, β = 2.65, ρ = 28, and dt = 0.01. 357

The solutions of the differential equations (α, θ, and γ) are 358

normalized (αnorm, θnorm, and γnorm), and later injected in the 359

random PIDs xobdi,orig of snapshots according to Equation (2), 360

emulating performance drop anomaly PIDs xobdi,anom. 361

dα
dt

= σ(θ − α) (1a)

dθ
dt

= α(ρ− γ)− θ (1b)

dγ
dt

= αθ − βγ (1c)

xobdi,anom = xobdi,orig ∗ (1 + (αnorm + θnorm + γnorm)) (2)

Other types of anomalies are generated using a Gaussian 362

perturbation to the selected PIDs for each case, depending 363

on the anomaly type. The Gaussian perturbation is done by 364

multiplying the Gaussian noise with the original signals from 365

normal data, representing statistical deviation or anomaly in 366

a data sense. The Gaussian noise magnitude is scaled differ- 367

ently in order to achieve a range of anomaly severity levels, 368

giving more realistic cases of variable severity of anomalies 369

found in real OBD cases. In contrast to the chaotic perturba- 370

tions described earlier, this approach aims to generate more 371

localized outliers and sensor level anomalies by perturbing 372

selected signals toward the statistical borders of their normal 373

distribution. For a given snapshot, a subset of OBD PID 374

signals xobdi is selected, and their original values xobdi,orig are 375

modified using a multiplicative Gaussian deviation. 376

The selection of OBD PID signals for each anomaly type 377

created using Gaussian perturbation is shown in Table 2. 378

Since the generation of each instance of vehicle operation per- 379

formance drop anomaly (using the Lorenz attraction model) 380

is random, it is excluded from the mentioned table. In the case 381

of an engine coolant system anomaly, the outputs of engine 382

coolant temperature sensors are tuned. One example of such 383

an anomaly can be the air trapped in the coolant system, caus- 384

ing air pockets due to improper bleeding after coolant refill. 385

The impact of such an anomaly is reduced heat transfer effi- 386

ciency or localized temperature irregularities. This anomaly 387

will not cause a system failure and is not recognized with 388

the OBD system, but the long-term damage risk increases. 389
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Furthermore, fuel system problems are generated using fuel-390

related parameters, such as various temperature and pressure391

sensor parameters. An example of such an anomaly would392

be delayed or noisy fuel pump priming, causing the longer393

time to build the required pressure in the vehicle engine off,394

ignition on state. It can lead to the extended cranking time and395

inconsistent cold starts, again not being detected within the396

OBD system. Lastly, anomalies related to engine ECU tam-397

pering are created using dynamic propulsion system sensors398

and actuators, such as engine speed, torque, and throttle posi-399

tions. For example, the engine parameters could be forcefully400

remapped outside of official workshops for engine tuning.401

This anomaly can lead to a failure of the propulsion system,402

since it starts behaving outside of predetermined manufac-403

turer specifications, but is not detected within OBD. In this404

way, only the specific physically correlated parameters are405

manipulated, generating relevant real-life problem scenarios406

where exceptional, out-of-order patterns are exhibited. This is407

important to test the feedback part of the proposed anomaly408

detection solution, used for identifying the primary causes for409

various anomalies.410

The idea of using Gaussian perturbation is to replicate411

anomalies that fall outside the usual operating range but412

remain physically plausible, such as various inconsistencies413

found in real OBD data. To emulate different severity levels,414

an anomaly is constructed by sampling a Gaussian random415

variable centered at zero and scaled by a deviation factor416

da ∈ {0.5, 1.5, 3}, depending on the anomaly magnitude.417

Anomaly values are generated using the equation (3):418

xobdi,anom = xobdi,orig · [1 +N (0, da)] (3)

where N (0, da) represents a Gaussian distribution with419

zero mean and standard deviation da. After perturbation,420

the resulting values are bounded within predefined physical421

limits to prevent impossible or unrealistic OBD signals (e.g.,422

negative RPM or temperatures below hardware thresholds).423

This Gaussian-based injection method ensures the control-424

lable and reproducible creation of severity-graded anomalies425

across multiple PID inputs.426

The similarity between the generated synthetic anomalies427

and the real anomalies found in actual J1699 log data was428

checked using Kullback–Leibler (KL) divergence. This ap-429

proach is a common measure for quantifying the difference430

between two probability distributions [48]. In this context,431

a lower KL divergence, measured in nats for multivariate432

distributions, indicates a higher statistical resemblance be-433

tween the datasets. It should be taken into consideration that434

the anomaly types found in the actual J1699 log files are435

much more diverse than those generated in this work. The436

KL divergence analysis revealed that the generated anomalies437

emulating system performance drops, created using a Lorenz438

attraction model, showed the closest alignment with the real439

data, with a total KL divergence of 18.77 nats. This low440

divergence suggests that the chaotic perturbations effectively441

capture the structure of a general anomaly type, such as 442

system performance drops. 443

On the other hand, anomalies generated using Gaussian 444

perturbation, designed to reflect component-specific issues 445

such as engine coolant faults and fuel system problems, ex- 446

hibited higher KL divergence values of 25.22 and 33.70 nats, 447

respectively. While still being reasonably aligned with real- 448

world trends, these results indicate a growing deviation in 449

statistical behavior. The anomalies intended to represent ECU 450

tampering produced the highest KL divergence at 47.55 nats, 451

showing a significant shift from the distribution of tampering- 452

like behavior in the J1699 logs. This is expected, since the 453

original anomalies do not specifically contain this type of 454

anomaly. This concludes that the generated anomalies pro- 455

vide a meaningful approximation of real vehicle systems and 456

OBD anomalies found in actual J1699 log files. 457

IV. METHODOLOGY 458

A primary challenge in implementing heuristic and expert 459

knowledge-based systems for anomaly detection in OBD data 460

lies in the high dimensionality of OBD datasets. Conventional 461

statistical analyses, such as correlation studies [49], as well as 462

data visualization, face significant limitations when applied 463

to such high-dimensional spaces, especially for holistic data 464

interpretation. Removing someOBDPIDs temporarily solves 465

this problem, but removes potentially relevant information 466

from the dataset. The generalization of the data processing 467

results in that case is lost. The challenge grows when consid- 468

ering only OBD snapshots as data input, since less amount of 469

data per vehicle is present. As a first step of the methodology, 470

a variety of OBD data snapshots from different vehicles need 471

to be acquired through testing, measurements, validation, and 472

other means through the OBD port inside the vehicles. This 473

will create a database of OBD data snapshots ready in the 474

backend for further processing, visualization, and archiving 475

purposes. The database is managed by the engineers who are 476

in charge of the process of testing, validation, monitoring, 477

etc. A database that contains a collection of OBD Mode 01 478

snapshots can be defined with the relation (4), where Xobd 479

is m × n OBD snapshot matrix, n represents the number of 480

available PIDs, andm indicates the total number of snapshots 481

in the database. Each OBD PID xobdi represents a column in 482

Xobd. Practical dimensionality revolves around n ≈ 50 (up to 483

250). 484

Xobd ∈ Rm×n, xobdi ∈ Rm, xobdi = Xobd[:, i],

for 1 ≤ i ≤ n
(4)

Data analyses and processing tend to use lower- 485

dimensional data for better and more transparent results [50]. 486

In order to achieve lower dimensions and keep the data 487

structure consistent, the first step of the anomaly detection for 488

the use case of OBD snapshots proposed in this paper is di- 489

mension reduction. Reduced data loses the physical meaning 490

of dimensions, but gains potential to analyse and process data 491

in lower dimensions, revealing the topological structure of the 492
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TABLE 2: List of OBD parameters that are used as a basis for the generation of specific anomaly types using Gaussian
perturbation.

Anomaly root PID PID abbreviation PID description

Engine coolant system
05 ECT Engine coolant temperature
67 ECT_1 Engine coolant temperature 1
67 ECT_2 Engine coolant temperature 2

Fuel system

0B MAP Manifold absolute pressure
0F IAT Intake air temperature
10 MAF Airflow rate
23 FRP Fuel rail pressure
68 IAT_11 Intake air temperature 1
68 IAT_12 Intake air temperature 2

Engine ECU tampering

04 LOAD_PCT Engine torque percentage
0C RPM Engine RPM
11 TP Absolute throttle position
43 LOAD_ABS Engine torque value
45 TP_R Relative throttle position
47 TP_B Absolute throttle position B
5C EOT Engine Oil Temperature

data inside a dataset. After dimension reduction is applied to493

the initial data (4), the resulting relation (5) defines Yobd as the494

OBD snapshot data matrix with k reduced dimensions, where495

each column yj corresponds to a reduced feature. Dimension496

reduction mapping function ϕ maps the n-dimensional data497

points to k-dimensional target points, see relation (6) [51].498

Using lower dimensions, such as k = 2 or k = 3, better499

visualization and clustering of data are possible, making the500

results and the data structure intuitive for systematic anomaly501

detection and further heuristic reasoning of the data.502

Yobd = ϕ(Xobd), Yobd ∈ Rm×k , yj = Yobd[:, j],

for 1 ≤ j ≤ k, k < n
(5)

ϕ : Rn → Rk , xi → yj, for 1 ≤ j ≤ k (6)

The central premise of this work is formalized in Hy-503

pothesis 1. The authors propose that dimension reduction504

techniques can reveal the disputancy in data structure be-505

tween normal and abnormal (anomaly) patterns required for506

anomaly detection. The hypothesis revolves around the notion507

that by mapping OBD data into a lower-dimensional space,508

it becomes feasible to identify abnormal patterns through509

clustering and outlier analysis. The proof of such a hypoth-510

esis would enable effective anomaly detection in automotive511

applications, specifically crucial for diagnostic systems.512

513

Hypothesis 1. Anomalies in vehicle operation and diagnostic514

systems are detectable within lower-dimensional representa-515

tions of OBD data snapshots, perceptible by their individual516

distances and inherent structural patterns.517

518

The architecture of anomaly detection based on OBD data519

snapshots proposed in this work is visualized in Figure 2. The520

figure shows the collection of OBD snapshots in the database,521

forming m × n-dimensional matrix Xobd, described by the522

Equation (4). The input is preprocessed using min-max data523

normalization to ensure that all features contribute uniformly524

[52], and later processed by the dimension reduction algo- 525

rithm. The output of dimension reduction is an OBD snapshot 526

dataset with reduced dimensions Yobd, according to Equation 527

(5). Such data is further processed with a clustering technique 528

to identify groups of normal data points and potential outliers 529

outside of those cluster zones. Each anomaly is individually 530

inspected in the backend to determine the cause of its labeling 531

as a potential anomaly. This inspection results in a selected 532

group of OBD PIDs (i.e. xobdu , xobdv , xobdm ) that exhibit the 533

strongest influence on the anomaly compared to normally 534

clustered data. This concept aims to flag potential anomaly 535

OBD snapshots and provide a focused list of the specific 536

causes for the observed abnormal behaviour. 537

Fig. 3 illustrates a typical utilization of the proposed 538

snapshot-based anomaly detection. First, the vehicle test is 539

performed in the sense of PVE J1 (SAE J1699) test, CTC 540

implementation, or simply by checking OBD vehicle compli- 541

ance (described in Sections I and III). The OBD data snapshot 542

is derived from the first phase, since all mentioned technical 543

procedures include it. Secondly, the tester stores the snapshot 544

in the database, collecting groups of snapshots from various 545

vehicles. This generates a considerable snapshots database 546

that is ready for further processing in the backend, which is 547

managed by the engineers in charge of the tests, validations, 548

checks, and other programs. At this point, the anomaly de- 549

tection pipeline is initiated in the backend by an application 550

engineer who has access to the snapshots database and selects 551

the desired set of snapshots for the analysis. This is not done 552

in real-time, but independently of the vehicle in the backend, 553

after data collection inside the vehicle is done. The goal of 554

the application engineer here is to provide final checks for 555

the vehicle tests by analysing the data found in the database. 556

This is important since the OBD system that does not show 557

any faults or other problems does not guarantee compliance 558

or normal behaviour, as discussed in previous sections. An 559

anomaly detector, the blue-highlighted process in Figure 3, 560

is designed specifically to fill this existing gap. The anomaly 561

detector process consists of the following steps: dimension 562

reduction, cluster identification, outlier extraction, and root 563
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FIGURE 2: Architecture of proposed vehicle diagnostic system anomaly detection based on OBD snapshot.

cause investigation. These steps are explained in greater detail564

further in this section. The anomaly detector finalizes with565

the creation of a technical report for the application engi-566

neer, including a visualized representation of the database in567

reduced dimensions, problematic snapshots, their data, and568

potential root causes. The engineer either acknowledges for569

each vehicle separately that it is normal, or provides addi-570

tional actions for anomaly-labelled vehicle snapshots. Such571

actions can be repair instructions, issuing fines, reinitiating572

the tests, or further investigations.573

As a first step, the t-distributed Stochastic Neighbor Em-574

bedding (t-SNE) algorithm is used for dimension reduction,575

as it outperformed other approaches. t-SNE is a dimension576

reduction algorithm that maps data points to a k-dimensional577

space. It is one of the most popular methods used for di-578

mension reduction and is widely used in machine learning579

and data visualization. In the following, the basics of the580

algorithm are explained. P is a similarity matrix of the OBD581

snapshotXobd, whileQ is the similarity matrix of the resulting582

dimension-reduced data Yobd. The exact definitions of these583

similarity matrices can be found in the originally proposed584

algorithm [53]. t-SNE aims to find yj that minimizes the KL585

divergence between P and Q, that is described by Equation586

(7).587

(y1, . . . , yk) = arg min
y1,...,yk

DKL(P,Q)

= arg min
y1,...,yk

∑
i,j∈{1,2,...,n}

i̸=j

pij log
pij
qij

(7)

Many algorithms have been proposed to solve this equa-588

tion, and the most common is a variant of the gradient589

descent algorithm, with an updating equation [54]. While590

other dimension reduction algorithms have been evaluated591

in this work, such as Uniform Manifold Approximation and592

Projection (UMAP) [55], the best results were obtained with593

t-SNE. The results are represented as labelless, dimension-594

reduced OBD snapshot data points scattered across the latent595

space.596

The following step is applying a clustering algorithm on 597

the dimension-reduced data matrix Yobd. The Density-Based 598

Spatial Clustering of Applications with Noise (DBSCAN) 599

clustering approach is chosen for this use case, as better 600

performance was obtained in comparison with other meth- 601

ods such as k-means and Local Outlier Factor (LOF). DB- 602

SCAN is an unsupervised learning method and belongs to 603

the class of density-based clustering algorithms. It identifies 604

clusters as regions of high density in the data or latent space, 605

which are separated by areas of lower density. In contrast to 606

partitioning clustering algorithms such as k-means, density- 607

based methods allow for the identification of clusters with 608

arbitrary shapes in n-dimensional space. This is especially 609

favorable because the latent representations of data, which 610

are generated through dimensionality reduction, frequently 611

involve intricate structures that are not adequately described 612

by spherical boundaries. By connecting points with locally 613

high density, dense regions are formed that can be interpreted 614

as clusters. The local density of a data point q is defined by 615

Nϵ(q) = {p ∈ D|dist(p, q) ≤ ϵ}, (8)

where ϵ describes the radius of the neighborhood of the data 616

point q. A core object is a point q that satisfies |Nϵ| ≥ MinPts, 617

which means that a sufficient number of neighboring points 618

are located within its density region. A point p is said to be 619

directly density-reachable from another q if p ∈ Nϵ(q) and 620

q is a core object held. If a point p is reachable from q via a 621

point o, and both p and q are density-reachable from o, then p 622

and q are considered density-connected. A dense region thus 623

comprises all points that are mutually density-connected. The 624

set of densely clustered points from Yobd can be partitioned 625

into clusters {C1, ...,Cw}, such that: Ci ⊆ Yobd,Ci ∩ Cj = ∅. 626

Points that do not belong to any of these clusters form the 627

residual set Yobd \ {C1, ...,Cw} and are referred to as outliers. 628

These points lie in low-density regions and, with respect to 629

the parameters ϵ andMinPts, cannot be assigned to any cluster 630

[56]. It is assumed that such points are generated by a different 631

process and can therefore be interpreted as anomalies. In other 632
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analyze report
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FIGURE 3: Illustration of the interaction between the stakeholders of the anomaly detection pipeline in OBDvehicle diagnostics.

words, DBSCAN labels each OBD snapshot by assigning it633

a cluster ∈ {C1, ...,Cw}, or marks potential anomalies by634

assigning them outside of all clusters /∈ {C1, ...,Cw}.635

Finally, the causes for anomalies are investigated using636

SHAP methodology. SHAP provides a unified framework637

for interpreting the output of various data processing models638

by quantifying the contribution of each input feature to a639

given label prediction [57]. The methodology is often re-640

ferred to as a benchmark for XAI, the solution of transform-641

ing systems from black-box models into white-box ones. It642

aims to achieve transparent, interpretable, explainable, and643

dependable systems [58], overall very valuable in the con-644

text of anomaly detection in automotive. SHAP methodology645

outputs a single SHAP value for each feature, and can be646

calculated for a set of OBD snapshots using the equation647

below:648

SHAPxobdi
=

∑
S⊆N{xobdi }

|S|!(n− |S| − 1)!

n!
[ν(S∪{xobdi })−ν(S)],

(9)
where SHAPi is the SHAP value of each feature xobdi , N649

represents a set of all features [xobd1 , ...xobdi , ...xobdn ], n is the 650

number of OBD PIDs, set S is the subset of N which contains 651

feature xobdi , and finaly ν is the base value of the predicted 652

outcome for each feature xobdi in N [59]. 653

The explainability using SHAP is done on a trained Ran- 654

dom Forest (RF) model that has a goal of anomaly classi- 655

fication. After the dimension reduction and clustering, RF 656

needs to be trained based on the output labels from previous 657

steps. Based on trained RF model using the OBD snapshots 658

and labels, SHAP values enable a quantified understanding 659

of which specific OBD PIDs (i.e. xobdu , xobdv , xobdm ) strongly 660

influence the DBSCAN anomaly detection decisions. The 661

SHAP values are ordered based on the magnitude, and the 662

highest ones are considered to be the causes for the anomalies. 663

The SHAP methodology is done on the preprocessed snap- 664

shot input data Xobd (see Equation (4)), after DBSCAN labels 665

them as anomaly snapshots. By attributing anomalies to par- 666

ticular OBD features, SHAP facilitates the identification of 667

underlying systems or components that are likely responsible 668

for abnormal behavior. This interpretability not only supports 669

targeted troubleshooting and maintenance but also highlights 670

potential design flaws or areas where system improvements 671
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are necessary, giving it high importance in vehicle testing672

phases.673

In the case of the explainable anomaly detection approach674

depicted in the Figure 2, the anomalies are firstly detected in675

lower dimensions, as previously described. Each snapshot is676

therefore labeled normal or anomaly. For the labeled snap-677

shots, the next step for tracing root causes of anomalies is678

performed by training an RF classifier on combined labeled679

data in the original dimensions. The combined labeled data680

consists of all normal snapshots and each snapshot that is la-681

beled as an anomaly separately. The RF model is chosen here682

for its compatibility with the TreeExplainer method in the683

SHAP framework, which efficiently computes SHAP values684

for tree-based models. After training, the TreeExplainer gen-685

erates SHAP values for each anomaly individually to quantify686

the contribution of OBD PID features to the classification687

decision, or the root cause of the anomaly in this case. These688

features are then ranked by the mean absolute SHAP value689

over all anomaly samples.690

V. EXPERIMENTAL STUDY691

A. DATASETS AND EVALUATION METRICS692

The evaluation of the anomaly detection concept proposed in693

the previous section is done with two scenarios, the first one694

with the engine off, and the second with the engine on data695

snapshots. Both scenarios have separate sets of regular 1057696

snapshots, expected normal, from different ICE vehicles. A697

high variety of different ICE vehicles in exploitation were698

included, both spark and compression ignition engine types,699

model years from 2014 to 2024. On top of that, for each700

scenario, 140 anomaly snapshots were generated, account-701

ing for 13.2% of total OBD snapshots. Anomaly snapshots702

include 50 snapshots of vehicle operating performance drop703

anomalies, 30 engine coolant system problems, 30 snapshots704

of fuel system problems, and 30 snapshots of engine ECU705

tampering, again for each evaluated scenario. The last three706

anomalies that were generated using Gaussian perturbation,707

each severity level da ∈ {0.5, 1.5, 3} had 10 anomaly snap-708

shots (see Section III-B and Equation (3)).709

Evaluation of proposed anomaly detection performance for710

both cases is done with the model confusion matrix and its711

derivatives, accuracy, precision, recall, and F1 score. The712

confusion matrix consists of four basic characteristics that713

are used to define the measurement metrics of the classifier,714

in this case, anomaly or normal OBD snapshot. These four715

characteristics are: True Positive (TP) that represents the716

percentage of data points that have been properly classified717

as anomalies; True Negative (TN) the percentage of correctly718

classified snapshots that are normal; False Positive (FP) the719

percentage of misclassified snapshots with the anomaly but720

they are clasified as normal; False Negative (FN) the per-721

centage of snapshots misclassified as normal but actually722

are anomalies [60]. Accuracy, precision, recall, and F1 score723

are calculated from the values of TP, TN, FP, and FN. The724

proposed anomaly detection approach is evaluated against the725

Isolation Forest (IF). The IF is considered to be a benchmark726

for the general anomaly detection in the literature due to its 727

ability to isolate anomalies effectively by recursively parti- 728

tioning the data [61]. It identifies outliers as points that require 729

fewer splits to isolate in random trees. 730

B. ENGINE OFF SCENARIO 731

1) Scenario Description 732

Engine off represents the state of the vehicle where the engine 733

is not active, but the ignition is on. This can happen before en- 734

gine cranking or during a short stop in the driving cycle (i.e., 735

during a traffic light) for start-stop system engine types. In 736

this state, the main propulsion-related systems and controllers 737

are powered on and are in the stage of preparing to turn on the 738

engine. Usually, the Engine Control Module (ECM), engine 739

ECU, coordinates the state of the vehicle with component 740

boot order and monitors their early behaviour. A total of 55 741

PIDs xobdi are available from the engine off OBD snapshots, 742

the complete list is in the Table 5. A lot of irregularities in 743

the engine operation, emission regulation, fuel system, and 744

others could be detected in this state using anomaly detection. 745

The challenging task in the engine-off scenario arises from 746

the data being more uniformly distributed, resulting in lower 747

Shannon data entropy for many parameters during this stage 748

(in the case of our data, 29%). In this case, anomalies repre- 749

senting engine ECU tampering are disregarded since the en- 750

gine is off and the vehicle is not driving. The visualization of 751

key PIDs for anomalies (see Table 2) in normal and anomaly 752

snapshots is shown in Figure 10. 753

2) Dimension Reduction 754

The scenario including engine off data with true labels (nor- 755

mal and anomaly types) after dimension reduction using t- 756

SNE gives a result represented in Figure 4. Each data point 757

in the 2-D plot represents one vehicle OBD snapshot, in 758

the engine off state. The figure can be interpreted as be- 759

ing divided into two parts, left and right, from the t-SNE 760

dimension 1 value 0. The t-SNE created larger line-shaped 761

normal snapshot clusters (blue points), indicating their data- 762

similarity closeness. The figure shows variable separation 763

of anomaly (orange/red/purple points) from these normal 764

snapshot clusters. Some anomalies are obviously separated, 765

while others are merged among the normal points (blue). The 766

best separation gave the general system performance drop 767

anomalies (orange), while other types of anomalies are more 768

mixed with the normal data in the latent space. A greater 769

distance between anomalies and normal data points makes it 770

possible to detect anomalies using DBSCAN. The different 771

anomaly types are usually kept in separate smaller groups (2- 772

6 snapshots), around the aforementioned line-shaped normal 773

data clusters. The t-SNE model with a perplexity of 200 and 774

k = 2 reduced dimensions shows the best results for dimen- 775

sionality reduction. Quantitatively, t-SNE outperformed the 776

other considered dimension reduction technique UMAP, as 777

concluded from the Silhouette score (s) for each approach: 778

st-SNEoff = 0.0657; sUMAP
off = 0.0002. The Silhouette score 779

represents a widely used metric that measures how well data 780
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FIGURE 4: Results of dimension reduction using t-SNE for engine off data snapshots scenario. The data is reduced to two
dimensions with a hyperparameter perplexity of 200.
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FIGURE 5: Results of t-SNE and DBSCAN in anomaly detection for engine off OBD snapshot. The results are shown labeled
with confusion matrix results, and the model in this case showed an accuracy of 92.89%.

points with different labels (normal/anomaly) are separated781

in the embedding.782

3) Anomaly Detection783

Further anomaly classification in the engine off scenario is784

done using DBSCAN. The normal/anomaly labels are origi-785

nally unknown to the DBSCANmodel, they are derived from786

the formed dense regions and isolated points after DBSCAN787

processing. Various DBSCAN hyperparameters were evalu-788

ated with the dimension-reduced data, and the best result pro-789

vided a hyperparameter combination of maximum distance790

between two neighbor points ϵ = 0.5, minimum number of791

samples within ϵ to form a cluster min_dist = 3, and distance792

metric type Manhattan. The model in this scenario showed793

overall anomaly detection accuracy of 92.89%, precision of 794

0.729, recall of 0.391, and F1 score of 0.509. The overall 795

and per-anomaly type normalized confusion matrices are dis- 796

played in the Table 3. The confusion matrices are normalized 797

based on the actual label for better visual inspection in a way 798

that TP+ FN = 100% and TN+ FP = 100%. The results of 799

anomaly classification using this DBSCAN model are shown 800

in Figure 5, where each snapshot is labelled according to 801

the confusion matrix. As expected, the DBSCAN anomaly 802

classification performed well for those anomaly data points 803

that were clearly separated from the clusters of normal data 804

in the latent space (i.e., TP data points located on the left side 805

above the normal clusters). Anomaly snapshot data points 806

that overlapped with normal data after dimension reduction 807
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were not identified as anomalies (i.e., FN data point groups808

on the right side). The analysis of per-anomaly type confusion809

matrices is done against normal data. Each anomaly type810

excludes other types of anomalies in evaluation for more in-811

terpretable results. The results of such analysis show that the812

performance drop anomalies had the highest rate of positive813

detections, compared to the other two types of anomalies.814

The reason for this can be found in the dimension reduction815

analysis done in the subsection V-B2, where the performance816

drop anomaly type had the largest overall separation from the817

normal datapoints. The solid separation had the fuel system818

anomalies, and the much poorer separation was done with819

the engine coolant system anomaly. This directly reflects820

the results of DBSCAN (see Table 3). This concludes that821

the anomaly detection in this case highly depends on the822

dimension reduction result in terms of the algorithm and823

hyperparameters. Compared to the baseline benchmark, the824

results can be seen in Appendix III, Table 6. IF performs825

better on data points with clear separation, as shown in V-B2.826

In the more challenging anomaly patterns, such as the en-827

gine coolant and fuel system, it becomes apparent that the828

proposed outlier detection pipeline outperforms the pure IF829

approach due to its dimension-reducing preprocessing. The830

proposed approach detects approximately 30% more fuel831

system anomalies in this scenario, while it is outperformed832

in the performance drop anomaly case by 27%.833

TABLE 3: Confusion matrices results for overall and per-
anomaly type of anomaly detection using DBSCAN for en-
gine off scenario.

Anomaly group TP TN FP FN
All 39.09% 98.49% 1.51% 60.91%
Performance drop 54.00% 98.49% 1.51% 46.00%
Engine coolant 6.67% 98.49% 1.51% 93.33%
Fuel system 46.67% 98.49% 1.51% 53.33%

4) Cause Analysis834

SHAP analysis of the engine off snapshots scenario is done835

to identify the causes of individual anomalies. The SHAP836

was implemented by training an RF classifier in the origi-837

nal data space after the snapshots were binarly classified to838

be normal or anomaly. The binary classification RF model839

was trained using 100 decision trees and is initialized with840

a fixed random seed to ensure reproducibility of results.841

After training, TreeExplainer with an RF model was used842

to assign the SHAP value for each OBD PID of anomaly-843

labelled snapshots. In order to evaluate the explainability and844

root cause identification of the proposed anomaly detection845

approach, the anomalies of the same type are grouped, and846

their mean SHAP values for each PID (mean|SHAPxobdi
|, for847

1 ≤ i ≤ n) are calculated. Furthermore, the mean SHAP848

values are normalized, since only the relative ratio between849

the SHAP values of different PIDs is relevant. The outcome in850

the cases of engine coolant systems and fuel system problems851

is shown in Figure 6. The SHAP analyzed each of 55 PIDs in852

the engine off scenario and assigned a SHAP value, while the853
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FIGURE 6: Results of the SHAP analysis for the engine
off snapshots scenario, including the top 10 most influential
parameters with normalized mean SHAP values for different
anomalies.

10 highest are shown in the Figure. In both cases, the SHAP 854

method showed success in finding the root causes of specific 855

anomalies by giving the specific PIDs the highest magnitudes 856

of SHAP values. In the case of engine coolant temperature, 857

root causes are coolant temperature sensors (ECT, ECT_1, 858

ECT_2), as described previously in Table 2. Using heuris- 859

tic investigation, the problematic system can be pinpointed 860

using marked signals, in this case engine coolant system. 861

The SHAP in the second anomaly case of the fuel system 862

problem marked all 6 root cause PIDs from Table 2. The 863

final cause of the second anomaly can be pinpointed using 864

the 6 detected signals, leading to the fuel system anomaly. The 865

SHAP analysis in the anomaly case of general system perfor- 866

mance drop is skipped, since the anomalies are generated on 867

random sets of PIDs for each anomaly of this type, making 868

the results impossible to validate. Overall, SHAP analysis 869

showed success in detecting the root causes for individual 870

anomalies in the case of the engine off snapshots scenario. 871
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FIGURE 7: Results of dimension reduction using t-SNE for the engine on data snapshots scenario. The data is reduced to two
dimensions with a hyperparameter perplexity of 100.
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FIGURE 8: Results of t-SNE and DBSCAN in anomaly detection for engine on OBD snapshot. The results are shown labeled
with confusion matrix results, and the model in this case showed an accuracy of 96.45%.

C. ENGINE ON SCENARIO872

1) Scenario Description873

The engine on data snapshots represents the vehicle state in874

driving or parking mode, where the engine has been running875

for some period. This is important to avoid the potential false876

positive anomalies at the specific moment of cranking the877

engine or during preparation, warm-up cycles. For example,878

this is managed in the J1699 test by forcing the tester to wait879

30 seconds after the engine is turned on. All anomaly types880

from Table 2 are accounted for in this scenario, and the total881

number of PIDs xobdi is 57. The total list of PID parameters882

included here is shown in Table 5. Some parts of propulsion-883

related systems are still not active or not responding to ECM884

in the engine off scenario, therefore more PIDs are found in885

the engine on state. The representation of normal and anomaly 886

snapshot values for PIDs used to create anomalies in the 887

engine on scenario (see Table 2), is shown in the Figure 11. 888

2) Dimension Reduction 889

The t-SNE for dimension reduction in this scenario results in 890

Figure 7 that shows snapshots with their true labels. The axes 891

in the figure represent the abstract t-SNE output variables, yj 892

for 1 ≤ i ≤ k , after dimension reduction to a latent space. 893

Dimension-reduced normal snapshots, markedwith blue dots, 894

in this case form more distinct cluster groups, compared to 895

the engine off case. This creates a better ground base for the 896

separation of anomalies (orange, red, purple, brown points), 897

crucial for their later detection. Contrary to the other scenario, 898
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the reduced dataset cannot be divided into two parts, but899

represents relatively equally distant clusters. The normal data900

keeps the line-shaped clusters for most parts of the dataset,901

out of which the majority is horizontally oriented (in the di-902

rection of the constant values of t-SNE dimension 2 axis). The903

engine on scenario contains an additional anomaly compared904

to the engine off scenario - an engine ECU tampering. The905

anomalies are reduced in relative proximity to the normal906

data clusters, but far enough to be detectable as anomalies907

in latent space. In this case, all types of anomalies are well908

separated from normal clusters, but they create larger groups909

(2-12 datapoints) than in other scenario. The larger groups910

are a direct cause of the majority of false negatives in later911

anomaly detection. The dimension reduction was done using912

the t-SNE model with perplexity 100, and k = 2 reduced913

dimensions. Once more, the t-SNE outperformed UMAP in914

the engine on scenario, as depicted with Silhouette scores:915

st-SNEon = 0.3238; sUMAP
on = 0.2934.916

3) Anomaly Detection917

The DBSCAN hyperparameters combination that gave the918

best results in the engine on case is: maximum distance919

between two neighbor points ϵ = 0.5, minimum number of920

samples within ϵ min_dist = 4, with distance type euclidean.921

After visually better separation of normal and anomaly snap-922

shots with t-SNE than in other scenario, evaluation metrics in923

the engine on scenario show an increase in achieved results924

with accuracy of 96.45%, precision of 0.945, recall of 0.743,925

and F1 score of 0.832. Normalized confusion matrices in the926

engine on scenario for anomaly detection using DBSCAN927

overall and per anomaly type are shown in the Table 4. The928

majority of misslabeled anomaly snapshots in this case (False929

Negatives) are the tight groups of the same anomaly labels930

that form a cluster and are hard to detect. For example, this931

is the case for grouped tampering anomalies in the middle932

(brown points in the Figure 7, red× in the Figure 8) or system933

performance drop anomalies in the lower right side (orange934

points in the Figure 7, red × in the Figure 8). This proves935

once more that the dimension reduction step is crucial for936

precise anomaly detection using DBSCAN. The per-anomaly937

type confusion matrices show the best detection of the perfor-938

mance drop anomalies. Furthermore, other types of anomalies939

performed much better than in the engine off scenario. This is940

mainly due to the increased dynamics of PIDs in the engine on941

scenario. In the case of the engine on scenario, the dataset has942

a broader range of signals. Consequently, interpretability de-943

creases for high-dimensional spaces (see Section V-C2). This944

is also evident in the application of the IF. Here, the presented945

anomaly detection pipeline outperforms the IF applied to this946

scenario. In each anomaly case, fewer anomalies are detected947

with the benchmark solution (see Table 7). Furthermore, the948

IF showed a lower rate of TN compared to the proposed949

anomaly detection.950

TABLE 4: Confusion matrices results for overall and per-
anomaly type of anomaly detection using DBSCAN for the
engine on scenario.

Anomaly group TP TN FP FN
All 74.29% 99.43% 0.57% 25.71%
Performance drop 88.00% 99.43% 0.57% 12.00%
Engine coolant 53.33% 99.43% 0.57% 46.67%
Fuel system 86.67% 99.43% 0.57% 13.33%
Tampering 60.00% 99.43% 0.57% 40.00%

4) Cause Analysis 951

SHAP analysis further investigates the specific causes of indi- 952

vidual anomalies in the engine on evaluation scenario. More 953

PIDs are available in this scenario, and their expected values 954

in snapshots should be more structured and dynamic. Again, 955

the SHAPwas implemented by training the RF classifier after 956

DBSCAN with labeled snapshots. The RF model used the 957

same hyperparameters as in the last case, 100 decision trees 958

and a fixed random seed. TreeExplainer assigned the SHAP 959

value to each PID of snapshots that are labelled as anomalies. 960

The results are grouped according to the anomaly type, and 961

the normalized mean SHAP values are ranked according to 962

magnitude. The 10 highest values for the cases of anoma- 963

lies in the engine on scenario are shown in Figure 9. Three 964

anomaly types were evaluated using SHAP: engine coolant 965

system problems, fuel system problems, and engine ECU 966

tampering. For the cases of engine coolant problems and fuel 967

system problems, all influencing PIDs were detected. Three 968

PIDs in case of coolant system problem and all six PIDs in 969

the case of fuel system problem (see Figures 9a, 9b and Table 970

2). The output of their main subsystems showed the highest 971

magnitude of normalized mean SHAP values, therefore the 972

anomalies can be seamlessly pinpointed to the respective root 973

systems. Finally, the SHAP managed to detect 6 out of 7 974

relevant signal causes in the case of tampering. The relative 975

throttle position signal (TP_R) was not included in the top 976

10 signals of average SHAP value (see Figure 9c, and Table 977

2). The main reason for this can be found in the anomaly 978

generation part, since the values of this PID for generated 979

anomalies are almost identical to the normal snapshots (see 980

blue and brown datapoints in the TP_R plot inside the Figure 981

11). With one signal missing, the problematic component 982

(e.g., engine ECU, engine speed, and throttle sensors) could 983

still be focused, since the other two throttle sensors were 984

detected as potentially problematic. With this precision of the 985

cause detection in the engine on scenario, it can be concluded 986

that the SHAPmethodology showed great success and practi- 987

cality in the case of OBD data. Combining with the results of 988

the engine off evaluation scenario, it proves the potential for 989

cause detection with vehicle known and unknown problems 990

using OBD data. 991

VI. DISCUSSION 992

An observation can be made from the distance metrics per- 993

spective of the t-SNE dimension reduction algorithm for dif- 994

ferent scenarios of OBD anomaly detection based on snap- 995
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FIGURE 9: Results of the SHAP analysis for the engine on
snapshots scenario, including the top 10 most influential pa-
rameters with the normalized mean SHAP values for different
anomalies.

shots. The Manhattan distance metric achieved the best sep-996

aration between true anomalies and normal data, while the997

Euclidean metric in the engine on scenario performed better.998

This is likely due to the unique inherent characteristics of999

the data distributions in each scenario. This is emphasized1000

with the lower Shannon data entropy for 29% of the PID1001

parameters in the case of engine off, which is not the case1002

with the engine on scenario. When the ignition is on and 1003

the engine is off, the OBD data tends to be more discrete, 1004

sparse, or less smoothly varying, which can result in higher- 1005

dimensional data with localized clusters. TheManhattan dis- 1006

tance metric is often more effective at preserving meaningful 1007

neighborhood structures during dimensionality reduction in 1008

this case. Contrary to the engine in the engine on scenario, the 1009

engine system is active and generating interrelated measure- 1010

ments across a broader range of sensors, leading to a denser 1011

and more smoothly varying dataset. Therefore, the Euclidean 1012

distance is better suited here to capture the global geometric 1013

relationships among snapshots. Thus, the difference in opti- 1014

mal distance metrics for t-SNE in the two scenarios reflects 1015

the underlying difference in the structure and variability of 1016

the OBD data in the scenarios. 1017

A sensitivity analysis of the DBSCAN hyperparameters, 1018

namely ϵ and MinPts (see Section IV), is also considered. 1019

A parameter sweep over ϵ and MinPts was conducted to 1020

evaluate how the sensitivity of the model depends on the 1021

chosen distance metric. The sensitivity of the True Positive 1022

Rate (TPR) is used as the evaluation criterion. In the engine 1023

off scenario, the choice of hyperparameters has a significantly 1024

stronger effect on model performance. From ϵ = 0.5 on- 1025

wards, no reliable predictions can be achieved (TPR< 70%). 1026

In contrast, the spatial density in the engine on scenario is 1027

lower, which is reflected in the reduced influence of the 1028

neighborhood radius. A noticeable degradation in prediction 1029

performance occurs only from ϵ = 0.9 for the Euclidean 1030

metric and from ϵ = 1.1 for the Manhattan metric. If ϵ is 1031

chosen too large, the neighborhood around each core object 1032

becomes excessively wide. As a result, individual clusters 1033

and noise points can no longer be separated, making the 1034

identification of anomalies impossible. The choice ofMinPts, 1035

however, has only a negligible effect. Since the points lie suf- 1036

ficiently densely in the projected feature space, the formation 1037

of clusters with too few points does not occur. Furthermore, 1038

the influence of distance metric shows that in both scenarios 1039

the Manhattan distance yields a more robust metric in terms 1040

of the TPR (see Figures 12, 13). The superior sensitivity of 1041

the Manhattan distance may be explained by the geometry 1042

of the low-dimensional feature space. While the Euclidean 1043

metric defines a circular (or spherical) neighborhood around 1044

each core point, the Manhattan distance forms a diamond- 1045

shaped region. This leads to a different notion of locality 1046

and thus influences the clustering result. However, as already 1047

demonstrated in Section V-C2, the spherical approximation 1048

yielded better overall results. In summary, the sensitivity of 1049

the proposed pipeline depends primarily on the preceding 1050

dimensionality reduction step, as it implicitly determines an 1051

appropriate choice of the ϵ parameter. Based on the distribu- 1052

tion obtained from the parameter study (see fig. 12a, 12b, 13a, 1053

13b), it can be determined that a suitable initial value for the 1054

ϵ parameter lies in the range of 0.1 to 0.3. In contrast, the 1055

result is largely independent of the choice ofminPts, provided 1056

that this parameter is not selected too small (minPts ≥ 4). In 1057

the presented DBSCAN use case, the Silhouette Coefficient 1058
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in combination with elbow point detection could potentially1059

be employed to estimate a suitable number of clusters and,1060

consequently, to determine the associated exclusion of noise1061

points [62].1062

The consistent performance across both scenarios demon-1063

strates the robustness of the approach and suggests its appli-1064

cability with OBD data. Higher precision of 96.45% showed1065

the engine on scenario (contrary to other scenario precision of1066

92.89%), which is more feasible and reasonable to be used for1067

this type of application. Dimension reduction was a critical1068

step in the overall process of anomaly detection and had a1069

major influence on the anomaly detection output. The overall1070

result provides empirical evidence supporting and validating1071

the Hypothesis 1, where latent spaces after dimension reduc-1072

tion of the original data can effectively be used for anomaly1073

detection of OBD. Limitations of the proposed solution rep-1074

resent a relatively high percentage of false negative classifi-1075

cations in both scenarios (60.91% and 25.71% for engine off1076

and on, respectively). This is acceptable for the use case of1077

engine on scenario, and even common in the vehicle anomaly1078

detection due to the wide range of anomaly variations [63].1079

For the engine off scenario, it is suggested to use benchmark1080

solutions, such as IF. Furthermore, the analysis of FN rate1081

per anomaly type reveals that the highest number comes from1082

engine coolant anomaly type (93.33% and 46.67% for engine1083

off and on, respectively). This is a direct result of a poor1084

separation of this anomaly type from normal data in the latent1085

space after t-SNE dimension reduction, observedwith red and1086

blue datapoints in Figures 4 and 7).1087

In addition to anomaly detection, themethodology success-1088

fully identified root causes for various anomaly types using1089

the SHAP interpretability method, by pinpointing almost all1090

causing PIDs for individual anomalies. More specifically, all1091

9 PID signals were identified correctly as causes in the engine1092

off scenario, and 15 out of 16 in the engine on scenario. De-1093

spite being evaluated using synthetic anomalies, the proposed1094

solution is expected to hold practical usefulness with ground-1095

through data. Real anomaly datasets have a larger variation1096

of anomalies, but the anomaly quantity is reflected in the1097

paper. With this in mind, a slight variation of precision for1098

t-SNE/DBSCAN combined anomaly detection is expected.1099

The retuning of hyperparameters is almost certain for the1100

optimal results with different OBD snapshot datasets. Due1101

to the higher anomaly variability in real cases, it is expected1102

that the SHAP method performs less precisely in general,1103

but remains useful in the root detection for the majority of1104

anomaly cases. It can be concluded that the contribution keeps1105

the practical use despite the limitations of using synthetic1106

data.1107

VII. CONCLUSIONS AND FUTURE WORK1108

This paper presents a novel pipeline for explainable anomaly1109

detection in the case of vehicle diagnostics testing, valida-1110

tion, and inspection. The concept was evaluated using OBD1111

data snapshots from ICE vehicles. The proposed approach1112

combines t-SNE for dimensionality reduction and DBSCAN1113

for clustering and anomaly detection. Furthermore, the so- 1114

lution supports anomaly cause investigation using SHAP to 1115

determine potential roots of the individual anomalies. Four 1116

different OBD-relevant anomaly types are used for verifica- 1117

tion of the concept. The paper presented an integration into 1118

the real technical applications for vehicle systems validation 1119

and aftermarket checks, such as PVE OBD compliance tests 1120

(SAE J1699-3) and CTC emission regulation tests. This pro- 1121

vides qualitative enhancements to the mentioned technical 1122

procedures by extending the range of detectable out-of-order 1123

vehicle systems behaviours that modern OBD systems are 1124

not capable of. In addition, the root anomaly causes in the 1125

sense of problematic systems would be traceable using the 1126

XAI proposed solution for OBD PID signals. 1127

The presented results provide empirical support for the 1128

initial hypothesis that anomalies in vehicle operation and 1129

diagnostic systems are detectable within lower-dimensional 1130

representations of OBD data. The aim is to find the most 1131

distinct separation between normal and anomaly snapshots, in 1132

this case achieved with t-SNE. This validates the hypothesis 1133

that latent spaces derived from the high-dimensional OBD 1134

data can serve as an effective basis for anomaly detection, 1135

and indicates that the dimension reduction is a critical step. 1136

This is proven in the evaluation for both scenarios, where 1137

poor separation of anomalies from normal data in lower 1138

dimensions made such anomalies undetectable using DB- 1139

SCAN. Within the success of t-SNE dimension reduction, an 1140

observation is made that the Manhattan distance metric has 1141

better results for the lower Shannon entropy case of engine 1142

off high-dimensional OBD data. Conversely, in the engine 1143

on case of denser varying OBD snapshot data, Euclidean 1144

distance dominated. Overall, the solution proved better results 1145

in the engine on scenario, and showed significant application 1146

potential for real-world vehicle diagnostics and compliance 1147

testing. 1148

The future work shall cover the cases of hybrid and 1149

electric vehicles. Besides the architecture and operation of 1150

propulsion-related systems, the main difference is the snap- 1151

shot input OBD data dimensionality. HEVs support, on aver- 1152

age, more than 100 PID, while EVs support around only 20 so 1153

far. This would bring necessary changes to the initial part of 1154

the pipeline, more specifically the dimension reduction and 1155

anomaly detection. Furthermore, while hybrid and ICE vehi- 1156

cles are falling under the regulation of the SAE J1699-3 test, 1157

the EVs shall in the future use a different test procedure SAE 1158

J1699-5. This subsequently leads to the additional modifica- 1159

tion of the pipeline for its integration into the test procedure. 1160

A suitable extension of the proposed pipeline is an iterative 1161

process for the automated detection of appropriate parameters 1162

for the selected anomaly detection method. Moreover, the fu- 1163

ture work will include more detailed analysis and comparison 1164

of state of the art root detection approaches, including LIME, 1165

Deep Learning Important FeaTures (DeepLIFT), and Layer- 1166

wise Relevance Propagation (LRP). 1167
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APPENDIX I. LIST OF OBD SIGNALS INCLUDED IN THE VERIFICATION1491

TABLE 5: List of OBD PIDs considered in the Engine Off and Engine on scenarios.

PID Name Description Eng. Off Eng. On
01 MIL Malfunction Indicator Lamp Status ✓ ✓
04 LOAD_PCT Calculated LOAD Value ✓ ✓
05 ECT Engine Coolant Temperature ✓ ✓
06 SHRTFT1 Short Term Fuel Trim - Bank 1 ✓ ✓
07 LONGFT1 Long Term Fuel Trim – Bank 1 ✓ ✓
0B MAP Intake Manifold Absolute Pressure ✓ ✓
0C RPM Engine RPM ✓ ✓
OD VSS Vehicle Speed Sensor ✓ ✓
OE SPARKADV Ignition Timing Advance for #1 Cylinder ✓ ✓
0F IAT Intake Air Temperature ✓ ✓
10 MAF Air Flow Rate ✓ ✓
11 TP Absolute Throttle Position ✓ ✓
15 O2Sv12 Oxygen Sensor Output Voltage ✓ ✓
15 SHRTFT12 Oxygen Sensor 2 Short term fuel trim ✓ ✓
1C OBDSUP OBD requirements of vehicle ✓ ✓
1F RUNTM Time Since Engine Start ✓ ✓
21 MIL_DIST Distance Traveled While MIL is Activated ✓ ✓
23 FRP Fuel Rail Pressure ✓ ✓
24 O2SV11 Oxygen Sensor Voltage - Bank 1, Sensor 1 ✓ ✓
2E EVAP_PCT Commanded Evaporative Purge ✓ ✓
2F FLI Fuel Level Input ✓ ✓
30 WARM_UPS Number of warm-ups since DTCs cleared ✓ ✓
31 CLR_DIST Distance traveled since DTCs cleared ✓ ✓
33 BARO Barometric Pressure ✓ ✓
34 LAMBDA11 Equivalence Ration - Bank 1, Sensor 1 ✓ ✓
34 O2Sc11 Oxygen Sensor Current - Bank 1, Sensor 1 ✓ ✓
3C CATEMP11 Catalyst temperature Bank 1 Sensor 1 ✓ ✓
42 VPWR Control module voltage ✓ ✓
43 LOAD_ABS Absolute Load Value ✓ ✓
44 LAMBDA Fuel/Air Commanded Equivalence Ratio ✓ ✓
45 TP_R Relative Throttle Position ✓ ✓
46 AAT Ambient air temperature ✓ ✓
47 TP_B Absolute Throttle Position B ✓ ✓
49 APP_D Accelerator Pedal Position D ✓ ✓
4A APP_E Accelerator Pedal Position E ✓ ✓
4C TAC_PCT Commanded Throttle Actuator Control ✓ ✓
53 EVAP_VPA Absolute Evap System Vapor Pressure ✓ ✓
56 LGSO2FT1 Long Term Secondary O2 Sensor Fuel Trim ✓ ✓
5C EOT Engine Oil Temperature ✓ ✓
5E FUEL_RATE Engine Fuel Rate ✓ ✓
62 TQ_ACT Actual Engine - Percent Torque ✓ ✓
63 TQ_REF Engine Reference Torque ✓ ✓
67 ECT_1 Engine Coolant Temperature 1 ✓ ✓
67 ECT_2 Engine Coolant Temperature 2 ✓ ✓
68 IAT_11 Intake Air Temperature - Bank 1, Sensor 1 ✓ ✓
68 IAT_12 Intake Air Temperature - Bank 1, Sensor 2 ✓ ✓
73 EP_1 Exhaust Pressure Sensor Bank 1 ✓ ✓
78 EGT11 Exhaust Gas Temperature - Bank 1, Sensor 1 ✓ ✓
78 EGT12 Exhaust Gas Temperature - Bank 1, Sensor 2 ✓ ✓
78 EGT13 Exhaust Gas Temperature - Bank 1, Sensor 3 ✓ x
78 EGT14 Exhaust Gas Temperature - Bank 1, Sensor 4 ✓ x
8E TQ_FR Engine Friction - Percent Torque ✓ ✓
9D ENG_FUEL_RATE Engine Fuel Rate ✓ ✓
9D VEH_FUEL_RATE Vehicle Fuel Rate ✓ ✓
9E EXH_RATE Engine Exhaust Flow Rate ✓ ✓
A4 GEAR_ACT Actual Transmission Gear ✓ ✓
A6 ODO Odometer ✓ ✓
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APPENDIX II. VISUALIZATION OF THE OBD SIGNALS USED FOR ANOMALIES. 1492
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FIGURE 10: Values of key PID signals of normal and anomaly snapshots in the Engine Off scenario, as described in Table 2.
Color code is as follows: transparent blue - normal data, orange - system performance drop anomaly, red - engine coolant system
anomaly, purple - fuel system anomaly.
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FIGURE 11: Values of key PID signals of normal and anomaly snapshots in the Engine On scenario, as described in Table 2.
Color code is as follows: transparent blue - normal data, orange - system performance drop anomaly, red - engine coolant system
anomaly, purple - fuel system anomaly, brown - engine ECU tampering.
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APPENDIX III. EXPERIMENTAL STUDY WITH ISOLATION FOREST (IF)1493

TABLE 6: Confusion matrices results for overall and per-anomaly type of anomaly detection using IF for engine off scenario.
The IF is created with the following parameters: number of trees - 100, features per tree - all, data points per tree - 256.

Anomaly group TP TN FP FN
All 55.00% 98.55% 1.45% 45.00%
Performance drop 81.00% 98.55% 1.45% 19.00%
Engine coolant 6.67% 98.55% 1.45% 92.33%
Fuel system 16.67% 98.55% 1.45% 83.33%

TABLE 7: Confusion matrices results for overall and per-anomaly type of anomaly detection using IF for engine on scenario.
The IF is created with the following parameters: number of trees - 100, features per tree - all, data points per tree - 256.

Anomaly group TP TN FP FN
All 46.32% 98.08% 1.92% 53.68%
Performance drop 69.00% 98.08% 1.92% 31.00%
Engine coolant 3.33% 98.08% 1.92% 96.67%
Fuel system 33.33% 98.08% 1.92% 66.67%
Tampering 26.67% 98.08% 1.92% 73.33%

APPENDIX IV. SENSITIVITY ANALYSIS OF THE DBSCAN HYPERPARAMETERS1494
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3.5
3.7
3.9

70.9 85.5 88.2 92.7 94.5 96.4 96.4 98.2 98.2
36.4 52.7 60.9 64.5 70.9 73.6 75.5 81.8 86.4
13.6 26.4 32.7 37.3 40.0 50.0 50.9 50.9 55.5
3.6 10.9 13.6 20.9 24.5 25.5 25.5 27.3 33.6
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

20

40

60

80

(a) Influence of ϵ and MinPts on sensitivity for Euclidean distance
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

20

40

60

80

(b) Influence of ϵ and MinPts on sensitivity for Manhattan distance

FIGURE 12: Comparison of sensitivity behavior with variable ϵ and MinPts for different distance metrics in the engine off
application scenario.
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36.4 47.9 57.9 67.9 79.3 80.7 80.7 81.4 83.6
23.6 32.1 38.6 50.0 60.7 61.4 61.4 67.1 68.6
12.1 20.7 25.0 33.6 37.9 42.1 47.9 53.6 55.0
7.9 10.7 15.7 25.0 28.6 28.6 28.6 35.0 43.6
6.4 9.3 13.6 22.1 25.7 25.7 25.7 31.4 31.4
2.1 5.0 7.1 14.3 21.4 21.4 21.4 27.1 27.1
1.4 4.3 4.3 11.4 15.0 15.7 18.6 24.3 24.3
1.4 2.9 3.6 6.4 8.6 8.6 8.6 16.4 16.4
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2 3 4 5 6 7 8 9 10

MinPts

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5
3.7
3.9

82.1 91.4 96.4 100.0 100.0 100.0 100.0 100.0 100.0
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52.1 66.4 79.3 87.9 91.4 92.1 93.6 95.7 96.4
45.0 59.3 67.9 76.4 87.1 87.1 87.1 88.6 88.6
32.9 41.4 48.6 59.3 70.7 71.4 78.6 80.0 80.7
22.1 30.7 36.4 46.4 52.1 59.3 59.3 65.0 66.4
15.7 21.4 26.4 36.4 44.3 46.4 52.1 57.9 57.9
10.0 15.7 20.0 30.0 33.6 35.0 36.4 42.9 49.3
5.0 7.9 12.9 18.6 26.4 26.4 26.4 32.9 42.1
2.9 5.7 7.9 15.0 18.6 22.9 22.9 28.6 29.3
2.1 5.0 7.1 13.6 17.1 17.1 22.1 27.9 27.9
2.1 5.0 7.1 12.9 16.4 17.1 22.1 27.9 27.9
2.1 3.6 3.6 9.3 12.9 12.9 17.9 23.6 23.6
1.4 2.9 2.9 5.7 9.3 11.4 11.4 18.6 18.6
1.4 2.9 2.9 5.7 5.7 5.7 5.7 11.4 13.6
1.4 2.9 2.9 5.7 5.7 5.7 5.7 11.4 11.4
0.7 2.1 2.1 2.1 4.3 4.3 4.3 10.0 10.0
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(b) Influence of ϵ and MinPts on sensitivity for Manhattan distance

FIGURE 13: Comparison of sensitivity behavior with variable ϵ and MinPts for different distance metrics in the engine on
application scenario.
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