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ABSTRACT Vehicle diagnostic systems are crucial for the normal operation of vehicles and their propulsion-
related systems. Undetected unusual behaviour of such systems makes the vehicle diagnostic system
unreliable. Current diagnostic systems, such as On-Board Diagnostics (OBD), are limited to monitoring only
specific systems in order to make fault decision. However, various anomalies, including drastic performance
drops, vehicle tampering, and changes in the driving environment, often go undetected during OBD system
testing, validation, and inspection. This research presents a novel explainable OBD anomaly detection
pipeline that is able to detect anomalies based only on OBD data snapshots during processes of OBD
validation and inspection. The novel approach is implemented using combined dimension reduction and
data clustering methodologies. First, the data is transformed into a latent space using t-distributed Stochastic
Neighbor Embedding (t-SNE), where the general structure of the anomaly in the data can be exploited.
Subsequently, clustering using Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
is applied to group similar normal data and identify anomalous patterns. The novelty of the solution is
further extended with a feedback loop that suggests the root cause of OBD signals for individual anomalies
using explainable Al (XAI) methodology, in this case Shapley additive explanations (SHAP). The proposed
concept was verified and evaluated using real OBD snapshots with synthetically generated anomalies in two
scenarios with different engine status, engine off and on, with an achieved accuracy of 92.89% and 96.45%
for anomaly detection, respectively. The majority of anomaly causes in the form of specific OBD signals
from propulsion- and emission-related systems were successfully explained using SHAP.

INDEX TERMS anomaly detection, dimension reduction, clustering, explainable AI, OBD, validation,
vehicle diagnostics

1 LIST OF ABBREVIATIONS PID Parameter Identification

CTC Clean Truck Check PVE Production Vehicle Evaluation
DBSCAN Density-Based Spatial Clustering RF Random Fore?s.t .

of Applications with Noise SHAP Shapley Additive Explanations
ECM Engine Control Module t-SNE t-distributed Stochastic Neighbor Embedding
ECU Electronic Control Unit N True Negative
DTC Diagnostic Trouble Code TP True Positive
EN False Negative TPR True Positive Rate
FP False Positive UMAP Uniform Manifold Approximation
ICE Internal Combustion Engine and Projection .
IF Isolation Forest XAI Explainable Artificial Intelligence
KL Kullback-Leibler
LOF Local Outlier Factor
OBD On-Board Diagnostic I. INTRODUCTION
PCA Principal Component Analysis
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HE purpose of vehicle diagnostic systems is to monitor
T the vehicle emissions and the operation of propulsion-
related systems. The On-Board Diagnostic (OBD) system
has the intended function of making a fault decision, in-
cluding fault detection, isolation, and identification [1]. In
this context, the diagnostic system must answer the question
of when a fault occurred, while also pinpointing the faulty
components with the fault effect magnitude. All this makes
vehicle diagnostics essential for the reliability of vehicles and
their systems, especially considering the importance of main-
taining the normal operation of critical systems, like active
safety [2]. However, modern vehicle diagnostic applications,
such as OBD, have various limitations due to the conventional
approach of diagnostics [3]. Firstly, they monitor only spe-
cific propulsion- and emission-related systems, and not all
critical systems on the vehicle. Secondly, they can make a
fault decisions only for a finite number of faults, excluding
all malfunction possibilities [4]. Lastly, they do not cover
the detection of vehicles’ and diagnostic systems’ unusual
behaviours, such as tampering, drastic system performance
drops, changes in driving environment, etc. These limitations
often make various anomalies undetected by classical OBD
systems, which can lead to critical consequences [5]. More
general anomaly detection has proven to be a valuable ap-
proach for ensuring the safety and security [6]. In addition
to these limitations, the design space of modern vehicle plat-
forms contributes to an increasingly high-dimensional build
space due to a multitude of software and hardware configu-
rations across vehicle variants [7]. This leads to significant
challenges in validating diagnostic behavior across all possi-
ble variants. With this in mind, vehicle diagnostic validation
engineers, testers, and inspectors cannot fully rely on the
output of current OBD systems when checking for problems
and status.

This research presents an innovative pipeline of anomaly
detection with root detection based on OBD snapshot em-
bedded into the processes of OBD testing, validation, and
inspection. The pipeline contains anomaly detection based
on OBD signals, able to detect anomalies based only on
snapshots of OBD data. A snapshot is a single measurement
or observation of a system’s state at a specific moment. The
proposed solution does not require labeled data, but can be
applied to various datasets with an unknown number and
types of anomalies. This makes it applicable for investigating
specific in-vehicle system problems, but also for general use,
such as vehicle systems or data tampering detection. The pro-
posed anomaly detection employs a two-stage OBD snapshot
processing pipeline combining dimension reduction and data
clustering techniques. First, the high-dimensional OBD data
is transformed into a latent space where the general structure
of the anomaly in the data can be exploited. One general
example of dimension reduction used on real OBD vehicle
snapshots data is represented in Figure 1. Subsequently, di-
mension reduction keeps the grouped structural patterns of
normal and unexpected data in low latent spaces, and makes
them visualizable and deducible using clustering techniques.

2

The methodology is extended with the root cause suggestion
of OBD signals for individual anomalies using the explanable
Al approach, mainly Shapley Additive Explanations (SHAP)
technique [8]. The overall methodology benefits validation
and workshop engineers as an innovation tool during system
validation after production and in the aftermarket vehicle use
case.

haa ]
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4

FIGURE 1: Representation of OBD snapshot data after di-
mension reduction and general clustering.

In the context of vehicle diagnostic validation, novel data
processing applications have the potential to enhance the
reliability and durability of vehicle systems in testing phases
[9], by marking potential weak points in design and control
strategies. For example, the SAE J1699-3 is a diagnostic
compliance test procedure done as part of Production Vehicle
Evaluation (PVE), and is used to validate the operation and
communication of diagnostic systems and main propulsion-
related controllers [10]. The methodology proposed in this
paper for anomaly detection could extend the standardized
SAE J1699-3 test by introducing snapshot-based anomaly
detection with root detection. This holds a potential to identify
anomalous behaviour and its roots before a vehicle enters the
market, significantly improving diagnostic and propulsion-
related systems’ reliability and overall vehicle safety.

Beyond pre-market validation, similar anomaly detection
techniques also play an important role for in-use compliance
and emissions monitoring. Tampering with the OBD systems
of diesel trucks is becoming a critical issue worldwide, as
it directly leads to a significant increase in emissions [11],
[12]. Another practical application of OBD snapshot-based
anomaly detection could be to aid California’s Clean Truck
Check (CTC). The initiative is motivated by minimizing the
pollution effect from heavy-duty vehicles, and deals with
active monitoring of the emission-related systems (covered
by the OBD system) for on-road trucks [13]. As part of the
CTC initiative, truck drivers and fleet managers are obligated
to provide periodical OBD snapshots to ensure their trucks
comply with the emission regulations. The solution proposed
in this paper can help catch anomalies such as system, scan
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tool, or data tampering on a large scale and further ensure the
emission minimization effect in the area.

The paper is organized in a way that section II discusses
the research gap, state of the art, and principal paper con-
tributions. Section III contains the background about the ve-
hicle and OBD anomalies with their generation for the later
concept verification and evaluation. The following section IV
proposes a novel concept of anomaly detection with cause
investigation using OBD snapshots. Experiments with evalua-
tion scenarios are described in the section V, where results are
visualized and later discussed in section VI. The conclusions
and future work are stated in section VII.

Il. RELATED WORKS

The development of OBD was primarily motivated by the
need to reduce carbon emissions and to standardize diag-
nostics across all vehicle manufacturers. The functionality
of OBD for diagnostics is straightforward and rule-based.
For example, if a signal exceeds a predefined threshold, a
fault is detected and a Diagnostic Trouble Code (DTC) is
raised. With this in mind, rule-based diagnostics fail to cap-
ture the complexity of various real-world vehicle anomaly
patterns. This makes them incapable of handling variations
for different vehicle types and environmental situations [14].
Together with that, existing OBD approaches cover only a
predefined number of finite faults for which the OBD moni-
tors the thresholds. This set of detectable DTCs with regular
OBD is defined with standard SAE J2012, which is updated
periodically [15], [16]. Even if OBD detected a problem,
multiple DTCs are often triggered, making it challenging to
pinpoint the exact root cause. There are no indicators which
signals were out of order, and only a handful of signal values
are recorded when a fault is detected.

Anomaly detection has been widely explored in many
fields to catch problems and has been deployed in, but not
limited to healthcare [6], finance [17], and cybersecurity [18].
In the automotive sector, anomaly detection methods focus on
emission control, driving behavior, energy consumption, and
cybersecurity. Table 1 summarizes a comparison of anomaly
detection methods for fault detection in vehicles. Data is
mainly based on CAN data, while lesser research focuses
on OBD-specific data [3]. Anomaly detection methods fo-
cused on emission control and prediction can also identify
malfunctions and manipulations. Although several successful
approaches have been implemented and tested, most methods
operate online and rely on historical driving data [19]-[21].
Anomaly detection methods have also been widely explored
in the field of vehicle cybersecurity, where standardized OBD
data is used as a base for intrusion detection [22]. However,
such approaches often rely on time series data and cannot be
applied to snapshot data [23]-[25]. The majority of them use
supervised machine learning methods that are unsuitable for
a wide range of vehicle types and unknown problems outside
of the training dataset [24]-[26].

The authors of [27] propose an anomaly detection approach
in vehicles using Principal Component Analysis (PCA) for
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dimensionality reduction. Anomalies are identified using One
Class Support Vector Machines (SVM), Isolation Forest, and
Local Outlier Factor, while the best results were achieved by
One Class SVM, reaching an accuracy as high as 96.12%.
The approach processes the timeseries data and their trends,
limiting its deployment to snapshot data.

The authors of [24] developed a method for anomaly de-
tection on CAN sensor timeseries data. The method com-
pares Long Short Term Memory-, Gated recurrent unit-, and
Convolutional neural networks-based anomaly detectors. The
best results were achieved with Long Short Term Memory-
anomaly detectors with a successful detection of 86%. The
system has its limitations as it requires labeled timeseries
data for model training, meaning it cannot cope with snapshot
data, nor anomalies outside of the training data range. The
authors of [28] introduced a KL divergence-based method for
detecting lateral deviation anomalies in autonomous mining
vehicles by segmenting road intervals and applying threshold
determination. While this method could be adopted for snap-
shot data, it would rely on historical data.

Recent advancements showed that related works inte-
grated machine learning with Explainable Artificial Intelli-
gence (XAI) in vehicle diagnostics [29]-[32]. It enables the
transition from simple problem detection to comprehensive
root cause analysis. For instance, authors of [29] proposed
a framework for heavy-duty diesel vehicles that identifies
high-emission trucks and utilizes XGBoost alongside model
interpretation methods like Partial Dependence Plots to trace
the underlying causes of specific emissions. Similarly, the
work [30] developed a model-based diagnostic framework
using Random Forest and SHAP to pinpoint the specific
OBD parameters responsible for low in-use monitor perfor-
mance ratio output. Furthermore, authors of [31] established a
hybrid CNN-LSTM-Transformer architecture that integrates
XAI with Local Interpretable Model-agnostic Explanations
(LIME) and SHAP to provide interpretability for maintenance
technicians. Another application of XAI used SHAP and In-
dividual Conditional Expectation to analyze diesel particulate
filter regeneration states in urban bus fleets to optimize main-
tenance management [32]. Despite these OBD root detection
innovations with XAlI, existing research predominantly relies
on continuous time-series data and large historical datasets.

Various vehicle and diagnostic anomaly detection have
been implemented and studied so far. While the majority of
related works focus on known problems (supervised learning)
and timeseries data, the research gap remains for general
explainable anomaly detection based on only OBD snapshots.
This is crucial for the use cases of OBD testing and inspection.
Furthermore, the related works showed no published research
that aimed to optimize the OBD testing, validation, or in-
spection concerning explainable anomaly detection. Primary
contributions of the current paper can be summarized as
follows:

« Novel pipeline for snapshot-based OBD anomaly detec-
tion during processes of OBD validation and inspection

3
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TABLE 1: Comparison of existing anomaly detection methods for fault detection in vehicles.

Kalman filtering

Approach Method Dataset Performance Limitations

Cherdo et al. (2023) [24] Long Short Term Memory CAN data from Alpine Re- | 86% accuracy Timeseries data and non
nault car standardized signals

Aloqaily et al. (2025) [25] Random Forest and LightGBM DoS, Fuzzy, Gear and | 99.9% accuracy Known anomalies only
RPM OBD intrusion (supervised learning)
datasets

Van Wyk et al. (2024) [26] | Convolutional Neural Network and | N.A 85.4-95.3% accuracy Limited to known DTC

anomalies

Jain et al. (2023) [27]

Principal Component Analysis and
One-Class Support Vector Machine

OBD-II Data from electric
off-road vehicles

96.12% accuracy

Classification of anoma-
lies based on DTC

Zhang et al. (2024) [28]

Kullback-Leibler divergence

Autonomous vehicle data
in mining areas

91.4% accuracy

Detection based on vehi-
cles driving on the same

road intervals

using a combination of dimension reduction and cluster-
ing methodology embedded in the mentioned processes.

« OBD system anomaly detection based on discrete data
snapshots collection, avoiding the need for continuous
timeseries data.

o Cause detection for anomalies in vehicles and OBD
systems using Explainable AI methodology based on
data snapshots.

Ill. BACKGROUND

A. VEHICLE AND OBD SYSTEMS ANOMALIES

The normal operational behavior of a vehicle system can be
defined as the expected range of system states and signal
patterns that occur under standard usage conditions, defined
by manufacturer specifications. It is typically marked by
consistent statistical properties and repeatable parameter re-
lationships. Anomalies in vehicle systems represent devia-
tions from the normal operational behavior of those systems
that can originate from various sources, such as physical
component malfunctions, software failures, or cyberattacks
targeting the vehicle’s communication networks [33]. In the
sense of vehicle diagnostics, all faults are considered anoma-
lies, but not all anomalies are faults. The fault is defined by
the hypothesized cause of the system failure, where failure
represents an event that occurs when the delivered system
service deviates from the service implementing the system
function [34]. Vehicle systems and diagnostic anomalies man-
ifest as unexpected events or data patterns that deviate from
established baselines and usually can be detected through the
in-vehicle network or by specific processing of the sensors,
actuators, and Electronic Control Unit (ECU) data. Anomaly
detection can be represented as a task of detecting these
anomalous pieces of data that exhibit different patterns from
normal data [35]. There are various categories of anomalies
in sensor data [36], and such anomalies can be described as
one or a successive series of signal vectors that deviate from
the current data and therefore represent a singularity [37].

In the course of this paper, the anomalies will be considered
as all unexpected measured system behaviours that do not
cause direct system failure (i.e., system performance drop),
and the system failure causes (faults) that are out of the scope
of the OBD II system (i.e,. vehicle system, data, external scan
tool tampering). The focus of this work are anomalies of hard-

4

ware and software components of passenger and commer-
cial vehicle propulsion- and emission-related systems, that
are detectable within vehicle OBD II data. Propulsion- and
emission-related systems are a group of original equipment
systems, components, and parts whose failure will directly
impact the ability to propel the vehicle or raise direct vehicle
emissions above the legal limit. Such systems are involved
in refueling/recharging the vehicle, storing and transferring
fuel/energy, the combustion process, and propelling or de-
celerating the vehicle, together with systems in charge of
delivering torque to the wheel. Included in that group are
components used to control or thermally manage such sys-
tems and their emissions. The novel concept will be verified
using Internal Combustion Engine (ICE) passenger vehicles
data that have high intersimilarity due to the standardization
of OBD systems among them. Anomalies defined as such are
undetectable using state of the art vehicle diagnostic system,
therefore will be the contribution of this paper.

Detecting vehicle systems and OBD anomalies is pivotal
before the vehicle enters the market, but also in the vehicle
exploitation. In the phases of vehicle testing and validation
during production, OEMs can still actively fix the root prob-
lems, ensuring higher vehicle system reliability. This is the
purpose for which PVE is introduced for the OBD system
before entering the market. PVE is a requirement introduced
as a worldwide standard to ensure the functionality of OBD in
production vehicles. It comprises three stages: J1, J2, and J3
tests, where all stages are used in the USA and China markets,
while only J1 is used for vehicles produced in Europe. The
J1 test verifies the conformity of OBD communication in
accordance with SAE J1699-3. It ensures that the vehicle’s
OBD interface supports the required protocols (e.g., CAN,
UDS, IS09141, ISO15765) and transmits diagnostic data in
accordance with SAE J1979. In the J2 test, all DTCs that
trigger the malfunction indicator lamp (MIL) are checked.
Faults must be simulated using hardware-based methods and
checked over several driving cycles. The test confirms the
generation of pending, confirmed, and permanent fault codes
and the activation of the MIL. The J3 test evaluates the in-
use performance of OBD monitoring by collecting in-use
performance ratio data from vehicles in the field over a period
of 6 to 12 months. To ensure representative results, the vehicle
sample must reflect normal use and be selected statistically
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from national data sets [38].

Due to the conventional way of fault detection, not all
anomalies are being detected with OBD. One example of this
represents tampering with the vehicle, data, network, OBD
system, external tools, etc. This is being done for engine
tuning, ECU enhancements, upgrading infotainment systems,
or simply misrepresentation of the real vehicle systems and
subsystems status, such as emissions. A popular case of
tampering is the Dieselgate scandal, including one of the
biggest worldwide OEMs [39]. Other examples of anomalies
can be specific vehicle systems problems that are outside the
monitoring and analysis of OBD, such as drastic vehicle per-
formance drops that affect fuel consumption and emissions,
or changes in the driving environment. Such anomalies do not
raise any particular faults, but affect the vehicle’s compliance,
driving, or overall safety.

The current state of the vehicle E/E architecture supports
a wide variety of in-vehicle signals from sensors, actuators,
and controllers. A subset of those signals is made available
through the OBD system. A standardized OBD system has
10 different diagnostic services 01-0A (hexadecimal) with
various purposes, where services 01 and 09 give current
powertrain data and in-use performance metrics and parame-
ters, respectively [40]. According to the standard SAE J1979
digital annex, OBD services 01 and 09 support more than 250
signals [41], whereas in reality, a modern vehicle supports
around 50 [9]. Support of the OBD signals from mode 1,
Parameter Identification (PID)s, depends upon the vehicle
model, fuel type, model year, manufacturer, etc. Quantity,
quality, and representability of such signals are a solid ground
base for anomaly detection. Data available from OBD mode
01 will be used in the course of this work for designing and
implementing a novel anomaly detection method.

B. GENERATION OF SPECIFIC OBD ANOMALIES

In order to evaluate and verify the novel anomaly detection
solution proposed in the following section, specific cases of
anomalies are generated. The anomaly generation was done
using real OBD data snapshots that represent normal cases.
Specific or random parameters were adjusted to generate
different use cases of anomalies with OBD data, depending
on the anomaly types replicated. As it is customary in the
literature [35], [36], [42]-[44], we use this strategy to test
the performance boundaries of the anomaly detection method
proposed. Anomaly detection will be covered in four specific
cases of OBD and vehicle system anomalies in this work:

1) Vehicle system operating performance drop
2) Engine coolant system problem

3) Fuel system problem

4) Engine ECU tampering

The first type of anomaly addressed within this work is
the vehicle system operating performance drop. Since perfor-
mance drops with the vehicle systems can be very generic,
it cannot be expected that a specific set of parameters is
problematic. It represents the anomaly where data patterns

VOLUME 11, 2023

and correlations are out of scope from the normal data, but
for a random set of OBD PID signals. One example is the
battery energy storage capacity drop, impacting the ability
to charge the battery to its original manufacturer-specified
capacity [45]. For this purpose, snapshots representing this
anomaly type are generated on random OBD PIDs xi"bd using
the Lorenz Attraction model, also known as Chaos theory
[46], [47]. This anomaly generation technique utilizes a set of
differential equations (1a)-(1c), where small input differences
allow recreation of general anomalies, fitting the use case of
vehicle system performance drop. In the course of this work,
the equations of the Lorenz model (1a)-(1c) are solved for
parameters ¢ = 10, § = 2.65, p = 28, and dr = 0.01.
The solutions of the differential equations («, 6, and ~) are
normalized (uorm»> Gnorm»> a0d Vuorm), and later injected in the
random PIDs x% of snapshots according to Equation (2),

i,0rig
emulating performance drop anomaly PIDs x?%4 .

do
E _0'(9—0() (la)
do
o =ol— -0 (1b)
dy _
T af — By (1c)

xfggom = Xﬁgg,-g * (1 + (anorm + enorm + 'Ynarm)) (2)

Other types of anomalies are generated using a Gaussian
perturbation to the selected PIDs for each case, depending
on the anomaly type. The Gaussian perturbation is done by
multiplying the Gaussian noise with the original signals from
normal data, representing statistical deviation or anomaly in
a data sense. The Gaussian noise magnitude is scaled differ-
ently in order to achieve a range of anomaly severity levels,
giving more realistic cases of variable severity of anomalies
found in real OBD cases. In contrast to the chaotic perturba-
tions described earlier, this approach aims to generate more
localized outliers and sensor level anomalies by perturbing
selected signals toward the statistical borders of their normal
distribution. For a given snapshot, a subset of OBD PID
signals x?*? is selected, and their original values xﬁﬁ;ﬂg are
modified using a multiplicative Gaussian deviation.

The selection of OBD PID signals for each anomaly type
created using Gaussian perturbation is shown in Table 2.
Since the generation of each instance of vehicle operation per-
formance drop anomaly (using the Lorenz attraction model)
is random, it is excluded from the mentioned table. In the case
of an engine coolant system anomaly, the outputs of engine
coolant temperature sensors are tuned. One example of such
an anomaly can be the air trapped in the coolant system, caus-
ing air pockets due to improper bleeding after coolant refill.
The impact of such an anomaly is reduced heat transfer effi-
ciency or localized temperature irregularities. This anomaly
will not cause a system failure and is not recognized with
the OBD system, but the long-term damage risk increases.
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Furthermore, fuel system problems are generated using fuel-
related parameters, such as various temperature and pressure
sensor parameters. An example of such an anomaly would
be delayed or noisy fuel pump priming, causing the longer
time to build the required pressure in the vehicle engine off,
ignition on state. It can lead to the extended cranking time and
inconsistent cold starts, again not being detected within the
OBD system. Lastly, anomalies related to engine ECU tam-
pering are created using dynamic propulsion system sensors
and actuators, such as engine speed, torque, and throttle posi-
tions. For example, the engine parameters could be forcefully
remapped outside of official workshops for engine tuning.
This anomaly can lead to a failure of the propulsion system,
since it starts behaving outside of predetermined manufac-
turer specifications, but is not detected within OBD. In this
way, only the specific physically correlated parameters are
manipulated, generating relevant real-life problem scenarios
where exceptional, out-of-order patterns are exhibited. This is
important to test the feedback part of the proposed anomaly
detection solution, used for identifying the primary causes for
various anomalies.

The idea of using Gaussian perturbation is to replicate
anomalies that fall outside the usual operating range but
remain physically plausible, such as various inconsistencies
found in real OBD data. To emulate different severity levels,
an anomaly is constructed by sampling a Gaussian random
variable centered at zero and scaled by a deviation factor
d, € {0.5,1.5,3}, depending on the anomaly magnitude.
Anomaly values are generated using the equation (3):

i = X5 1+ N0, o) @

X

where N (0,d,) represents a Gaussian distribution with
zero mean and standard deviation d,. After perturbation,
the resulting values are bounded within predefined physical
limits to prevent impossible or unrealistic OBD signals (e.g.,
negative RPM or temperatures below hardware thresholds).
This Gaussian-based injection method ensures the control-
lable and reproducible creation of severity-graded anomalies
across multiple PID inputs.

The similarity between the generated synthetic anomalies
and the real anomalies found in actual J1699 log data was
checked using Kullback-Leibler (KL) divergence. This ap-
proach is a common measure for quantifying the difference
between two probability distributions [48]. In this context,
a lower KL divergence, measured in nats for multivariate
distributions, indicates a higher statistical resemblance be-
tween the datasets. It should be taken into consideration that
the anomaly types found in the actual J1699 log files are
much more diverse than those generated in this work. The
KL divergence analysis revealed that the generated anomalies
emulating system performance drops, created using a Lorenz
attraction model, showed the closest alignment with the real
data, with a total KL divergence of 18.77 nats. This low
divergence suggests that the chaotic perturbations effectively

6

capture the structure of a general anomaly type, such as
system performance drops.

On the other hand, anomalies generated using Gaussian
perturbation, designed to reflect component-specific issues
such as engine coolant faults and fuel system problems, ex-
hibited higher KL divergence values of 25.22 and 33.70 nats,
respectively. While still being reasonably aligned with real-
world trends, these results indicate a growing deviation in
statistical behavior. The anomalies intended to represent ECU
tampering produced the highest KL divergence at 47.55 nats,
showing a significant shift from the distribution of tampering-
like behavior in the J1699 logs. This is expected, since the
original anomalies do not specifically contain this type of
anomaly. This concludes that the generated anomalies pro-
vide a meaningful approximation of real vehicle systems and
OBD anomalies found in actual J1699 log files.

IV. METHODOLOGY

A primary challenge in implementing heuristic and expert
knowledge-based systems for anomaly detection in OBD data
lies in the high dimensionality of OBD datasets. Conventional
statistical analyses, such as correlation studies [49], as well as
data visualization, face significant limitations when applied
to such high-dimensional spaces, especially for holistic data
interpretation. Removing some OBD PIDs temporarily solves
this problem, but removes potentially relevant information
from the dataset. The generalization of the data processing
results in that case is lost. The challenge grows when consid-
ering only OBD snapshots as data input, since less amount of
data per vehicle is present. As a first step of the methodology,
a variety of OBD data snapshots from different vehicles need
to be acquired through testing, measurements, validation, and
other means through the OBD port inside the vehicles. This
will create a database of OBD data snapshots ready in the
backend for further processing, visualization, and archiving
purposes. The database is managed by the engineers who are
in charge of the process of testing, validation, monitoring,
etc. A database that contains a collection of OBD Mode 01
snapshots can be defined with the relation (4), where Xgpq
is m x n OBD snapshot matrix, n represents the number of
available PIDs, and m indicates the total number of snapshots
in the database. Each OBD PID x?*® represents a column in
Xobda. Practical dimensionality revolves around n ~ 50 (up to
250).

Xobg € R™ - x4 e R™ . x2 = X 4[],

o 4)
forl1<i<n
Data analyses and processing tend to use lower-
dimensional data for better and more transparent results [50].
In order to achieve lower dimensions and keep the data
structure consistent, the first step of the anomaly detection for
the use case of OBD snapshots proposed in this paper is di-
mension reduction. Reduced data loses the physical meaning
of dimensions, but gains potential to analyse and process data
in lower dimensions, revealing the topological structure of the
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TABLE 2: List of OBD parameters that are used as a basis for the generation of specific anomaly types using Gaussian

perturbation.
Anomaly root PID | PID abbreviation PID description
05 ECT Engine coolant temperature
Engine coolant system 67 ECT_1 Engine coolant temperature 1
67 ECT_2 Engine coolant temperature 2
0B MAP Manifold absolute pressure
OF IAT Intake air temperature
10 MAF Airflow rate
Fuel system 23 FRP Fuel _rail pressure
) 68 JAT_11 Intake air temperature 1
68 IAT_12 Intake air temperature 2
04 LOAD_PCT Engine torque percentage
0C RPM Engine RPM
11 TP Absolute throttle position
Engine ECU tampering 43 LOAD_ABS Engine torque value
45 TP_R Relative throttle position
47 TP_B Absolute throttle position B
5C EOT Engine Oil Temperature

data inside a dataset. After dimension reduction is applied to
the initial data (4), the resulting relation (5) defines Y,pq as the
OBD snapshot data matrix with k reduced dimensions, where
each column y; corresponds to a reduced feature. Dimension
reduction mapping function ¢ maps the n-dimensional data
points to k-dimensional target points, see relation (6) [51].
Using lower dimensions, such as k = 2 or k = 3, better
visualization and clustering of data are possible, making the
results and the data structure intuitive for systematic anomaly
detection and further heuristic reasoning of the data.

Yobd = (Xoba)s  Yoba € R™K i = Youa[s, )], 5)
for1<j<k, k<n
p: R" - RF x; =y, forl <j<k (6)

The central premise of this work is formalized in Hy-
pothesis 1. The authors propose that dimension reduction
techniques can reveal the disputancy in data structure be-
tween normal and abnormal (anomaly) patterns required for
anomaly detection. The hypothesis revolves around the notion
that by mapping OBD data into a lower-dimensional space,
it becomes feasible to identify abnormal patterns through
clustering and outlier analysis. The proof of such a hypoth-
esis would enable effective anomaly detection in automotive
applications, specifically crucial for diagnostic systems.

Hypothesis 1. Anomalies in vehicle operation and diagnostic
systems are detectable within lower-dimensional representa-
tions of OBD data snapshots, perceptible by their individual
distances and inherent structural patterns.

The architecture of anomaly detection based on OBD data
snapshots proposed in this work is visualized in Figure 2. The
figure shows the collection of OBD snapshots in the database,
forming m x n-dimensional matrix Xopq, described by the
Equation (4). The input is preprocessed using min-max data
normalization to ensure that all features contribute uniformly

VOLUME 11, 2023

[52], and later processed by the dimension reduction algo-
rithm. The output of dimension reduction is an OBD snapshot
dataset with reduced dimensions Y4, according to Equation
(5). Such data is further processed with a clustering technique
to identify groups of normal data points and potential outliers
outside of those cluster zones. Each anomaly is individually
inspected in the backend to determine the cause of its labeling
as a potential anomaly. This inspection results in a selected
group of OBD PIDs (i.e. xo% xod xbd) that exhibit the
strongest influence on the anomaly compared to normally
clustered data. This concept aims to flag potential anomaly
OBD snapshots and provide a focused list of the specific
causes for the observed abnormal behaviour.

Fig. 3 illustrates a typical utilization of the proposed
snapshot-based anomaly detection. First, the vehicle test is
performed in the sense of PVE J1 (SAE J1699) test, CTC
implementation, or simply by checking OBD vehicle compli-
ance (described in Sections I and III). The OBD data snapshot
is derived from the first phase, since all mentioned technical
procedures include it. Secondly, the tester stores the snapshot
in the database, collecting groups of snapshots from various
vehicles. This generates a considerable snapshots database
that is ready for further processing in the backend, which is
managed by the engineers in charge of the tests, validations,
checks, and other programs. At this point, the anomaly de-
tection pipeline is initiated in the backend by an application
engineer who has access to the snapshots database and selects
the desired set of snapshots for the analysis. This is not done
in real-time, but independently of the vehicle in the backend,
after data collection inside the vehicle is done. The goal of
the application engineer here is to provide final checks for
the vehicle tests by analysing the data found in the database.
This is important since the OBD system that does not show
any faults or other problems does not guarantee compliance
or normal behaviour, as discussed in previous sections. An
anomaly detector, the blue-highlighted process in Figure 3,
is designed specifically to fill this existing gap. The anomaly
detector process consists of the following steps: dimension
reduction, cluster identification, outlier extraction, and root
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FIGURE 2: Architecture of proposed vehicle diagnostic system anomaly detection based on OBD snapshot.

cause investigation. These steps are explained in greater detail
further in this section. The anomaly detector finalizes with
the creation of a technical report for the application engi-
neer, including a visualized representation of the database in
reduced dimensions, problematic snapshots, their data, and
potential root causes. The engineer either acknowledges for
each vehicle separately that it is normal, or provides addi-
tional actions for anomaly-labelled vehicle snapshots. Such
actions can be repair instructions, issuing fines, reinitiating
the tests, or further investigations.

As a first step, the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) algorithm is used for dimension reduction,
as it outperformed other approaches. t-SNE is a dimension
reduction algorithm that maps data points to a k-dimensional
space. It is one of the most popular methods used for di-
mension reduction and is widely used in machine learning
and data visualization. In the following, the basics of the
algorithm are explained. P is a similarity matrix of the OBD
snapshot X4, while Q is the similarity matrix of the resulting
dimension-reduced data Y.,q. The exact definitions of these
similarity matrices can be found in the originally proposed
algorithm [53]. t-SNE aims to find y; that minimizes the KL
divergence between P and Q, that is described by Equation
).

(y17 e 7)’k) = arg}mi% DKL(P7 Q)
V15 Vk
= arg min E Dij log@ (7
Vi Yk ) qij
ije{1,2,...,n}
i#j

Many algorithms have been proposed to solve this equa-
tion, and the most common is a variant of the gradient
descent algorithm, with an updating equation [54]. While
other dimension reduction algorithms have been evaluated
in this work, such as Uniform Manifold Approximation and
Projection (UMAP) [55], the best results were obtained with
t-SNE. The results are represented as labelless, dimension-
reduced OBD snapshot data points scattered across the latent
space.

8

The following step is applying a clustering algorithm on
the dimension-reduced data matrix Y,,q. The Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
clustering approach is chosen for this use case, as better
performance was obtained in comparison with other meth-
ods such as k-means and Local Outlier Factor (LOF). DB-
SCAN is an unsupervised learning method and belongs to
the class of density-based clustering algorithms. It identifies
clusters as regions of high density in the data or latent space,
which are separated by areas of lower density. In contrast to
partitioning clustering algorithms such as k-means, density-
based methods allow for the identification of clusters with
arbitrary shapes in n-dimensional space. This is especially
favorable because the latent representations of data, which
are generated through dimensionality reduction, frequently
involve intricate structures that are not adequately described
by spherical boundaries. By connecting points with locally
high density, dense regions are formed that can be interpreted
as clusters. The local density of a data point g is defined by

Ne(q) = {p € D|dist(p,q) < €}, (®)

where e describes the radius of the neighborhood of the data
point g. A core object is a point g that satisfies |N.| > MinPts,
which means that a sufficient number of neighboring points
are located within its density region. A point p is said to be
directly density-reachable from another ¢ if p € N.(g) and
q is a core object held. If a point p is reachable from g via a
point o, and both p and g are density-reachable from o, then p
and ¢ are considered density-connected. A dense region thus
comprises all points that are mutually density-connected. The
set of densely clustered points from Yy,q can be partitioned
into clusters {Cy, ..., C, }, such that: C; C Yoq, C; N C; = 0.
Points that do not belong to any of these clusters form the
residual set Yopq \ {C1, ..., Cy, } and are referred to as outliers.
These points lie in low-density regions and, with respect to
the parameters € and MinPts, cannot be assigned to any cluster
[56]. Itis assumed that such points are generated by a different
process and can therefore be interpreted as anomalies. In other
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FIGURE 3: Illustration of the interaction between the stakeholders of the anomaly detection pipeline in OBD vehicle diagnostics.

words, DBSCAN labels each OBD snapshot by assigning it
a cluster € {Cy,...,C,}, or marks potential anomalies by
assigning them outside of all clusters ¢ {C1, ..., Cy}.

Finally, the causes for anomalies are investigated using
SHAP methodology. SHAP provides a unified framework
for interpreting the output of various data processing models
by quantifying the contribution of each input feature to a
given label prediction [57]. The methodology is often re-
ferred to as a benchmark for XAlI, the solution of transform-
ing systems from black-box models into white-box ones. It
aims to achieve transparent, interpretable, explainable, and
dependable systems [58], overall very valuable in the con-
text of anomaly detection in automotive. SHAP methodology
outputs a single SHAP value for each feature, and can be
calculated for a set of OBD snapshots using the equation
below:

SHAP i = Y W[V(Su{xfbd})fuw)],

SCN{xphd}
9
where SHAP; is the SHAP value of each feature x;’bd, N

VOLUME 11, 2023

represents a set of all features [x§™, ...x?% .. x°*] p is the

number of OBD PIDs, set S is the subset of N which contains
feature x**¢, and finaly v is the base value of the predicted

outcome for each feature xf’bd in N [59].

obd
i

The explainability using SHAP is done on a trained Ran-
dom Forest (RF) model that has a goal of anomaly classi-
fication. After the dimension reduction and clustering, RF
needs to be trained based on the output labels from previous
steps. Based on trained RF model using the OBD snapshots
and labels, SHAP values enable a quantified understanding
of which specific OBD PIDs (i.e. x3%4, x%4, xbd) strongly
influence the DBSCAN anomaly detection decisions. The
SHAP values are ordered based on the magnitude, and the
highest ones are considered to be the causes for the anomalies.
The SHAP methodology is done on the preprocessed snap-
shot input data X,pg (see Equation (4)), after DBSCAN labels
them as anomaly snapshots. By attributing anomalies to par-
ticular OBD features, SHAP facilitates the identification of
underlying systems or components that are likely responsible
for abnormal behavior. This interpretability not only supports
targeted troubleshooting and maintenance but also highlights
potential design flaws or areas where system improvements

9
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are necessary, giving it high importance in vehicle testing
phases.

In the case of the explainable anomaly detection approach
depicted in the Figure 2, the anomalies are firstly detected in
lower dimensions, as previously described. Each snapshot is
therefore labeled normal or anomaly. For the labeled snap-
shots, the next step for tracing root causes of anomalies is
performed by training an RF classifier on combined labeled
data in the original dimensions. The combined labeled data
consists of all normal snapshots and each snapshot that is la-
beled as an anomaly separately. The RF model is chosen here
for its compatibility with the TreeExplainer method in the
SHAP framework, which efficiently computes SHAP values
for tree-based models. After training, the TreeExplainer gen-
erates SHAP values for each anomaly individually to quantify
the contribution of OBD PID features to the classification
decision, or the root cause of the anomaly in this case. These
features are then ranked by the mean absolute SHAP value
over all anomaly samples.

V. EXPERIMENTAL STUDY

A. DATASETS AND EVALUATION METRICS

The evaluation of the anomaly detection concept proposed in
the previous section is done with two scenarios, the first one
with the engine off, and the second with the engine on data
snapshots. Both scenarios have separate sets of regular 1057
snapshots, expected normal, from different ICE vehicles. A
high variety of different ICE vehicles in exploitation were
included, both spark and compression ignition engine types,
model years from 2014 to 2024. On top of that, for each
scenario, 140 anomaly snapshots were generated, account-
ing for 13.2% of total OBD snapshots. Anomaly snapshots
include 50 snapshots of vehicle operating performance drop
anomalies, 30 engine coolant system problems, 30 snapshots
of fuel system problems, and 30 snapshots of engine ECU
tampering, again for each evaluated scenario. The last three
anomalies that were generated using Gaussian perturbation,
each severity level d, € {0.5,1.5,3} had 10 anomaly snap-
shots (see Section III-B and Equation (3)).

Evaluation of proposed anomaly detection performance for
both cases is done with the model confusion matrix and its
derivatives, accuracy, precision, recall, and F1 score. The
confusion matrix consists of four basic characteristics that
are used to define the measurement metrics of the classifier,
in this case, anomaly or normal OBD snapshot. These four
characteristics are: True Positive (TP) that represents the
percentage of data points that have been properly classified
as anomalies; True Negative (TN) the percentage of correctly
classified snapshots that are normal; False Positive (FP) the
percentage of misclassified snapshots with the anomaly but
they are clasified as normal; False Negative (FN) the per-
centage of snapshots misclassified as normal but actually
are anomalies [60]. Accuracy, precision, recall, and F1 score
are calculated from the values of TP, TN, FP, and FN. The
proposed anomaly detection approach is evaluated against the
Isolation Forest (IF). The IF is considered to be a benchmark

10

for the general anomaly detection in the literature due to its
ability to isolate anomalies effectively by recursively parti-
tioning the data [61]. It identifies outliers as points that require
fewer splits to isolate in random trees.

B. ENGINE OFF SCENARIO

1) Scenario Description

Engine off represents the state of the vehicle where the engine
is not active, but the ignition is on. This can happen before en-
gine cranking or during a short stop in the driving cycle (i.e.,
during a traffic light) for start-stop system engine types. In
this state, the main propulsion-related systems and controllers
are powered on and are in the stage of preparing to turn on the
engine. Usually, the Engine Control Module (ECM), engine
ECU, coordinates the state of the vehicle with component
boot order and monitors their early behaviour. A total of 55
PIDs x?* are available from the engine off OBD snapshots,
the complete list is in the Table 5. A lot of irregularities in
the engine operation, emission regulation, fuel system, and
others could be detected in this state using anomaly detection.
The challenging task in the engine-off scenario arises from
the data being more uniformly distributed, resulting in lower
Shannon data entropy for many parameters during this stage
(in the case of our data, 29%). In this case, anomalies repre-
senting engine ECU tampering are disregarded since the en-
gine is off and the vehicle is not driving. The visualization of
key PIDs for anomalies (see Table 2) in normal and anomaly
snapshots is shown in Figure 10.

2) Dimension Reduction

The scenario including engine off data with true labels (nor-
mal and anomaly types) after dimension reduction using t-
SNE gives a result represented in Figure 4. Each data point
in the 2-D plot represents one vehicle OBD snapshot, in
the engine off state. The figure can be interpreted as be-
ing divided into two parts, left and right, from the t-SNE
dimension 1 value 0. The t-SNE created larger line-shaped
normal snapshot clusters (blue points), indicating their data-
similarity closeness. The figure shows variable separation
of anomaly (orange/red/purple points) from these normal
snapshot clusters. Some anomalies are obviously separated,
while others are merged among the normal points (blue). The
best separation gave the general system performance drop
anomalies (orange), while other types of anomalies are more
mixed with the normal data in the latent space. A greater
distance between anomalies and normal data points makes it
possible to detect anomalies using DBSCAN. The different
anomaly types are usually kept in separate smaller groups (2-
6 snapshots), around the aforementioned line-shaped normal
data clusters. The t-SNE model with a perplexity of 200 and
k = 2 reduced dimensions shows the best results for dimen-
sionality reduction. Quantitatively, t-SNE outperformed the
other considered dimension reduction technique UMAP, as
concluded from the Silhouette score (s) for each approach:
sSANE = 0.0657; sUMAP = 0.0002. The Silhouette score
represents a widely used metric that measures how well data
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FIGURE 5: Results of t-SNE and DBSCAN in anomaly detection for engine off OBD snapshot. The results are shown labeled
with confusion matrix results, and the model in this case showed an accuracy of 92.89%.

points with different labels (normal/anomaly) are separated
in the embedding.

3) Anomaly Detection

Further anomaly classification in the engine off scenario is
done using DBSCAN. The normal/anomaly labels are origi-
nally unknown to the DBSCAN model, they are derived from
the formed dense regions and isolated points after DBSCAN
processing. Various DBSCAN hyperparameters were evalu-
ated with the dimension-reduced data, and the best result pro-
vided a hyperparameter combination of maximum distance
between two neighbor points € = 0.5, minimum number of
samples within € to form a cluster min_dist = 3, and distance
metric type Manhattan. The model in this scenario showed

VOLUME 11, 2023

overall anomaly detection accuracy of 92.89%, precision of
0.729, recall of 0.391, and F1 score of 0.509. The overall
and per-anomaly type normalized confusion matrices are dis-
played in the Table 3. The confusion matrices are normalized
based on the actual label for better visual inspection in a way
that TP + FN = 100% and TN + FP = 100%. The results of
anomaly classification using this DBSCAN model are shown
in Figure 5, where each snapshot is labelled according to
the confusion matrix. As expected, the DBSCAN anomaly
classification performed well for those anomaly data points
that were clearly separated from the clusters of normal data
in the latent space (i.e., TP data points located on the left side
above the normal clusters). Anomaly snapshot data points
that overlapped with normal data after dimension reduction
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were not identified as anomalies (i.e., FN data point groups
on the right side). The analysis of per-anomaly type confusion
matrices is done against normal data. Each anomaly type
excludes other types of anomalies in evaluation for more in-
terpretable results. The results of such analysis show that the
performance drop anomalies had the highest rate of positive
detections, compared to the other two types of anomalies.
The reason for this can be found in the dimension reduction
analysis done in the subsection V-B2, where the performance
drop anomaly type had the largest overall separation from the
normal datapoints. The solid separation had the fuel system
anomalies, and the much poorer separation was done with
the engine coolant system anomaly. This directly reflects
the results of DBSCAN (see Table 3). This concludes that
the anomaly detection in this case highly depends on the
dimension reduction result in terms of the algorithm and
hyperparameters. Compared to the baseline benchmark, the
results can be seen in Appendix III, Table 6. IF performs
better on data points with clear separation, as shown in V-B2.
In the more challenging anomaly patterns, such as the en-
gine coolant and fuel system, it becomes apparent that the
proposed outlier detection pipeline outperforms the pure IF
approach due to its dimension-reducing preprocessing. The
proposed approach detects approximately 30% more fuel
system anomalies in this scenario, while it is outperformed
in the performance drop anomaly case by 27%.

TABLE 3: Confusion matrices results for overall and per-
anomaly type of anomaly detection using DBSCAN for en-
gine off scenario.

Anomaly group TP TN FP FN

All 39.09% 98.49% 1.51% 60.91%
Performance drop | 54.00% 98.49% 1.51% 46.00%
Engine coolant 6.67% 98.49% 1.51% 93.33%
Fuel system 46.67% 98.49% 1.51% 53.33%

4) Cause Analysis

SHAP analysis of the engine off snapshots scenario is done
to identify the causes of individual anomalies. The SHAP
was implemented by training an RF classifier in the origi-
nal data space after the snapshots were binarly classified to
be normal or anomaly. The binary classification RF model
was trained using 100 decision trees and is initialized with
a fixed random seed to ensure reproducibility of results.
After training, TreeExplainer with an RF model was used
to assign the SHAP value for each OBD PID of anomaly-
labelled snapshots. In order to evaluate the explainability and
root cause identification of the proposed anomaly detection
approach, the anomalies of the same type are grouped, and
their mean SHAP values for each PID (mean|SHAP |, for
1 < i < n) are calculated. Furthermore, the mean SHAP
values are normalized, since only the relative ratio between
the SHAP values of different PIDs is relevant. The outcome in
the cases of engine coolant systems and fuel system problems
is shown in Figure 6. The SHAP analyzed each of 55 PIDs in
the engine off scenario and assigned a SHAP value, while the
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(a) Engine coolant system anomaly
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(b) Fuel system anomaly

FIGURE 6: Results of the SHAP analysis for the engine
off snapshots scenario, including the top 10 most influential
parameters with normalized mean SHAP values for different
anomalies.

10 highest are shown in the Figure. In both cases, the SHAP
method showed success in finding the root causes of specific
anomalies by giving the specific PIDs the highest magnitudes
of SHAP values. In the case of engine coolant temperature,
root causes are coolant temperature sensors (ECT, ECT_1,
ECT_2), as described previously in Table 2. Using heuris-
tic investigation, the problematic system can be pinpointed
using marked signals, in this case engine coolant system.
The SHAP in the second anomaly case of the fuel system
problem marked all 6 root cause PIDs from Table 2. The
final cause of the second anomaly can be pinpointed using
the 6 detected signals, leading to the fuel system anomaly. The
SHAP analysis in the anomaly case of general system perfor-
mance drop is skipped, since the anomalies are generated on
random sets of PIDs for each anomaly of this type, making
the results impossible to validate. Overall, SHAP analysis
showed success in detecting the root causes for individual
anomalies in the case of the engine off snapshots scenario.
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FIGURE 8: Results of t-SNE and DBSCAN in anomaly detection for engine on OBD snapshot. The results are shown labeled
with confusion matrix results, and the model in this case showed an accuracy of 96.45%.

C. ENGINE ON SCENARIO
1) Scenario Description

The engine on data snapshots represents the vehicle state in
driving or parking mode, where the engine has been running
for some period. This is important to avoid the potential false
positive anomalies at the specific moment of cranking the
engine or during preparation, warm-up cycles. For example,
this is managed in the J1699 test by forcing the tester to wait
30 seconds after the engine is turned on. All anomaly types
from Table 2 are accounted for in this scenario, and the total
number of PIDs x™ is 57. The total list of PID parameters
included here is shown in Table 5. Some parts of propulsion-
related systems are still not active or not responding to ECM
in the engine off scenario, therefore more PIDs are found in

VOLUME 11, 2023

the engine on state. The representation of normal and anomaly
snapshot values for PIDs used to create anomalies in the
engine on scenario (see Table 2), is shown in the Figure 11.

2) Dimension Reduction

The t-SNE for dimension reduction in this scenario results in
Figure 7 that shows snapshots with their true labels. The axes
in the figure represent the abstract t-SNE output variables, y;
for 1 < i < k, after dimension reduction to a latent space.
Dimension-reduced normal snapshots, marked with blue dots,
in this case form more distinct cluster groups, compared to
the engine off case. This creates a better ground base for the
separation of anomalies (orange, red, purple, brown points),
crucial for their later detection. Contrary to the other scenario,
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the reduced dataset cannot be divided into two parts, but
represents relatively equally distant clusters. The normal data
keeps the line-shaped clusters for most parts of the dataset,
out of which the majority is horizontally oriented (in the di-
rection of the constant values of t-SNE dimension 2 axis). The
engine on scenario contains an additional anomaly compared
to the engine off scenario - an engine ECU tampering. The
anomalies are reduced in relative proximity to the normal
data clusters, but far enough to be detectable as anomalies
in latent space. In this case, all types of anomalies are well
separated from normal clusters, but they create larger groups
(2-12 datapoints) than in other scenario. The larger groups
are a direct cause of the majority of false negatives in later
anomaly detection. The dimension reduction was done using
the t-SNE model with perplexity 100, and & = 2 reduced
dimensions. Once more, the t-SNE outperformed UMAP in
the engine on scenario, as depicted with Silhouette scores:
SUSNE — ().3238; sUMAP — ().2934.

> ~on

3) Anomaly Detection

The DBSCAN hyperparameters combination that gave the
best results in the engine on case is: maximum distance
between two neighbor points ¢ = 0.5, minimum number of
samples within e min_dist = 4, with distance type euclidean.
After visually better separation of normal and anomaly snap-
shots with t-SNE than in other scenario, evaluation metrics in
the engine on scenario show an increase in achieved results
with accuracy of 96.45%, precision of 0.945, recall of 0.743,
and F1 score of 0.832. Normalized confusion matrices in the
engine on scenario for anomaly detection using DBSCAN
overall and per anomaly type are shown in the Table 4. The
majority of misslabeled anomaly snapshots in this case (False
Negatives) are the tight groups of the same anomaly labels
that form a cluster and are hard to detect. For example, this
is the case for grouped tampering anomalies in the middle
(brown points in the Figure 7, red x in the Figure 8) or system
performance drop anomalies in the lower right side (orange
points in the Figure 7, red x in the Figure 8). This proves
once more that the dimension reduction step is crucial for
precise anomaly detection using DBSCAN. The per-anomaly
type confusion matrices show the best detection of the perfor-
mance drop anomalies. Furthermore, other types of anomalies
performed much better than in the engine off scenario. This is
mainly due to the increased dynamics of PIDs in the engine on
scenario. In the case of the engine on scenario, the dataset has
a broader range of signals. Consequently, interpretability de-
creases for high-dimensional spaces (see Section V-C2). This
is also evident in the application of the IF. Here, the presented
anomaly detection pipeline outperforms the IF applied to this
scenario. In each anomaly case, fewer anomalies are detected
with the benchmark solution (see Table 7). Furthermore, the
IF showed a lower rate of TN compared to the proposed
anomaly detection.

TABLE 4: Confusion matrices results for overall and per-
anomaly type of anomaly detection using DBSCAN for the
engine on scenario.

Anomaly group TP TN FP FN

All 74.29% 99.43% 0.57% 25.71%
Performance drop | 88.00% 99.43% 0.57% 12.00%
Engine coolant 53.33% 99.43% 0.57% 46.67%
Fuel system 86.67% 99.43% 0.57% 13.33%
Tampering 60.00% 99.43% 0.57% 40.00%

4) Cause Analysis

SHAP analysis further investigates the specific causes of indi-
vidual anomalies in the engine on evaluation scenario. More
PIDs are available in this scenario, and their expected values
in snapshots should be more structured and dynamic. Again,
the SHAP was implemented by training the RF classifier after
DBSCAN with labeled snapshots. The RF model used the
same hyperparameters as in the last case, 100 decision trees
and a fixed random seed. TreeExplainer assigned the SHAP
value to each PID of snapshots that are labelled as anomalies.
The results are grouped according to the anomaly type, and
the normalized mean SHAP values are ranked according to
magnitude. The 10 highest values for the cases of anoma-
lies in the engine on scenario are shown in Figure 9. Three
anomaly types were evaluated using SHAP: engine coolant
system problems, fuel system problems, and engine ECU
tampering. For the cases of engine coolant problems and fuel
system problems, all influencing PIDs were detected. Three
PIDs in case of coolant system problem and all six PIDs in
the case of fuel system problem (see Figures 9a, 9b and Table
2). The output of their main subsystems showed the highest
magnitude of normalized mean SHAP values, therefore the
anomalies can be seamlessly pinpointed to the respective root
systems. Finally, the SHAP managed to detect 6 out of 7
relevant signal causes in the case of tampering. The relative
throttle position signal (TP_R) was not included in the top
10 signals of average SHAP value (see Figure 9c, and Table
2). The main reason for this can be found in the anomaly
generation part, since the values of this PID for generated
anomalies are almost identical to the normal snapshots (see
blue and brown datapoints in the TP_R plot inside the Figure
11). With one signal missing, the problematic component
(e.g., engine ECU, engine speed, and throttle sensors) could
still be focused, since the other two throttle sensors were
detected as potentially problematic. With this precision of the
cause detection in the engine on scenario, it can be concluded
that the SHAP methodology showed great success and practi-
cality in the case of OBD data. Combining with the results of
the engine off evaluation scenario, it proves the potential for
cause detection with vehicle known and unknown problems
using OBD data.

VI. DISCUSSION

An observation can be made from the distance metrics per-
spective of the t-SNE dimension reduction algorithm for dif-
ferent scenarios of OBD anomaly detection based on snap-
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FIGURE 9: Results of the SHAP analysis for the engine on
snapshots scenario, including the top 10 most influential pa-
rameters with the normalized mean SHAP values for different
anomalies.

shots. The Manhattan distance metric achieved the best sep-
aration between true anomalies and normal data, while the
Euclidean metric in the engine on scenario performed better.
This is likely due to the unique inherent characteristics of
the data distributions in each scenario. This is emphasized
with the lower Shannon data entropy for 29% of the PID
parameters in the case of engine off, which is not the case

VOLUME 11, 2023

with the engine on scenario. When the ignition is on and
the engine is off, the OBD data tends to be more discrete,
sparse, or less smoothly varying, which can result in higher-
dimensional data with localized clusters. The Manhattan dis-
tance metric is often more effective at preserving meaningful
neighborhood structures during dimensionality reduction in
this case. Contrary to the engine in the engine on scenario, the
engine system is active and generating interrelated measure-
ments across a broader range of sensors, leading to a denser
and more smoothly varying dataset. Therefore, the Euclidean
distance is better suited here to capture the global geometric
relationships among snapshots. Thus, the difference in opti-
mal distance metrics for t-SNE in the two scenarios reflects
the underlying difference in the structure and variability of
the OBD data in the scenarios.

A sensitivity analysis of the DBSCAN hyperparameters,
namely € and MinPts (see Section IV), is also considered.
A parameter sweep over € and MinPts was conducted to
evaluate how the sensitivity of the model depends on the
chosen distance metric. The sensitivity of the True Positive
Rate (TPR) is used as the evaluation criterion. In the engine
off scenario, the choice of hyperparameters has a significantly
stronger effect on model performance. From ¢ = 0.5 on-
wards, no reliable predictions can be achieved (TPR < 70%).
In contrast, the spatial density in the engine on scenario is
lower, which is reflected in the reduced influence of the
neighborhood radius. A noticeable degradation in prediction
performance occurs only from € = 0.9 for the Euclidean
metric and from ¢ = 1.1 for the Manhattan metric. If € is
chosen too large, the neighborhood around each core object
becomes excessively wide. As a result, individual clusters
and noise points can no longer be separated, making the
identification of anomalies impossible. The choice of MinPts,
however, has only a negligible effect. Since the points lie suf-
ficiently densely in the projected feature space, the formation
of clusters with too few points does not occur. Furthermore,
the influence of distance metric shows that in both scenarios
the Manhattan distance yields a more robust metric in terms
of the TPR (see Figures 12, 13). The superior sensitivity of
the Manhattan distance may be explained by the geometry
of the low-dimensional feature space. While the Euclidean
metric defines a circular (or spherical) neighborhood around
each core point, the Manhattan distance forms a diamond-
shaped region. This leads to a different notion of locality
and thus influences the clustering result. However, as already
demonstrated in Section V-C2, the spherical approximation
yielded better overall results. In summary, the sensitivity of
the proposed pipeline depends primarily on the preceding
dimensionality reduction step, as it implicitly determines an
appropriate choice of the e parameter. Based on the distribu-
tion obtained from the parameter study (see fig. 12a, 12b, 13a,
13b), it can be determined that a suitable initial value for the
€ parameter lies in the range of 0.1 to 0.3. In contrast, the
result is largely independent of the choice of minPts, provided
that this parameter is not selected too small (minPts > 4). In
the presented DBSCAN use case, the Silhouette Coefficient
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in combination with elbow point detection could potentially
be employed to estimate a suitable number of clusters and,
consequently, to determine the associated exclusion of noise
points [62].

The consistent performance across both scenarios demon-
strates the robustness of the approach and suggests its appli-
cability with OBD data. Higher precision of 96.45% showed
the engine on scenario (contrary to other scenario precision of
92.89%), which is more feasible and reasonable to be used for
this type of application. Dimension reduction was a critical
step in the overall process of anomaly detection and had a
major influence on the anomaly detection output. The overall
result provides empirical evidence supporting and validating
the Hypothesis 1, where latent spaces after dimension reduc-
tion of the original data can effectively be used for anomaly
detection of OBD. Limitations of the proposed solution rep-
resent a relatively high percentage of false negative classifi-
cations in both scenarios (60.91% and 25.71% for engine off
and on, respectively). This is acceptable for the use case of
engine on scenario, and even common in the vehicle anomaly
detection due to the wide range of anomaly variations [63].
For the engine off scenario, it is suggested to use benchmark
solutions, such as IF. Furthermore, the analysis of FN rate
per anomaly type reveals that the highest number comes from
engine coolant anomaly type (93.33% and 46.67% for engine
off and on, respectively). This is a direct result of a poor
separation of this anomaly type from normal data in the latent
space after t-SNE dimension reduction, observed with red and
blue datapoints in Figures 4 and 7).

In addition to anomaly detection, the methodology success-
fully identified root causes for various anomaly types using
the SHAP interpretability method, by pinpointing almost all
causing PIDs for individual anomalies. More specifically, all
9 PID signals were identified correctly as causes in the engine
off scenario, and 15 out of 16 in the engine on scenario. De-
spite being evaluated using synthetic anomalies, the proposed
solution is expected to hold practical usefulness with ground-
through data. Real anomaly datasets have a larger variation
of anomalies, but the anomaly quantity is reflected in the
paper. With this in mind, a slight variation of precision for
t-SNE/DBSCAN combined anomaly detection is expected.
The retuning of hyperparameters is almost certain for the
optimal results with different OBD snapshot datasets. Due
to the higher anomaly variability in real cases, it is expected
that the SHAP method performs less precisely in general,
but remains useful in the root detection for the majority of
anomaly cases. It can be concluded that the contribution keeps
the practical use despite the limitations of using synthetic
data.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel pipeline for explainable anomaly
detection in the case of vehicle diagnostics testing, valida-
tion, and inspection. The concept was evaluated using OBD
data snapshots from ICE vehicles. The proposed approach
combines t-SNE for dimensionality reduction and DBSCAN

16

for clustering and anomaly detection. Furthermore, the so-
lution supports anomaly cause investigation using SHAP to
determine potential roots of the individual anomalies. Four
different OBD-relevant anomaly types are used for verifica-
tion of the concept. The paper presented an integration into
the real technical applications for vehicle systems validation
and aftermarket checks, such as PVE OBD compliance tests
(SAE J1699-3) and CTC emission regulation tests. This pro-
vides qualitative enhancements to the mentioned technical
procedures by extending the range of detectable out-of-order
vehicle systems behaviours that modern OBD systems are
not capable of. In addition, the root anomaly causes in the
sense of problematic systems would be traceable using the
XAI proposed solution for OBD PID signals.

The presented results provide empirical support for the
initial hypothesis that anomalies in vehicle operation and
diagnostic systems are detectable within lower-dimensional
representations of OBD data. The aim is to find the most
distinct separation between normal and anomaly snapshots, in
this case achieved with t-SNE. This validates the hypothesis
that latent spaces derived from the high-dimensional OBD
data can serve as an effective basis for anomaly detection,
and indicates that the dimension reduction is a critical step.
This is proven in the evaluation for both scenarios, where
poor separation of anomalies from normal data in lower
dimensions made such anomalies undetectable using DB-
SCAN. Within the success of t-SNE dimension reduction, an
observation is made that the Manhattan distance metric has
better results for the lower Shannon entropy case of engine
off high-dimensional OBD data. Conversely, in the engine
on case of denser varying OBD snapshot data, Euclidean
distance dominated. Overall, the solution proved better results
in the engine on scenario, and showed significant application
potential for real-world vehicle diagnostics and compliance
testing.

The future work shall cover the cases of hybrid and
electric vehicles. Besides the architecture and operation of
propulsion-related systems, the main difference is the snap-
shot input OBD data dimensionality. HEVs support, on aver-
age, more than 100 PID, while EVs support around only 20 so
far. This would bring necessary changes to the initial part of
the pipeline, more specifically the dimension reduction and
anomaly detection. Furthermore, while hybrid and ICE vehi-
cles are falling under the regulation of the SAE J1699-3 test,
the EVs shall in the future use a different test procedure SAE
J1699-5. This subsequently leads to the additional modifica-
tion of the pipeline for its integration into the test procedure.
A suitable extension of the proposed pipeline is an iterative
process for the automated detection of appropriate parameters
for the selected anomaly detection method. Moreover, the fu-
ture work will include more detailed analysis and comparison
of state of the art root detection approaches, including LIME,
Deep Learning Important FeaTures (DeepLIFT), and Layer-
wise Relevance Propagation (LRP).
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APPENDIX I. LIST OF OBD SIGNALS INCLUDED IN THE VERIFICATION

TABLE 5: List of OBD PIDs considered in the Engine Off and Engine on scenarios.

PID | Name Description Eng. Off | Eng. On
01 MIL Malfunction Indicator Lamp Status v v
04 LOAD_PCT Calculated LOAD Value N v
05 ECT Engine Coolant Temperature v v
06 SHRTFT1 Short Term Fuel Trim - Bank 1 v v
07 LONGFT1 Long Term Fuel Trim — Bank 1 v v
0B MAP Intake Manifold Absolute Pressure v v
0C RPM Engine RPM v v
OD | VSS Vehicle Speed Sensor v v
OE SPARKADV Ignition Timing Advance for #1 Cylinder v v
OF IAT Intake Air Temperature v v
10 MAF Air Flow Rate v v
11 TP Absolute Throttle Position v v
15 02Sv12 Oxygen Sensor Output Voltage v v
15 SHRTFT12 Oxygen Sensor 2 Short term fuel trim v v
1C OBDSUP OBD requirements of vehicle v v
1F RUNTM Time Since Engine Start v v
21 MIL_DIST Distance Traveled While MIL is Activated v v
23 FRP Fuel Rail Pressure v v
24 02SV11 Oxygen Sensor Voltage - Bank 1, Sensor 1 v v
2E EVAP_PCT Commanded Evaporative Purge v v
2F FLI Fuel Level Input v v
30 WARM_UPS Number of warm-ups since DTCs cleared v v
31 CLR_DIST Distance traveled since DTCs cleared v v
33 BARO Barometric Pressure v v
34 LAMBDA11 Equivalence Ration - Bank 1, Sensor 1 v v
34 02Scll Oxygen Sensor Current - Bank 1, Sensor 1 v v
3C CATEMPI11 Catalyst temperature Bank 1 Sensor 1 v v
42 VPWR Control module voltage v v
43 LOAD_ABS Absolute Load Value v v
44 LAMBDA Fuel/Air Commanded Equivalence Ratio v v
45 TP_R Relative Throttle Position v v
46 AAT Ambient air temperature v v
47 TP_B Absolute Throttle Position B v v
49 APP_D Accelerator Pedal Position D v v
4A APP_E Accelerator Pedal Position E v v
4C TAC_PCT Commanded Throttle Actuator Control v v
53 EVAP_VPA Absolute Evap System Vapor Pressure v v
56 LGSO2FT1 Long Term Secondary O2 Sensor Fuel Trim v v
5C EOT Engine Oil Temperature v v
SE FUEL_RATE Engine Fuel Rate v v
62 TQ_ACT Actual Engine - Percent Torque v v
63 TQ_REF Engine Reference Torque v v
67 ECT_1 Engine Coolant Temperature 1 v v
67 ECT_2 Engine Coolant Temperature 2 v v
68 IAT_11 Intake Air Temperature - Bank 1, Sensor 1 v v
68 1IAT_12 Intake Air Temperature - Bank 1, Sensor 2 v v
73 EP_1 Exhaust Pressure Sensor Bank 1 v v
78 EGT11 Exhaust Gas Temperature - Bank 1, Sensor 1 | v v
78 EGTI12 Exhaust Gas Temperature - Bank 1, Sensor2 | v v
78 EGT13 Exhaust Gas Temperature - Bank 1, Sensor 3 v X
78 EGT14 Exhaust Gas Temperature - Bank 1, Sensor4 | v X
8E TQ_FR Engine Friction - Percent Torque v v
9D ENG_FUEL_RATE | Engine Fuel Rate v v
9D VEH_FUEL_RATE | Vehicle Fuel Rate v v
9E EXH_RATE Engine Exhaust Flow Rate v v
A4 GEAR_ACT Actual Transmission Gear v v
A6 ODO Odometer v v
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APPENDIX Il. VISUALIZATION OF THE OBD SIGNALS USED FOR ANOMALIES.

FIGURE 10: Values of key PID signals of normal and anomaly snapshots in the Engine Off scenario, as described in Table 2.
Color code is as follows: transparent blue - normal data, orange - system performance drop anomaly, red - engine coolant system
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FIGURE 11: Values of key PID signals of normal and anomaly snapshots in the Engine On scenario, as described in Table 2.
Color code is as follows: transparent blue - normal data, orange - system performance drop anomaly, red - engine coolant system

anomaly, purple - fuel system anomaly, brown - engine ECU tampering.
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s APPENDIX lIl. EXPERIMENTAL STUDY WITH ISOLATION FOREST (IF)

TABLE 6: Confusion matrices results for overall and per-anomaly type of anomaly detection using IF for engine off scenario.
The IF is created with the following parameters: number of trees - 100, features per tree - all, data points per tree - 256.

Anomaly group TP TN FP FN

All 55.00% 98.55% 1.45% 45.00%
Performance drop | 81.00% 98.55% 1.45% 19.00%
Engine coolant 6.67% 98.55% 1.45% 92.33%
Fuel system 16.67% 98.55% 1.45% 83.33%

TABLE 7: Confusion matrices results for overall and per-anomaly type of anomaly detection using IF for engine on scenario.
The IF is created with the following parameters: number of trees - 100, features per tree - all, data points per tree - 256.

Anomaly group TP TN FP FN

All 46.32% 98.08% 1.92% 53.68%
Performance drop | 69.00% 98.08% 1.92% 31.00%
Engine coolant 3.33% 98.08% 1.92% 96.67%
Fuel system 33.33% 98.08% 1.92% 66.67%
Tampering 26.67% 98.08% 1.92% 73.33%

s APPENDIX IV. SENSITIVITY ANALYSIS OF THE DBSCAN HYPERPARAMETERS
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(a) Influence of € and MinPts on sensitivity for Euclidean distance (b) Influence of € and MinPts on sensitivity for Manhattan distance

FIGURE 12: Comparison of sensitivity behavior with variable € and MinPts for different distance metrics in the engine off
application scenario.
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FIGURE 13: Comparison of sensitivity behavior with variable € and MinPts for different distance metrics in the engine on
application scenario.
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