KIT | KIT-Bibliothek | Impressum | Datenschutz

Leveraging molecular descriptors and explainable machine learning for monomer conversion prediction in photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization

Alemdag, Berna 1; Kocaarslan, Azra 1,2; Kabay, Gözde 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

This study presents a molecular descriptor-based machine learning (ML) architecture for predicting monomer conversion in photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization systems. Unlike traditional polymer informatics approaches that treat polymers as single units or use one-hot encoding for reaction components, we decompose each PET-RAFT system into its individual parts: monomer, RAFT agent, and photocatalyst. Next, each element was separately encoded using 2D molecular descriptors derived from SMILES. Using a literature-sourced dataset of 152 PET-RAFT systems, we systematically trained (with fivefold cross-validation, CV) and evaluated 10 ML algorithms. CatBoost showed greater stability across CV-folds (SD = ± 0.07) and was identified as the top performer for monomer conversion prediction (R2 = 0.84; RMSE = 10.04 pps; MAE = 8.16 pps). SHapley Additive exPlanations (SHAP) analysis revealed mechanistically interpretable structure–property-performance relationships, highlighting that monomer topological complexity, electronic polarization, and molecular weight together account for over 60% of the model’s predictive power. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190626
Veröffentlicht am 17.02.2026
Originalveröffentlichung
DOI: 10.1038/s41598-025-33553-y
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000190626
Erschienen in Scientific Reports
Verlag Nature Research
Band 16
Heft 1
Seiten 5947
Vorab online veröffentlicht am 09.02.2026
Schlagwörter Explainable AI, Molecular descriptors, Polymer informatics, Conversion prediction, SHAP, analysis, SMILES
Nachgewiesen in OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page