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ABSTRACT KEYWORDS
Thermal radiative transfer (TRT) governs phenomena ranging ~ Thermal radiative transfer;
from supernovas in astrophysics to laser-driven fusion experi- nonlinear energy stability;

asymptotic—preserving;
dynamical low-rank
approximation; parallel BUG
integrator

ments in plasma physics. The interaction of radiation and matter
involves prohibitively small time scales, nonlinear coupling, and
high-dimensional particle dynamics, making conventional
numerical methods prohibitively expensive. Dynamical low-rank
approximation (DLRA), combined with asymptotic-preserving
discretizations, offers a promising direction, but until now its
use for nonlinear TRT has been fundamentally limited: stability
regions of existing DLRA integrators are unknown in realistic
nonlinear regimes, and coefficient updates remain computa-
tionally costly. We present an asymptotic-preserving, locally
conservative, rank-adaptive, and parallel integrator for a macro-
micro decomposition-based DLRA of the nonlinear TRT equa-
tions. Unlike previous approaches, our method is provably
energy stable in the nonlinear setting, with step-size restrictions
that capture both hyperbolic and parabolic CFL conditions. The
integrator is constructed from the parallel BUG integrator, thus
eliminating the need for augmented coefficient updates. In the
setting of the parallel integrator and micro-macro decomposi-
tions, we propose a strategy to enforce reflection-transmission
type boundary conditions in the low-rank factors. These advan-
ces resolve long-standing stability and efficiency obstacles, ena-
bling DLRA to be applied robustly to nonlinear TRT with
stability guarantees. Numerical experiments confirm the accur-
acy and efficiency of the proposed approach.

1. Introduction

The field of thermal radiative transfer models the interaction of particles
traveling through and interacting with a background material. Physical phe-
nomena governed by the thermal radiative transfer equations include star

CONTACT Chinmay Patwardhan @ chinmay.patwardhan@kit.edu @ Department of Mathematics, Karlsruhe
Institute of Technology, Karlsruhe, 76139 Germany.

© 2026 The Author(s). Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:/
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.


http://crossmark.crossref.org/dialog/?doi=10.1080/23324309.2026.2618786&domain=pdf&date_stamp=2026-02-02
http://www.tandfonline.com
https://doi.org/10.1080/23324309.2026.2618786

2 (&) C. PATWARDHAN AND J. KUSCH

formation, supernova explosions, radiation from a hohlraum striking a
fusion target, and laser wakefield acceleration driven by pressure waves. To
numerically simulate such problems, particles are commonly described by a
phase space density f(t,x, Q) where t is time, x € R? is the spatial position,
and Q € S? is the direction of flight. Then, the number of particles at time
t with spatial position in dx around x and direction of travel in dQ around
Q is given as f(t,x, Q)dxdQ.

Two central challenges exist in determining the phase space density: First,
the phase space is six-dimensional, which poses a challenge to store and
evolve the phase space density on a finely resolved computational grid.
Second, the underlying dynamics are commonly governed on strongly vary-
ing time scales and numerical methods must be designed to accurately cap-
ture all essential solution characteristics while not having to resolve
prohibitively small scales. In particular, if many particles are absorbed on a
small time scale, the dynamics of the thermal radiative transfer equations
asymptotically converge to a diffusive nonlinear partial differential equation
called the Rosseland equation (Rosseland 1931). Numerical methods that
capture a discrete analog of this behavior while not requiring the resolution
of prohibitively small time scales are often called asymptotic—preserving
(AP). To be specific, a numerical scheme is considered to be an AP scheme
if it has the following three properties (Jin 1999): (1) asymptotic consistency,
(2) asymptotic stability, and (3) asymptotic efficiency. The numerical scheme
is asymptotically consistent if, in the diffusion limit, the solution of the kin-
etic equation converges to the solution of the diffusion limit. A numerical
scheme is considered to be asymptotically stable if it does not require pro-
hibitively small step sizes in the diffusion limit, and asymptotically efficient
if the stability does not come at a high cost. A non-comprehensive list of AP
schemes includes the AP unified gas kinetic scheme (UGKS) (Sun, Jiang,
and Xu 2015; Sun, Jiang, Xu, et al. 2015; Sun et al. 2017; Li et al. 2024), the
high-order/low-order (HOLO) scheme (Peng and McClarren 2021), and
high-order IMEX schemes (Jang et al. 2014; Fu et al. 2022).

To address the high-dimensionality of thermal radiative transfer problems,
recently developed numerical methods employ dynamical low-rank approxi-
mations (DLRA) introduced in Koch and Lubich (2007). The main idea of
DLRA is to represent the solution as a low-rank factorization and then derive
evolution equations for the low-rank factors such that the full-rank dynamics
is captured as closely as possible. While DLRA can significantly reduce mem-
ory and computational requirements, it has several additional challenges.
Most importantly, the evolution equations for low-rank factors are ill-condi-
tioned, and a large amount of research has been devoted to constructing
numerical time integrators that are robust to stiffness. The most frequently
used robust integrators are the projector-splitting integrator (Lubich and
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Oseledets 2014), and basis-update & Galerkin (BUG) integrators (Ceruti,
Kusch, et al. 2022, 2024; Ceruti and Lubich 2022), which allow for an exten-
sion to higher order (Ceruti, Einkemmer, et al. 2024; Kusch 2025). Besides
the construction of robust integrators, numerical methods for DLRA are
commonly required to preserve certain characteristics of the original prob-
lem, e.g., the preservation of local conservation laws (Einkemmer, Kusch,
et al. 2023; Einkemmer, Ostermann, et al. 2023; Baumann et al. 2024;
Coughlin et al. 2024; Koellermeier et al. 2024; Frank et al. 2025), asymptotic
limits (Ding et al. 2021; Einkemmer et al. 2021, 2024, 2025; Frank et al. 2025),
or stability regions (Kusch et al. 2023; Baumann et al. 2024; Einkemmer et al.
2024; Frank et al. 2025). Such structure-preserving properties are often prob-
lem-dependent and require a careful modification of the standard integrators
for individual applications. Here, the augmented BUG integrator (Ceruti and
Lubich 2022) has proven to be beneficial since it allows for increased flexibil-
ity to incorporate solution structures while, unlike the projector-splitting
integrators, not requiring steps backward in time. The augmented BUG inte-
grator simplifies the construction of structure-preserving low-rank integra-
tors; however, it requires additional costs compared to the parallel BUG
integrator (Ceruti, Kusch, et al. 2024), which evolves all low-rank factors in
parallel while not requiring a coefficient update at an increased rank.

Several structure-preserving DLRA methods have been developed for the
thermal radiative transfer equations. A DLRA scheme to solve the one-
dimensional thermal radiative transfer equation has been proposed in
Ceruti, Frank, et al. (2022); however, without stability guarantees, it
requires a parameter study to determine a sufficiently small time step size.
In Baumann et al. (2024), a provable energy-stable and locally conservative
DLRA scheme has been derived in the one-dimensional setting for the Su-
Olson closure (Su and Olson 1997). Though not physically motivated, the
Su-Olson closure significantly simplifies the evolution equation as it elimi-
nates nonlinear effects in the coupling of the material and particles.
Moreover, in Frank et al. (2025), the authors propose a DLRA method that
is asymptotic—preserving, locally conservative, and energy-stable in a one-
dimensional and linearized setting. In Fu et al. (2022), the authors propose
an AP IMEX scheme for the nonlinear thermal radiative transfer equation,
where energy stability is shown under hyperbolic and parabolic Courant-
Friedrichs-Lewy (CFL) conditions. However, the scheme requires construc-
tion and propagation of the full phase space density f(t,x,Q) and has not
been extended to the macro-micro or the low-rank setting.

It is important to note that the stability of previously derived low-rank
methods is only understood in simplified settings, using linearizations or
simplified closure relations. Moreover, while the methods proposed in
Baumann et al. (2024) and Frank et al. (2025) allow for rank-adaptivity,
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their construction as augmented BUG integrators leads to increased com-
putational costs since the time evolution of low-rank coefficients requires a
sequential time update at an increased rank. An additional challenge for
DLRA schemes not addressed in Baumann et al. (2024); Frank et al. (2025)
is the efficient implementation of boundary conditions for complex two-
and three-dimensional geometries. Due to the nonlinear ansatz, which sep-
arates the basis in each phase space variable, describing boundary condi-
tions for low-rank schemes is not straightforward. A few techniques for
incorporating boundary conditions in the DLRA scheme have been pro-
posed in Uschmajew and Zeiser (2024), Kusch et al. (2022), and Sapsis and
Lermusiaux (2009). However, since the dynamics of the parallel BUG inte-
grator are completely determined by the initial conditions, the described
methods are not applicable to the parallel BUG integrator. This work aims
to develop a structure-preserving DLRA method for thermal radiative
transfer that overcomes these limitations. The main contributions of this
paper are:

e Provable energy stability for the nonlinear problem. A key distinction
from all previously derived DLRA integrators is the rigorous proof of
energy stability for the DLRA scheme applied to the fully nonlinear
thermal radiative transfer equations. While prior stability analyses have
been confined to simplified closures or linearizations, we prove that our
integrator is stable for the physical closure given by the Stefan-
Boltzmann law. Our analysis yields a practical time step restriction that
naturally combines hyperbolic and parabolic CFL conditions.

e A highly efficient, parallel, and structure-preserving integrator. We
introduce a novel, rank-adaptive integrator based on a macro-micro
decomposition within the parallel BUG framework. The resulting
scheme is simultaneously asymptotic-preserving and locally conserva-
tive. Critically, its parallel nature avoids the computationally expensive
substep at twice the rank that is required by alternative structure-pre-
serving approaches (e.g., augmented BUG integrators).

e An efficient implementation of physical boundary conditions. We pro-
pose a novel technique to incorporate reflection-transmission type
boundary conditions directly into the evolution of the low-rank factors.
This method is specifically tailored for the parallel BUG integrator,
where standard approaches are not applicable.

The rest of the paper is organized into four sections. Section 2 introduces
the thermal radiative transfer equations, the macro-micro decomposition,
and the fundamentals of dynamical low-rank approximation and the paral-
lel BUG integrator. Section 3 presents an asymptotic-preserving
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discretization for the macro-micro equations using discrete ordinates, a
first-order upwind discretization on staggered grids, and an implicit-explicit
(IMEX) time-stepping scheme. We show that the proposed full-rank
scheme for the nonlinear closure given by the Stefan-Boltzmann law is
energy stable under a mixed hyperbolic and parabolic CFL condition.
Section 4 proposes a computationally inexpensive and memory-efficient
low-rank scheme based on the parallel BUG integrator for the macro-
micro equations. It also describes an efficient algorithm for incorporating
reflection-transmission type boundary conditions in the parallel BUG inte-
grator. This scheme is shown to be asymptotic-preserving and energy sta-
ble for the nonlinear closure, given by the Stefan-Boltzmann law, under the
same CFL condition as the full-rank scheme. Finally, Section 5 presents
numerical experiments for Gaussian, Marshak wave, and hohlraum test
cases.

2. Background
2.1. Thermal radiative transfer equations

The gray thermal radiative transfer equations model the interaction of radi-
ation particles with the background material through the interplay of radi-
ation and material heat. In dimensionless form, they read

2

SOf +6 Q- Vof =0 (B(T) = f) + (o~ ), (1a)

&c, 0T = J a’(f — B(T))dQ. (1b)
SZ

Here, f(¢,x,Q) describes the particle density at time t € R, position x =
(x,,z) € D C R’ and direction of flight Q = (Q,,Q,,Q,) € S*. The material
temperature, denoted by T(t,x), varies in time and space, and the specific
heat of the material is denoted by c, . ¢, known as the Knudsen number, speci-
fies the ratio of the mean free path of particles between collisions to the rele-
vant spatial scale. Since most particles fly through the material without any
interaction, we specify the probability of the different types of interaction.
The two main particle-material interactions are absorption and scattering,
and their probabilities are given by ¢°(x) and ¢°(x), respectively. We define
the total cross-section as ¢'(x) = 6?(x) 4+ ¢°(x) and assume that o%(x) >
o >0 and o'(x) > g > 0. We introduce the short-hand notation (-) =
Jg2 - dQ to denote the integration over the unit sphere S*. Then, the scalar
flux, ¢, defined as ¢(t,x) := L (f(t,x,Q)) satisfies the following local conser-
vation law obtained by integrating (1a) over Q and adding (1b):
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at<47”¢+cyT> +%vx (Qf) = 0. 2)

The absorption of particles by the material increases its temperature and,
due to blackbody radiation, the material emits particles proportional to the
fourth power of its current temperature. To be precise, the rate at which
particles are emitted by the material, represented by B(T), is given by the
Stefan-Boltzmann law, which reads

ac
B(T)=—T*
() 47

where a is the radiation constant and ¢ is the speed of light.

To complete the description of the thermal radiative transfer equations,
we must specify f and T at the initial time ¢, € R>¢ and the boundaries of
the domain. The initial conditions are given by

flto,x,Q) = fi(x,Q), T(tp,x) = Ti(x), x€D,QcS”

Let 0D denote the boundary of D and x € 9D be a point on the bound-
ary. If n(x) denotes the outward unit normal to the boundary at x, the
reflection-transmission type boundary conditions for the thermal radiative
transfer equations are given by

e o Qf(6%,Q) + (1—p(n-Q)fs(x,Q),if n-Q <0
f“%Q%”b@&QL ifn-Q>0
(32)
T(t,x) = Tp(x), (3b)

where fz denotes the particle density transmitted into the domain from
outside, 0 < p < 1 specifies reflectivity and Q' = Q —2n(n - Q). Note that
p =1 corresponds to a purely reflective boundary while p = 0 corresponds
to a transmission or inflow boundary condition.

Absorption of a large number of particles at small time scales is equiva-
lent to ¢ — 0. In this limiting case, ¢ — 0, the particle density f = B(T)
and the evolution of the material temperature T is given by the nonlinear
diffusion-type equation known as the Rosseland equation (Rosseland 1931)
which reads

41

47 1

Remark 1. The initial and boundary conditions for the Rosseland equation
(4) are found by solving an initial and boundary layer problem. A detailed
analysis can be found in Klar and Schmeiser (2001); Klar and Siedow
(1998). However, treating boundary layer problems is out of the scope of
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this work, and thus we adopt the so-called equilibrium boundary condi-
tions proposed in Klar and Schmeiser (2001). That is, we assume (1 —
p)(fs — B(Tg)) =0 almost everywhere on 9D x S? = {(x,Q) s.t. x €
OD,n(x) - Q < 0}. Then, if D C R’ has a smooth boundary 9D and we
assume that the initial and the boundary data is bounded and sufficiently
smooth on the domain, the solution pair (f,T) converges as ¢ — 0 to the
solution of the Rosseland equation (Klar and Schmeiser 2001). The initial
and boundary conditions for the Rosseland equation are then given by
Ti(x) and Tp(x), respectively. The reader is referred to Klar and Schmeiser
(2001) for further details.

2.1.1. Macro-micro decomposition

The thermal radiative transfer equations involve effects varying at different
time scales. Thus, to avoid mixing scales, we use a macro-micro decompos-
ition (Lemou and Mieussens 2008) which decomposes the particle density
into unscaled equilibrium variables and scaled non-equilibrium variables.
Specifically, we use the following macro-micro ansatz described in Klar
and Schmeiser (2001):

f(t,x,Q) = B(T(t,x)) + eg(t, x, Q) + £*h(t, x), (5)

where (g) = 0. Thus, the particle density is decomposed into its angular
mean (f) = B(T) + ¢*h, and a correction term &g. Substituting this macro-
micro ansatz in the thermal radiative transfer equations (1) and using the
condition (g) = 0 yields the macro-micro equations

2

1
%&g + 8<I . ()) (Q-V,g) + Q- V(B(T) + &’h) = —d'g, (6a)
= o+ L0B(T) + Q. Vig) = —oh (6b)
c et 4n =70

¢, 0;,T = 4nc*h. (6¢)

The macro-micro equations are equivalent to the thermal radiative trans-
fer equation and have the same Rosseland diffusion limit. This can be seen
by comparing O(1) terms in (6) which yield the Rosseland equation (4) in
the limit ¢ — 0. Additionally, since (Q(B(T) + ¢*h)) = 0 the local conser-
vation law (2) takes the following equivalent form:

o, <47”¢ + c,,T) 4V, - (Qg) = 0. @)

2.1.1.1. Initial and boundary conditions. The initial and boundary condi-
tions for the macro-micro equations have been derived and analyzed in
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Klar and Schmeiser (2001). We present the relevant details here. The initial
conditions for g and h can be derived from the following relations:

glios©) =+ (6 0) = - (5. ) ). bt

1

_1 (ﬁ (% Q) B(TI)(x))'

g2

The boundary condition for g is obtained by substituting the macro-
micro ansatz (5) into the boundary conditions for f given in (3a). Thus, for
X € 0D, the boundary condition for g is given by:

¢(t,5,9Q) = {Pg(t:&,9/)+( )(B(txg) - B(Ta)(1%) eh(t,fc)),if n-Q<o,

g(t,%,Q), if n-Q>0.

The boundary condition for & is set such that the macro-micro decom-
position is consistent at the boundaries, i.e., we compute h such that the
(g) = 0 is satisfied at the boundaries. Thus, & must satisfy the following
condition at the boundary:

Lmo(lﬂ’(-n-ﬂ))g dQ+LQ<O(1 )(3_8( )—eh) dQ = o,

x € 0D,

when the boundary is not purely reflective, i.e., 0 < p < 1. For a purely
reflective boundary, i.e., p =1, the boundary conditions for h are not
required (Klar and Schmeiser 2001). Since we assume equilibrium bounda-
ries, the above conditions simplify to

o gt %, Q) — (1-p)eh(t,x), if n-Q<0,
g(t% Q) = {g(t,fc,g), if n-Q>0,

& (1—p)th:J (14 p(—n- Q))gdQ.

n-Q<0 n-Q>0

2.2. Dynamical low-rank approximation

In this section, we present a summary of DLRA (Koch and Lubich 2007)
for solving time-dependent problems on the manifold of low-rank matrices.
The central idea is to evolve the solution on the low-rank manifold by pro-
jecting the dynamics onto the tangent space. Let g(t) € RM*Ne denote the
matrix form of g discretized in x and Q with N, spatial cells and N, dis-
crete directions. That is, (g), = g(t,%:,€%). Then, (6a) can be written as
the matrix-valued differential equation

g(t) = F(t,g(1)).
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Let M, denote the manifold of Ny X N, rank-r matrices. Then, a low-
rank approximation Y(¢) € M, of g(t) admits the factorization

Y(t) = X(H)S(H)V(t) |,

where X(t) € RM*" V(t) € RM*" are orthonormal basis matrices and
S(t) € R™" is the invertible coefficient matrix. Let 7y M, denote the tan-
gent space to M, at Y. Then, to ensure that Y(¢) € M, approximates g(t)
we find Y(t) € Ty()M, such that for all times ¢ the minimization problem
~min  ||[Y(t) = F(t, Y1)
Y(t)ETY(t)My
is satisfied with respect to the Frobenius norm |- ||z. Reformulating the

minimization problem as a Galerkin condition on the tangent space, we see
that the minimization problem is satisfied by

Y(t) = P(Y(1)) F(, Y (1)), (8)
where P(Y(#)) denotes the orthogonal projection onto the tangent space
and has the form P(Y)Z=XX'Z-XX'ZVV' +ZVV' (Koch and
Lubich 2007, Lemma 4.1), for any Z € R™*"s_ This allows us to derive dif-
ferential equations for X(¢), S(t), and V(t). However, these equations are
stiff in the case of rank over-approximation due to the presence of near-
zero singular values (Koch and Lubich 2007).

In recent years, several structure-preserving integrators (Lubich and
Oseledets 2014; Ceruti and Lubich 2022; Ceruti, Einkemmer, et al. 2024;
Ceruti, Kusch, et al. 2024; Kusch 2025) have been developed that are robust
to this stiffness when solving the projected equation (8). In this work, we
use the parallel BUG integrator (Ceruti, Kusch, et al. 2024), which evolves
all the factors X, S, and V in parallel, resulting in a reduced number of
potentially expensive projection operations while also allowing for rank-
adaptivity. One step of the parallel BUG integrator for an initial rank-r
approximation Y? = X°S°V® " at time #, updates the factors to X', !, V!
of rank ry at t; = fy + At in three steps:

1. Parallel update: Update X, S, and V in parallel and construct augmented
basis matrices X € RM>*?" and V € RNo*?":

K-step: For K(t;) = X°S? solve from t, to t;
K(t) = F(t, K(t)V> ")V°,

Determine X = (X%, X') € R¥*?" as an orthonormal basis of (X°,K(t;))
(e.g, by QR decomposition). The N, X r matrix X' is filled with zero
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columns if rank(X° K(t,)) <r. Compute and store the matrix Sf =

X" K(t).
L-step: For L(ty) = V°S® " solve from ¢ to t;

L(t) = F(t X°L(t) ") "X°.

Determine V = (VO,\Nfl) € RM*2" a5 an orthonormal basis of (V% L(t;))

(e.g., by QR decomposition). The N, x r matrix V' is filled with zero col-

umns if rank(V, L(#;)) < r. Compute and store the matrix éf = L(tl)TVI.

S-step: For S(t)) = S solve from t; to t;

S(1) = X* TE(L XS (£) VO T VY.

2. Augmentation: Construct the augmented coefficient matrix § € R¥*?"

- [§Et1) Sf]

S, o

3. Truncate: Compute the singular value decomposition of the coefficient
matrix S = PXQ where ¥ has the singular values, 6;, of S on its diag-
onal. The new rank r; is chosen as the minimal r; < 2r such that, for a
given tolerance 9, the following inequality is satisfied

1/2
2r /

S <

j=r+l1

The updated coefficient matrix S, is set as the diagonal matrix containing
the first r; singular values of . To set the updated basis, we define P,, and
Q,, to be the matrices containing the first r; columns of P and Q, respect-
ively. Then, the updated factors are set as X! = XP,, and V! = Ver.

The approximation at time ¢, is then Y! = X!S'VL T,

3. An AP scheme for the macro-micro equations

To simulate the thermal radiative transfer equations, we discretize the
macro-micro equations (6) in their phase space variables (f,x,Q). There
are three important considerations when constructing a numerical scheme
for the macro-micro equations. First, the numerical scheme should consist-
ently discretize the Rosseland equation in the diffusive limit ¢ — 0, i.e., the
scheme should be AP. However, in the diffusive limit, the right-hand side
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of the macro-micro equations becomes stiff, and naive schemes require
prohibitively small O(¢) step sizes for stability. Thus, the proposed numer-
ical scheme should not require prohibitively small step sizes to capture the
correct dynamics of the system in the diffusive limit. Finally, the numerical
scheme should reduce the computational costs and memory requirements
arising from the high-dimensional phase space of g.

In this section, we propose a numerical scheme based on the discrete
ordinates method (Lewis and Miller 1984) for €, a first-order upwind dis-
cretization on staggered grids (LeVeque 2002; Kupper et al. 2016) for x,
and a first-order IMEX scheme (Frank et al. 2025) for t. In Sections 3.3
and 3.4, the proposed scheme, dubbed the full-rank macro-micro scheme,
is shown to be AP and energy stable for the nonlinear Stefan-Boltzmann
closure with mixed hyperbolic and parabolic CFL conditions.

3.1. Angular discretization

The discrete ordinates, or Sy, method (Lewis and Miller 1984) uses a quad-
rature rule on the unit sphere S* and solves the macro-micro equations in
these discrete directions. The Sy method has been a popular choice for
angular discretization of kinetic equations due to its ease of implementation
and handling of boundary conditions (Einkemmer et al. 2021, 2021) com-
pared to other methods like the method of moments (Case and Zweifel
1967) or the minimal entropy method (Levermore et al. 1998).

In this work, we use the tensorized Gauss-Legendre quadrature rule, also
called the product quadrature, of order q on the unit sphere. Let

ey

weights {w/}/zl,m,Nq and let g/(-,-) := g(-, -,Q’). Then, the macro-micro
equations in the /th discrete direction are given by

82 1 L ’ g
?&g/ +e| Q- Vg - EZW/ Q" Vg | +9Q° V(B(T) + &*h) = —d'g,

//:1
fah+laB(T)+iZ QY Vg = —ch
c ! c ! 4 v g =0

¢, 0;T = 4nch.

: of o\T T
Let QO := (Q, Qf,,Qi) and J, :={xyz}. If g:=(g1....4v,) €RM,
then we can write the above system of N, equations as

& 1 T 21\ t
?8tg+ 8(1 0 Tw > ; Q,0,8 + ; Q,10,(B(T) + ¢h) = —d'g,

(10a)
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& 1 1 - .
—0h+—0B(T) + —w ; Q,0,g = —a°h, (10b)
¢, 0;T = 4nc’h, (10¢)

where w = (wl,...,qu)T and 1=(1,...1)" are vectors in RM. In the

above equations, I € RY*Ne denotes the identity matrix and, for v € 7,
Q,
Qv — - c RNqXNq.
Q,"

3.2. Spatio-temporal discretization

To discretize (10) in x, we use a first-order upwind discretization on stag-
gered grids (Kupper et al. 2016; Einkemmer et al. 2021) and a first-order
IMEX scheme in t. This staggered-grid approach for constructing AP
schemes was first described in Kupper et al. (2016) for the multi-scale
transport equation and in Einkemmer et al. (2021) for the macro-micro
decomposition of the radiation transport equation. For brevity, we restrict
the presentation of the discretization to two spatial dimensions on a rect-
angular domain, i.e., x = (x,y) € [x,xg] X [y, yr] C R?. Note that in this
projected geometry, Q € P(S*) where P(S?) is the projection of the unit
sphere in R? onto the two dimensional plane. This is defined as

P(S?) := {( 1 —p2sin (0),/1—p2cos (0))0 < u<1,0¢ [0,277:]}.

Note that the normalization constant 47 in (1) is replaced by 2x in this
projected geometry and J, = {x,y}.

We construct two one-dimensional equidistant staggered grids, in x and
y domains, with cell size Ax = (xg —x1)/Nx and Ay = (yr —y8)/N,, for
some Ny, N, € N. The interfaces between intervals are given by {x;;, /2}5\20
and {yj;, /2};\20 while their mid-points are denoted by {x;}1-, and {y; ]N:yl.
Note that the discretization is set up such that x;, x,, y1, and yy, lie on

the boundaries of the domain. Following Kipper et al. (2016) and
Einkemmer et al. (2021), we discretize (6) such that

e T and h are evaluated at (x;,y;) and (Xiy1/2,¥j+1/2) (red colored circles
in Figure 1),

e g is evaluated at (xi;1/5,);) and (x;,j41/2) (blue colored diamonds in
Figure 1).
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b

J3/2

Yj+l @ ® ¢ O ¢

Y o m——l— e (Y ()

J1/2
Y; @ (] 3 () ®

yjl_/Q_? 3?1 ? Sb’z"+1 ?

X . — xX. + T .+
“1/2 “1/2 '3/2

Figure 1. Two-dimensional staggered grid as described in Kipper et al. (2016). h and T are
evaluated at the red circles whereas g is evaluated at the blue diamonds.

For an illustration of the grid, see Figure 1.
We introduce the following notation to simplify the presentation of the

numerical scheme. Let kl—/2 :=k*1/2, such that the cell interfaces are

denoted by Xiz, and Vi, To further simplify notation, we define Bj :=

ac (Tl’}) at (x;,y;) and analogously B, .. := £ (Tl’i b )" at (x 1/2,)/]1/2)

YY)
Let |Q| e RN M ye J,, be the dlagonal matrix with entries
(lQl,, =19, ¢=1,..,N;. Then, we define the matrices
Q= (QEIQU/2, ve Te For (1) = (ifp) or (65) = (i) let

8, 5(t) = g(txyyp) and  hyp(t) := h(t, x,, yp), then the first-order
upwind differential operators at the interfaces (omitting ¢ dependence) are
defined as

1 . 1
D;gaﬁ = A_x(goc-‘rl,ﬁ _ga[f)> ngocﬁ = A_x (gc{/f _ga—l,li)’

1 _ 1
D;;Lgx/j = A—y(ga B+1 _gaﬁ)’ Dygocﬁ = A_y(g‘“ﬂ _ga,ﬁ—l)’
1
0y, . 0 . -
Oghap = Ax (h fp = o p)y Oyhap = A_y(h“ﬁl/z = hag,)>

%

where recall that of, =o+1/2 and B, =f+1/2. Additionally, for
(o B) = (i-j) or (& B) = (i})p.fy ), we define the following centered differ-
ence operator at the cell centers and corners

1 1
Doguﬁ A (g 1/2[3 gocl/zﬁ) Dggoc[f: Ay (goc[fl/z gaﬁl/z)
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Note that though D° and 6° are both central difference operators, D°
approximates the derivative of g at the cell centers and corners while ¢
approximates the derivatives of h and T at the interfaces. Finally, using an
IMEX scheme similar to Frank et al. (2025) for discretizing in time, the
full-rank macro-micro scheme reads

¢ +1 1 T) < 1 T)
nr— gl I-—1 x I-—1
cAt <g hy2] g’l/z ) + 8( 27 W)L /zf 27 WL i))]
+Q,18° (B” 4+ &2h ) +Qy115§< + &h". ) = —ol, g"t},
BV

1/21 1/21 Y )

(11a)
&2
1
n+1 n n+1 n T 0 n—H 0 n+1
oo (57 =) o (B = B5) + W@l 5w Qg
— —gopt
(11b)
A (T”+1 Ti’})—2na“h”“, (11c)

where, for v € 7,
L.g}: X = (Q, D] +Q;D;)g" L

The scheme is analogously defined at (x;, yff/z) for g and at (xl-1+/2, yff/z) for
h and T.

Remark 2. To update the solution from ¢, to t,.; = t, + At with the above
scheme, we first update g using (1la) and then simultaneously update h
and T using (11b),(11c). In the latter step, we first express /"' in terms of
h", B"t1 B" and g"*! by re-writing (11b). Then, we substitute A" in
(11c) and solve a fourth order polynomial equation to obtain T"*!. In the
numerical implementation, we use the Roots.jl package from Julia to
solve the fourth-order polynomial equation.

The full-rank macro-micro scheme satisfies a discrete version of the local
conservation law (7), which is obtained by substituting the macro-micro
ansatz in (2). Note that ¢Z = BZ. + szh;.} (analogously, qﬁfb i jT/z) denotes the sca-

lar flux at time ¢,. Thus, re-writing (11b) in terms of qﬁZ,
and adding the resulting equation to (11c) yields that the full-rank macro-
micro scheme (11) satisfies the following discrete local conservation law:

1
At

balancing constants

271 271
( n+1 Tn+l _ T(bz _ CI/TZ) 4 WTQx/DE)CgZ+1 +w Qy 2gZ+l —

(12)
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3.3. AP property

Theorem 3.1. The full-rank macro-micro scheme (11) is asymptotic-preserv-
ing for the thermal radiative transfer equations. That is, it preserves the dis-
crete Rosseland diffusion equation given by

2n 2n 1 1
n+1 n n+1 ny _ " |10 [ = sOpn 0 ~ sOpn
Ay -1y) + o (B - By) =35 [Dx (d 5B >] + DY <Gt 5B )]]
(13)

This is a 5-point centered difference discretization for the Rosseland diffu-
sion equation (4) on a staggered grid with an explicit time discretization. A
similar relation holds at (xifz’yﬁ/z)'

Proof. From (11a) and the analogous definition at (x;, Jit, ), we see that as
e — 0 we get

n+l __ 0 0
gisz 6~+ (Qx]lé + leé > 1/2]
1/2
- 18° 16°
g’h/z (7~~+ (QX 5 + Qy 0 > ’]1/2

Ui
Similarly, taking the limit ¢ — 0 in (11b) yields
1 1
1 TQ DO+ DO +1 1
R I L) SD

Since Dygi*! = (g”fl. g / Ax, substituting g”“. and ngi;zl in Digii*!

gives 1/]
1/2 1/2

= %

1/2 2

= -1 itQXIL(SgBZ - D) QMOB” :
i %

A similar expression can be derived for D)gi*! = (g”i1 ng;j)/Ay

Substituting Digji*' and DOgZJrl in (14) yields
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— 1 1
n+1 T 0 0pn 0 0nn
aihi; g Q. [QXILD ( fjéxBlJ) +Q,1D} <_ng 5sz7>]

1T 0 0pn 010n 1 n+1 n
+EWQ4%“><ﬁﬁO+Qﬂ%;%M% ~ i (B - B).

Since by the choice of our quadrature w'Q,Q,l =
fP Sz )dQ = 21/3, w'QQ,l = fp Sz )?dQ = 27/3, and w'QQ, 1l =
fPSz Q, Q ,dQ = 0, we get

1 1
0 B" DO 0 B" Bn+1 B"
(Glt] 5X ’J> y (52 5}/ ij) dt < ij)'

Finally, substituting the value of hZ-H in (11c) yields (13) at (x;;). A
similar equality can be shown to hold at (x,-1+/2, ij/z) in the limite - 0. W

1
3

apntl —

3.4. Energy stability

In this section, we show that the full-rank macro-micro scheme (11) dissi-
pates energy under a mixed CFL condition, for a suitable definition of
energy. Let NI denote the number of cell interface points and N¢ denote

the combined number of cell centers and corners. Let X! denote the set of
all spatial indices (o, f§) such that (x,,ys) lies on the interface of two cells,

i.e., it is of the form (xif/z’yf) or (xi’yJT/z)' Then, to map g.,, k € K', / =
1,...,Ny, to the matrix g € RN*Ns we define the bijective index map ¢’ :
K' — {1,..., NI} such that (8) g (x),s = &c,¢- Similarly, let K denote the set
of all spatial indices (o, ) such that (x,,yp) is either the corner of a cell or
its center and ¢ :K® — {1,..,N¢} denote the corresponding bijective
index map. Then, we define h e RN and T e RM™ with elements
(h) () = i and (T) ¢y = T, respectively. For Al = AxAy, the discrete-
L? norms of h, T, and g are given as

1B ==Y AL (|TIP =) TAAL Jlgllg =) giM’g,

rek® rek® rek!

AC - Z ZW/gK /AC

rek!

where g, = (gK,l,...,gK,N) and ( ) = /w;oj, for é; =1, if i=jand 0
otherwise. The energy at time ¢, is then defined as
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2 2
. 1

27

1 2
o= |-+ L (15)
C C

2
20 Vacy ..
o S| 2=m

&
n
-8

Note that in the remainder of the paper, we drop the subscript Q from
||-|lo and denote it by ||-|| when it is clear from the context that ||-|| is
chosen.

Theorem 3.2. For a given spatial grid size Ax, Ay, let the step size At satisfy
the following CFL condition for all CY., Qf,/ #0,

£ Ax2 t AL2
oy Ax ooAy

,eAy +
4‘@5‘

1
At < —min ) eAx + v
3c 4‘Q’

X

(16)

Then, the full-rank macro-micro scheme given by (11) is energy stable,
ie, el <", where the energy is defined in (15).

To keep the main part of the paper short, the proof of the theorem has
been shifted to Appendix B.

4. An AP parallel low-rank scheme for macro-micro equations

From Theorem 3.1 we see that in the diffusive limit, ¢ — 0, the full-rank
macro-micro scheme is a consistent discretization of the Rosseland equa-
tion. Additionally, Theorem 3.2 shows that in the diffusive limit, the full-
rank macro-micro scheme doesn’t need to resolve small time scales to cap-
ture the correct dynamics of the system. Thus, the scheme (11) addresses
the first two challenges outlined at the beginning of Section 3, namely the
AP property and energy stability without restrictive CFL conditions.
However, the full-rank macro-micro scheme requires storing and updat-
ing g at each pair (x,,Q), for k € K' and 7 = 1, ...»Ng, and hence has a
high computational cost and memory footprint. Thus, further modifications
must be made to address the high-dimensional phase space of g and reduce
the computational costs of the scheme. In Frank et al. (2025), the authors
propose to use DLRA (Koch and Lubich 2007) to reduce the computational
costs of the thermal radiative transfer equations using the augmented BUG
integrator (Ceruti, Kusch, et al. 2022). However, the proposed macro-micro
augmented BUG scheme requires a serial S-step at twice the current rank.
This increases the overall computational cost and memory requirement for
the scheme. Moreover, only far-field boundaries have been considered in
Frank et al. (2025), and thus efficient methods of implementing boundary
conditions for the macro-micro low-rank schemes remain an open topic.
In this section, we outline the use of the parallel BUG integrator (Ceruti,
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Kusch, et al. 2024) to update all the factors in parallel and outline a pro-
cedure to efficiently incorporate boundary conditions.

For v € Jy, let DX € RN>*N: @0 € R¥N: and D¢ € RM*N: denote the
matrix form of the operators D, &7, and DY, respectively. Thus, for v €
Jx and k=1,..,N;, we get (D;g),, =D, gy 1, and (d°h), =
5%(@1)*1(@7 where / = 1,...,N,. Similarly, for v € J, and k' =1, .- NS, we
have (DYg), , = Dgg(gc)—l(k,)’[, where / = 1,...,N,.

To begin, we consider the time-continuous evolution of g(t) € RN:xNg
which reads

82

.
—§=—iLg (1 - % ]le) —d(B(T) + £2h)17Q, — X'g, (17)

where B(T ) is computed component-wise. In the above equation, we have
used the following short-hand notation L,g= (D;gQ, +D,gQ') +
(D, gQ; +D;gQ;), and d)(B(T )+ &*h)1'Q, = d)(B(T ) + &*h)1 ' Q. +
dg(B(T )+ szh)IlTQy. If 3%, 55 € RNN such that (ZY) (o), p()) = O and
(Z°) (o), p(ac)) = O for K E K!, then the total cross section X' is given
by ' = 27 4+ ¥°.

We make the following low-rank ansatz for g

g(1) ~ X(D)S(1)V(r) ",

where X(t) € RN"", V(t) € RN¥*" are orthonormal and S(f) € R™" is
invertible. The parallel BUG update scheme for (17) can be derived by fol-
lowing the steps outlined in Section 2.2 with F(£,XSV') = —¢L,XS
vi(I-4+ ]le)T — d%B(T) + &2h)17Q, — Z'XSV'. From Theorem 3.1 we
know that a crucial step in showing the AP property for the full-rank
macro-micro scheme is that, in the limit ¢ — 0, we get

g = —(=)dB(T") 17 Q..

Thus, for the low-rank parallel BUG scheme to be AP, (X)"'d°B(T ) must
be in the range space of X"*! at time t,,, while 1'Q, must be in the range
space of V"*1. It can be shown that (X')"'d°B(T ) € range(X) and
17Q, € range(V) (see Theorem 4.1). However, due to the truncation step
of the parallel BUG integrator, the range space of the augmented basis X
and V need not be preserved in X"*!, V"*!, In general, this also holds for
the class of rank-adaptive BUG integrators (Ceruti, Kusch, et al. 2022,

2024), which augment and truncate the basis up to a given tolerance. Based
on the conservative truncation proposed in Einkemmer, Ostermann, et al.
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(2023), a mitigation tactic was proposed in Frank et al. (2025). The basis
vectors (2f)7'd’B(T ) and 1'Q, are augmented to the updated factors X

and V to ensure that the sequential S-step captures the & — 0 information.
This is sufficient since the S-step determines the dynamics of the problem.
Finally, a conservative truncation strategy is used to ensure that the trunca-
tion step preserves the range space of the augmented basis. This guarantees
that the resulting scheme is AP (Frank et al. 2025, Theorem 4.5). However,
such a technique cannot be used for the parallel BUG integrator since the
dynamics capturing the ¢ — 0 information is not determined by the aug-
mented basis X and V of the parallel BUG integrator. Thus, we propose
the following modifications to the parallel BUG integrator to derive a low-
rank AP scheme for the thermal radiative transfer equations.

For the initial rank-r, data T", h", X", §” and V" at time f, the low-
rank factors are updated in four steps:

1. Pre-augmentation: The spatially Discretized gradient % V,B(T) at time t,
is augmented to the spatial basis X" and Q to the angular basis V". That

is, we set XJ., as an orthonormal basis of (Zt)_ldg
B(T"),(Zt)_lng(T"),X"] and Vi, as an orthonormal basis of
[Q,1,Q,1,V"]. Note that to satisfy (g) =0, V},, is determined such that
(V:ug)Tw:O component-wise. Then, we project the coefficient matrix
onto the augmented basis, i.e. we set S:ug = X:{l—ng"S”V"’TVZug. The new

initial rank is denoted by 7, =r, + 2. Note that the subscript “aug” is
dropped in the rest of the paper and with abuse of notation we denote low-
rank factors by X", V", and S".

2. Parallel update: K-step: For K" = X"§" € RN update from t, to
thr1 =t + At

& 1

-
(gt _gn) — nyn T _ T n _ 40 n
CAt(K K") = —eL,K"V (I lw > v — d°(B(T") (18)

+&2h") 1" Q. V" — K",
Determine X = (X",XnH) e RN and § "TK™*! as described
in Section 2.2.
L-step: For L" = V"§™ T ¢ RNoXTn update from t, to t,.; = t, + At
2 1
S o) = — <I -5 leT) L'X" 'L} X"
T

cAt (19)

—Q 1 (B(T") + &2h") " (d%) " X" — L 1X» TE!X",
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- ~ ntl . < n+1, T
Determine V = (V”,VWr ) € RNo* guch that V"™ 'w=0 and store

~L ~
the matrix S = L”H’TV”Jrl as described in Section 2.2
S-step: We update from ¢, to t,1 = t, + At

32 (—n+1

—A\S
cAt

T
1

_QN) — o T nQuyn, T _ T n

S) eX” L, X"S"V (I 2 Ilw) \ (20)

Y
X" Td(B(T") + &2h") 1T Q. V" — X» Tx/X"§"

3. Augmentation: Perform the augmentation of the coefficient matrix, i.e.
set S to be
—nt1 =L
S B Sn+ S
= |°.k .
S 0

4. Conservative truncation: A conservative truncation strategy, similar to
the one used in Frank et al. (2025); Einkemmer, Ostermann, et al. (2023)
is used to truncate the augmented basis while preserving the pre-aug-
mented basis vectors at the next time step. A brief overview of the conser-
vative truncation step has been added to Appendix A.

After the truncation step, we set the solution at f,,, as g''! =

XnH1gn iy tL T with rank 1 < 7,1 < 27,. The update for h and T remain
the same as (11) with the modification that g/%! = (X"!§"+y*LT)

fork € K', £ =1,..,N,.

o). £

Remark 3. The macro-micro parallel BUG scheme is locally conservative,

satisfying ~ the  discrete  conservation law  (12) with g'' =

(XIS TIVIEL T i 40 Where K € K.

4.1. Boundary conditions

An open question in dynamical low-rank approximation is the efficient
implementation of boundary conditions. To impose boundary conditions,
let us collect all spatial indices that lie on the boundary in the set Kj :=
{(o B) € K'|(x4yp) € OD} with Np:= |K}| boundary cells. Defining the
bijective index map gk : K — {1,..,N}, we can define the solution on

RNB ><Nq

the boundary as ge& with elements g, = g, (), Where

ke {l,..,Ng}, x €K} Vise-versa, we have 8t = &gy (k)" Now, to

impose reflective-transmitive boundary conditions, we define
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R {P(?Z;l - (1= p)gh’(/lgg)—l(k))if - Qy <0 (1)

8kt =9 -~ . :
i if n-Q, >0
where ny is the outward-pointing normal at position x oy (k) and Q, is

the reflection of Q, along ny. The value of h?al)' is interpolated at the
B

(k)
boundary point. We note that g in (21) can be computed efficiently by
restricting X"*! to boundary points from ghost cells. Lastly, it remains to
efficiently impose § €RN**Na on the low-rank factorized solution, which we
do after the time update of the parallel integrator. That is, we manipulate
gl = Xyt T oguch that gt = 8yt (., for all k€ KL, without

having to compute and store g"*!. To apply boundary conditions effi-

ciently, we define K =gV"*1 € R¥>*" and K € R™*" such that K, =
I%Qg ()¢ for K € Ky and Ky = >, X;iSiy for j & Ky. Lastly, the basis X"

and coefficient §"™' are recomputed as a QR decomposition of K, giving
the factorized solution at time »n + 1 with reflective-transmitive boundary
values imposed efficiently.

Note that in an abuse of notation, we did not define an intermediate
low-rank solution for the step in between the parallel integrator and impos-
ing boundary conditions. Instead, to simplify notation, we recycle the nota-
tion of g't! = X"T1§""1V"*1 T We also note that the above strategy does
not impose boundary conditions exactly, similar to the projected boundary
conditions, for example, used in (Kusch et al. 2022, Section 4) or Sapsis
and Lermusiaux (2009). Alternatively, boundary conditions can be imposed
exactly through an augmentation of the directional basis as is done for the
projector-splitting (Lubich and Oseledets 2014) integrator in Hu and Wang
(2022). However, we found in our numerical experiment that an approxi-
mate imposition through a projection is sufficient to obtain accurate
results. Thus, to avoid a further increase in the computational cost of the
method, we impose boundary conditions only through a projection.

4.2. AP property

Theorem 4.1. The macro-micro parallel BUG scheme for the thermal radia-
tive transfer equation is asymptotic-preserving. That is, in the limit ¢ — 0

the scheme preserves the discrete Rosseland diffusion equation
2n

C
v Tn-‘rl _ Tn =" Bn+1 _ Bn
At( ) + CAt( )

_277:

5 [Dg((zf)‘1d23"> + Dﬁ((Z‘)'lng")} .
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This is a 5-point centered difference discretization for updating the diffu-
sion equation (4) on a staggered grid with an explicit time discretization.

S n+l,

Proof. As ¢ — 0, since §=x TK"“, we get from the K-step (18)

~K Sn+l, T

§€ = —x"" Tz (ng(T)ﬂTQx + ng(T)]lTQy) v,
Similarly, as ¢ — 0 in the L-step (19) we get
n, n\al n, ~ n+l
(x»Txx")8" = -X T(dﬁB(T)]lTQx + ng(T)ILTQy)V .
By construction, (X')"'d°B(T"), (Et)_ld‘y)B(T") € range(X")  which
implies for v € J,
Xn,TdSB(Tn) — Xn,TZtXan,T(Et)—ldSB(Tn)’
and thus if we assume that (X™ "X'X") has full rank
~L - ~ N
§h = —x» Tz 1<ng(T)J1TQx + d(y)B(T)]lTQy)V !
From the S-step (20) we get, as ¢ — 0,
antl n, - n
s = —xm Tz l(ng(T)fo + dgs(T)NQy)v .

Then,
A n T B . —n §n+1 §L Vn’T
XSV = [x" X"] o llvnT
_ nwyn, -1 0 T 0 T Anan, T
— XX T (2 (de(T)]l Q. +d’B(T)1 Qy>V \

XK (ng(T) 17Q, + d°B(T) HTQy)V”V”’T.

Since Q,1,Q, 1 € range(V") and Q,1,Q,1 € range(V), we get

XSV = —x"xnT ()~ (ng(T)ﬂTQX + dgs(T)JLTQy)
XX () (BT Q. + OB(T)1T Q)
= —(z)7 (@B Q. + B(1)1TQ,),

where we get the last equality since (Zt)_lng(T),(Zt)_lng(T) -

range(X).

It was shown in (Frank et al. 2025, Theorem 4.5) that the conservative
truncation preserves the range space of the augmented spatial and angular
basis. Thus, as ¢ — 0 we get

gl = xrHigntlyntLT — (37! (ng(T)IlTQX i ng(T)HTQy)
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The rest of the proof follows on the lines of Theorem 3.1 with g/',)' =
(8" 4, > for K € K'and / =1,..,N,. |

4.3. Energy stability

Theorem 4.2. For a given spatial grid size Ax, Ay, let the step size At satisfy
the CFL condition (16) for all ., Q/ # 0. Then, the proposed macro-micro
parallel BUG scheme is energy stable, ie.,

e?’H—l < en
where the energy is defined as
2
o |2+ Ew 4 L exmsve | ()
c c 2n||c

Remark 4. The proof of this theorem is based on the proof of Theorem 3.2
and the energy stability for the AP augmented BUG integrator for thermal
radiative transfer equations in slab geometry in (Frank et al. 2025, Theorem
4.6). Note that energy stability in (Frank et al. 2025, Theorem 4.6) is for an
associated linearized problem and thus the energy stability (Theorem 3.2) of
the fully nonlinear problem (1) proved in this paper is a key ingredient.

The extension to the higher dimensional setting (1) and the change of
angular discretization don’t affect the stability of the augmented BUG inte-

grator. Let X, and V, denote the orthonormal basis obtained after the K-
step and the L-step of the AP-modified augmented BUG integrator (Frank
et al. 2025) with the first r columns being replaced by X" and V", respect-

ively. If §" := XZX”S”V”’TVQ = XZg”Va, then the S-step of the AP-modi-
fied augmented BUG scheme is given by

& (antl  xn AT o ~naT 1 T T

2 (87 —8") = —eX L XSV, (I-—1w' | V,

cAt 2

—X, d2(B(T") + 2h")1TQV, - X, E'X,8. "
Then the solution to (17) at time t,.; (before truncation) is given by

gl =X, S VZ multiplying the S-step from left and right by XZ and
V., respectively, we get

& ; 1 T
~n+1 n X n T \%
— —PXLg (1——1w' ) PV

cAt(g g) ¢ xg( 27 w)

—PX“dg(B(Tn) + 82hn>lTQXPV“ _ PXuZth+l’
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where PXe :— Xaf(z, pVe .— \A/a\A’T and XaS”VaT = g" since X, spans X"
and V, spans V". Now, from (Frank et al.2025, Theorem 4.6), we get an
expression similar to (B14) with g"*! replaced by g"*'. Further, following

the steps from Theorem 3.2 we can show that the scheme with the aug-

a?’

mented solution g"*' is energy stable for the nonlinear closure given by

the Stefan-Boltzmann law in the sense of Theorem 3.2. Let g''!' =

X +1grtlyntL T denote the solution at time f,; after truncation. Since the
truncation step does not increase the norm of the solution, we conclude
that the macro-micro augmented BUG scheme is energy stable.

The discussion in (Ceruti, Kusch, et al.2024, Section 3.2) shows that if
g;“ = X;’“SI’,‘“VZH’T is the solution of the parallel BUG at time t,,;

then )|g;+1 |§ HgZHH. Thus, the macro-micro parallel BUG scheme is

energy stable for the nonlinear closure given by the Stefan-Boltzmann law.

5. Numerical experiments

This section presents numerical examples to verify the theoretical properties
of the integrators and demonstrate their efficiency.' In all examples, the ini-
tial condition is specified for the material temperature while the particle dens-
ity is assumed to be at an equilibrium. That is, the initial particle density is
set as f(x,Q) = 5¢ T;(x)*. The truncation tolerance, 9, of the macro—-micro
parallel BUG scheme is set as § = 1072||Z||, in all experiments, where X con-
tains the singular values of the coefficient matrix. We are mainly interested in
the case where the absorption effects are dominant and thus we set ¢° = 0 in
all the test cases. We define the radiation temperature as Ty :=
(2n(B(T) + &*h)/ ac)l/ * and the following conserved quantity

2
q" e Z <7ﬂ: (B(Tw) + Szh(xﬁ) + CVT1ﬁ> AxAy. (22)
oy fec

Throughout this section, we refer to the full-rank macro-micro scheme (11)

as the full solver/ integrator, and the corresponding material temperature, sca-
lar flux, and radiation temperatures are denoted by THu!, d)FuH, and Tfa‘gl,
respectively. The macro-micro parallel BUG scheme described in Section 4 is
referred to as the parallel BUG solver/ integrator and T%, ¢°, and T3 , denote
the corresponding material temperature, scalar flux, and radiation tempera-

ture, respectively, for a given tolerance 3. To study the behavior of our scheme

'All codes used to generate the results are openly available in the GitHub repository: https://github.com/chinsp/
publication-parallel-AP-DLRA-for-non-linear-TRT.
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in the asymptotic limit ¢ — 0, we compare our schemes to the numerical solu-
tion of the Rosseland equation (4) with (13), which is denoted by TX.

5.1. AP property

The first test case is set up to study the AP property, energy decay and
conservation property of the proposed integrators and uses the parameters
described in Ceruti, Frank, et al. (2022). The details are summarized in
Table 1. The test case is defined for the spatial domain x € [0,0.002]* with
material density p = 0.01 g cm ~* and the temperature is initially distrib-
uted as a Gaussian centered at x, = (0.001,0.001), i.e.,

~ 1 [|x = xo|I3
Ti(x) = cexp | ———=,

" 2ng? 202

where ¢ = 107*. Furthermore, Tj(x) is re-scaled such that the maximum
temperature is 80 eV and the cutoff minimum is 0.02 eV, i.e.,
80

Ti(x) = ¢ max(T;(x))
0.02, otherwise.

- Ty(x),if Tr(x) > 0.02,

The initially distributed particles move in all directions, and as time pro-
gresses, they heat the background material. A temperature heat front, trav-
eling outwards from the center of the domain, develops in the material,
resulting in further emission of particles. The material temperature at the
boundary is kept at a constant temperature of 0.02 eV.

To demonstrate the AP property of the full-rank and parallel BUG integrator
we compute the solution at fe,q =5 ps for Knudsen numbers ¢ € {1,5-
1074,1071,5-1072,1072,107%,107%,107>,107%,10"7}. Note that simulations
with ¢ = 1 correspond to the kinetic regime while ¢ = 10~* correspond to the dif-
fusive regime. The solution of the integrators is compared to the solution of the
Rosseland equation at f.,q. The relative error between the material temperature of
both the integrators and the Rosseland equation at #.,q is plotted in Figure 2(a).
We see that as ¢ — 0, the solution of the full solver and the parallel BUG solver
converge to the Rosseland equation. From Figure 2(b), we see that the solution of
the parallel BUG integrator is compressed by over 97% compared to the full
solver, where the compression ratio refers to the ratio of the largest rank (except
initial rank) of the parallel BUG solver and the maximal possible rank of the full
solver. Additionally, from Figure 2(c) we see that energy decays for both the full
solver and the parallel BUG solver in the absence of a source term.

The run-time of the full solver and the parallel BUG solver, which gener-
ate Figure 2(a), has been stated in Table 2. From the table, we see that the
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= Full solver == « Parallel BUG solver

— Fullsolver = = Parallel BUG solver
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(a) AP property (b) Compression ratio (c) Energy decay over time

Figure 2. Left: Relative error of T™" and T® compared to T*, numerical solution of the Rosseland
equation, for &€ {1,5-107",107",5-1072,107%,1073,107%,107,1075,1077}.  Middle:
Compression ratio of the low-rank solution with respect to the full-rank solution computed as
rmax/min(NL,Nq) x 100, where rya is the largest rank of the parallel BUG solver (except initial
rank). Right: Energy decay of the full solver and parallel BUG solver for & € {1.0,107%}.

Table 1. Material constants and settings for the Gaussian and Marshak wave test
case as given in Ceruti, Frank, et al. (2022).

Number of spatial cells, Ny, N, 52,52

Quadrature order, g 30

Absorption coefficient, o* 10,799.13607 cm ~!
Speed of light, ¢ 2.99792458 - 10" ¢cm s !
Radiation constant, a 7.565766 - 107> erg cm —3 K ~*
Specific heat, ¢, 0.831-10° Jg "K'

Table 2. Run-times of the full solver and the parallel BUG solver for ¢ € {1.0,0.05,10‘4} on
the AP property test case 3.3, illustrating the relative computational performance and scalabil-
ity of the two solvers as the problem transitions across regimes.

e=1.0 &= 0.05 e=10"*
Full solver 3001.34 19070.77 27236.05
Parallel BUG solver 6737.39 4219217 65438.80
Speed-up 2.24 2.21 2.4

parallel BUG solver roughly halves the simulation time while using only
1.5 — 3% of the total degrees of freedom (rank) (see Figure 2b).

5.1.1. Conservation
To show that the proposed schemes are conservative, we consider a modification
of the test case described in this section. The initial temperature distribution is set as

80 - L
1) = { max(Ty(w) O T 2002

0.0, otherwise,

and the boundary temperature is given by T = 0 eV, given any x € 9D. In
addition, to ensure that all particles are contained in the system, we set ¢% =
100 - ¢, where ¢” is given in Table 1. The other parameters are the same as
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Figure 3. Relative error of the conserved quantity q" over the entire simulation for the modi-
fied problem.
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Figure 4. Cross-section of the material temperature, radiation temperature, and scalar flux for
the Marshak wave test case at times 1, 2, 3, 4, and 5 ps through y = 0.001 for ¢ = 1.0.

those for the AP property. The relative error of the conserved quantity gq" for
¢ = 1.0 and ¢ = 107 are plotted in Figure 3 and show that g" is conserved.

5.2. Marshak wave

The Marshak wave test case is a two-dimensional extension of the test case
presented in Ceruti, Frank, et al. (2022) for the one-dimensional thermal
radiative transfer equations. The spatial domain and other parameters are
the same as AP property test case and are given in Table 1. The initial tem-
perature of the material is 0.02 eV, and a constant temperature source of
80 eV is applied to the left wall, which is switched on at the initial time,
while the remaining boundaries are maintained at 0.02 eV.



28 C. PATWARDHAN AND J. KUSCH
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Figure 5. Cross-section of the material temperature, radiation temperature, and scalar flux for
the Marshak wave test case at time 5ps through y =0.001 for the diffusive limit
with & = 107*.
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00.05 0.25 0.75 0.951 t

Figure 6. Left: Geometry of the hohlraum as described in McClarren and Hauck (2010). Right:
Rank over time for the hohlraum test case with & = 1072 until 1 ns.

As time progresses, particles stream into the domain from the left wall,
and a temperature heat front traveling to the right wall develops. For ¢ =
1.0, the cross-section of the material temperature and scalar flux through
y =0.001 at times 1,2,3,4, and 5 ps are plotted in Figure 4. Additionally,
for ¢ = 10™* we plot the material temperature and scalar flux through y =
0.001 at 5 ps for the full solver, parallel BUG solver, and the Rosseland
equation in Figure 5. We see that the full solver and parallel BUG solver
both accurately capture the Rosseland diffusion limit. Note that the
Marshak wave test case has similar run-times as the AP property test case,
for varying ¢, since they have the same material parameters.

5.3. A Hohlraum problem

Next, we consider a version of the hohlraum test case described in (Bruner
2002; McClarren and Hauck 2010; Li et al. 2024). The test case models a
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Table 3. Material constants and settings for the hohlraum test case
(McClarren and Hauck 2010).

N, Ny 102,102
Quadrature order, g 30

Speed of light, ¢ 29.98 m ns~!
Radiation constant, a 0.01372 GJ cm™3 keV~™*

1.0 1.0
0.8 0.8 10

0.6 0.6
10°°

‘ 0.4 0.4
0.2 0.2 10

0.0 0.0

(@) Thg! (®) T:'gad © lT:;iu B T::dl

rad

Figure 7. Radiation temperature at t = 1 ns for the hohlraum test case.

hohlraum for testing inertial confinement fusion in Cartesian coordinates.
The problem’s geometry and parameters are given in Figure 6 and Table 3,
respectively. The blue regions in Figure 6 are pure absorbers with ¢* = 100
cm™ and pc, = 5.0-10° GJ cm™ keV™' and the white region is a pure
vacuum with ¢* =0 cm™! and pc, = 1.0 - 10°°GJ cm™ keV™'. Note that
the absorption coefficient ¢¢ is kept constant following (Bruner 2002) while
in (McClarren and Hauck 2010; Li et al. 2024) the absorption coefficient
depends on temperature.

The initial temperature of the entire hohlraum is 107 keV. The left
boundary is heated at a constant temperature of 1 keV, and the right bound-
ary is maintained at 107> keV. There is an inflow of particles from the left
and right boundaries into the hohlraum at equilibrium with the temperature,
while the top and bottom boundaries are reflective. As particles stream into
the hohlraum, a sharp radiation front develops near the edges of the absorb-
ing block, and a shadow develops behind it. These boundary conditions for
the hohlraum have been described in Li et al. (2024), and no analytical solu-
tion exists for this problem.

We simulate the hohlraum test case for ¢ = 1.0 until t.,,g = 1 ns. The
material temperature and radiation temperature at f.,q are plotted in Figures
7 and 8, respectively. We see that the parallel BUG solver approximates the
tull-rank solution accurately while only requiring 8551s compared to 15,311 s
for the full solver. Since the solution has sharp fronts, we expect the solution
to have a higher rank compared to the previous test cases. However, we see
from Figure 6 that the rank of the parallel BUG solution does not grow
beyond 50 despite the maximal rank being much higher.
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Figure 8. Material temperature at t = 1 ns for the hohlraum test case.

6. Conclusions and outlook

In this work, we have proposed a low-rank scheme for the nonlinear ther-
mal radiative transfer equations based on macro-micro decomposition. Th
proposed macro-micro parallel BUG scheme is asymptotic—preserving,
locally conservative, rank-adaptive, and energy stable for the nonlinear
Stefan-Boltzmann closure under a mixed hyperbolic and parabolic CFL
condition. In addition, we also propose an efficient algorithm to implement
reflection-transmission type boundary conditions for the macro-micro par-
allel BUG scheme. Several experiments demonstrating the efficacy of the
proposed schemes are presented. It is observed that the macro-micro
scheme captures the solution to a high degree of accuracy while being com-
putationally and memory efficient.
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Appendix A: Conservative truncation

In this section, we provide a brief overview of the conservative truncation (Einkemmer,
Ostermann, et al. 2023) strategy used to preserve the range space of the basis. Recall that
after the pre-augmentation, parallel update, and augmentation steps of the parallel BUG
integrator outlined in Section 4, we obtain Xe ]RNJICXZ;”, V e RN%n and § € R¥"*%¥ To

. 5 - S+l oo .
preserve the first m basis vectors of X and V, we first construct K" = XS, and then split

. nt1 ~ N ~ 1 ~ 1 ~
K = [Kap Krem:| ,  Wwhere Kap S RNme7 Kiem € RN"XH"’"C, and  ryune = 27, — m.

Analogously, we split V = [Vap Vrem}, where Vg, € R¥™ and Ve, € RN Mmne, Next,

we compute the QR decomposition Krem = Xremérem and subsequently the SVD of §rem =
UIW'. We perform a truncation step by selecting 1 < r, < fyyyye such that, if ¢;, i=

1, ..., Ttrunc are singular values of Srem, then for a given $ > 0 the following is satisfied

Ttrunc 1/2
Z af < 9.
i=r,+1

The rank at time ¢, is then r,;; = r, + m and we set
Xeem = XremU,  Srem = 2 W = VW,
where U € Rfwunex™ and W € R contain the first 7, columns of U and W, and < €
R"™*" is the first r, x r, block of . The angular basis at time #,,; is then defined as
V= [V, W
To set the updated spatial basis, we first compute a QR decomposition of the untrun-

cated basis vectors, i.e., XypSsp = Kap and define X, := [Xap Xiem } Then by computing
the QR decomposition of X, as X, = X""IR and setting
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S 0
Sn+1 =R ap .
|: 0 Srem :|

Thus, we obtain the updated solution X"*!, V**! and $"™! at time #,,, while preserving
the first m basis vectors of the augmented solution.

Appendix B: Proof of Theorem 2

We first state and prove several auxiliary lemmas to prove Theorem 3.2. To ease the pres-
entation of the lemmas, we split the index sets K',K¢ as K' =Kl UK{, and K¢ =
K§, UKS, where

Ko = {(ilpd) i€{0,N:}, € (LN},
KL :{(1,]1/2)| ic{l,.,N,}, je{O,...,N},}}
Ko = {@i)| i€ {l N, je{L..N}},

K¢, :{(11+/2,j1/2 i€{0,..,N,}, je{O,...,Ny}}.

Property 1.
For any {¢;},_ _n, € Rand {di},_, n €R we have

> od %Zé%Zdﬁ—%Z(a—daz-

.
Lemma B.1. Given any P (piw,l,...,@isz’Nq) eRM, (i,j) €K}y, u;€R,
(i,j) € K& and (M), = \/wzdsx We have

)
D (@) MRy == (Dloy) Miluy 3 (@) M 10,

ij i v
-
:_Z(ng)ij) M Luy,
ij
where 5u+4 and Dg(pij are as defined in Section 3.2. Similarly, for

12

— T N, - C
P, = (onf/z,l""’qoijl*/yl\lq) € RN, (i,j) € K, and uis e, € R, (i,j) € K}, we have

T™M2 160, = § M21
.. U:ip — — u; S
Z ((p’ﬁﬂ) *y "q)’l/zfx/z sl

)

Taf21 50 _ T2
Z ((pij:r/z) M H(Syuij;rﬂ o Z (Dy(pll/zjl/z) M luif/sz/z'

Yy ij
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Proof. Consider

T2 50
2 (P MLy =D DD e B
ij
OB DRI
/ j i
1
R DRI
/ j i
1
) HNACIN
AR
= Do) M1
== Zij < x(pij) Uij.
The other relations can be shown along similar lines. |

T N, — N
(Pilv/z]"Nq) € R™, l/lir/zj T (l//irﬂj’l,“”w ZJN) e R

Lemma B.2. Let Pt j = ((Ph/zfl i0

for (i,j) € K}y, and Y_1j= @y, 1; = 0. Then, the following is satisfied:
+ T _ T+
5 (Do) b A= ) P vede
ij ij
where S € RNNa is any symmetric matrix. Similarly, at (x,-,yjr/z) we get

> (Df(pijbz)TSl/lljr/zAC ==y (035:,) 'SPy AL vE T, (B2)

i i

Proof. We show the result for D), v € 7, since the proof for D, follows from similar
arguments. Recalling the definition of D, we can write the left-hand side of (B1) as

Ny N,
. T B 1 J X T
Z (DV (P’:r/zj) S\I’IT/ZJAC - A_xzz(q)l;z] 4 z]) \ll l/ZjAé’
ij j=1i=0 / !

e
= Zz(plm] \|;ll/2] \IIIS/J)AL’ (rearranging terms)

j=1 i=0
_ Tep~
- oS
ij
Using similar arguments, we can show that (B2) holds as well. |

Lemma B.3. For v € J,, we define

1 PO+ 2 n n n+1 & n+1
E_ZR{ZJ:( g )MQv B+ - h CBU -

FZ

82 1 :
+Zz’] ( g"++1+ ) MZQV ( 1/2]1/2 +?hln+ P __BTH-— __h,-1++1-+ ):| AL

L1 1/2]1/2 C 11/2]1/2 C ’1/211/2
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Then, the following inequality holds

At n ? n :
< Z{( 165) Mszﬂ} +2jj{( &) MZQVH] AL

i

2

Bn + hn Bn+1 _ ithrl
c c

4At

Proof. Let
v 1 PYghtl 20.1. b= Lo 82hn Lot 82hn+1
=5 (D) Wl by = (B - cmy =T ),
then we can write £, as
g o Z al]bl]Ag + Z @ 1/211/2 l/2]1/Z

Using Young’s inequality we get

& = ﬁz [( al)’ + (al i }AC + ocizj [(bij)Z + (bif/sz/z)z} AL.

Yy

Since
Z (b)2+(b )2 Agi Z an_i_ﬁhn_an-H_ﬁhrwl 2
— [ v e } B S AN A A c
ij Y
( & | & +1 )2
—h% . —=Bl, ——h!", A
+ Z 1/2]1/2 C :r/z];r/z C ':r/zjl/z C ';r/zjl/z :| C
& & 2
— _Bn+‘_hn__Bn+1__hn+l ,
c c c c
setting o = ;- yields the required result. |
T ..
Lemma B'4' If (le/zj (9011/21 1 (pll/zj Ny ) (l ]) € ’CIIO’ cmd

k.
P, = ((p,]l/z "(piJT/z,Nq) , (i,j) € ’Cop in R4, then the following relations hold for the

. [’V(ptl/zj - Qv V(PII/ZJ |QV| v (pll/z])
advection operator: where v € J,
- D+
ﬁvq)l]/ QV V(PIJ 1 |QV|DV v (pij:rz’
. ‘Pi;ﬁj - ‘Pi;/zj . ‘Pz+1 gy T (Pi—l,jl*/2
Dipy o =—"———, Dig; ,
*Thyt 2Ax il 2Ax

and D), is defined in a similar manner.
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Proof. For 'Cv(”if/zf we have,
£v(Pi]+/2j = (Q;,Dj + QjD;)q’ifﬂj

1 1 4 1
= E(Qv - |QV|)D;L(P1T/2] + E(QV + ‘QVD,D;(PIT/Z]’ (Q; = E(Qvi|QV|))

Df +D; Df —-D; Av ot
=Q, (%) (Pi;/,zj -1Q, (M (Pi;ﬂj = vaiq)i;r/zj iy 1Q,|D, Dy (Pi;r/zj'
Similarly, we can show the relation for £v(pijl+/z. |

2

cons

T N,
Lemma B.5. Let Pt i = (‘Pil*/zj,l""’ﬁoil*/zj,Nq) eRM™ and Y

1//,-+/2]-)Nq)T € RN, for (i,j) € K, then we have the following inequality

12

‘ Z[M(ijj + Q;D;)(pi:r/zj}T(M‘I’i* ‘)AC‘
’ . (B3)
<ua ; (‘I’if/zj)TMz ij/szi + EZ (|QV|DV+(P11+/2]')TM2(|QV|DV+(P11+/ZJ')A§

i

A similar result holds for i, € RN and 'Piﬁ/z € RM, for (i,j) € K},
Proof. Using Young’s inequality for the left-hand side we get

STMQID; + Qe T A
t,j

TM? 1 + 1yt - 2
< aZ]: (Vi) M \|1,»I+/ZJA5+E%: M(Q/D; +Q,D;)e; I°AL

Now consider the second term on the right-hand side of the above inequality,
+yt e 2., . e
Zj: [M(Qv D, + Q, Dv )(Pif/zj} Al = Z]: ('DV (pif/zj) Q,/M°Q, ('DV (pif/zj)AC
+>_(Dre; ) QMQ (Do )AL 34
ij

T — _
+2 Z (Dj(l)ij/zj) QjMsz (D; (Pij/zj)AC-
ij

We have that QF = (Q, +|Q,|)/2, Q, = (Q, —|Q,|)/2 and since Q, and M are diag-
onal matrices
QIM’Q; =o0.
Moreover,

Z (D;‘Pijﬁj)TQ;MzQ; (D;ﬁi’il*ﬂj)AC = Z (Djtpi:’/zj)TQ;MzQ;(Der(Pi;r/zj)AC

y y
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Thus by substituting Q:’ and Q] in (B4) we get
iZj |:M(Qv Dv + Qv Dv )(Pl;r/zji| AC - 2 ; (Dv (pl;r/zj) QVM QV(DV (pzr/zj)AC
1
+_Z (qu)i;r/zj)—r|QV|M2‘QV|(D1T(pITZj)AC

<Z Dy o )" 1QIMIQ,|(D) @i )AL
ij

The result for can be shown in a similar

X [M@D] + QD] )ey |y )AL

manner. u

Lemma B.6. For the advection operator L,,v € Ty, if Y;+ - = (Y;+ i1 ...,wll/]N )" e RN,
for (i,j) € K}y, ‘/I!JI/Z = (Y;+ l//U1/z’Nq) € RM, for (i,j) € Ky, the following holds

1]1/2,

[Z (:/1"“) MLy + ; (.//ggzl)TMm-/zgm] AL = A, + B, (B5)

1 /21

where

-Av - & |:Z (D+\|ln+l) M2|QV|ID+\I’n+1>

2
Z D+\Ilrt+l M2|QV|D+\IlVl+1:| Aé’,

B, =— [Z ((Q+D+ + Q D- )q’nJrl) Mleln:r \lInJrl)

ij gl
# 3D N M - v ac
Additionally, we have
B, > _m“l{,n \Pn+1||z CAt|||Q |D+\Pn+l|‘

Proof. First, we rewrite the first term on the left-hand side of (B5) as

Z ( ‘I'?;;})TMZ'CVWT/JM:; (q;yi]l) M2L V‘Ianrl ¢

i

n1\ T a2 n ntl

) ML, (W = AL

Jrzij: (\l’ll/zj) (‘I’H/zf \l’ll/zj) ¢
Using Lemma B.4, the first term on the right-hand side of (B6) is given by
n+1 2 n+1 n+1 2 C n+1
> (w,w) MPLAAL= (\llw) MPQ, Dy AL
ij

i

(B6)

A
_l (‘I,TL‘H) MZ‘QV‘D D+\|In+1
2 7 )
Av T
=5 2 (Do) MIQUDIE AL
1/2 1/2

7
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where we use Lemma B.2 and
(Vi) MPQD AL = sz (¥r5) MQuAL
7

—Alx; (ve'h) QAL

By

shifting index

Using Lemma B.2 for the second term on the right-hand side of (B6) we get
n1\ T2 n ntl
2 (4 e (v -9

=55 (@) + Q;D;)xlf:“ij) M2 (W - Wi )AL 7

Y
We get similar expressions at (x;,y;: ). Combining with the expressions at (xi+/ 2Yi)
1/2 1/2

yields the first part of the lemma. To prove the remaining lemma, we use Lemma B.5 for
the right-hand side of (B7) which gives

—Z (QD) + QD)W ) M2 (U = Wi )AL
= “Z Vi~ /+11 (‘J’Z’/zf_"’?rfzfl'm (BS)

1 n n
- (|QV|DV+\|II‘+]1) M2(|QV‘D:»‘JI,‘+JI)A£
o 7 1/2 1/2

n+1)Aé’

Similarly, at (x;, Yit, ) we get
_Z Q+D++Q D ) n+l) MZNJUI/2 1]/
_ no_ n+1 n n+1
O‘Z \|»’,]1/ \I’IJ 12 (‘Ill]l/z \Il’h/z) (B9)
——Z QDI W) TME(QuID) W DAL

Adding (B8) and (B9) and setting a = completes the proof of the lemma. |

4cAt
Lemma B.7. Given any ¢ € RN the following inequality holds for v € J:
¢ Qww' Qe < 79" |Q,[M’p.

Proof. Expanding the left-hand side, we get
2
2 .
o Q@ = (S wle)) < (STwittlor) < STwriof| 5wt}
7 7 7 /

Since Y Wy | Q| = [pgr)|QuldQ =7 and 3, walQ) | = [y |Q)[dQ = 7, we get the
desired result for v € J,. |
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Lemma B.8. The following holds for @i, € RN, (i,5) € K.

4
> (Do) MIQID e ) < 55> ol MIQlg; , vE T
y

y

A similar result holds for P, at (z‘,jf/z).

Proof. Expanding the left-hand side of (B10) yields

Z(D+(pz‘/2] M2|QV D+(P,‘ N ZWAQ/‘ZZ D+(p11/21) ’

Y

For a fixed j, using (Frank et al. 2025, Lemma A.2) we get

Z (D+(Pt ]) M2|Qv‘(D+q)tl/2] Ai‘l/zz W/|QC| Z Z ((Pif/zj)z
/ j i

ij
_ % T M2 L
- sz Z:(pil‘/sz |QV|(pzl/2]'
j
Similarly, we can show the results for @;, at (i, ];’/2)
Lemma B.9. For a,b > 0 we have that the following inequality holds:

a*(a—b) —é(us —b) >0

(B10)

Proof. For a = b we get that the left-hand side of the inequality is zero and thus we con-
sider the case a # b. Thus we have two cases a < b or a > b and without loss of generality
we consider the case a < b and prove the inequality by contradiction. So assume that the

given inequality is not true and thus we have
(a—0)- (4a* — @b —a’b* — ab® - b*) < 0.
Since a < b we have 4a* > a®b + a?b* + ab® + b*. However, we have
a’b+ a’b* +ab® + b* > 4a*,

which is a contradiction.
Finally, we now give the proof of Theorem 2:

Proof. We denote the scalar flux by ¢ = Bjj+ 82h?‘-. Then, rearranging (11b) yields

VL a1 L T 0gntl | PO+l +1
E{E i ‘;4’3%5‘” QD —W 'QDg;" = —ojh"

Multiplying (B11) by (% d)”“)AC and summing over i, j

1 Lo 1N 1 1
o () - (o) G-t

+ Z(H n+l n+1AC + Z(Hy)ZJrl n+1AC Z(H2)?j+l,n+lAC,

ij ij

where

(B11)

(B12)
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1
GOSN wTQVDSg:}“( ¢> veds
c
(HZ)fl'Jrl,nH — ahn+1 (1 ¢n+1)
y : y :

The double temporal index on (HI)ZH "1 are for "' and ¢""!, respectively. A similar

equality is obtained at (xi1+/2, yjf/z); adding this to (B12) and summing over i, yields

2 2

1n ln
7¢+1_7¢

c c

1

+

¢n+1 2:| +L(Hl)”+l’”+l — _(HZ)n+l,n+l

21

1 n
“|Jee
c

1
2At [
(B13)

where

n+1,n+1 n+1 n+1 n-H n+1
(H\I/) = Z 11/ if + Z C) Ve jx:
y l/zfl/z

7

1\t ntl L 1\ n+Ln+l 1
(H") = (M) + (Hy
(32)" o |:Z (Hz)n+1 wl Z (32)" n+1:| AL

>

)n+1 ,n+1

i) 1212
y

Similarly, multiplying (11a) by (g”“) M?A( and the equivalent equation at (x;, yJT/Z) by

(g;’fl) M2A{, summing over i,j and addmg them yields
1/2

1 [1 1 1
i [l = g+ g g

1 [ n 1 n n T 1 n
+- zj:(g/*j) M2<I EEW) gyt + Z( f/l) M2<1—%1 )‘ng1]j21:|AC
1 -Z( ,."jl,)Tw(I—%ﬂw ) Lyt + Z( Z?:)TMz(I—%HWT)ﬁ},gZIJ]AC

& 7 1/21
¢ 1yntlhn 1 n+1 an nl an
+5(Gh ——S—ZLZJ_ I/Z]( T/*Zj) g,jj+z l]m( ,+/) g,.jli/z]AC,
(B14)
where
<g11,);1++]1l,” ::( ) Mszléo( ('bz J> ve Jx
1/2
SO [ Gy "+ (@) AL ve T
ij

(gl)n+l,n — n+1 "L (gy)"ﬂ»".
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Since ¢'(x) > a(,Vx, M*1 = w, and 0 = (g) =g W= g; w, we get
1/2 1/2

1 1\ T2 gt n+l 2 n+1 O'(t) 2
. < 20 n+1
82 |:zt]: l/Z]( :r/zj) g1+ ] + Z 0-1]1/2( !]1/2) M g A(: - 82 Hg “
( "jl.) M1 = ( "jl,) w =0,
)

2]
gt M1 = gt Tw=0.
l]l/z ’11/2

Hence (B14) reduces to

1 n+1y2 1 n2 1 n+1 ni2 1 2\n+1,n+1
xS =g+l - g+ @)

; (B15)
c .
FE@y < gy
where
2\ n+1,n+1 L ntl ntl
(gv)il*/zj = <g1/21> M? ‘Cvgl-/2]> veE Ty
(gi)n+1,n+1 :: {Z (g2>n+11 1 +Zy (gz)n-H n+1:| AL ve T
+1,n+1 +1,n+1 ntlntl
(@)= (@) (gj) .
Adding, (B13) + 5= > (B15) yields
1 1n—}—lzlgn-%—l2 1n218n2 1n+11n2
Py || P | v | P | P [ A
€ £ f a1 1 )
% zgnﬂ_zgn :|+2_nc(g2)n+1 + +%(H1)n+l n+1 (B16)
00 okl 2 pag2yntlatl L oian
<= 20 |l gy L gy
Since M2Q,1 = w'Q,, v € J, using Lemma B.1 for (G')"*"" we have
S = S ot e = - 0
7 i
Then, we get
L T S e e P O S O | [ R P P 1
orel | s IR 2 [ R PR
2
€ 1 _ € n & vttt | L ettt B17
2n cg cg }+2nc(g) +2n(H) (B17)
o} 1
< __0 n+1 _ 2\n+1,n+1 - 1 n+1,n.
—  2mc o (H) +2n(H)
Subtracting (H')"*""*" from (H!)"""" and using Lemma B.3 we get
1 n+l,n n+1,n+1 At n+1,n+1 1 1 1 2
Hl _ Hl _ 3 > = Zpn o pntl
S 00— ] @t -

where
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(g3)n+l,n+l o

5, |(Pg) e } 5| (P MZQXHHM

1/211/2

+

i [(Dﬁggﬂ) MZQyH]erZij [( gn++1_) MzQyﬂH AL

Lpli

Using Lemma B.7 and the definition of the differential operators DY, we get for the last
two terms on the right-hand side

At (GP) i < At <g )”“’”“'

< (B18)
(2m)? 4
where
-3 n+1,n+1
@), (D*g”“.) QUMD ve T
1/2
3\ Lt n+1 nt1 3\ Lt
@) = ). (@), | veds
Y2 1/2
-3 n+1,n+1 n+1,n+1 ~ 3\ #tln+l
(g ) = x) + (gy) :
Putting it all together we get
2 2 2 2 2
1 1 ¢n+1 L f n+1 _ ld)n _ L Egn - Egn+1 _ Egn
2At 27 c 27 || ¢ 27 || ¢ c (B19)
2 n+1,n+1
& pyntlntl 0o || it oyntLntl At (~3) ’
= <-0 - — .
2nc (@) - 2mc g () +417: g

Multiplying (11¢) by (%BZH)A( and its equivalent at (x"f/z’yff/z) by (B”+1 )AC,

¢ L

respectively, and summing over i, yields

1 ac, +1 i B 1 » .
A2 G T (157 T3 )0 = 0BG
ij

)
1 ACy_ nt1 N4 [t ntl o ga ntl
=S (T (T, — T AC:E: B % . HTLOAL
At i (Zn) ’1/z]1/z 11/2]1/2 1/211/2 i Cc 11/2]1/2 1/211/2 1/211/2

Using Lemma B.9 we get

1 acy " n u n
B%:W ((TU“) )Ag < Z Bt AL, (B20)

1 ac, 5
T+ AL < B of . KA B21
Atz (27‘5) (( ';r/zjl/z) ( 1/211/2)> C Z 1/211/2 1/211/2 1/211/2 ( ( )

Combining (B20) and (B21), yields

s ||
1
<= E B?-+10'?-h?-+1 E:BnJrl a n+L AC
(o d Y 7 1/211/2 1/211/2 1/211/2

7

e

(B22)
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Since ¢(x) > o8

§ /‘ hn+1 ?hn+1+§ : hn+1 a hn+1
1/211/2

1/211/2 1/2]1/2

2

AC < 20 hn+1
c

Thus, adding (B19) and (B22) yields

1 o Lle o ey, ? € py\ntlntl
2At e +27r cg g +2nc(g)
2 2 Ln+l (B23)
t a At n+l,n+
_& gn+1 Shn+l (g )
2mc 47z '

2

eh™ 1| < 0 and use Lemma B.6 for (gz)”“>”“, on the left-

Note that we bound ——3

2

hand side of (B23), such that ;- || £g""! —£g"|| gets canceled out. This yields the following
inequality ,
n+1 n eAx 3 n+1,n+1 PA)/ 3\ n+1,n+1 At S+ ontl
- — -— D
2At (e ¢") 47c (G5 * 47c () 2n Q\Drg (B24)
At + n+1 ? 0-6 +1 2 At -3 n+1,n+1
- n < — n - > .
21 y| Dy 8 - 2n + 47 )

For any ¢ € RN, since |Q,| < 1, we have ¢'|Q,| M?|Q,|¢ < ¢"|Q,| M?¢$. Hence we

obtain
-3 n+1,n+1
(6)""" (525)
n+l _ en) < _&

2 3At eAx) [z3) et
+ (=== (g
2mc an 4mc
3At FA)/ (~3)n+1,n+1
()@
Using Lemma B.8 and expandmg the sum over the quadrature, we get

1 n Yl
E(e - Z {lzjg/,ij/zj + lzjg/,ybz}AC
3At  eAx ,
+{(5- 4—> @Z’Wm 2t g |
3At  eAy\ 4
+<E_E> Ay W/’Q/‘[Zg/z J+Zg/tj :|AC
which can be written as

1 <3At sAx) 4)Q; ‘ o 2 2
1 _ o < _ PRI st A
_zAt (e e ) >~ E we |: An Arc Ax2 A1c |:; g/,ll/z] + ,‘ngfyyl/2:| C

4

2
’||QV|Drg"+l| <

Combining (B25) and (B18) yields
t
n+1

241

/
3At  eAy 4‘QJ" &) 2 2
o (- 52) A ame| [Zo S T, | A

4mc



Since the step size At satisfies the CFL condition
1 t 2

At < —min ) eAx + % v

3¢ 4/

ap Ay’
/
1]

,eAy +

>

for ‘Qﬂ,

Q;‘ #0. We get "™ < ¢".
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