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A Parallel, Energy-Stable Low-Rank Integrator for 
Nonlinear Multi-Scale Thermal Radiative Transfer

Chinmay Patwardhana and Jonas Kuschb 

aDepartment of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany; 
bDepartment of Data Science, Norwegian University of Life Sciences, Ås, Norway 

ABSTRACT 
Thermal radiative transfer (TRT) governs phenomena ranging 
from supernovas in astrophysics to laser-driven fusion experi
ments in plasma physics. The interaction of radiation and matter 
involves prohibitively small time scales, nonlinear coupling, and 
high-dimensional particle dynamics, making conventional 
numerical methods prohibitively expensive. Dynamical low-rank 
approximation (DLRA), combined with asymptotic-preserving 
discretizations, offers a promising direction, but until now its 
use for nonlinear TRT has been fundamentally limited: stability 
regions of existing DLRA integrators are unknown in realistic 
nonlinear regimes, and coefficient updates remain computa
tionally costly. We present an asymptotic-preserving, locally 
conservative, rank-adaptive, and parallel integrator for a macro– 
micro decomposition-based DLRA of the nonlinear TRT equa
tions. Unlike previous approaches, our method is provably 
energy stable in the nonlinear setting, with step-size restrictions 
that capture both hyperbolic and parabolic CFL conditions. The 
integrator is constructed from the parallel BUG integrator, thus 
eliminating the need for augmented coefficient updates. In the 
setting of the parallel integrator and micro-macro decomposi
tions, we propose a strategy to enforce reflection-transmission 
type boundary conditions in the low-rank factors. These advan
ces resolve long-standing stability and efficiency obstacles, ena
bling DLRA to be applied robustly to nonlinear TRT with 
stability guarantees. Numerical experiments confirm the accur
acy and efficiency of the proposed approach.

KEYWORDS 
Thermal radiative transfer; 
nonlinear energy stability; 
asymptotic–preserving; 
dynamical low-rank 
approximation; parallel BUG 
integrator   

1. Introduction

The field of thermal radiative transfer models the interaction of particles 
traveling through and interacting with a background material. Physical phe
nomena governed by the thermal radiative transfer equations include star 
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formation, supernova explosions, radiation from a hohlraum striking a 
fusion target, and laser wakefield acceleration driven by pressure waves. To 
numerically simulate such problems, particles are commonly described by a 
phase space density f ðt, x, XÞ where t is time, x 2 R3 is the spatial position, 
and X 2 S2 is the direction of flight. Then, the number of particles at time 
t with spatial position in dx around x and direction of travel in dX around 
X is given as f ðt, x, XÞdxdX:

Two central challenges exist in determining the phase space density: First, 
the phase space is six-dimensional, which poses a challenge to store and 
evolve the phase space density on a finely resolved computational grid. 
Second, the underlying dynamics are commonly governed on strongly vary
ing time scales and numerical methods must be designed to accurately cap
ture all essential solution characteristics while not having to resolve 
prohibitively small scales. In particular, if many particles are absorbed on a 
small time scale, the dynamics of the thermal radiative transfer equations 
asymptotically converge to a diffusive nonlinear partial differential equation 
called the Rosseland equation (Rosseland 1931). Numerical methods that 
capture a discrete analog of this behavior while not requiring the resolution 
of prohibitively small time scales are often called asymptotic–preserving 
(AP). To be specific, a numerical scheme is considered to be an AP scheme 
if it has the following three properties (Jin 1999): (1) asymptotic consistency, 
(2) asymptotic stability, and (3) asymptotic efficiency. The numerical scheme 
is asymptotically consistent if, in the diffusion limit, the solution of the kin
etic equation converges to the solution of the diffusion limit. A numerical 
scheme is considered to be asymptotically stable if it does not require pro
hibitively small step sizes in the diffusion limit, and asymptotically efficient 
if the stability does not come at a high cost. A non-comprehensive list of AP 
schemes includes the AP unified gas kinetic scheme (UGKS) (Sun, Jiang, 
and Xu 2015; Sun, Jiang, Xu, et al. 2015; Sun et al. 2017; Li et al. 2024), the 
high-order/low-order (HOLO) scheme (Peng and McClarren 2021), and 
high-order IMEX schemes (Jang et al. 2014; Fu et al. 2022).

To address the high-dimensionality of thermal radiative transfer problems, 
recently developed numerical methods employ dynamical low-rank approxi
mations (DLRA) introduced in Koch and Lubich (2007). The main idea of 
DLRA is to represent the solution as a low-rank factorization and then derive 
evolution equations for the low-rank factors such that the full-rank dynamics 
is captured as closely as possible. While DLRA can significantly reduce mem
ory and computational requirements, it has several additional challenges. 
Most importantly, the evolution equations for low-rank factors are ill-condi
tioned, and a large amount of research has been devoted to constructing 
numerical time integrators that are robust to stiffness. The most frequently 
used robust integrators are the projector–splitting integrator (Lubich and 
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Oseledets 2014), and basis-update & Galerkin (BUG) integrators (Ceruti, 
Kusch, et al. 2022, 2024; Ceruti and Lubich 2022), which allow for an exten
sion to higher order (Ceruti, Einkemmer, et al. 2024; Kusch 2025). Besides 
the construction of robust integrators, numerical methods for DLRA are 
commonly required to preserve certain characteristics of the original prob
lem, e.g., the preservation of local conservation laws (Einkemmer, Kusch, 
et al. 2023; Einkemmer, Ostermann, et al. 2023; Baumann et al. 2024; 
Coughlin et al. 2024; Koellermeier et al. 2024; Frank et al. 2025), asymptotic 
limits (Ding et al. 2021; Einkemmer et al. 2021, 2024, 2025; Frank et al. 2025), 
or stability regions (Kusch et al. 2023; Baumann et al. 2024; Einkemmer et al. 
2024; Frank et al. 2025). Such structure–preserving properties are often prob
lem-dependent and require a careful modification of the standard integrators 
for individual applications. Here, the augmented BUG integrator (Ceruti and 
Lubich 2022) has proven to be beneficial since it allows for increased flexibil
ity to incorporate solution structures while, unlike the projector–splitting 
integrators, not requiring steps backward in time. The augmented BUG inte
grator simplifies the construction of structure–preserving low-rank integra
tors; however, it requires additional costs compared to the parallel BUG 
integrator (Ceruti, Kusch, et al. 2024), which evolves all low-rank factors in 
parallel while not requiring a coefficient update at an increased rank.

Several structure–preserving DLRA methods have been developed for the 
thermal radiative transfer equations. A DLRA scheme to solve the one- 
dimensional thermal radiative transfer equation has been proposed in 
Ceruti, Frank, et al. (2022); however, without stability guarantees, it 
requires a parameter study to determine a sufficiently small time step size. 
In Baumann et al. (2024), a provable energy-stable and locally conservative 
DLRA scheme has been derived in the one-dimensional setting for the Su- 
Olson closure (Su and Olson 1997). Though not physically motivated, the 
Su-Olson closure significantly simplifies the evolution equation as it elimi
nates nonlinear effects in the coupling of the material and particles. 
Moreover, in Frank et al. (2025), the authors propose a DLRA method that 
is asymptotic–preserving, locally conservative, and energy–stable in a one- 
dimensional and linearized setting. In Fu et al. (2022), the authors propose 
an AP IMEX scheme for the nonlinear thermal radiative transfer equation, 
where energy stability is shown under hyperbolic and parabolic Courant– 
Friedrichs–Lewy (CFL) conditions. However, the scheme requires construc
tion and propagation of the full phase space density f ðt, x, XÞ and has not 
been extended to the macro-micro or the low-rank setting.

It is important to note that the stability of previously derived low-rank 
methods is only understood in simplified settings, using linearizations or 
simplified closure relations. Moreover, while the methods proposed in 
Baumann et al. (2024) and Frank et al. (2025) allow for rank-adaptivity, 
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their construction as augmented BUG integrators leads to increased com
putational costs since the time evolution of low-rank coefficients requires a 
sequential time update at an increased rank. An additional challenge for 
DLRA schemes not addressed in Baumann et al. (2024); Frank et al. (2025) 
is the efficient implementation of boundary conditions for complex two- 
and three-dimensional geometries. Due to the nonlinear ansatz, which sep
arates the basis in each phase space variable, describing boundary condi
tions for low-rank schemes is not straightforward. A few techniques for 
incorporating boundary conditions in the DLRA scheme have been pro
posed in Uschmajew and Zeiser (2024), Kusch et al. (2022), and Sapsis and 
Lermusiaux (2009). However, since the dynamics of the parallel BUG inte
grator are completely determined by the initial conditions, the described 
methods are not applicable to the parallel BUG integrator. This work aims 
to develop a structure-preserving DLRA method for thermal radiative 
transfer that overcomes these limitations. The main contributions of this 
paper are:

� Provable energy stability for the nonlinear problem. A key distinction 
from all previously derived DLRA integrators is the rigorous proof of 
energy stability for the DLRA scheme applied to the fully nonlinear 
thermal radiative transfer equations. While prior stability analyses have 
been confined to simplified closures or linearizations, we prove that our 
integrator is stable for the physical closure given by the Stefan- 
Boltzmann law. Our analysis yields a practical time step restriction that 
naturally combines hyperbolic and parabolic CFL conditions.

� A highly efficient, parallel, and structure-preserving integrator. We 
introduce a novel, rank-adaptive integrator based on a macro-micro 
decomposition within the parallel BUG framework. The resulting 
scheme is simultaneously asymptotic-preserving and locally conserva
tive. Critically, its parallel nature avoids the computationally expensive 
substep at twice the rank that is required by alternative structure-pre
serving approaches (e.g., augmented BUG integrators).

� An efficient implementation of physical boundary conditions. We pro
pose a novel technique to incorporate reflection-transmission type 
boundary conditions directly into the evolution of the low-rank factors. 
This method is specifically tailored for the parallel BUG integrator, 
where standard approaches are not applicable.

The rest of the paper is organized into four sections. Section 2 introduces 
the thermal radiative transfer equations, the macro–micro decomposition, 
and the fundamentals of dynamical low-rank approximation and the paral
lel BUG integrator. Section 3 presents an asymptotic–preserving 
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discretization for the macro–micro equations using discrete ordinates, a 
first-order upwind discretization on staggered grids, and an implicit-explicit 
(IMEX) time-stepping scheme. We show that the proposed full-rank 
scheme for the nonlinear closure given by the Stefan-Boltzmann law is 
energy stable under a mixed hyperbolic and parabolic CFL condition. 
Section 4 proposes a computationally inexpensive and memory-efficient 
low-rank scheme based on the parallel BUG integrator for the macro– 
micro equations. It also describes an efficient algorithm for incorporating 
reflection-transmission type boundary conditions in the parallel BUG inte
grator. This scheme is shown to be asymptotic–preserving and energy sta
ble for the nonlinear closure, given by the Stefan-Boltzmann law, under the 
same CFL condition as the full-rank scheme. Finally, Section 5 presents 
numerical experiments for Gaussian, Marshak wave, and hohlraum test 
cases.

2. Background

2.1. Thermal radiative transfer equations

The gray thermal radiative transfer equations model the interaction of radi
ation particles with the background material through the interplay of radi
ation and material heat. In dimensionless form, they read

e2

c
@tf þ e X � rxf ¼ raðBðTÞ − f Þ þ rsð/ − f Þ, (1a) 

e2c�@tT ¼
ð

S2
raðf − BðTÞÞdX: (1b) 

Here, f ðt, x, XÞ describes the particle density at time t 2 R�0; position x ¼
ðx, y, zÞ 2 D � R3 and direction of flight X ¼ ðXx, Xy, XvÞ 2 S2: The material 
temperature, denoted by Tðt, xÞ; varies in time and space, and the specific 
heat of the material is denoted by c�: e; known as the Knudsen number, speci
fies the ratio of the mean free path of particles between collisions to the rele
vant spatial scale. Since most particles fly through the material without any 
interaction, we specify the probability of the different types of interaction. 
The two main particle-material interactions are absorption and scattering, 
and their probabilities are given by raðxÞ and rsðxÞ; respectively. We define 
the total cross-section as rtðxÞ ¼ raðxÞ þ rsðxÞ and assume that raðxÞ �
ra

0 > 0 and rtðxÞ � rt
0 > 0: We introduce the short-hand notation h�i ¼

Ð

S2 � dX to denote the integration over the unit sphere S2: Then, the scalar 
flux, /; defined as /ðt, xÞ :¼ 1

4p
hf ðt, x, XÞi satisfies the following local conser

vation law obtained by integrating (1a) over X and adding (1b):
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@t
4p

c
/þ c�T

� �

þ
1
e
rx � hXf i ¼ 0: (2) 

The absorption of particles by the material increases its temperature and, 
due to blackbody radiation, the material emits particles proportional to the 
fourth power of its current temperature. To be precise, the rate at which 
particles are emitted by the material, represented by BðTÞ; is given by the 
Stefan-Boltzmann law, which reads

BðTÞ ¼
ac
4p

T4 

where a is the radiation constant and c is the speed of light.
To complete the description of the thermal radiative transfer equations, 

we must specify f and T at the initial time t0 2 R�0 and the boundaries of 
the domain. The initial conditions are given by

f ðt0, x, XÞ ¼ fIðx, XÞ, Tðt0, xÞ ¼ TIðxÞ, x 2 D, X 2 S2:

Let @D denote the boundary of D and x̂ 2 @D be a point on the bound
ary. If nðx̂Þ denotes the outward unit normal to the boundary at x̂; the 
reflection-transmission type boundary conditions for the thermal radiative 
transfer equations are given by

f ðt, x̂, XÞ ¼ qðn � XÞf ðt, x̂, X0Þ þ ð1 − qðn � XÞÞfBðx̂, XÞ, if n � X < 0
f ðt, x̂, XÞ, if n � X � 0 ,

�

(3a) 
Tðt, x̂Þ ¼ TBðx̂Þ, (3b) 

where fB denotes the particle density transmitted into the domain from 
outside, 0 � q � 1 specifies reflectivity and X0 ¼ X − 2nðn � XÞ: Note that 
q ¼ 1 corresponds to a purely reflective boundary while q ¼ 0 corresponds 
to a transmission or inflow boundary condition.

Absorption of a large number of particles at small time scales is equiva
lent to e! 0: In this limiting case, e! 0; the particle density f ¼ BðTÞ
and the evolution of the material temperature T is given by the nonlinear 
diffusion-type equation known as the Rosseland equation (Rosseland 1931) 
which reads

c�@tT þ
4p

c
@tBðTÞ ¼

4p

3
rx �

1
rtrxBðTÞ
� �

: (4) 

Remark 1. The initial and boundary conditions for the Rosseland equation 
(4) are found by solving an initial and boundary layer problem. A detailed 
analysis can be found in Klar and Schmeiser (2001); Klar and Siedow 
(1998). However, treating boundary layer problems is out of the scope of 
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this work, and thus we adopt the so-called equilibrium boundary condi
tions proposed in Klar and Schmeiser (2001). That is, we assume ð1 − 
qÞðfB − BðTBÞÞ ¼ 0 almost everywhere on @D� S2

− ¼ fðx̂, XÞ s:t: x̂ 2
@D, nðx̂Þ � X < 0g: Then, if D � R3 has a smooth boundary @D and we 
assume that the initial and the boundary data is bounded and sufficiently 
smooth on the domain, the solution pair ðf , TÞ converges as e! 0 to the 
solution of the Rosseland equation (Klar and Schmeiser 2001). The initial 
and boundary conditions for the Rosseland equation are then given by 
TIðxÞ and TBðx̂Þ; respectively. The reader is referred to Klar and Schmeiser 
(2001) for further details.

2.1.1. Macro–micro decomposition
The thermal radiative transfer equations involve effects varying at different 
time scales. Thus, to avoid mixing scales, we use a macro-micro decompos
ition (Lemou and Mieussens 2008) which decomposes the particle density 
into unscaled equilibrium variables and scaled non-equilibrium variables. 
Specifically, we use the following macro–micro ansatz described in Klar 
and Schmeiser (2001):

f ðt, x, XÞ ¼ BðTðt, xÞÞ þ egðt, x, XÞ þ e2hðt, xÞ, (5) 

where hgi ¼ 0: Thus, the particle density is decomposed into its angular 
mean hf i ¼ BðTÞ þ e2h; and a correction term eg: Substituting this macro– 
micro ansatz in the thermal radiative transfer equations (1) and using the 
condition hgi ¼ 0 yields the macro–micro equations

e2

c
@tg þ e I −

1
4p
h�i

� �

ðX � rxgÞ þ X � rxðBðTÞ þ e2hÞ ¼ −rtg, (6a) 

e2

c
@thþ

1
c
@tBðTÞ þ

1
4p
hX � rxgi ¼ −rah, (6b) 

c�@tT ¼ 4prah: (6c) 

The macro–micro equations are equivalent to the thermal radiative trans
fer equation and have the same Rosseland diffusion limit. This can be seen 
by comparing Oð1Þ terms in (6) which yield the Rosseland equation (4) in 
the limit e! 0: Additionally, since hXðBðTÞ þ e2hÞi ¼ 0 the local conser
vation law (2) takes the following equivalent form:

@t
4p

c
/þ c�T

� �

þrx � hXgi ¼ 0: (7) 

2.1.1.1. Initial and boundary conditions. The initial and boundary condi
tions for the macro–micro equations have been derived and analyzed in 

JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT 7



Klar and Schmeiser (2001). We present the relevant details here. The initial 
conditions for g and h can be derived from the following relations:

gðt0, x, XÞ ¼
1
e

fIðx, XÞ −
1

4p
hfIðx, XÞi

� �

, hðt0, xÞ

¼
1
e2

1
4p
hfIðx, XÞi − BðTIÞðxÞ

� �

:

The boundary condition for g is obtained by substituting the macro– 
micro ansatz (5) into the boundary conditions for f given in (3a). Thus, for 
x̂ 2 @D; the boundary condition for g is given by:

gðt, x̂, XÞ ¼ qgðt, x̂, X0Þ þ ð1 − qÞ
fBðt, x̂, XÞ − BðTBÞðt, x̂Þ

e
− �hðt, x̂Þ

� �

, if n �X < 0,

gðt, x̂, XÞ, if n �X � 0:

8
<

:

The boundary condition for h is set such that the macro–micro decom
position is consistent at the boundaries, i.e., we compute h such that the 
hgi ¼ 0 is satisfied at the boundaries. Thus, h must satisfy the following 
condition at the boundary:
ð

n�X>0
ð1þ qð−n � XÞÞg dXþ

ð

n�X<0
ð1 − qÞ

fB − BðTBÞ

e
− �h

� �

dX ¼ 0,

x̂ 2 @D, 

when the boundary is not purely reflective, i.e., 0 � q < 1: For a purely 
reflective boundary, i.e., q ¼ 1; the boundary conditions for h are not 
required (Klar and Schmeiser 2001). Since we assume equilibrium bounda
ries, the above conditions simplify to

gðt, x̂, XÞ ¼ qgðt, x̂, X0Þ − ð1 − qÞehðt, x̂Þ, if n �X < 0,
gðt, x̂, XÞ, if n �X � 0,

�

e

ð

n�X<0
ð1 − qÞhdX ¼

ð

n�X>0
ð1þ qð−n �XÞÞgdX:

2.2. Dynamical low-rank approximation

In this section, we present a summary of DLRA (Koch and Lubich 2007) 
for solving time-dependent problems on the manifold of low-rank matrices. 
The central idea is to evolve the solution on the low-rank manifold by pro
jecting the dynamics onto the tangent space. Let gðtÞ 2 RNx�Nq denote the 
matrix form of g discretized in x and X with Nx spatial cells and Nq dis
crete directions. That is, ðgÞik ¼ gðt, xi, XkÞ: Then, (6a) can be written as 
the matrix-valued differential equation

_gðtÞ ¼ Fðt, gðtÞÞ:
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Let Mr denote the manifold of Nx � Nq rank-r matrices. Then, a low- 
rank approximation YðtÞ 2 Mr of gðtÞ admits the factorization

YðtÞ ¼ XðtÞSðtÞVðtÞ>, 

where XðtÞ 2 RNx�r; VðtÞ 2 RNq�r are orthonormal basis matrices and 
SðtÞ 2 Rr�r is the invertible coefficient matrix. Let T YMr denote the tan
gent space to Mr at Y. Then, to ensure that YðtÞ 2 Mr approximates gðtÞ
we find _YðtÞ 2 T YðtÞMr such that for all times t the minimization problem

min
_YðtÞ2T YðtÞMr

_YðtÞ − Fðt, YðtÞÞ
�
�

�
�jF

�
�

is satisfied with respect to the Frobenius norm jj � jjF: Reformulating the 
minimization problem as a Galerkin condition on the tangent space, we see 
that the minimization problem is satisfied by

_YðtÞ ¼ PðYðtÞÞFðt, YðtÞÞ, (8) 

where PðYðtÞÞ denotes the orthogonal projection onto the tangent space 
and has the form PðYÞZ ¼ XX>Z − XX>ZVV> þ ZVV> (Koch and 
Lubich 2007, Lemma 4.1), for any Z 2 RNx�Nq : This allows us to derive dif
ferential equations for XðtÞ; SðtÞ; and VðtÞ: However, these equations are 
stiff in the case of rank over-approximation due to the presence of near- 
zero singular values (Koch and Lubich 2007).

In recent years, several structure–preserving integrators (Lubich and 
Oseledets 2014; Ceruti and Lubich 2022; Ceruti, Einkemmer, et al. 2024; 
Ceruti, Kusch, et al. 2024; Kusch 2025) have been developed that are robust 
to this stiffness when solving the projected equation (8). In this work, we 
use the parallel BUG integrator (Ceruti, Kusch, et al. 2024), which evolves 
all the factors X; S; and V in parallel, resulting in a reduced number of 
potentially expensive projection operations while also allowing for rank- 
adaptivity. One step of the parallel BUG integrator for an initial rank-r 
approximation Y0 ¼ X0S0V0,> at time t0 updates the factors to X1; S1; V1 

of rank r1 at t1 ¼ t0 þ Dt in three steps:

1. Parallel update: Update X, S, and V in parallel and construct augmented 
basis matrices X̂ 2 RNx�2r and V̂ 2 RNq�2r:

K-step: For Kðt0Þ ¼ X0S0 solve from t0 to t1

_KðtÞ ¼ Fðt, KðtÞV0,>ÞV0:

Determine X̂ ¼ ðX0, ~X1
Þ 2 RNx�2r as an orthonormal basis of ðX0, Kðt1ÞÞ

(e.g., by QR decomposition). The Nx � r matrix ~X1 is filled with zero 
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columns if rankðX0, Kðt1ÞÞ < r: Compute and store the matrix ~SK
1 ¼

~X1,>Kðt1Þ:

L-step: For Lðt0Þ ¼ V0S0,> solve from t0 to t1

_LðtÞ ¼ Fðt, X0LðtÞ>Þ>X0:

Determine V̂ ¼ ðV0, ~V1
Þ 2 RNq�2r as an orthonormal basis of ðV0, Lðt1ÞÞ

(e.g., by QR decomposition). The Nq � r matrix ~V1 is filled with zero col

umns if rankðV0, Lðt1ÞÞ < r: Compute and store the matrix ~SL
1 ¼ Lðt1Þ

>~V1
:

S-step: For Sðt0Þ ¼ S0 solve from t0 to t1

S
:

ðtÞ ¼ X0,>Fðt, X0SðtÞV0,>ÞV0:

2. Augmentation: Construct the augmented coefficient matrix Ŝ 2 R2r�2r

Ŝ ¼ Sðt1Þ ~SL
1

~SK
1 0

" #

:

3. Truncate: Compute the singular value decomposition of the coefficient 
matrix Ŝ ¼ P̂R̂Q̂

>
where R̂ has the singular values, r̂j; of Ŝ on its diag

onal. The new rank r1 is chosen as the minimal r1 < 2r such that, for a 
given tolerance ϑ; the following inequality is satisfied

X2r

j¼r1þ1
r̂2

j

0

@

1

A

1=2

� ϑ:

The updated coefficient matrix S1 is set as the diagonal matrix containing 
the first r1 singular values of R̂: To set the updated basis, we define Pr1 and 
Qr1 to be the matrices containing the first r1 columns of P̂ and Q̂; respect
ively. Then, the updated factors are set as X1 ¼ X̂Pr1 and V1 ¼ V̂Qr1 :

The approximation at time t1 is then Y1 ¼ X1S1V1,>:

3. An AP scheme for the macro–micro equations

To simulate the thermal radiative transfer equations, we discretize the 
macro–micro equations (6) in their phase space variables ðt, x, XÞ: There 
are three important considerations when constructing a numerical scheme 
for the macro-micro equations. First, the numerical scheme should consist
ently discretize the Rosseland equation in the diffusive limit e! 0; i.e., the 
scheme should be AP. However, in the diffusive limit, the right-hand side 
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of the macro–micro equations becomes stiff, and naive schemes require 
prohibitively small OðeÞ step sizes for stability. Thus, the proposed numer
ical scheme should not require prohibitively small step sizes to capture the 
correct dynamics of the system in the diffusive limit. Finally, the numerical 
scheme should reduce the computational costs and memory requirements 
arising from the high-dimensional phase space of g.

In this section, we propose a numerical scheme based on the discrete 
ordinates method (Lewis and Miller 1984) for X; a first-order upwind dis
cretization on staggered grids (LeVeque 2002; K€upper et al. 2016) for x;
and a first-order IMEX scheme (Frank et al. 2025) for t. In Sections 3.3
and 3.4, the proposed scheme, dubbed the full-rank macro–micro scheme, 
is shown to be AP and energy stable for the nonlinear Stefan-Boltzmann 
closure with mixed hyperbolic and parabolic CFL conditions.

3.1. Angular discretization

The discrete ordinates, or SN; method (Lewis and Miller 1984) uses a quad
rature rule on the unit sphere S2 and solves the macro–micro equations in 
these discrete directions. The SN method has been a popular choice for 
angular discretization of kinetic equations due to its ease of implementation 
and handling of boundary conditions (Einkemmer et al. 2021, 2021) com
pared to other methods like the method of moments (Case and Zweifel 
1967) or the minimal entropy method (Levermore et al. 1998).

In this work, we use the tensorized Gauss-Legendre quadrature rule, also 
called the product quadrature, of order q on the unit sphere. Let 
fXlgl¼1, :::, Nq 

be Nq quadrature points with the associated (quadrature) 
weights wlf gl¼1, :::, Nq and let glð�, �Þ :¼ gð�, � , XlÞ: Then, the macro–micro 
equations in the lth discrete direction are given by

e2

c
@tgl þ e Xl � rxgl −

1
4p

XNq

l0¼1

wl0Xl0 � rxgl0

0

@

1

AþXl � rxðBðTÞ þ e2hÞ ¼ −rtgl,

e2

c
@thþ

1
c
@tBðTÞ þ

1
4p

XNq

l0¼1

wl0Xl � rxgl0 ¼ −rah,

c�@tT ¼ 4prah:
(9) 

Let Xl :¼ ðXl
x , Xl

y , Xl
zÞ
> and J x :¼ fx, y, zg: If g :¼ ðg1, :::, gNqÞ

>
2 RNq ;

then we can write the above system of Nq equations as
e2

c
@tg þ e I −

1
4p

1w>
� �

X

v2J x

Qv@vg þ
X

v2J x

Qv1@vðBðTÞ þ e2hÞ ¼ −rtg,

(10a) 
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e2

c
@thþ

1
c
@tBðTÞ þ

1
4p

w>
X

v2J x

Qv@vg ¼ −rah, (10b) 

c�@tT ¼ 4prah, (10c) 

where w ¼ ðw1, :::, wNqÞ
> and 1 ¼ ð1, :::, 1Þ> are vectors in RNq : In the 

above equations, I 2 RNq�Nq denotes the identity matrix and, for v 2 J x;

Qv :¼

X1
v

. .
.

X
Nq
v

2

6
6
4

3

7
7
5 2 RNq�Nq :

3.2. Spatio-temporal discretization

To discretize (10) in x; we use a first-order upwind discretization on stag
gered grids (K€upper et al. 2016; Einkemmer et al. 2021) and a first-order 
IMEX scheme in t. This staggered-grid approach for constructing AP 
schemes was first described in K€upper et al. (2016) for the multi-scale 
transport equation and in Einkemmer et al. (2021) for the macro–micro 
decomposition of the radiation transport equation. For brevity, we restrict 
the presentation of the discretization to two spatial dimensions on a rect
angular domain, i.e., x ¼ ðx, yÞ 2 ½xL, xR� � ½yB, yT� � R2: Note that in this 
projected geometry, X 2 PðS2Þ where PðS2Þ is the projection of the unit 
sphere in R3 onto the two dimensional plane. This is defined as

PðS2Þ :¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
sin ðhÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
cos ðhÞÞj0 � l � 1, h 2 0, 2p½ �

n o

:

Note that the normalization constant 4p in (1) is replaced by 2p in this 
projected geometry and J x ¼ fx, yg:

We construct two one-dimensional equidistant staggered grids, in x and 
y domains, with cell size Dx ¼ ðxR − xLÞ=Nx and Dy ¼ ðyT − yBÞ=Ny; for 
some Nx, Ny 2 N: The interfaces between intervals are given by fxiþ1=2g

Nx
i¼0 

and fyjþ1=2g
Ny
j¼0 while their mid-points are denoted by fxig

Nx
i¼1 and fyjg

Ny
j¼1:

Note that the discretization is set up such that x1; xNx ; y1; and yNy lie on 
the boundaries of the domain. Following K€upper et al. (2016) and 
Einkemmer et al. (2021), we discretize (6) such that

� T and h are evaluated at ðxi, yjÞ and ðxiþ1=2, yjþ1=2Þ (red colored circles 
in Figure 1),

� g is evaluated at ðxiþ1=2, yjÞ and ðxi, yjþ1=2Þ (blue colored diamonds in 
Figure 1).
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For an illustration of the grid, see Figure 1.
We introduce the following notation to simplify the presentation of the 

numerical scheme. Let k6
1=2 :¼ k61=2; such that the cell interfaces are 

denoted by xi61=2 
and yj61=2

: To further simplify notation, we define Bn
ij :¼

ac
2p
ðTn

ijÞ
4 at ðxi, yjÞ and analogously Bn

iþ1=2jþ1=2
:¼ ac

2p
ðTn

iþ1=2jþ1=2
Þ

4 at ðxiþ1=2
, yjþ1=2
Þ:

Let Qvj j 2 RNq�Nq ; v 2 J x; be the diagonal matrix with entries 
ð Qvj jÞll ¼ jX

l
v j; l ¼ 1, :::, Nq: Then, we define the matrices 

Q6
v :¼ ðQv6jQvjÞ=2; v 2 J x: For ða, bÞ ¼ ðiþ1=2, jÞ or ða, bÞ ¼ ði, jþ1=2Þ let 

ga, bðtÞ :¼ gðt, xa, ybÞ and habðtÞ :¼ hðt, xa, ybÞ; then the first-order 
upwind differential operators at the interfaces (omitting t dependence) are 
defined as

Dþx gab :¼
1
Dx
ðgaþ1, b − gabÞ, D−

x gab :¼
1

Dx
ðgab − ga−1, bÞ,

Dþy gab :¼
1
Dy
ðga, bþ1 − gabÞ, D−

y gab :¼
1
Dy
ðgab − ga, b−1Þ,

d0
xhab :¼

1
Dx
ðhaþ1=2b

− ha−
1=2b
Þ, d0

yhab :¼
1
Dy
ðhabþ1=2

− hab−
1=2
Þ, 

where recall that aþ1=2 ¼ aþ 1=2 and bþ1=2 ¼ bþ 1=2: Additionally, for 
ða, bÞ ¼ ði, jÞ or ða, bÞ ¼ ðiþ1=2, jþ1=2Þ; we define the following centered differ
ence operator at the cell centers and corners

D0
xgab :¼

1
Dx
ðgaþ1=2b

− ga−
1=2b
Þ, D0

ygab :¼
1
Dy
ðgabþ1=2

− gab−
1=2
Þ:

Figure 1. Two-dimensional staggered grid as described in K€upper et al. (2016). h and T are 
evaluated at the red circles whereas g is evaluated at the blue diamonds.
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Note that though D0 and d0 are both central difference operators, D0 

approximates the derivative of g at the cell centers and corners while d0 

approximates the derivatives of h and T at the interfaces. Finally, using an 
IMEX scheme similar to Frank et al. (2025) for discretizing in time, the 
full-rank macro–micro scheme reads

e2

cDt
gnþ1

iþ1=2, j − gn
iþ1=2, j

� �
þ e I −

1
2p

1w>
� �

Lxgn
iþ1=2j þ e I −

1
2p

1w>
� �

Lygn
iþ1=2j

þQx1d0
x Bn

iþ1=2j þ e2hn
iþ1=2j

� �
þQy1d0

y Bn
iþ1=2j þ e2hn

iþ1=2j

� �
¼ −rt

iþ1=2jg
nþ1
iþ1=2j ,

(11a) 
e2

cDt
hnþ1

ij − hn
ij

� �
þ

1
cDt

Bnþ1
ij − Bn

ij

� �
þ

1
2p

w>QxD
0
xgnþ1

ij þ
1

2p
w>QyD

0
ygnþ1

ij

¼ −ra
ijh

nþ1
ij ,

(11b) 
c�
Dt

Tnþ1
ij − Tn

ij

� �
¼ 2pra

ijh
nþ1
ij , (11c) 

where, for v 2 J x;

Lvgn
iþ1=2j ¼ Q−

vD
þ
v þQþv D

−
v

� �
gn

iþ1=2j:

The scheme is analogously defined at ðxi, yjþ1=2
Þ for g and at ðxiþ1=2

, yjþ1=2
Þ for 

h and T.

Remark 2. To update the solution from tn to tnþ1 ¼ tn þ Dt with the above 
scheme, we first update g using (11a) and then simultaneously update h 
and T using (11b),(11c). In the latter step, we first express hnþ1 in terms of 
hn; Bnþ1; Bn; and gnþ1 by re-writing (11b). Then, we substitute hnþ1 in 
(11c) and solve a fourth order polynomial equation to obtain Tnþ1: In the 
numerical implementation, we use the Roots.jl package from Julia to 
solve the fourth-order polynomial equation.

The full-rank macro–micro scheme satisfies a discrete version of the local 
conservation law (7), which is obtained by substituting the macro–micro 
ansatz in (2). Note that /n

ij ¼ Bn
ij þ e2hn

ij (analogously, /n
iþ1=2jþ1=2

) denotes the sca

lar flux at time tn: Thus, re-writing (11b) in terms of /n
ij; balancing constants 

and adding the resulting equation to (11c) yields that the full-rank macro– 
micro scheme (11) satisfies the following discrete local conservation law:

1
Dt

2p

c
/nþ1

ij þ c�Tnþ1
ij −

2p

c
/n

ij − c�Tn
ij

� �

þ w>QxD
0
xgnþ1

ij þ w>QyD
0
ygnþ1

ij ¼ 0:

(12) 
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3.3. AP property

Theorem 3.1. The full-rank macro–micro scheme (11) is asymptotic–preserv
ing for the thermal radiative transfer equations. That is, it preserves the dis
crete Rosseland diffusion equation given by

c�
Dt

Tnþ1
ij − Tn

ij

� �
þ

2p

cDt
Bnþ1

ij − Bn
ij

� �
¼

2p

3
D0

x
1
rt d

0
xBn

� �

ij
þD0

y
1
rt d

0
yBn

� �

ij

" #

:

(13) 

This is a 5-point centered difference discretization for the Rosseland diffu
sion equation (4) on a staggered grid with an explicit time discretization. A 
similar relation holds at ðxiþ1=2

, yjþ1=2
Þ:

Proof. From (11a) and the analogous definition at ðxi, yjþ1=2
Þ; we see that as 

e! 0 we get

gnþ1
iþ1=2j ¼ −

1
rt

iþ1=2j
Qx1d0

x þQy1d0
y

� �
Bn

iþ1=2j,

gnþ1
ijþ1=2
¼ −

1
rt

ijþ1=2

Qx1d0
x þQy1d0

y

� �
Bn

ijþ1=2
:

Similarly, taking the limit e! 0 in (11b) yields

ra
ijh

nþ1
ij ¼ −

1
2p

w>QxD
0
xgnþ1

ij −
1

2p
w>QyD

0
ygnþ1

ij −
1

cDt
Bnþ1

ij − Bn
ij

� �
: (14) 

Since D0
xgnþ1

ij ¼ ðgnþ1
iþ1=2j − gnþ1

i−1=2j Þ=Dx; substituting gnþ1
iþ1=2j and gnþ1

ijþ1=2 
in D0

xgnþ1
ij 

gives

D0
xgnþ1

ij ¼
−1
Dx

1
rt

iþ1=2j
Qx1d0

x þQy1d0
y

� �
Bn

iþ1=2j −
1

rt
i−1=2j

Qx1d0
x þQy1d0

y

� �
Bn

i−1=2j

 !

¼
−1
Dx

1
rt

iþ1=2j
Qx1d0

xBn
iþ1=2j −

1
rt

i−1=2j
Qx1d0

xBn
i−1=2j

 !

−
1
Dx

1
rt

iþ1=2j
Qy1d0

yBn
iþ1=2j −

1
rt

i−1=2j
Qy1d0

yBn
i−1=2j

 !

¼ −D0
x

1
rt

ij
Qx1d0

xBn
ij

 !

−D0
x

1
rt

ij
Qy1d0

yBn
ij

 !

:

A similar expression can be derived for D0
ygnþ1

ij ¼ ðgnþ1
ijþ1=2

− gnþ1
ij−1=2
Þ=Dy:

Substituting D0
xgnþ1

ij and D0
ygnþ1

ij in (14) yields
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ra
ijh

nþ1
ij ¼

1
2p

w>Qx Qx1D
0
x

1
rt

ij
d0

xBn
ij

 !

þQy1D
0
x

1
rt

ij
d0

yBn
ij

 !" #

þ
1

2p
w>Qy Qx1D

0
y

1
rt

ij
d0

xBn
ij

 !

þQy1D
0
y

1
rt

ij
d0

yBn
ij

 !" #

−
1

cDt
Bnþ1

ij − Bn
ij

� �
:

Since by the choice of our quadrature w>QxQx1 ¼Ð

PðS2Þ
ðXxÞ

2dX ¼ 2p=3; w>QyQy1 ¼
Ð

PðS2Þ
ðXyÞ

2dX ¼ 2p=3; and w>QxQy1 ¼
Ð

PðS2Þ
XxXydX ¼ 0; we get

ra
ijh

nþ1
ij ¼

1
3
D0

x
1
rt

ij
d0

xBn
ij

 !

þD0
y

1
rt

ij
d0

yBn
ij

 !" #

−
1

cDt
Bnþ1

ij − Bn
ij

� �
:

Finally, substituting the value of hnþ1
ij in (11c) yields (13) at ðxi, yjÞ: A 

similar equality can be shown to hold at ðxiþ1=2
, yjþ1=2
Þ in the limit e! 0: �

3.4. Energy stability

In this section, we show that the full-rank macro–micro scheme (11) dissi
pates energy under a mixed CFL condition, for a suitable definition of 
energy. Let NI

x denote the number of cell interface points and NC
x denote 

the combined number of cell centers and corners. Let KI denote the set of 
all spatial indices ða, bÞ such that ðxa, ybÞ lies on the interface of two cells, 
i.e., it is of the form ðxiþ1=2

, yjÞ or ðxi, yjþ1=2
Þ: Then, to map gj, l; j 2 KI; l ¼

1, :::, Nq; to the matrix g 2 RNI
x�Nq we define the bijective index map .I :

KI ! f1, :::, NI
xg such that ðgÞ.IðjÞ, l ¼ gj, l: Similarly, let KC denote the set 

of all spatial indices ða, bÞ such that ðxa, ybÞ is either the corner of a cell or 
its center and .C : KC ! f1, :::, NC

x g denote the corresponding bijective 
index map. Then, we define h 2 RNC

x and T 2 RNC
x with elements 

ðhÞ.CðjÞ ¼ hj and ðTÞ.CðjÞ ¼ Tj; respectively. For Df ¼ DxDy; the discrete-
L2 norms of h; T; and g are given as

jhj jj2 :¼
X

j2KC

h2
jDf, jTj jj2 :¼

X

j2KC

T2
jDf, jgj jj2X :¼

X

j2KI

g>j M2gj

Df ¼
X

j2KI

X

l

wlg2
j, lDf, 

where gj ¼ ðgj, 1, :::, gj, NqÞ
> and ðMÞij ¼

ffiffiffiffiffiwi
p

dij; for dij ¼ 1; if i ¼ j and 0 
otherwise. The energy at time tn is then defined as
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en :¼

�
�
�
�

�
�
�
�

1
c

Bn þ
e2

c
hn
�
�
�
�

�
�
�
�

2

þ
1

2p

�
�
�
�

�
�
�
�
e

c
gn
�
�
�
�

�
�
�
�

2

X

þ
2
5

�
�
�
�

�
�
�
�

ffiffiffiffiffiffiffi
ac�
p

2p
ðTnÞ

5=2
�
�
�
�

�
�
�
�

2

: (15) 

Note that in the remainder of the paper, we drop the subscript X from 
j�j jjX and denote it by j�j jj when it is clear from the context that j�j jjX is 

chosen.

Theorem 3.2. For a given spatial grid size Dx, Dy, let the step size Dt satisfy 
the following CFL condition for all Xl

x, Xl
y 6¼ 0;

Dt �
1
3c

min eDxþ
rt

0Dx2

4 Xl
x

�
�
�
�

, eDyþ
rt

0Dy2

4 Xl
y

�
�
�

�
�
�

8
<

:

9
=

;
: (16) 

Then, the full-rank macro–micro scheme given by (11) is energy stable, 
i.e., enþ1 � en, where the energy is defined in (15).

To keep the main part of the paper short, the proof of the theorem has 
been shifted to Appendix B.

4. An AP parallel low-rank scheme for macro–micro equations

From Theorem 3.1 we see that in the diffusive limit, e! 0; the full-rank 
macro–micro scheme is a consistent discretization of the Rosseland equa
tion. Additionally, Theorem 3.2 shows that in the diffusive limit, the full- 
rank macro–micro scheme doesn’t need to resolve small time scales to cap
ture the correct dynamics of the system. Thus, the scheme (11) addresses 
the first two challenges outlined at the beginning of Section 3, namely the 
AP property and energy stability without restrictive CFL conditions.

However, the full-rank macro–micro scheme requires storing and updat
ing g at each pair ðxj, XlÞ; for j 2 KI and l ¼ 1, :::, Nq; and hence has a 
high computational cost and memory footprint. Thus, further modifications 
must be made to address the high-dimensional phase space of g and reduce 
the computational costs of the scheme. In Frank et al. (2025), the authors 
propose to use DLRA (Koch and Lubich 2007) to reduce the computational 
costs of the thermal radiative transfer equations using the augmented BUG 
integrator (Ceruti, Kusch, et al. 2022). However, the proposed macro–micro 
augmented BUG scheme requires a serial S-step at twice the current rank. 
This increases the overall computational cost and memory requirement for 
the scheme. Moreover, only far-field boundaries have been considered in 
Frank et al. (2025), and thus efficient methods of implementing boundary 
conditions for the macro–micro low-rank schemes remain an open topic. 
In this section, we outline the use of the parallel BUG integrator (Ceruti, 
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Kusch, et al. 2024) to update all the factors in parallel and outline a pro
cedure to efficiently incorporate boundary conditions.

For v 2 J x; let D6
v 2 RNI

x�NI
x ; d0

v 2 RNI
x�NC

x ; and D0
v 2 RNC

x�NI
x denote the 

matrix form of the operators D6
v ; d0

v; and D0
v; respectively. Thus, for v 2

J x and k ¼ 1, :::, NI
x; we get ðD6

v gÞk, l ¼ D
6
v gð.IÞ

−1
ðkÞ, l; and ðd0

vhÞk ¼
d0

vhð.IÞ
−1
ðkÞ; where l ¼ 1, :::, Nq: Similarly, for v 2 J x and k0 ¼ 1, :::, NC

x ; we 
have ðD0

vgÞk0, l ¼ D
0
vgð.CÞ

−1
ðk0Þ, l; where l ¼ 1, :::, Nq:

To begin, we consider the time-continuous evolution of gðtÞ 2 RNI
x�Nq 

which reads

e2

c
_g ¼ −eLxg I −

1
2p

1w>
� �>

− d0
xðBðTÞ þ e2hÞ1>Qx − Rtg, (17) 

where BðT Þ is computed component-wise. In the above equation, we have 
used the following short-hand notation Lxg ¼ ðDþx gQ−

x þD−
x gQþx Þ þ

ðDþy gQ−
y þD−

y gQþy Þ; and d0
xðBðT Þ þ e2hÞ1>Qx ¼ d0

xðBðT Þ þ e2hÞ1>Qx þ

d0
yðBðT Þ þ e2hÞ1>Qy: If Ra, Rs 2 RNI

x�NI
x such that ðRaÞðqðjÞ, qðjÞÞ ¼ ra

j and 
ðRsÞðqðjÞ, qðjÞÞ ¼ rs

j; for j 2 KI; then the total cross section Rt is given 
by Rt ¼ Ra þ Rs:

We make the following low-rank ansatz for g

gðtÞ � XðtÞSðtÞVðtÞ>, 

where XðtÞ 2 RNI
x�r; VðtÞ 2 RNq�r are orthonormal and SðtÞ 2 Rr�r is 

invertible. The parallel BUG update scheme for (17) can be derived by fol
lowing the steps outlined in Section 2.2 with Fðt, XSV>Þ ¼ −eLxXS 
V> I − 1

2p
1w>

� �> − d0
xðBðTÞ þ e2hÞ1>Qx − RtXSV>: From Theorem 3.1 we 

know that a crucial step in showing the AP property for the full-rank 
macro–micro scheme is that, in the limit e! 0; we get

gnþ1 ¼ −ðRtÞ
−1d0

xBðTnÞ1>Qx:

Thus, for the low-rank parallel BUG scheme to be AP, ðRtÞ
−1d0

xBðT Þ must 
be in the range space of Xnþ1 at time tnþ1 while 1>Qx must be in the range 
space of Vnþ1: It can be shown that ðRtÞ

−1d0
xBðT Þ 2 rangeðX̂Þ and 

1>Qx 2 rangeðV̂Þ (see Theorem 4.1). However, due to the truncation step 
of the parallel BUG integrator, the range space of the augmented basis X̂ 
and V̂ need not be preserved in Xnþ1; Vnþ1: In general, this also holds for 
the class of rank-adaptive BUG integrators (Ceruti, Kusch, et al. 2022, 
2024), which augment and truncate the basis up to a given tolerance. Based 
on the conservative truncation proposed in Einkemmer, Ostermann, et al. 
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(2023), a mitigation tactic was proposed in Frank et al. (2025). The basis 
vectors ðRtÞ

−1d0
xBðT Þ and 1>Qx are augmented to the updated factors X̂ 

and V̂ to ensure that the sequential S-step captures the e! 0 information. 
This is sufficient since the S-step determines the dynamics of the problem. 
Finally, a conservative truncation strategy is used to ensure that the trunca
tion step preserves the range space of the augmented basis. This guarantees 
that the resulting scheme is AP (Frank et al. 2025, Theorem 4.5). However, 
such a technique cannot be used for the parallel BUG integrator since the 
dynamics capturing the e! 0 information is not determined by the aug
mented basis X̂ and V̂ of the parallel BUG integrator. Thus, we propose 
the following modifications to the parallel BUG integrator to derive a low- 
rank AP scheme for the thermal radiative transfer equations.

For the initial rank-rn data Tn; hn; Xn; Sn and Vn at time tn the low- 
rank factors are updated in four steps:

1. Pre-augmentation: The spatially Discretized gradient 1
rtrxBðTÞ at time tn 

is augmented to the spatial basis Xn and X to the angular basis Vn: That 

is, we set Xn
aug as an orthonormal basis of ðRtÞ

−1d0
x

h

BðTnÞ, ðRtÞ
−1d0

yBðTnÞ, Xn� and Vn
aug as an orthonormal basis of 

Qx1, Qy1, Vn� �
: Note that to satisfy hgi ¼ 0; Vn

aug is determined such that 

ðVn
augÞ

>w ¼ 0 component-wise. Then, we project the coefficient matrix 
onto the augmented basis, i.e. we set Sn

aug ¼ Xn,>
aug XnSnVn,>Vn

aug: The new 
initial rank is denoted by ~rn ¼ rn þ 2: Note that the subscript “aug” is 
dropped in the rest of the paper and with abuse of notation we denote low- 
rank factors by Xn; Vn; and Sn:

2. Parallel update: K-step: For Kn ¼ XnSn 2 RNI
x�~rn update from tn to 

tnþ1 ¼ tn þ Dt

e2

cDt
Knþ1 − Knð Þ ¼ −eLxKnVn,> I −

1
2p

1w>
� �>

Vn − d0
xðBðT

nÞ

þe2hnÞ1>QxVn − RtKnþ1:

(18) 

Determine X̂ ¼ ðXn, ~Xnþ1
Þ 2 RNI

x�2~rn and ~SK
¼ ~Xnþ1,>Knþ1 as described 

in Section 2.2.
L-step: For Ln ¼ VnSn,> 2 RNq�~rn update from tn to tnþ1 ¼ tn þ Dt

e2

cDt
Lnþ1 − Lnð Þ ¼ −e I −

1
2p

1w>
� �

LnXn,>L>x Xn

−Qx1ðBðTnÞ þ e2hnÞ
>
ðd0

xÞ
>Xn − Lnþ1Xn,>RtXn:

(19) 
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Determine V̂ ¼ ðVn, ~Vnþ1
Þ 2 RNq�2~rn such that ~Vnþ1,>w ¼ 0 and store 

the matrix ~SL
¼ Lnþ1,> ~Vnþ1 as described in Section 2.2

S-step: We update from tn to tnþ1 ¼ tn þ Dt

e2

cDt
Snþ1 − Sn
� �

¼ −eXn,>LxXnSnVn,> I −
1

2p
1w>

� �>

Vn

−Xn,>d0
xðBðT

nÞ þ e2hnÞ1>QxVn − Xn,>RtXnSnþ1
:

(20) 

3. Augmentation: Perform the augmentation of the coefficient matrix, i.e. 
set Ŝ to be

Ŝ ¼ Snþ1 ~SL

~SK 0

" #

:

4. Conservative truncation: A conservative truncation strategy, similar to 
the one used in Frank et al. (2025); Einkemmer, Ostermann, et al. (2023) 
is used to truncate the augmented basis while preserving the pre-aug
mented basis vectors at the next time step. A brief overview of the conser
vative truncation step has been added to Appendix A.

After the truncation step, we set the solution at tnþ1 as gnþ1 ¼

Xnþ1Snþ1Vnþ1,> with rank 1 � rnþ1 < 2~rn: The update for h and T remain 
the same as (11) with the modification that gnþ1

j, l ¼ ðX
nþ1Snþ1Vnþ1,>Þ.ðjÞ, l;

for j 2 KI; l ¼ 1, :::, Nq:

Remark 3. The macro–micro parallel BUG scheme is locally conservative, 
satisfying the discrete conservation law (12) with gnþ1

j, l ¼

ðXnþ1Snþ1Vnþ1,>Þ.CðjÞ, l; where j 2 KC:

4.1. Boundary conditions

An open question in dynamical low-rank approximation is the efficient 
implementation of boundary conditions. To impose boundary conditions, 
let us collect all spatial indices that lie on the boundary in the set KI

B :¼

fða, bÞ 2 KIjðxa, ybÞ 2 @Dg with NB :¼ jKI
Bj boundary cells. Defining the 

bijective index map .I
B : KI

B ! f1, :::, NBg; we can define the solution on 
the boundary as ~g 2 RNB�Nq with elements ~gkl ¼ g.I

BðjÞ, l where 
k 2 f1, :::, NBg; j 2 KI

B: Vise-versa, we have gjl ¼ ~g ð.I
BÞ

−1
ðkÞ, l: Now, to 

impose reflective-transmitive boundary conditions, we define
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ĝ kl ¼
q~gnþ1

kl0
− ð1 − qÞehn

ð.I
BÞ

−1
ðkÞ, if nk � Xl < 0

~gnþ1
kl , if nk � Xl � 0

:

(

(21) 

where nk is the outward-pointing normal at position xð.I
BÞ

−1
ðkÞ and Xl0 is 

the reflection of Xl along nk: The value of hn
ð.I

BÞ
−1
ðkÞ is interpolated at the 

boundary point. We note that ~g in (21) can be computed efficiently by 
restricting Xnþ1 to boundary points from ghost cells. Lastly, it remains to 
efficiently impose ĝ 2RNB�Nq on the low-rank factorized solution, which we 
do after the time update of the parallel integrator. That is, we manipulate 
gnþ1 ¼ Xnþ1Snþ1Vnþ1,> such that gnþ1

jl � ĝ.I
BðjÞ, l for all j 2 KI

B without 
having to compute and store gnþ1: To apply boundary conditions effi
ciently, we define K̂ ¼ĝVnþ1 2 RNB�r and K 2 RNx�r such that Kjl ¼

K̂.I
BðjÞ, l for j 2 KI

B and Kjl ¼
P

i XjiSil for j 62 KI
B: Lastly, the basis Xnþ1 

and coefficient Snþ1 are recomputed as a QR decomposition of K; giving 
the factorized solution at time nþ 1 with reflective-transmitive boundary 
values imposed efficiently.

Note that in an abuse of notation, we did not define an intermediate 
low-rank solution for the step in between the parallel integrator and impos
ing boundary conditions. Instead, to simplify notation, we recycle the nota
tion of gnþ1 ¼ Xnþ1Snþ1Vnþ1,>: We also note that the above strategy does 
not impose boundary conditions exactly, similar to the projected boundary 
conditions, for example, used in (Kusch et al. 2022, Section 4) or Sapsis 
and Lermusiaux (2009). Alternatively, boundary conditions can be imposed 
exactly through an augmentation of the directional basis as is done for the 
projector–splitting (Lubich and Oseledets 2014) integrator in Hu and Wang 
(2022). However, we found in our numerical experiment that an approxi
mate imposition through a projection is sufficient to obtain accurate 
results. Thus, to avoid a further increase in the computational cost of the 
method, we impose boundary conditions only through a projection.

4.2. AP property

Theorem 4.1. The macro–micro parallel BUG scheme for the thermal radia
tive transfer equation is asymptotic–preserving. That is, in the limit e! 0 
the scheme preserves the discrete Rosseland diffusion equation

c�
Dt

Tnþ1 − Tnð Þ þ
2p

cDt
Bnþ1 − Bnð Þ

¼
2p

3
D0

x ðR
tÞ

−1d0
xBn

� �

þD0
y ðR

tÞ
−1d0

yBn
� �� �

:
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This is a 5-point centered difference discretization for updating the diffu
sion equation (4) on a staggered grid with an explicit time discretization.

Proof. As e! 0; since ~SK
¼ ~Xnþ1,>Knþ1; we get from the K-step (18)

~SK
¼ −~Xnþ1,>

ðRtÞ
−1 d0

xBðTÞ1>Qx þ d0
yBðTÞ1>Qy

� �
Vn:

Similarly, as e! 0 in the L-step (19) we get

Xn,>RtXnð Þ~SL
¼ −Xn,> d0

xBðTÞ1>Qx þ d0
yBðTÞ1>Qy

� �
~Vnþ1

:

By construction, ðRtÞ
−1d0

xBðTnÞ, ðRtÞ
−1d0

yBðTnÞ 2 rangeðXnÞ which 
implies for v 2 J x

Xn,>d0
vBðTnÞ ¼ Xn,>RtXnXn,>ðRtÞ

−1d0
vBðTnÞ, 

and thus if we assume that ðXn,>RtXnÞ has full rank

~SL
¼ −Xn,>ðRtÞ

−1 d0
xBðTÞ1>Qx þ d0

yBðTÞ1>Qy

� �
~Vnþ1

:

From the S-step (20) we get, as e! 0;

Snþ1
¼ −Xn,>ðRtÞ

−1 d0
xBðTÞ1>Qx þ d0

yBðTÞ1>Qy

� �
Vn:

Then,

X̂ŜV̂> ¼ Xn ~Xn� � Snþ1 ~SL

~SK 0

" #

Vn,>

~Vn,>

� �

¼ −XnXn,>ðRtÞ
−1 d0

xBðTÞ1>Qx þ d0
yBðTÞ1>Qy

� �
V̂nV̂n,>

−~Xnþ1 ~Xnþ1,>
ðRtÞ

−1 d0
xBðTÞ1>Qx þ d0

yBðTÞ1>Qy

� �
VnVn,>:

Since Qx1, Qy1 2 rangeðVnÞ and Qx1, Qy1 2 rangeðV̂Þ; we get

X̂ŜV̂> ¼ −XnXn,>ðRtÞ
−1 d0

xBðTÞ1>Qx þ d0
yBðTÞ1>Qy

� �

−~Xnþ1 ~Xnþ1,>
ðRtÞ

−1 d0
xBðTÞ1>Qx þ d0

yBðTÞ1>Qy

� �

¼ −ðRtÞ
−1 d0

xBðTÞ1>Qx þ d0
yBðTÞ1>Qy

� �
, 

where we get the last equality since ðRtÞ
−1d0

xBðTÞ, ðRtÞ
−1d0

yBðTÞ 2
rangeðX̂Þ:

It was shown in (Frank et al. 2025, Theorem 4.5) that the conservative 
truncation preserves the range space of the augmented spatial and angular 
basis. Thus, as e! 0 we get

gnþ1 ¼ Xnþ1Snþ1Vnþ1,> ¼ −ðRtÞ
−1 d0

xBðTÞ1>Qx þ d0
yBðTÞ1>Qy

� �
:
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The rest of the proof follows on the lines of Theorem 3.1 with gnþ1
j, l ¼

ðgnþ1Þ.ðjÞ, l; for j 2 KI and l ¼ 1, :::, Nq: �

4.3. Energy stability

Theorem 4.2. For a given spatial grid size Dx, Dy, let the step size Dt satisfy 
the CFL condition (16) for all Xl

x, Xl
y 6¼ 0. Then, the proposed macro–micro 

parallel BUG scheme is energy stable, i.e.,

enþ1 � en, 

where the energy is defined as

en ¼

�
�
�
�

�
�
�
�

1
c

Bn þ
e2

c
hn
�
�
�
�

�
�
�
�

2

þ
1

2p

�
�
�
�

�
�
�
�
e

c
XnSnVn,>

�
�
�
�

�
�
�
�

2

þ
2
5

�
�
�
�

�
�
�
�

ffiffiffiffiffiffiffiac�
p

2p
ðTnÞ

5=2
�
�
�
�

�
�
�
�

2

:

Remark 4. The proof of this theorem is based on the proof of Theorem 3.2
and the energy stability for the AP augmented BUG integrator for thermal 
radiative transfer equations in slab geometry in (Frank et al. 2025, Theorem 
4.6). Note that energy stability in (Frank et al. 2025, Theorem 4.6) is for an 
associated linearized problem and thus the energy stability (Theorem 3.2) of 
the fully nonlinear problem (1) proved in this paper is a key ingredient.

The extension to the higher dimensional setting (1) and the change of 
angular discretization don’t affect the stability of the augmented BUG inte
grator. Let X̂a and V̂a denote the orthonormal basis obtained after the K- 
step and the L-step of the AP-modified augmented BUG integrator (Frank 
et al. 2025) with the first r columns being replaced by Xn and Vn; respect
ively. If ~Sn

:¼ X̂>a XnSnVn,>V̂a ¼ X̂>a gnV̂a; then the S-step of the AP-modi
fied augmented BUG scheme is given by

e2

cDt
Ŝnþ1

a − ~Sn
� �

¼ −eX̂>a LxX̂a~SnV̂>a I −
1

2p
1w>

� �>

V̂a

−X̂>a d0
xðBðT

nÞ þ e2hnÞ1>QxV̂a − X̂>a RtX̂aŜnþ1
a :

Then the solution to (17) at time tnþ1 (before truncation) is given by 
ĝnþ1

a ¼ X̂aŜnþ1
a V̂>a . multiplying the S-step from left and right by X̂>a and 

V̂a, respectively, we get

e2

cDt
ĝnþ1

a − gn� �
¼ −ePX̂a Lxgn I −

1
2p

1w>
� �>

PV̂a

−PX̂a d0
xðBðT

nÞ þ e2hnÞ1>QxPV̂a − PX̂aRtĝnþ1
a , 
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where PX̂a :¼ X̂aX̂>a ; PV̂a :¼ V̂aV̂>a , and X̂a~SnV̂>a ¼ gn since X̂a spans Xn 

and V̂a spans Vn. Now, from (Frank et al.2025, Theorem 4.6), we get an 
expression similar to (B14) with gnþ1 replaced by ĝnþ1

a . Further, following 
the steps from Theorem 3.2 we can show that the scheme with the aug
mented solution ĝnþ1

a is energy stable for the nonlinear closure given by 
the Stefan-Boltzmann law in the sense of Theorem 3.2. Let gnþ1

a ¼

Xnþ1
a Snþ1

a Vnþ1,>
a denote the solution at time tnþ1 after truncation. Since the 

truncation step does not increase the norm of the solution, we conclude 
that the macro–micro augmented BUG scheme is energy stable.

The discussion in (Ceruti, Kusch, et al.2024, Section 3.2) shows that if 
gnþ1

p ¼ Xnþ1
p Snþ1

p Vnþ1,>
p is the solution of the parallel BUG at time tnþ1 

then jgnþ1
p

�
�
�

�
�
� � jgnþ1

a
�
�

�
�

�
�

�
�. Thus, the macro–micro parallel BUG scheme is 

energy stable for the nonlinear closure given by the Stefan-Boltzmann law.

5. Numerical experiments

This section presents numerical examples to verify the theoretical properties 
of the integrators and demonstrate their efficiency.1 In all examples, the ini
tial condition is specified for the material temperature while the particle dens
ity is assumed to be at an equilibrium. That is, the initial particle density is 
set as fIðx, XÞ ¼ ac

2p
TIðxÞ4: The truncation tolerance, ϑ; of the macro–micro 

parallel BUG scheme is set as ϑ ¼ 10−2jjRjj2 in all experiments, where R con
tains the singular values of the coefficient matrix. We are mainly interested in 
the case where the absorption effects are dominant and thus we set rs ¼ 0 in 
all the test cases. We define the radiation temperature as Trad :¼

ð2pðBðTÞ þ e2hÞ=acÞ1=4 and the following conserved quantity

qn :¼
X

a, b2KC

2p

c
ðBðTabÞ þ e2habÞ þ c�Tab

� �

DxDy: (22) 

Throughout this section, we refer to the full-rank macro–micro scheme (11)
as the full solver/ integrator, and the corresponding material temperature, sca
lar flux, and radiation temperatures are denoted by TFull; /Full; and TFull

rad ;

respectively. The macro–micro parallel BUG scheme described in Section 4 is 
referred to as the parallel BUG solver/ integrator and Tϑ; /ϑ; and Tϑ

rad denote 
the corresponding material temperature, scalar flux, and radiation tempera
ture, respectively, for a given tolerance ϑ: To study the behavior of our scheme 

1All codes used to generate the results are openly available in the GitHub repository: https://github.com/chinsp/ 
publication-parallel-AP-DLRA-for-non-linear-TRT.

24 C. PATWARDHAN AND J. KUSCH

https://github.com/chinsp/publication-parallel-AP-DLRA-for-non-linear-TRT
https://github.com/chinsp/publication-parallel-AP-DLRA-for-non-linear-TRT


in the asymptotic limit e! 0; we compare our schemes to the numerical solu
tion of the Rosseland equation (4) with (13), which is denoted by TR:

5.1. AP property

The first test case is set up to study the AP property, energy decay and 
conservation property of the proposed integrators and uses the parameters 
described in Ceruti, Frank, et al. (2022). The details are summarized in 
Table 1. The test case is defined for the spatial domain x 2 ½0, 0:002�2 with 
material density q ¼ 0:01 g cm −3 and the temperature is initially distrib
uted as a Gaussian centered at x0 ¼ ð0:001, 0:001Þ; i.e.,

~TIðxÞ ¼
1

2pr2 � exp −
jx − x0j jj

2
2

2r2

� �

, 

where r ¼ 10−4: Furthermore, TIðxÞ is re-scaled such that the maximum 
temperature is 80 eV and the cutoff minimum is 0:02 eV; i.e.,

TIðxÞ ¼
80

maxð~TIðxÞÞ
� ~TIðxÞ, if ~TIðxÞ � 0:02,

0:02, otherwise:

8
<

:

The initially distributed particles move in all directions, and as time pro
gresses, they heat the background material. A temperature heat front, trav
eling outwards from the center of the domain, develops in the material, 
resulting in further emission of particles. The material temperature at the 
boundary is kept at a constant temperature of 0:02 eV:

To demonstrate the AP property of the full-rank and parallel BUG integrator 
we compute the solution at tend ¼ 5 ps for Knudsen numbers e 2 f1, 5 �
10−1, 10−1, 5 � 10−2, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7g: Note that simulations 
with e ¼ 1 correspond to the kinetic regime while e ¼ 10−4 correspond to the dif
fusive regime. The solution of the integrators is compared to the solution of the 
Rosseland equation at tend: The relative error between the material temperature of 
both the integrators and the Rosseland equation at tend is plotted in Figure 2(a). 
We see that as e! 0; the solution of the full solver and the parallel BUG solver 
converge to the Rosseland equation. From Figure 2(b), we see that the solution of 
the parallel BUG integrator is compressed by over 97% compared to the full 
solver, where the compression ratio refers to the ratio of the largest rank (except 
initial rank) of the parallel BUG solver and the maximal possible rank of the full 
solver. Additionally, from Figure 2(c) we see that energy decays for both the full 
solver and the parallel BUG solver in the absence of a source term.

The run-time of the full solver and the parallel BUG solver, which gener
ate Figure 2(a), has been stated in Table 2. From the table, we see that the 
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parallel BUG solver roughly halves the simulation time while using only 
1:5 − 3% of the total degrees of freedom (rank) (see Figure 2b).

5.1.1. Conservation
To show that the proposed schemes are conservative, we consider a modification 
of the test case described in this section. The initial temperature distribution is set as

TIðxÞ ¼
80

maxð~TIðxÞÞ
� ~TIðxÞ, if ~TIðxÞ � 0:02,

0:0, otherwise,

8
<

:

and the boundary temperature is given by TB ¼ 0 eV; given any x̂ 2 @D: In 
addition, to ensure that all particles are contained in the system, we set ~ra ¼

100 � ra; where ra is given in Table 1. The other parameters are the same as 

Figure 2. Left: Relative error of TFull and Tϑ compared to TR; numerical solution of the Rosseland 
equation, for e 2 f1, 5 � 10−1, 10−1, 5 � 10−2, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7g: Middle: 
Compression ratio of the low-rank solution with respect to the full-rank solution computed as 
rmax=minðNI

x , NqÞ � 100; where rmax is the largest rank of the parallel BUG solver (except initial 
rank). Right: Energy decay of the full solver and parallel BUG solver for e 2 f1:0, 10−4g:

Table 1. Material constants and settings for the Gaussian and Marshak wave test 
case as given in Ceruti, Frank, et al. (2022).

Number of spatial cells, Nx , Ny 52,52
Quadrature order, q 30
Absorption coefficient, ra 10, 799:13607 cm −1

Speed of light, c 2:99792458 � 1010 cm s −1

Radiation constant, a 7:565766 � 10−15 erg cm −3 K −4

Specific heat, c� 0:831 � 105 J g −1 K −1

Table 2. Run-times of the full solver and the parallel BUG solver for e 2 f1:0, 0:05, 10−4g on 
the AP property test case 3.3, illustrating the relative computational performance and scalabil
ity of the two solvers as the problem transitions across regimes.

e ¼ 1:0 e ¼ 0:05 e ¼ 10−4

Full solver 3001.34 19070.77 27236.05
Parallel BUG solver 6737.39 42192.17 65438.80
Speed-up 2.24 2.21 2.4
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those for the AP property. The relative error of the conserved quantity qn for 
e ¼ 1:0 and e ¼ 10−5 are plotted in Figure 3 and show that qn is conserved.

5.2. Marshak wave

The Marshak wave test case is a two-dimensional extension of the test case 
presented in Ceruti, Frank, et al. (2022) for the one-dimensional thermal 
radiative transfer equations. The spatial domain and other parameters are 
the same as AP property test case and are given in Table 1. The initial tem
perature of the material is 0:02 eV; and a constant temperature source of 
80 eV is applied to the left wall, which is switched on at the initial time, 
while the remaining boundaries are maintained at 0:02 eV:

Figure 4. Cross-section of the material temperature, radiation temperature, and scalar flux for 
the Marshak wave test case at times 1, 2, 3, 4, and 5 ps through y ¼ 0:001 for e ¼ 1:0:

Figure 3. Relative error of the conserved quantity qn over the entire simulation for the modi
fied problem.
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As time progresses, particles stream into the domain from the left wall, 
and a temperature heat front traveling to the right wall develops. For e ¼
1:0; the cross-section of the material temperature and scalar flux through 
y ¼ 0:001 at times 1, 2, 3, 4, and 5 ps are plotted in Figure 4. Additionally, 
for e ¼ 10−4 we plot the material temperature and scalar flux through y ¼
0:001 at 5 ps for the full solver, parallel BUG solver, and the Rosseland 
equation in Figure 5. We see that the full solver and parallel BUG solver 
both accurately capture the Rosseland diffusion limit. Note that the 
Marshak wave test case has similar run-times as the AP property test case, 
for varying e; since they have the same material parameters.

5.3. A Hohlraum problem

Next, we consider a version of the hohlraum test case described in (Bruner 
2002; McClarren and Hauck 2010; Li et al. 2024). The test case models a 

Figure 6. Left: Geometry of the hohlraum as described in McClarren and Hauck (2010). Right: 
Rank over time for the hohlraum test case with ϑ ¼ 10−2 until 1 ns:

Figure 5. Cross-section of the material temperature, radiation temperature, and scalar flux for 
the Marshak wave test case at time 5 ps through y ¼ 0:001 for the diffusive limit 
with e ¼ 10−4:
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hohlraum for testing inertial confinement fusion in Cartesian coordinates. 
The problem’s geometry and parameters are given in Figure 6 and Table 3, 
respectively. The blue regions in Figure 6 are pure absorbers with ra ¼ 100 
cm−1 and qc� ¼ 5:0 � 105 GJ cm−3 keV−1 and the white region is a pure 
vacuum with ra ¼ 0 cm−1 and qc� ¼ 1:0 � 1099GJ cm−3 keV−1: Note that 
the absorption coefficient ra is kept constant following (Bruner 2002) while 
in (McClarren and Hauck 2010; Li et al. 2024) the absorption coefficient 
depends on temperature.

The initial temperature of the entire hohlraum is 10−3 keV: The left 
boundary is heated at a constant temperature of 1 keV; and the right bound
ary is maintained at 10−3 keV: There is an inflow of particles from the left 
and right boundaries into the hohlraum at equilibrium with the temperature, 
while the top and bottom boundaries are reflective. As particles stream into 
the hohlraum, a sharp radiation front develops near the edges of the absorb
ing block, and a shadow develops behind it. These boundary conditions for 
the hohlraum have been described in Li et al. (2024), and no analytical solu
tion exists for this problem.

We simulate the hohlraum test case for e ¼ 1:0 until tend ¼ 1 ns: The 
material temperature and radiation temperature at tend are plotted in Figures 
7 and 8, respectively. We see that the parallel BUG solver approximates the 
full-rank solution accurately while only requiring 8551s compared to 15,311 s 
for the full solver. Since the solution has sharp fronts, we expect the solution 
to have a higher rank compared to the previous test cases. However, we see 
from Figure 6 that the rank of the parallel BUG solution does not grow 
beyond 50 despite the maximal rank being much higher.

Table 3. Material constants and settings for the hohlraum test case 
(McClarren and Hauck 2010).

Nx , Ny 102,102
Quadrature order, q 30
Speed of light, c 29.98 m ns−1

Radiation constant, a 0.01372 GJ cm−3 keV−4

Figure 7. Radiation temperature at t ¼ 1 ns for the hohlraum test case.
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6. Conclusions and outlook

In this work, we have proposed a low-rank scheme for the nonlinear ther
mal radiative transfer equations based on macro–micro decomposition. Th 
proposed macro–micro parallel BUG scheme is asymptotic–preserving, 
locally conservative, rank-adaptive, and energy stable for the nonlinear 
Stefan-Boltzmann closure under a mixed hyperbolic and parabolic CFL 
condition. In addition, we also propose an efficient algorithm to implement 
reflection-transmission type boundary conditions for the macro–micro par
allel BUG scheme. Several experiments demonstrating the efficacy of the 
proposed schemes are presented. It is observed that the macro–micro 
scheme captures the solution to a high degree of accuracy while being com
putationally and memory efficient.
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Appendix A: Conservative truncation

In this section, we provide a brief overview of the conservative truncation (Einkemmer, 
Ostermann, et al. 2023) strategy used to preserve the range space of the basis. Recall that 
after the pre-augmentation, parallel update, and augmentation steps of the parallel BUG 
integrator outlined in Section 4, we obtain X̂ 2 RNI

x�2~r n ; V̂ 2 RNq�2~rn ; and Ŝ 2 R2~rn�2~rn : To 
preserve the first m basis vectors of X̂ and V̂; we first construct K̂nþ1

¼ X̂Ŝ; and then split 

K̂nþ1
¼ K̂ap K̂rem

h i
; where K̂ap 2 RNI

x�m; K̂rem 2 RNI
x�rtrunc ; and rtrunc ¼ 2~rn − m:

Analogously, we split V̂ ¼ V̂ap V̂rem

h i
; where V̂ap 2 RNq�m and V̂rem 2 RNq�rtrunc : Next, 

we compute the QR decomposition K̂rem ¼ X̂remŜrem and subsequently the SVD of Ŝrem ¼

URW>: We perform a truncation step by selecting 1 � r� � rtrunc such that, if ri; i ¼
1, :::, rtrunc are singular values of Ŝrem; then for a given ϑ > 0 the following is satisfied

Xrtrunc

i¼r�þ1
r2

i

 !1=2

� ϑ:

The rank at time tnþ1 is then rnþ1 ¼ r� þm and we set

Xrem ¼ X̂remÛ, Srem ¼ R̂, ~W ¼ V̂remŴ, 

where Û 2 Rrtrunc�r� and Ŵ 2 Rrtrunc�r� contain the first r� columns of U and W, and R̂ 2
Rr��r� is the first r� � r� block of R: The angular basis at time tnþ1 is then defined as

Vnþ1 :¼ V̂ap ~W
h i

:

To set the updated spatial basis, we first compute a QR decomposition of the untrun
cated basis vectors, i.e., XapSap ¼ K̂ap and define X̂� :¼ Xap Xrem

� �
: Then by computing 

the QR decomposition of X̂� as X̂� ¼ Xnþ1R and setting
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Snþ1 ¼ R Sap 0
0 Srem

� �

:

Thus, we obtain the updated solution Xnþ1; Vnþ1; and Snþ1 at time tnþ1 while preserving 
the first m basis vectors of the augmented solution.

Appendix B: Proof of Theorem 2

We first state and prove several auxiliary lemmas to prove Theorem 3.2. To ease the pres
entation of the lemmas, we split the index sets KI ,KC as KI ¼ KI

10 [ K
I
01 and KC ¼

KC
00 [ K

C
11 where

KI
10 :¼ ðiþ1=2, jÞj i 2 f0, :::, Nxg, j 2 f1, :::, Nyg

n o
,

KI
01 :¼ ði, jþ1=2Þj i 2 f1, :::, Nxg, j 2 f0, :::, Nyg

n o

KC
00 :¼ ði, jÞj i 2 f1, :::, Nxg, j 2 f1, :::, Nyg

� �
,

KC
11 :¼ ðiþ1=2, jþ1=2Þ j i 2 f0, :::, Nxg, j 2 f0, :::, Nyg

n o
:

Property 1.
For any fcigi¼0, :::, Nx

2 R and fdigi¼0, :::, Nx
2 R we have

X

i
cidi ¼

1
2

X

i
c2

i þ
1
2

X

i
d2

i −
1
2

X

i
ðci − diÞ

2
:

Lemma B.1. Given any uiþ1=2j ¼ ðuiþ1=2j, 1, :::, uiþ1=2j, Nq
Þ
>
2 RNq ; ði, jÞ 2 KI

10; uij 2 R;

ði, jÞ 2 KC
00, and ðMÞlk ¼

ffiffiffiffiffiffiwl

p
dlk we have

X

ij
uiþ1=2j
� �>M21d0

xuiþ1=2 j ¼ −
X

ij
D0

xuij

� �>
M21uij,

X

ij
uiþ1=2j
� �>M21d0

yuiþ1=2 j

¼ −
X

ij
D0

yuij

� �>
M21uij, 

where d0
xuiþ1=2j and D0

xuij are as defined in Section 3.2. Similarly, for 

uijþ1=2
¼ ðujþ1=2, 1, :::, uijþ1=2, Nq

Þ
>
2 RNq ; ði, jÞ 2 KI

01 and uiþ1=2 jþ1=2
2 R; ði, jÞ 2 KC

11, we have
X

ij
uijþ1=2

� �>M21d0
xuijþ1=2

¼ −
X

ij
D0

xuiþ1=2jþ1=2

� �>
M21uiþ1=2jþ1=2

,

X

ij
uijþ1=2

� �>M21d0
yuijþ1=2

¼ −
X

ij
D0

yuiþ1=2jþ1=2

� �>
M21uiþ1=2jþ1=2

:
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Proof. Consider
X

ij
uiþ1=2j
� �>M21d0

xuiþ1=2j ¼
X

l

X

j

X

i
wluiþ1=2j, ld

0
xuiþ1=2 j

¼
1

Dx

X

l

X

j

X

i
wluiþ1=2j, l uiþ1, j − uijð Þ

¼ −
1

Dx

X

l

X

j

X

i
wl uiþ1=2j, l − ui−1=2j, l
� �uij

¼ −
1

Dx

X

l

X

j

X

i
wl D

0
xuij, l

� �
uij

¼ −
P

ij D
0
xuij

� �>
M21uij:

The other relations can be shown along similar lines.                                          �

Lemma B.2. Let uiþ1=2j :¼ ðuiþ1=2j, 1, :::, uiþ1=2j, Nq
Þ
>
2 RNq ; wiþ1=2j :¼ ðwiþ1=2 j, 1, :::, wiþ1=2j, Nq

Þ
>
2 RNq 

for ði, jÞ 2 KI
10, and w−1

2, j ¼ uNxþ
1
2, j ¼ 0. Then, the following is satisfied:

X

ij
D6

v uiþ1=2j

� �>
Swiþ1=2jDf ¼ −

X

ij
uiþ1=2j
� �>SD7

v wiþ1=2jDf, v 2 J x, (B1) 

where S 2 RNq�Nq is any symmetric matrix. Similarly, at ðxi, yjþ1=2
Þ we get

X

ij
D6

v uijþ1=2

� �>
Swijþ1=2

Df ¼ −
X

ij
uijþ1=2

� �>SD7
v wijþ1=2

Df, v 2 J x: (B2) 

Proof. We show the result for Dþv ; v 2 J x; since the proof for D−
v follows from similar 

arguments. Recalling the definition of Dþv ; we can write the left-hand side of (B1) as

X

ij
Dþv uiþ1=2 j

� �>
Swiþ1=2jDf ¼

1
Dx

XNy

j¼1

XNx

i¼0
ðu>iþ3=2j − u>iþ1=2jÞSwiþ1=2jDf

¼
1

Dx

XNy

j¼1

XNx

i¼0
u>iþ1=2jSðwiþ1=2j − wiþ3=2jÞDf ðrearranging termsÞ

¼ −
X

ij
uiþ1=2j
� �>SD7

v wiþ1=2jDf:

Using similar arguments, we can show that (B2) holds as well.                               �

Lemma B.3. For v 2 J x, we define

Ev ¼
1

2p

�
X

ij
D0

vgnþ1
ij

� �>
M2Qv1

1
c

Bn
ij þ

e2

c
hn

ij −
1
c

Bnþ1
ij −

e2

c
hnþ1

ij

� �

þ
P

ij D
0
vgnþ1

iþ1=2jþ1=2

� �>M2Qv1
1
c

Bn
iþ1=2 jþ1=2

þ
e2

c
hn

iþ1=2jþ1=2
−

1
c

Bnþ1
iþ1=2jþ1=2

−
e2

c
hnþ1

iþ1=2jþ1=2

� ��

Df:
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Then, the following inequality holds

Ev �
Dt
ð2pÞ

2

X

ij
D0

vgnþ1
ij

� �>
M2Qv1

� �2

þ
X

ij
D0

vgnþ1
iþ1=2jþ1=2

� �>
M2Qv1

� �2
2

4

3

5Df

þ
1

4Dt

�
�
�
�

�
�
�
�

1
c

Bn þ
e2

c
hn −

1
c

Bnþ1 −
e2

c
hnþ1

�
�
�
�

�
�
�
�

2

:

Proof. Let

av
ij :¼

1
2p
D0

vgnþ1
ij

� �>
M2Qv1, bij :¼

1
c

Bn
ij þ

e2

c
hn

ij −
1
c

Bnþ1
ij −

e2

c
hnþ1

ij

� �

, 

then we can write Ev as

Ev ¼
X

ij
av

ijbijDfþ
X

ij
av

iþ1=2jþ1=2
biþ1=2jþ1=2

Df:

Using Young’s inequality we get

Ev ¼
1

4a

X

ij
ðav

ijÞ
2
þ ðav

iþ1=2jþ1=2
Þ

2
h i

Dfþ a
X

ij
ðbijÞ

2
þ ðbiþ1=2jþ1=2

Þ
2

h i
Df:

Since

X

ij
ðbijÞ

2
þ ðbiþ1=2 jþ1=2

Þ
2

h i
Df ¼

�
X

ij

1
c

Bn
ij þ

e2

c
hn

ij −
1
c

Bnþ1
ij −

e2

c
hnþ1

ij

� �2

þ
X

ij

1
c

Bn
iþ1=2jþ1=2

þ
e2

c
hn

iþ1=2 jþ1=2
−

1
c

Bnþ1
iþ1=2 jþ1=2

−
e2

c
hnþ1

iþ1=2jþ1=2

� �2�

Df

¼

�
�
�
�

�
�
�
�

1
c

Bn þ
e2

c
hn −

1
c

Bnþ1 −
e2

c
hnþ1

�
�
�
�

�
�
�
�

2

, 

setting a ¼ 1
4Dt yields the required result.                                                             �

Lemma B.4. If uiþ1=2j :¼ ðuiþ1=2j, 1, :::, uiþ1=2j, Nq
Þ
>
; ði, jÞ 2 KI

10, and 
uijþ1=2

:¼ ðuijþ1=2, 1, :::, uijþ1=2, Nq
Þ
>
; ði, jÞ 2 KI

01, in RNq , then the following relations hold for the 

advection operator:
Lvuiþ1=2j ¼ QvD

c
vuiþ1=2 j −

Dv
2

Qvj jD
−
vD
þ
v uiþ1=2j,

Lvuijþ1=2
¼ QvD

c
vuijþ1=2

−
Dv
2

Qvj jD
−
vD
þ
v uijþ1=2

, 
where v 2 J x

Dc
xuiþ1=2j :¼

uiþ3=2j − ui−1=2j

2Dx
, Dc

xuijþ1=2
:¼

uiþ1, jþ1=2
− ui−1, jþ1=2

2Dx
, 

and Dc
y is defined in a similar manner.
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Proof. For Lvuiþ1=2j we have,

Lvuiþ1=2j ¼ ðQ−
vD
þ
v þQþv D

−
v Þuiþ1=2j

¼
1
2
ðQv − jQvjÞD

þ
v uiþ1=2j þ

1
2
ðQv þ jQvjÞD

−
v uiþ1=2 j, ðQ6

v ¼
1
2
ðQv6jQvjÞÞ

¼ Qv
Dþv þD

−
v

2

� �

uiþ1=2j − jQv
Dþv −D−

v
2

� �

uiþ1=2 j ¼ QvD
c
vuiþ1=2j −

Dv
2

Qvj jD
−
vD
þ
v uiþ1=2j:

�
�
�
�

Similarly, we can show the relation for Lvuijþ1=2
: �

Lemma B.5. Let uiþ1=2j ¼ ðuiþ1=2j, 1, :::, uiþ1=2 j, Nq
Þ
>
2 RNq and wiþ1=2j ¼ ðwiþ1=2j, 1, :::, 

wiþ1=2j, Nq
Þ
>
2 RNq , for ði, jÞ 2 KI

10, then we have the following inequality
�
�
�
�

X

ij
½MðQþv D

þ
v þQ−

vD
−
v Þuiþ1=2 j�

>
ðMwiþ1=2 jÞDf

�
�
�
�

� a
X

ij
ðwiþ1=2jÞ

>M2wiþ1=2 jDfþ
1

4a

X

ij
ðjQvjD

þ
v uiþ1=2jÞ

>M2ðjQvjD
þ
v uiþ1=2jÞDf

(B3) 

A similar result holds for uijþ1=2
2 RNq and wijþ1=2

2 RNq , for ði, jÞ 2 KI
01:

Proof. Using Young’s inequality for the left-hand side we get
�
�
�
�

X

ij
½MðQþv D

þ
v þQ−

vD
−
v Þuiþ1=2j�

>
ðMwiþ1=2jÞDfj

� a
X

ij
ðwiþ1=2jÞ

>M2wiþ1=2 jDfþ
1

4a

X

ij
½MðQþv D

þ
v þQ−

vD
−
v Þuiþ1=2j�

2
Df:

Now consider the second term on the right-hand side of the above inequality,
X

ij
MðQþv D

þ
v þQ−

vD
−
v Þuiþ1=2j

h i2
Df ¼

X

ij
ðDþv uiþ1=2jÞ

>Qþv M2Qþv ðD
þ
v uiþ1=2jÞDf

þ
X

ij
ðD−

v uiþ1=2jÞ
>Q−

v M2Q−
v ðD

−
v uiþ1=2jÞDf

þ 2
X

ij
ðDþv uiþ1=2jÞ

>Qþv M2Q−
v ðD

−
v uiþ1=2 jÞDf:

(B4) 

We have that Qþv ¼ ðQv þ Qvj jÞ=2; Q−
v ¼ ðQv − Qvj jÞ=2 and since Qv and M are diag

onal matrices

Qþv M2Q−
v ¼ 0:

Moreover,
X

ij
ðD−

v uiþ1=2jÞ
>Q−

v M2Q−
v ðD

−
v /iþ1=2jÞDf ¼

X

ij
ðDþv uiþ1=2jÞ

>Q−
v M2Q−

v ðD
þ
v uiþ1=2jÞDf:
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Thus by substituting Qþv and Q−
v in (B4) we get

X

ij
MðQþv D

þ
v þQ−

vD
−
v Þuiþ1=2j

h i2
Df ¼

1
2

X

ij
ðDþv uiþ1=2jÞ

>QvM2QvðD
þ
v uiþ1=2jÞDf

þ
1
2

X

ij
ðDþv uiþ1=2jÞ

> Qvj jM2 Qvj jðD
þ
v uiþ1=2jÞDf

�
X

ij
ðDþv uiþ1=2jÞ

> Qvj jM2 Qvj jðD
þ
v uiþ1=2jÞDf:

The result for 
P

ij MðQþv D
þ
v þQ−

vD
−
v Þuijþ1=2

h i>
ðMwijþ1=2

ÞDf

�
�
�
�

�
�
�
� can be shown in a similar 

manner.                                                                                                     �

Lemma B.6. For the advection operator Lv, v 2 J x, if wiþ1=2j ¼ ðwiþ1=2j, 1, :::, wiþ1=2 j, Nq
Þ
>
2 RNq , 

for ði, jÞ 2 KI
10; wijþ1=2

¼ ðwijþ1=2, 1, :::, wijþ1=2, Nq
Þ
>
2 RNq , for ði, jÞ 2 KI

01, the following holds

X

ij
wnþ1

iþ1=2j

� �>
M2Lvw

n
iþ1=2j þ

X

ij
wnþ1

ijþ1=2

� �>
M2Lvw

n
ijþ1=2

" #

Df ¼ Av þ Bv, (B5) 

where

Av ¼
Dv
2

�
X

ij
ðDþv wnþ1

iþ1=2j Þ
>M2jQvjD

þ
v wnþ1

iþ1=2j

þ
X

ij
ðDþv wnþ1

ijþ1=2
Þ
>M2jQvjD

þ
v wnþ1

ijþ1=2

�

Df,

Bv ¼ −
�
X

ij
ððQþv D

þ
v þQ−

vD
−
v Þw

nþ1
iþ1=2j Þ

>M2ðwn
iþ1=2j − wnþ1

iþ1=2j Þ

þ
X

ij
ððQþv D

þ
v þQ−

vD
−
v Þw

nþ1
ijþ1=2
Þ
>M2ðwn

ijþ1=2
− wnþ1

ijþ1=2
Þ

�

Df:

Additionally, we have

Bv � −
e

4cDt
jWn − Wnþ1�
�

�
�j

2 −
cDt
e

Qvj jD
þ
v Wnþ1�

�
�
�j

2
:

�
�

Proof. First, we rewrite the first term on the left-hand side of (B5) as
X

ij
wnþ1

iþ1=2j

� �>
M2Lvw

n
iþ1=2jDf ¼

X

ij
wnþ1

iþ1=2j

� �>
M2Lvw

nþ1
iþ1=2j Df

þ
X

ij
wnþ1

iþ1=2j

� �>
M2Lv wn

iþ1=2j − wnþ1
iþ1=2j

� �
Df:

(B6) 

Using Lemma B.4, the first term on the right-hand side of (B6) is given by
X

ij
wnþ1

iþ1=2j

� �>
M2Lvw

nþ1
iþ1=2 j Df ¼

X

ij
wnþ1

iþ1=2j

� �>
M2QvD

c
vw

nþ1
iþ1=2 j Df

−
Dv
2

X

ij
wnþ1

iþ1=2j

� �>
M2 Qvj jD

−
vD
þ
v wnþ1

iþ1=2j Df

¼
Dv
2

X

ij
Dþv wnþ1

iþ1=2j

� �>
M2 Qvj jD

þ
v wnþ1

iþ1=2j Df, 
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where we use Lemma B.2 and
X

ij
wnþ1

iþ1=2j

� �>
M2QvD

c
vw

nþ1
iþ1=2j Df ¼

1
Dx

X

ij
wnþ1

iþ1=2j

� �>
M2Qvw

nþ1
iþ3=2j Df

−
1

Dx

X

ij
wnþ1

iþ1=2j

� �>
M2Qvw

nþ1
i−1=2j Df

¼
shifting index 0:

Using Lemma B.2 for the second term on the right-hand side of (B6) we get
P

ij wnþ1
iþ1=2 j

� �>
M2Lv wn

iþ1=2j − wnþ1
iþ1=2j

� �
Df

¼
P

ij ðQ
þ
v D
þ
v þQ−

vD
−
v Þw

nþ1
iþ1=2j

� �>
M2 wn

iþ1=2 j − wnþ1
iþ1=2j

� �
Df:

(B7) 

We get similar expressions at ðxi, yjþ1=2
Þ: Combining with the expressions at ðxiþ1=2

, yjÞ

yields the first part of the lemma. To prove the remaining lemma, we use Lemma B.5 for 
the right-hand side of (B7) which gives

−
X

ij
ððQþv D

þ
v þQ−

vD
−
v Þw

nþ1
iþ1=2j Þ

>M2ðwn
iþ1=2j − wnþ1

iþ1=2j ÞDf

� −a
X

ij
ðwn

iþ1=2j − wnþ1
iþ1=2j Þ

>M2ðwn
iþ1=2j − wnþ1

iþ1=2j ÞDf

−
1

4a

X

ij
ðjQvjD

þ
v wnþ1

iþ1=2j Þ
>M2ðjQvjD

þ
v wnþ1

iþ1=2j ÞDf:

(B8) 

Similarly, at ðxi, yjþ1=2
Þ we get

−
X

ij
ððQþv D

þ
v þQ−

vD
−
v Þw

nþ1
ijþ1=2
Þ
>M2ðwn

ijþ1=2
− wnþ1

ijþ1=2
ÞDf

� −a
X

ij
ðwn

ijþ1=2
− wnþ1

ijþ1=2
Þ
>M2ðwn

ijþ1=2
− wnþ1

ijþ1=2
ÞDf

−
1

4a

X

ij
ðjQvjD

þ
v wnþ1

ijþ1=2
Þ
>M2ðjQvjD

þ
v wnþ1

ijþ1=2
ÞDf:

(B9) 

Adding (B8) and (B9) and setting a ¼ e
4cDt completes the proof of the lemma.            �

Lemma B.7. Given any u 2 RNq the following inequality holds for v 2 J x:

u>Qvww>Qvu � pu> Qvj jM2u:

Proof. Expanding the left-hand side, we get

u>Qvww>Qvu ¼
X

l

wlX
l
vul

� �2
�

�
X

l

wljX
l
v jul

�2

�
X

l0

wl0 jX
l0

v j
X

l

wljX
l
v ju

2
l:

Since 
P

l0 wl0 jX
l0

x j ¼
Ð

PðS2Þ
jXxjdX ¼ p and 

P
l0 wl0 jX

l0

y j ¼
Ð

PðS2Þ
jXyjdX ¼ p; we get the 

desired result for v 2 J x: �
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Lemma B.8. The following holds for uiþ1=2 j 2 RNq ; ði, jÞ 2 KI
10;

X

ij
ðDþv uiþ1=2jÞ

>M2jQvjðD
þ
v uiþ1=2jÞ �

4
Dv2

X

ij
u>iþ1=2 jM

2jQvjuiþ1=2j, v 2 J x: (B10) 

A similar result holds for uijþ1=2 
at ði, jþ1=2Þ:

Proof. Expanding the left-hand side of (B10) yields
X

ij
ðDþv uiþ1=2jÞ

>M2jQvjðD
þ
v uiþ1=2jÞ ¼

X

l

wljX
l
v j
X

j

X

i
ðDþv uiþ1=2jÞ

2
:

For a fixed j, using (Frank et al. 2025, Lemma A.2) we get
X

ij
ðDþv uiþ1=2jÞ

>M2jQvjðD
þ
v uiþ1=2 jÞ �

4
Dv2

X

l

wljX
l
v j
X

j

X

i
ðuiþ1=2jÞ

2

¼
4

Dv2

X

ij
u>iþ1=2jM

2jQvjuiþ1=2 j:

Similarly, we can show the results for uijþ1=2 
at ði, jþ1=2Þ: �

Lemma B.9. For a, b > 0 we have that the following inequality holds:

a4ða − bÞ −
1
5
ða5 − b5Þ � 0:

Proof. For a ¼ b we get that the left-hand side of the inequality is zero and thus we con
sider the case a 6¼ b: Thus we have two cases a < b or a > b and without loss of generality 
we consider the case a < b and prove the inequality by contradiction. So assume that the 
given inequality is not true and thus we have

ða − bÞ � ð4a4 − a3b − a2b2 − ab3 − b4Þ < 0:

Since a < b we have 4a4 > a3bþ a2b2 þ ab3 þ b4: However, we have

a3bþ a2b2 þ ab3 þ b4 > 4a4, 

which is a contradiction.                                                                                 �

Finally, we now give the proof of Theorem 2:

Proof. We denote the scalar flux by /n
ij ¼ Bn

ij þ e2hn
ij: Then, rearranging (11b) yields

1
Dt

1
c
/nþ1

ij −
1
c
/n

ij

� �

þ
1

2p
w>QxD

0
xgnþ1

ij þ
1

2p
w>QyD

0
ygnþ1

ij ¼ −ra
ijh

nþ1
ij : (B11) 

Multiplying (B11) by 1
c /nþ1

ij

� �
Df and summing over i, j

1
2Dt

X

ij

1
c
/nþ1

ij

� �2

−
1
c
/n

ij

� �2

þ
1
c
/nþ1

ij −
1
c
/n

ij

� �2
" #

Df

þ
1

2p

X

ij
ðH1

xÞ
nþ1, nþ1
ij Dfþ

1
2p

X

ij
ðH1

yÞ
nþ1, nþ1
ij Df ¼ −

X

ij
ðH2Þ

nþ1, nþ1
ij Df,

(B12) 

where
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ðH1
vÞ

nþ1, nþ1
ij :¼ w>QvD

0
vgnþ1

ij
1
c
/nþ1

ij

� �

, v 2 J x,

ðH2Þ
nþ1, nþ1
ij :¼ ra

ijh
nþ1
ij

1
c
/nþ1

ij

� �

:

The double temporal index on ðH1
vÞ

nþ1, nþ1
ij are for gnþ1 and /nþ1; respectively. A similar 

equality is obtained at ðxiþ1=2
, yjþ1=2
Þ; adding this to (B12) and summing over i, j yields

1
2Dt

��
�
�
�

�
�
�
�

1
c
/nþ1

�
�
�
�

�
�
�
�

2

−
�
�
�
�

�
�
�
�

1
c
/n
�
�
�
�

�
�
�
�

2

þ

�
�
�
�

�
�
�
�

1
c
/nþ1 −

1
c
/n
�
�
�
�

�
�
�
�

2�

þ
1

2p
ðH1Þ

nþ1, nþ1
¼ −ðH2Þ

nþ1, nþ1,

(B13) 

where

H1
v

� �nþ1, nþ1
:¼

X

ij
H1

v
� �nþ1, nþ1

ij þ
X

ij
H1

v
� �nþ1, nþ1

iþ1=2jþ1=2

" #

Df, v 2 J x,

H1ð Þ
nþ1, nþ1

:¼ H1
x

� �nþ1, nþ1
þ H1

y

� �nþ1, nþ1
,

H2ð Þ
nþ1, nþ1

:¼
X

ij
H2ð Þ

nþ1, nþ1
ij þ

X

ij
H2ð Þ

nþ1, nþ1
iþ1=2jþ1=2

" #

Df:

Similarly, multiplying (11a) by ðgnþ1
iþ1=2j Þ

>M2Df and the equivalent equation at ðxi, yjþ1=2
Þ by 

ðgnþ1
ijþ1=2
Þ
>M2Df; summing over i, j and adding them yields

1
2Dt

1
c
jgnþ1�
�

�
�j

2 −
1
c
jgnj jj

2
þ

1
c
jgnþ1 − gn�
�

�
�j

2
� �

þ
1
e

X

ij
gnþ1

iþ1=2 j

� �>
M2 I −

1
2p

1w>
� �

Lxgnþ1
iþ1=2j þ

X

ij
gnþ1

ijþ1=2

� �>
M2 I −

1
2p

1w>
� �

Lxgnþ1
ijþ1=2

" #

Df

þ
1
e

X

ij
gnþ1

iþ1=2 j

� �>
M2 I −

1
2p

1w>
� �

Lygnþ1
iþ1=2j þ

X

ij
gnþ1

ijþ1=2

� �>
M2 I −

1
2p

1w>
� �

Lygnþ1
ijþ1=2

" #

Df

þ
c
e2 G

1ð Þ
nþ1, n

¼ −
1
e2

X

ij
rt

iþ1=2j gnþ1
iþ1=2 j

� �>
M2gnþ1

iþ1=2j þ
X

ij
rt

ijþ1=2
gnþ1

ijþ1=2

� �>
M2gnþ1

ijþ1=2

" #

Df,

(B14) 

where

G1
v

� �nþ1, n
iþ1=2 j :¼ gnþ1

iþ1=2j

� �>M2Qv1d0
v

1
c
/n

iþ1=2j

� �

, v 2 J x,

G1
v

� �nþ1, n
:¼

X

ij
G1

v
� �nþ1, n

iþ1=2j þ
X

ij
G1

v
� �nþ1, n

ijþ1=2

" #

Df, v 2 J x,

G1ð Þ
nþ1, n

:¼ G1
x

� �nþ1, n
þ G1

y

� �nþ1, n
:
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Since rtðxÞ � rt
0, 8x; M21 ¼ w; and 0 ¼ hgi ¼ g>iþ1=2jw ¼ g>ijþ1=2

w; we get

−
1
e2

X

ij
rt

iþ1=2j gnþ1
iþ1=2j

� �>
M2gnþ1

iþ1=2j þ
X

ij
rt

ijþ1=2
gnþ1

ijþ1=2

� �>
M2gnþ1

ijþ1=2

" #

Df � −
rt

0
e2 jg

nþ1�
�

�
�j

2

gnþ1
iþ1=2j

� �>M21 ¼ gnþ1
iþ1=2 j

� �>w ¼ 0,

gnþ1
ijþ1=2

� �>M21 ¼ gnþ1
ijþ1=2

� �>w ¼ 0:

Hence (B14) reduces to

1
2Dt

�
1
c
jjgnþ1jj

2 −
1
c
jjgnjj

2
þ

1
c
jjgnþ1 − gnjj

2
�

þ
1
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where
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Since M2Qv1 ¼ w>Qv; v 2 J x; using Lemma B.1 for ðG1Þ
nþ1, n we have
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Subtracting ðH1Þ
nþ1, nþ1 from ðH1Þ

nþ1, n and using Lemma B.3 we get
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where
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Using Lemma B.7 and the definition of the differential operators D0
v; we get for the last 

two terms on the right-hand side
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Putting it all together we get
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Multiplying (11c) by 1
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Combining (B25) and (B18) yields
1

2Dt
ðenþ1 − enÞ � −

rt
0

2pc

�
�
�
�g

nþ1
�
�
�
�

�
�
�
�

�
�
�
�

2

þ
3Dt
4p

−
eDx
4pc

� �

~G
3
x

� �nþ1, nþ1

þ
3Dt
4p

−
eDy
4pc

� �

~G
3
y

� �nþ1, nþ1
:

Using Lemma B.8 and expanding the sum over the quadrature, we get
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Since the step size Dt satisfies the CFL condition
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