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1. Introduction

Social and ecological changes, as well as the need for highly 
individualized and diversified product ranges motivate not only 
to increase the efficiency of the means of production, but also 
their flexibility of application. This is addressed by the concept
of Wertstromkinematik . Herein, the factory is not a static setup 
to produce one set of goods, but can be dynamically 
reconfigured to be a generalized production floor. This need for 
flexibility leads to an increase of precision, which can be used 
to either facilitate the production of high-precision components, 
for human-robot and robot-robot collaboration, as well as a 
trade-off for higher process speed.

At the current state of the technology, robotic systems use 
internal sensors, which require an exceeding level of 
mechanical sti ness. An alternative are external sensors, such 
as laser trackers and total stations [20, 29]. The costs of these 

systems make them unsuitable for widespread production 
applications. This leads to a dilemma between acquisition costs 
and system flexibility. To overcome this a holistic approach is 
chosen, as detailed below.

1.1. Scope of this Paper

The first section Process Perception introduces a camera 
sensor with increased 2D resolution, which facilitates the need 
for a universal Metrological Error Model to assess the 
probability of detection in a multi camera setup, based on the 
fusion of stereoscopic sub-sensors and the corresponding 
confidence ellipsoid. To Optimize Perception it becomes 
mandatory to determine the covariance of triangulation, for 
which a new optical simulation pipeline is introduced.
On this basis, a distinct optimization criterion for the 
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subsequent section Process Strategies is derived. Here we 
define a motion planning procedure to be extended by the 
metrological error model. The Hardware Implementation is 
introduced, which is composed of an external sensor system 
and robot and will be used for validation. Based on a Kinematic 
Strategies analysis, we assess ways to consider geometric 
errors and offline calibration techniques to be suffice for the 
initial Path Planning. Based on the previous works, we 
introduce a second robot to segment the path in a 4-step 
process. While the previous steps have minimized the error in 
the task space, forces and torques lead to undesirable errors in 
the joint space. Hence, Dynamic Strategies for compensation 
are evaluated, and a predictive model is introduced to trade-off 
process speed and accuracy. For the Trajectory Generation a 
solution for the optimal control problem is introduced that 
minimizes travel time. The Solution can be extended to 
improve the accuracy by the aforementioned dynamic data-
driven error model and the metrological covariance analysis.
The trajectory is the final key-stone for the Camera Placement. 
Here, we finalize the set-up and determine the camera positions 
to minimize obscurance and maximize accuracy 

2. Process Perception

Recent research indicates that multipoint photogrammetry 
might be a solution to realize cost-e cient high-resolution 
optical sensors [12]. The schematics of this measuring method 
is shown in Fig. 1. In this method, a Di ractive Optical Element

Fig. 1: Error sources in a robotic manufacturing system, which can be 
compensated using an external multipoint sensor, are marked in green.

(DOE) is used in succession of an imaging lens to create 
multiple linearly independent optical copies of an active 
marker. It has been shown [12] that the variance of the mean 
positional detection error of these points σ2 ′ ′ detected on the 
imaging sensor is proportional to the number of copies 
created by the DOE. However, this increase in planar signal 
detection is in itself not su cient for high precision 3D 
localization. One or more additional sensors are needed to 
triangulate the 2D point positions on the imaging sensors to its 
point of origin in the object space. For a pinhole camera system 
the relation between object and imaging point is determined by 
the camera matrix 𝑪𝑪 , which is composed of the intrinsic 𝑲𝑲 and 
and extrinsic camera parameters [𝑹𝑹 𝒕𝒕] , which comprise 
information about the spatial orientation, as well as the 
information about distance to image plane and image scale 
factor. This leads to the well-established collinear equation 
[18], whereby 𝑙𝑙𝑛𝑛 is the collinear factor, which describes the 

line of sight between the object and image point.

𝑪𝑪 = 𝑲𝑲[𝑹𝑹 𝒕𝒕
0 1] (1)

𝑙𝑙𝑛𝑛 [
𝑥𝑥𝑛𝑛’
𝑦𝑦𝑛𝑛’
0

] = 𝑪𝑪 [
𝑥𝑥
𝑦𝑦
𝑧𝑧
0
] (2)

Subsequently, the correspondence between object position and 
image points, known as triangulation, can be defined for 
multiple cameras according to
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] (3)

Where 𝑪𝑪𝑚𝑚,𝑛𝑛corresponds to the 𝑚𝑚-th row of the 𝑛𝑛-th camera 
matrix. In case the extrinsic and intrinsic camera parameters are 
fully known, the equation system can be solved by least-square 
techniques.
It is important to note that this relationship can also be 
described by the notation for projective reconstruction

𝑥𝑥’⊤𝑭𝑭𝑥𝑥 (4)

Here, the fundamental matrix 𝑭𝑭 is a 3 × 3 tensor, which scales 
in rank according to the number of cameras in the system. Due 
to the increasing complexity and computing effort, this method 
is usually constraint to three cameras systems. Instead of a 
Tensor representation, the triangulation relation (3) is 
described by the notation for projective reconstruction

𝑔𝑔(𝑸𝑸,𝑴𝑴)
𝑸𝑸 = [𝑷𝑷, 𝑪𝑪]⊤ (5)

The vector of the input Quantities 𝑸𝑸 = [𝑞𝑞1, … , 𝑞𝑞𝑛𝑛]⊤ is 
composed of the vector of image points 
𝑷𝑷 = [𝑥𝑥’1, 𝑦𝑦’1, … , 𝑥𝑥’𝑛𝑛, 𝑦𝑦’𝑛𝑛]⊤ and the vector of camera 
parameters, 𝑪𝑪 = [𝑪𝑪1, … , 𝑪𝑪𝑛𝑛]⊤, which in turn define the object 
point coordinates 𝑴𝑴 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧]⊤ in cartesian form. The 
uncertainty of the output 𝑴𝑴 can be approximated by the 1st 
order Taylor series with regard to the input parameters

𝜎𝜎2 = ∑∑(𝛿𝛿𝛿𝛿
𝛿𝛿𝑞𝑞𝑖𝑖

)(𝛿𝛿𝛿𝛿
𝛿𝛿𝑞𝑞𝑗𝑗

)𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗)
𝑛𝑛

𝑖𝑖=0

𝑛𝑛

𝑖𝑖=0
(6)

Where 𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗) is the covariance between two input 
parameters. More commonly, it is known in the form [6]

𝜎𝜎2 = 𝑱𝑱𝑸𝑸𝜦𝜦𝑸𝑸𝑱𝑱𝑸𝑸
⊤ (7)

𝑱𝑱𝑸𝑸is known as design or Jacobi matrix of the partial derivatives 
of 𝑔𝑔(𝑸𝑸,𝑴𝑴)with respect to the input quantities 𝑸𝑸, and 𝜦𝜦𝑸𝑸is the 
covariance matrix of said input values. The uncertainty of the 
input parameters is directly tied to the uncertainty of the output 
parameters

𝑱𝑱𝑴𝑴𝜦𝜦𝑴𝑴𝑱𝑱𝑴𝑴
⊤ = 𝑱𝑱𝑸𝑸𝜦𝜦𝑸𝑸𝑱𝑱𝑸𝑸

⊤ (8)
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Therein, 𝑱𝑱𝑴𝑴is the Jacobi matrix of the partial derivatives input 
quantities 𝑴𝑴and 𝜦𝜦𝑴𝑴is the covariance matrix with respect to the 
output quantities 𝑴𝑴 . The matrix 𝜦𝜦𝑴𝑴 is computed as

𝜦𝜦𝑴𝑴 = 𝑱𝑱𝑴𝑴
𝜟𝜟 (𝑱𝑱𝑸𝑸𝜦𝜦𝑸𝑸𝑱𝑱𝑸𝑸

⊤)(𝑱𝑱𝑴𝑴
𝜟𝜟 )⊤ (9)

With 𝑱𝑱𝑴𝑴
𝜟𝜟 = (𝑱𝑱𝑴𝑴

⊤ 𝑱𝑱𝑴𝑴)−1𝑱𝑱𝑴𝑴
⊤ being the Moore-Penrose pseudo 

inverse matrix of 𝑱𝑱𝑴𝑴.

2.1. Metrological Error Model

The design matrices for the input 𝑱𝑱𝑸𝑸 and output quantities 𝑱𝑱𝑴𝑴
can be established by a various calibration process. A detailed 
description of these methods exceeds the scope of this paper. 
Usually a series of known markers is placed in the object space.
In case of arbitrary camera positions the minimum number of 
markers needed corresponds to

𝑢𝑢 = 𝑢𝑢𝑛𝑛 ⋅ 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑢𝑢𝑝𝑝 ⋅ 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑢𝑢𝑐𝑐 ⋅ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (10)

with: 𝑢𝑢𝑛𝑛 = 6,𝑢𝑢𝑝𝑝 = 3,𝑢𝑢𝑐𝑐 = 6

Whereby 𝑢𝑢𝑛𝑛 , 𝑢𝑢𝑝𝑝 , 𝑢𝑢𝑝𝑝 is the minimum number of unknown 
parameters to be resolved and 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, is the 
number of pictures, points per picture and cameras within the 
system. It becomes evident, that an increase in the number of 
cameras 𝑛𝑛cameras leads to increasing requirements for the means 
of calibration (10) and computational complexity, signified by 
the increasing rank of the fundamental matrix (4). Conversely, 
it becomes difficult to determine the metrological error of such 
a system.

Fig. 2: Top view of a photogrammetric sensor in trifocal configuration under 
simplified converging geometric constraints, whereby the optical axes OA of 
three cameras systems intersect in one point. It can also be regarded as a 
composition of 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 = 3 stereoscopic subsystems, whereby the measurement 
error of each subsystem corresponds in shape to an ellipsoid E.

Hence, an alternative approach is needed. As depicted in
Fig. 2 a photogrammetric sensor can also be described as a 
combination of multiple independent stereoscopic sub-sensors.

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑛𝑛 − 1
𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛=1
(11)

For these subsensors the metrological error can be described as 
an ellipsoid 𝑬𝑬, which is related to a spectral decomposition of 
the covariance of the output quantities 𝜦𝜦𝑴𝑴.

𝜦𝜦𝑴𝑴 = [𝑺𝑺1 𝑺𝑺2 𝑺𝑺3]⊤ [
𝜆𝜆1 0 0
0 𝜆𝜆2 0
0 0 𝜆𝜆3

] [
𝑺𝑺1
𝑺𝑺2
𝑺𝑺3

] (12)

The normalized eigenvectors 𝑺̂𝑺𝑖𝑖 = 𝑺𝑺𝑖𝑖/|𝑺𝑺| correspond to the 
direction of the semi-axis of the ellipsoid and the square root of 
product of the eigenvalues 𝜆𝜆𝑖𝑖 and the quantile of the 𝜒𝜒3,1−𝛼𝛼

2

distribution with regard to the probability of safety 1 − 𝛼𝛼.

𝑬𝑬 = [
𝑒𝑒11 𝑒𝑒12 𝑒𝑒13
𝑒𝑒21 𝑒𝑒22 𝑒𝑒23
𝑒𝑒31 𝑒𝑒32 𝑒𝑒33

] = √𝜒𝜒3,1−𝛼𝛼
2 [𝑺𝑺1 𝑺𝑺2 𝑺𝑺3] [

√𝜆𝜆1

√𝜆𝜆2

√𝜆𝜆3

] (13)

Since the angular orientation of the ellipsoids is non-isotropic, 
the world coordinate system is defined as frame of reference. 
Thereby not the semi-axes, but the intersection with the 
coordinate axes is used for further computation. Hence, the 
metrological error along the unit vectors equals

𝜎𝜎𝑗𝑗 = ∑ (𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖)3
𝑗𝑗=1 (14)

Subsequently, the metrological error for each subsystem 
𝜎𝜎𝑗𝑗,𝑛𝑛can be used to combine and improve the related outcomes 
𝑴𝑴𝑛𝑛 by calculating the weighted arithmetic mean

𝑴𝑴‾ 𝑗𝑗 =
∑ (𝑴𝑴𝑛𝑛,𝑗𝑗⋅𝜎𝜎𝑛𝑛,𝑗𝑗

−2)
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛=1

∑ 𝜎𝜎𝑛𝑛,𝑗𝑗
−2𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛=1

(15)

The resulting error corresponds to

𝝈𝝈‾𝑗𝑗 = √
1

∑ 𝜎𝜎𝑛𝑛,𝑗𝑗
−2𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛=1

(16)

2.2. Optimized Perception

It has been remarked in the literature that a covariance exists 
between the input quantities of a stereoscopic system, and it is 
related to a combination of marker and the image processing 
algorithm used for detection. Only recently, for the case of a 
simplified stereoscopic sensor under converging constraints 
and passive markers, simulation results have experimentally 
been verified.
Liu et al. showed that the optimum camera orientation angle 
𝛽𝛽𝑚𝑚𝑚𝑚 is in the range of 60∘ − 80∘ , not 30∘ − 50∘ . The input 
quantities for such a system is depicted in Fig. 2 and read

𝑸𝑸 = [𝑥𝑥’𝑚𝑚, 𝑦𝑦’𝑚𝑚, 𝑥𝑥’𝑛𝑛, 𝑦𝑦’𝑛𝑛, 𝛽𝛽𝑚𝑚𝑚𝑚, 𝛽𝛽𝑛𝑛𝑛𝑛, 𝐵𝐵𝑛𝑛𝑛𝑛, 𝑓𝑓𝑛𝑛, 𝑓𝑓𝑚𝑚]⊤ (17)

In this case 𝑥𝑥’, 𝑦𝑦’is the pixel position of the marker on the sensor 
plane, 𝛽𝛽 is the aforementioned camera orientation angle, 𝐵𝐵 is 
the distance between the pinhole position and 𝑓𝑓 is the focal 
length.
The off-diagonal elements of the resulting covariance matrix 
𝜦𝜦𝑸𝑸 signify high degrees of cross-correlation between the 
camera orientation angle 𝛽𝛽 and the point position 𝑥𝑥, 𝑦𝑦 on the 
detector. This is related to the decreasing visible surface of the 
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passive markers, which leads to an increase of the effective 
noise per area. Since multipoint detection uses sub-resolution 
active markers instead of passive ones, it cannot be assumed 
that the cross-correlation factors are similar. Since here, the so-
called signal-to-noise ratio (SNR) primarily depends on 
intensity of the spots on the sensor plane.

Fig. 3: Simulation procedure for multipoint detection. Based on a black-box-
model (BBM) and a combination of geometric and Fresnel propagation.

This signal strength is on the one hand related to the distance 
between sensor and marker, on the other hand it depends on the 
spatial orientation of the marker with regard to the receiving 
optic. The radiation characteristic of a LED or a diffuser fiber 
tip is for most angular orientations non-isotropic.
On this basis an optical simulation procedure was created, as 
can be seen in Fig. 3, to extended previous works about the 
covariance-analysis for stereoscopic sensors.
Here, the extrinsic camera parameters and the marker 
coordinates in space and orientation are used to derive the input 
vector for the simulation, which comprises information about 
the normalized intensity distribution 𝐼𝐼‾, the distance to marker 
𝑧𝑧and the field angles 𝜔𝜔 and 𝜃𝜃. A black box model of the lens is 
used to compute the complex wavefront distribution at the 
DOE-position 𝑼𝑼𝑚𝑚 , which is combined with the DOE phase 
distribution 𝑼𝑼𝐷𝐷𝐷𝐷𝐷𝐷 and a spherical wavefront 𝑼𝑼𝑆𝑆 to 
accommodate for the distance of the DOE to the imager. This 
wavefront is propagated to the sensor by the Fresnel method. 
The fixed 𝑰𝑰𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷/𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and random 𝑰𝑰𝐷𝐷𝐷𝐷𝐷𝐷/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 noise patterns 
are superimposed onto the derived sensor intensity distribution 
𝑰𝑰𝑚𝑚 and the point coordinates 𝑷𝑷𝑥𝑥’,𝑦𝑦’ are derived via multipoint 
detection. Finally, the point position is varied by an estimate of 
the atmospheric disturbance.

As can be seen from Eq. 16, one can state that more cameras 
lead to a smaller metrological error. However, the restriction is 
that they need to be placed such that they can perceive the target 
at all – only then an increase of in the number of cameras used 
lead to an improved perception.
Therefore, a strategy to place the cameras is presented in the 
later part of the next section.

3. Process Strategies

Besides the aforementioned placement of the cameras, 
incorporating the metrological error estimate as referenced in 
section 2.2 also opens up new possibilities for a software-
defined motion planning. To find a compromise between 
accuracy and speed, the motion planning problem is divided 
into path planning and path trajectory generation, which is a 
common approach in the literature.
In path planning, the path of each of the robots’ joint angles is 
computed, providing the highest possible repeatability. In 
trajectory generation, the previously computed path is indexed 

in time so that the robot can follow the given paths as quickly 
as possible such that the process speed is maximized, 
considering dynamic constraints of the robot (e.g. actuator 
dynamics). This also allows for a separate consideration of 
kinematic and dynamic errors of the robot system. Once the 
configuration of the robot is known from the motion planning 
steps, also the placement of the cameras for the process 
perception can be optimized as described in this section as well.

3.1. Hardware Implementation

The optical measurement system is set up with the trifocal 
sensor according to section 2.1. The camera measurements are 
processed on a computer, which communicates via a CAN bus 
with a rapid prototyping system controlling the robot. This 
enables synchronized measurements of the camera, joint angles 
(encoders) and joint torques. The rapid prototyping system runs 
an interface through which the reference values for the joint 
space position, velocity and acceleration are directly 
communicated to the built-in robot trajectory tracking 
controller.
In the present work, the robot joints are realized as pneumatic 
direct drives, which has the advantage that the drive angle can 
be directly measured without backlash. The disadvantage, 
however, is that the drive dynamics are slower than of electric 
drives. Strong friction effects occur, which means that they 
have a similar effect on precision as gears in electric drives, so 
that for both robot types there result dynamic errors in the joint 
angles.

3.2. Kinematic Strategies

Some kinematic strategies for increasing the accuracy of 
industrial robots are already well-established. Purely geometric 
errors in a robot can stem from the sources’ length deviations 
of links, axis misalignment and zero-position offsets of the 
encoders and can be identified and compensated in an offline 
calibration technique . To this end, the end effector pose is 
measured with an external measurement statically at certain 
points in the workspace a certain number of times, and the 
geometric error parameters are determined in an optimization. 
This procedure does not generalize well the entire workspace 
and cannot be used during the industrial robot application itself, 
but provides a first enhanced kinematic model of the robot. 
Such calibration also captures the static deformation of the 
robot structure, which is however load dependent, so that an a 
priori calibration measurement may not generalize well. This is 
another motivation for adding an external optical measurement 
system during robot operation. Incorporating the a priori 
manufacturing tolerances into the forward kinematic model 
yields an error measure in the task space. It is reasonable to 
assume these errors are usually much larger than the accuracy 
of the presented measurement system. It also captures the static 
deformation of the robot structure, which cannot be separated 
under different loads.

3.3. Path Planing

There are several error sources impeding the accuracy of a 
robotic manufacturing system. An overview of these sources 
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can be seen in Fig. 1. Most of these errors can be captured with 
the present measurement system and from that be compensated. 
This leaves the finite precision of the robot itself, whose 
contribution cannot be compensated but only mitigated. 
Previous works such as have shown that the optimal 
repeatability of a path is dependent on the workpiece 
placement.
This means that we can use a second workpiece holding robot 
to reposition the workpiece in such a way that the optimal 
repeatability is achieved. It might be tempting to try to find a 
continuous trajectory of this second robot to minimize the error. 
However, this machine also suffers from finite joint precision, 
while moving these will introduce additional errors. It is 
therefore better if the workpiece holding robot moves to a fixed 
position before the primary robot starts moving.
Here, the authors propose a 4-step process to path planning:

1. Cut path into multiple segments
2. Downsample each segment
3. Optimize the pose of each subpath

and compute the joint path
4. Apply the new pose original segments

The division of the path into multiple segments was performed 
by identifying turning points using path simplification 
algorithms. However instead of using the pose optimization 
algorithm described in we use the problem formulation of since 
it allows us to integrate more constraints which are later used 
for the joint trajectory optimization.

3.4. Dynamic Strategies

In addition to kinematic errors, there occur also dynamic 
errors resulting from forces and torques in the robotic system. 
Resulting trajectory tracking errors can be captured in the 
optical measurement of the robot end effector, and for example 
be compensated by a classical task space controller. Tracking 
errors are more systematic in joint space than in task space. In 
the present robot with direct drives, the joint angle tracking 
error is directly measured, while for other drive types this can 
be realized with secondary encoders.
In order to not only compensate such errors by feedback but 
also to take them into account during trajectory generation, a 
dynamic error model is desirable. There is a large amount of 
literature on learning either black-box models or data-driven 
supplements to parametric models in the form of a gray-box 
model. In the following, a dynamic model for the control error 
of an exemplary drive is introduced. Since hysteresis occurs in 
the drives and dynamic effects are to be captured, not only the 
current position, velocity and acceleration state of the drive but 
also the motion history several samples back is included. To 
this end, a Gaussian process (GP) dynamic model is set up. It 
is trained with desired reference values instead of actual values 
to be able to predict dynamic errors for given trajectories. For 
training, the same path is executed at different speeds. The GP 
is then used to predict the dynamic error when executing the 
path at other previously unseen velocity profiles. This dynamic 
error model can then be incorporated in an optimization to 
allow for a trade-off between process speed and accuracy.

3.5. Trajectory Generation

In section 3.3 the path has been determined under the premise 
of optimal repeatability. Hereon, a trajectory is generated to 
maximize the robot’s travel speed and thus the process time. To 
generate the trajectory, the already determined path of all joint 
angles is parameterized, and thereby all individual paths are 
implicitly synchronized. Since the robot applied in this work 
has the mathematical property of differential flatness, the state 
of the robot can be represented with the help of the given 
trajectory of the individual joint angles, the path parameter and 
its time derivatives.
In order to generate the trajectory, it is now sufficient to 
determine the time derivatives of the path parameters by means 
of an optimal control problem. Hence, the travel time is 
minimized, considering the dynamic, state-dependent 
constraints of the robot. For a more detailed description of 
trajectory generation, please refer to. This existing formulation 
can not only optimize travel time and/or energy efficiency, but 
also the accuracy.
To this end, the data-driven error model from section 3.4 can 
be added to the optimal control problem. To quantify the errors, 
the mean value function of the Gaussian process is added while 
the covariance serves to assess the certainty of the model, 
which can additionally be included in the cost functional. 
Therefore, future work will include optimization-based 
trajectory generation with this data-driven component added to 
the optimal control problem.

3.6. Camera Placement

With the robot configuration being known from the previous 
steps, the perception of the process can be optimized: After 
planning the path, the two robots are bound to perform 
complex movements that might obscure some markers from 
the camera. It might even be the case that all markers are 
visible, but that they are in regions where the camera system 
has a low measurement accuracy.

Fig. 4: The conflict between the field of view angle and the smallest singular 
value. Left: The smallest singular values of the system replicated from [3]. 
Right: The largest angle of a marker to the optical axis. Comparing both, one 
can see that lower singular values correlate with lower maximum field of view 
(FOV) angles.

To mitigate both problems, we propose a software system that 
can optimize the placement of the cameras as needed. This 
system is largely based on the work of and follows a two-step 
optimization approach. However, instead of only considering 
the condition of the triangulation equation as well as visibility, 
we use the full error model described in section 2.1. In this 
way, the benefits can be weighed against the additional effort 
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required for repositioning and recalibration. Replicating the 
results of where the smallest singular value was used as a 
measure of the quality of the camera placement, we can 
additionally plot the largest angle to the optical axis. Here we 
see that the system always tries to find a trade-off between 
minimizing the field of view angle while trying to maximize 
the smallest singular value. This is shown in Fig. 4. In a 
unified error description, this problem does not exist, and the 
system can be optimized for the best possible accuracy

Outlook & Conclusion

A new software driven production process has been introduced 
to facilitate the highest level of manufacturing precision. 
Therefore, a metrological error model for a photogrammetric 
sensor system was presented and kinematic and dynamic 
strategies for motion planning were derived. By means of 
robot-robot collaboration and path segmentation, the kinematic 
error was minimized. This path was then translated into a 
trajectory by minimizing the travel time. On the basis of the GP 
dynamic model and the covariance of triangulation, the system 
accuracy can be further improved. Finally, a placement strategy 
based on said trajectory was introduced, which minimizes 
obscurance and avoids areas of low accuracy. By this means the 
authors are confident to achieve similar levels of accuracy 
compared to today’s laser tracker and total stations.
So far, the introduced optical simulation model has only been 
verified qualitatively. Though this is a reasonable base for the 
current state of development, a quantitative comparison is 
needed for verification. By the means of the nanopositioning 
machine NPMM-200 , we will be able to experimentally verify 
the accuracy of our model.
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