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Abstract

For decades, laser tracker and total stations have been the state of the art to measure externally the position disturbances in robotic systems.
High system costs limit their usage for control systems in common production machines. We present details for an alternative software-driven
approach. First, we derive a metrological error model for a new self-referencing, high-precision photogrammetry sensor system. Second, we
propose a heuristic software approach, which combines an optical simulation pipeline, with motion planning and camera placement to achieve
the best possible accuracy. Finally, we outline the hardware implementation and integration in a closed loop control system.
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1. Introduction

Social and ecological changes, as well as the need for highly
individualized and diversified product ranges motivate not only
to increase the efficiency of the means of production, but also
their flexibility of application. This is addressed by the concept
of Wertstromkinematik . Herein, the factory is not a static setup
to produce one set of goods, but can be dynamically
reconfigured to be a generalized production floor. This need for
flexibility leads to an increase of precision, which can be used
to either facilitate the production of high-precision components,
for human-robot and robot-robot collaboration, as well as a
trade-off for higher process speed.

At the current state of the technology, robotic systems use
internal sensors, which require an exceeding level of
mechanical stiffness. An alternative are external sensors, such
as laser trackers and total stations [20, 29]. The costs of these
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systems make them unsuitable for widespread production
applications. This leads to a dilemma between acquisition costs
and system flexibility. To overcome this a holistic approach is
chosen, as detailed below.

1.1. Scope of this Paper

The first section Process Perception introduces a camera
sensor with increased 2D resolution, which facilitates the need
for a universal Metrological Error Model to assess the
probability of detection in a multi camera setup, based on the
fusion of stereoscopic sub-sensors and the corresponding
confidence ellipsoid. To Optimize Perception it becomes
mandatory to determine the covariance of triangulation, for
which a new optical simulation pipeline is introduced.

On this basis, a distinct optimization criterion for the
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subsequent section Process Strategies is derived. Here we
define a motion planning procedure to be extended by the
metrological error model. The Hardware Implementation is
introduced, which is composed of an external sensor system
and robot and will be used for validation. Based on a Kinematic
Strategies analysis, we assess ways to consider geometric
errors and offline calibration techniques to be suffice for the
initial Path Planning. Based on the previous works, we
introduce a second robot to segment the path in a 4-step
process. While the previous steps have minimized the error in
the task space, forces and torques lead to undesirable errors in
the joint space. Hence, Dynamic Strategies for compensation
are evaluated, and a predictive model is introduced to trade-off
process speed and accuracy. For the Trajectory Generation a
solution for the optimal control problem is introduced that
minimizes travel time. The Solution can be extended to
improve the accuracy by the aforementioned dynamic data-
driven error model and the metrological covariance analysis.
The trajectory is the final key-stone for the Camera Placement.
Here, we finalize the set-up and determine the camera positions
to minimize obscurance and maximize accuracy

2. Process Perception

Recent research indicates that multipoint photogrammetry
might be a solution to realize cost-efficient high-resolution
optical sensors [12]. The schematics of this measuring method
is shown in Fig. 1. In this method, a Diffractive Optical Element
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Fig. 1: Error sources in a robotic manufacturing system, which can be
compensated using an external multipoint sensor, are marked in green.

(DOE) is used in succession of an imaging lens to create
multiple linearly independent optical copies of an active
marker. It has been shown [12] that the variance of the mean
positional detection error of these points 0%y’ detected on the
imaging sensor is proportional to the number of copies npt
created by the DOE. However, this increase in planar signal
detection is in itself not sufficient for high precision 3D
localization. One or more additional sensors are needed to
triangulate the 2D point positions on the imaging sensors to its
point of origin in the object space. For a pinhole camera system
the relation between object and imaging point is determined by
the camera matrix € , which is composed of the intrinsic K and
and extrinsic camera parameters [R t], which comprise
information about the spatial orientation, as well as the
information about distance to image plane and image scale
factor. This leads to the well-established collinear equation
[18], whereby [, is the collinear factor, which describes the

line of sight between the object and image point.
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Subsequently, the correspondence between object position and
image points, known as triangulation, can be defined for
multiple cameras according to

T T
x1'C31 — €y

3’1'6;—,1 - C-zr,1

lecér,z - CI,Z ; 0
¥2'Cl—C = 7] = | 3)
: 1 0

T T
Xn C3,n - Cl,n
T T
Yn C3,n - Cz,n

Where C,, ,,corresponds to the m-th row of the n-th camera
matrix. In case the extrinsic and intrinsic camera parameters are
fully known, the equation system can be solved by least-square
techniques.

It is important to note that this relationship can also be
described by the notation for projective reconstruction

xTFx “)

Here, the fundamental matrix F is a 3 X 3 tensor, which scales
in rank according to the number of cameras in the system. Due
to the increasing complexity and computing effort, this method
is usually constraint to three cameras systems. Instead of a
Tensor representation, the triangulation relation (3) is
described by the notation for projective reconstruction

9@ M)

The vector of the input Quantities Q = [qq,...,q,]" is
composed of  the vector of  image points
P=[x1,Y1, ., XnYr]" and the vector of camera
parameters, C = [Cy, ..., C,,]T, which in turn define the object
point coordinates M = [x,y,z]" in cartesian form. The
uncertainty of the output M can be approximated by the 1st
order Taylor series with regard to the input parameters

n
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Where cov(q;,q;) is the covariance between two input
parameters. More commonly, it is known in the form [6]

a? =]QAQ]QT )

J ois known as design or Jacobi matrix of the partial derivatives
of g(@Q, M)with respect to the input quantities @, and Agis the
covariance matrix of said input values. The uncertainty of the
input parameters is directly tied to the uncertainty of the output
parameters

]MAM]MT = ]QAQ]QT (€]
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Therein, Jis the Jacobi matrix of the partial derivatives input
quantities Mand A, is the covariance matrix with respect to the
output quantities M . The matrix Ay is computed as

Ay :]AM(]QAQ]QT)(]ﬁI)T “

With J4 = UyJm) )y being the Moore-Penrose pseudo
inverse matrix of J .

2.1. Metrological Error Model

The design matrices for the input J, and output quantities J
can be established by a various calibration process. A detailed
description of these methods exceeds the scope of this paper.
Usually a series of known markers is placed in the object space.
In case of arbitrary camera positions the minimum number of
markers needed corresponds to

U = Uy " Npictures + Up * Nypoints + Uc * Neameras (10)

with: u, =6,u, =3,u, =6

Whereby u, ,u,,u, is the minimum number of unknown
parameters to be resolved and Ny, ;ctyres,MpointssMeameras» 18 the
number of pictures, points per picture and cameras within the
system. It becomes evident, that an increase in the number of
Cameras Ng,meras 1€ads to increasing requirements for the means
of calibration (10) and computational complexity, signified by
the increasing rank of the fundamental matrix (4). Conversely,
it becomes difficult to determine the metrological error of such
a system.

Fig. 2: Top view of a photogrammetric sensor in trifocal configuration under
simplified converging geometric constraints, whereby the optical axes OA of
three cameras systems intersect in one point. It can also be regarded as a
composition of ng,;, = 3 stereoscopic subsystems, whereby the measurement
error of each subsystem corresponds in shape to an ellipsoid E.

Hence, an alternative approach is needed. As depicted in
Fig. 2 a photogrammetric sensor can also be described as a
combination of multiple independent stereoscopic sub-sensors.

Ncam

Ngup = Z n—1
n=1
(1L

For these subsensors the metrological error can be described as
an ellipsoid E, which is related to a spectral decomposition of
the covariance of the output quantities Ay;.

A 0 07[S,

0 A, OHSZ} (12)
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The normalized eigenvectors S; = S;/|S]| correspond to the
direction of the semi-axis of the ellipsoid and the square root of
product of the eigenvalues A;and the quantile of the x3,_,
distribution with regard to the probability of safety 1 — a.
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Since the angular orientation of the ellipsoids is non-isotropic,
the world coordinate system is defined as frame of reference.
Thereby not the semi-axes, but the intersection with the
coordinate axes is used for further computation. Hence, the
metrological error along the unit vectors equals

0=, (e +ey+ey) (14)

Subsequently, the metrological error for each subsystem
0g; ncan be used to combine and improve the related outcomes

M, by calculating the weighted arithmetic mean
Msub
_ D " (M)
M; = W (15)
n=1 "/
The resulting error corresponds to
g, = L (16)

2.2. Optimized Perception

It has been remarked in the literature that a covariance exists
between the input quantities of a stereoscopic system, and it is
related to a combination of marker and the image processing
algorithm used for detection. Only recently, for the case of a
simplified stereoscopic sensor under converging constraints
and passive markers, simulation results have experimentally
been verified.
Liu et al. showed that the optimum camera orientation angle
Bmnis in the range of 60° — 80°, not 30° — 50°. The input
quantities for such a system is depicted in Fig. 2 and read

Q = [x'm'y'm' x'n’ y'n'ﬂmn!ﬂnm' Bnm'fn' fm]T (]7)

In this case x’, y'is the pixel position of the marker on the sensor
plane, § is the aforementioned camera orientation angle, Bis
the distance between the pinhole position and fis the focal
length.

The off-diagonal elements of the resulting covariance matrix
Ag signify high degrees of cross-correlation between the
camera orientation angle § and the point position x,y on the
detector. This is related to the decreasing visible surface of the
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passive markers, which leads to an increase of the effective
noise per area. Since multipoint detection uses sub-resolution
active markers instead of passive ones, it cannot be assumed
that the cross-correlation factors are similar. Since here, the so-
called signal-to-noise ratio (SNR) primarily depends on
intensity of the spots on the sensor plane.
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Fig. 3: Simulation procedure for multipoint detection. Based on a black-box-
model (BBM) and a combination of geometric and Fresnel propagation.

This signal strength is on the one hand related to the distance
between sensor and marker, on the other hand it depends on the
spatial orientation of the marker with regard to the receiving
optic. The radiation characteristic of a LED or a diffuser fiber
tip is for most angular orientations non-isotropic.
On this basis an optical simulation procedure was created, as
can be seen in Fig. 3, to extended previous works about the
covariance-analysis for stereoscopic Sensors.
Here, the extrinsic camera parameters and the marker
coordinates in space and orientation are used to derive the input
vector for the simulation, which comprises information about
the normalized intensity distribution I, the distance to marker
zand the field angles w and 6. A black box model of the lens is
used to compute the complex wavefront distribution at the
DOE-position U,,,, which is combined with the DOE phase
distribution Upor and a spherical wavefront Ug to
accommodate for the distance of the DOE to the imager. This
wavefront is propagated to the sensor by the Fresnel method.
The fixed Ipysy/pryvy and random Ipcy spor nOise patterns
are superimposed onto the derived sensor intensity distribution
I,, and the point coordinates P, ,, are derived via multipoint
detection. Finally, the point position is varied by an estimate of
the atmospheric disturbance.

As can be seen from Eq. 16, one can state that more cameras
lead to a smaller metrological error. However, the restriction is
that they need to be placed such that they can perceive the target
at all — only then an increase of in the number of cameras used
lead to an improved perception.
Therefore, a strategy to place the cameras is presented in the
later part of the next section.

3. Process Strategies

Besides the aforementioned placement of the cameras,
incorporating the metrological error estimate as referenced in
section 2.2 also opens up new possibilities for a software-
defined motion planning. To find a compromise between
accuracy and speed, the motion planning problem is divided
into path planning and path trajectory generation, which is a
common approach in the literature.
In path planning, the path of each of the robots’ joint angles is
computed, providing the highest possible repeatability. In
trajectory generation, the previously computed path is indexed

in time so that the robot can follow the given paths as quickly
as possible such that the process speed is maximized,
considering dynamic constraints of the robot (e.g. actuator
dynamics). This also allows for a separate consideration of
kinematic and dynamic errors of the robot system. Once the
configuration of the robot is known from the motion planning
steps, also the placement of the cameras for the process
perception can be optimized as described in this section as well.

3.1. Hardware Implementation

The optical measurement system is set up with the trifocal
sensor according to section 2.1. The camera measurements are
processed on a computer, which communicates via a CAN bus
with a rapid prototyping system controlling the robot. This
enables synchronized measurements of the camera, joint angles
(encoders) and joint torques. The rapid prototyping system runs
an interface through which the reference values for the joint
space position, velocity and acceleration are directly
communicated to the built-in robot trajectory tracking
controller.

In the present work, the robot joints are realized as pneumatic
direct drives, which has the advantage that the drive angle can
be directly measured without backlash. The disadvantage,
however, is that the drive dynamics are slower than of electric
drives. Strong friction effects occur, which means that they
have a similar effect on precision as gears in electric drives, so
that for both robot types there result dynamic errors in the joint
angles.

3.2. Kinematic Strategies

Some kinematic strategies for increasing the accuracy of
industrial robots are already well-established. Purely geometric
errors in a robot can stem from the sources’ length deviations
of links, axis misalignment and zero-position offsets of the
encoders and can be identified and compensated in an offline
calibration technique . To this end, the end effector pose is
measured with an external measurement statically at certain
points in the workspace a certain number of times, and the
geometric error parameters are determined in an optimization.
This procedure does not generalize well the entire workspace
and cannot be used during the industrial robot application itself,
but provides a first enhanced kinematic model of the robot.
Such calibration also captures the static deformation of the
robot structure, which is however load dependent, so that an a
priori calibration measurement may not generalize well. This is
another motivation for adding an external optical measurement
system during robot operation. Incorporating the a priori
manufacturing tolerances into the forward kinematic model
yields an error measure in the task space. It is reasonable to
assume these errors are usually much larger than the accuracy
of the presented measurement system. It also captures the static
deformation of the robot structure, which cannot be separated
under different loads.

3.3. Path Planing

There are several error sources impeding the accuracy of a
robotic manufacturing system. An overview of these sources
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can be seen in Fig. 1. Most of these errors can be captured with
the present measurement system and from that be compensated.
This leaves the finite precision of the robot itself, whose
contribution cannot be compensated but only mitigated.
Previous works such as have shown that the optimal
repeatability of a path is dependent on the workpiece
placement.

This means that we can use a second workpiece holding robot
to reposition the workpiece in such a way that the optimal
repeatability is achieved. It might be tempting to try to find a
continuous trajectory of this second robot to minimize the error.
However, this machine also suffers from finite joint precision,
while moving these will introduce additional errors. It is
therefore better if the workpiece holding robot moves to a fixed
position before the primary robot starts moving.

Here, the authors propose a 4-step process to path planning:

1. Cut path into multiple segments

2. Downsample each segment

3. Optimize the pose of each subpath
and compute the joint path

4. Apply the new pose original segments

The division of the path into multiple segments was performed
by identifying turning points using path simplification
algorithms. However instead of using the pose optimization
algorithm described in we use the problem formulation of since
it allows us to integrate more constraints which are later used
for the joint trajectory optimization.

3.4. Dynamic Strategies

In addition to kinematic errors, there occur also dynamic
errors resulting from forces and torques in the robotic system.
Resulting trajectory tracking errors can be captured in the
optical measurement of the robot end effector, and for example
be compensated by a classical task space controller. Tracking
errors are more systematic in joint space than in task space. In
the present robot with direct drives, the joint angle tracking
error is directly measured, while for other drive types this can
be realized with secondary encoders.
In order to not only compensate such errors by feedback but
also to take them into account during trajectory generation, a
dynamic error model is desirable. There is a large amount of
literature on learning either black-box models or data-driven
supplements to parametric models in the form of a gray-box
model. In the following, a dynamic model for the control error
of an exemplary drive is introduced. Since hysteresis occurs in
the drives and dynamic effects are to be captured, not only the
current position, velocity and acceleration state of the drive but
also the motion history several samples back is included. To
this end, a Gaussian process (GP) dynamic model is set up. It
is trained with desired reference values instead of actual values
to be able to predict dynamic errors for given trajectories. For
training, the same path is executed at different speeds. The GP
is then used to predict the dynamic error when executing the
path at other previously unseen velocity profiles. This dynamic
error model can then be incorporated in an optimization to
allow for a trade-off between process speed and accuracy.

3.5. Trajectory Generation

In section 3.3 the path has been determined under the premise
of optimal repeatability. Hereon, a trajectory is generated to
maximize the robot’s travel speed and thus the process time. To
generate the trajectory, the already determined path of all joint
angles is parameterized, and thereby all individual paths are
implicitly synchronized. Since the robot applied in this work
has the mathematical property of differential flatness, the state
of the robot can be represented with the help of the given
trajectory of the individual joint angles, the path parameter and
its time derivatives.

In order to generate the trajectory, it is now sufficient to
determine the time derivatives of the path parameters by means
of an optimal control problem. Hence, the travel time is
minimized, considering the dynamic, state-dependent
constraints of the robot. For a more detailed description of
trajectory generation, please refer to. This existing formulation
can not only optimize travel time and/or energy efficiency, but
also the accuracy.

To this end, the data-driven error model from section 3.4 can
be added to the optimal control problem. To quantify the errors,
the mean value function of the Gaussian process is added while
the covariance serves to assess the certainty of the model,
which can additionally be included in the cost functional.
Therefore, future work will include optimization-based
trajectory generation with this data-driven component added to
the optimal control problem.

3.6. Camera Placement

With the robot configuration being known from the previous
steps, the perception of the process can be optimized: After
planning the path, the two robots are bound to perform
complex movements that might obscure some markers from
the camera. It might even be the case that all markers are
visible, but that they are in regions where the camera system
has a low measurement accuracy.
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Fig. 4: The conflict between the field of view angle and the smallest singular
value. Left: The smallest singular values of the system replicated from [3].
Right: The largest angle of a marker to the optical axis. Comparing both, one
can see that lower singular values correlate with lower maximum field of view
(FOV) angles.

To mitigate both problems, we propose a software system that
can optimize the placement of the cameras as needed. This
system is largely based on the work of and follows a two-step
optimization approach. However, instead of only considering
the condition of the triangulation equation as well as visibility,
we use the full error model described in section 2.1. In this
way, the benefits can be weighed against the additional effort
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required for repositioning and recalibration. Replicating the
results of where the smallest singular value was used as a
measure of the quality of the camera placement, we can
additionally plot the largest angle to the optical axis. Here we
see that the system always tries to find a trade-off between
minimizing the field of view angle while trying to maximize
the smallest singular value. This is shown in Fig. 4. In a
unified error description, this problem does not exist, and the
system can be optimized for the best possible accuracy

Outlook & Conclusion

A new software driven production process has been introduced
to facilitate the highest level of manufacturing precision.
Therefore, a metrological error model for a photogrammetric
sensor system was presented and kinematic and dynamic
strategies for motion planning were derived. By means of
robot-robot collaboration and path segmentation, the kinematic
error was minimized. This path was then translated into a
trajectory by minimizing the travel time. On the basis of the GP
dynamic model and the covariance of triangulation, the system
accuracy can be further improved. Finally, a placement strategy
based on said trajectory was introduced, which minimizes
obscurance and avoids areas of low accuracy. By this means the
authors are confident to achieve similar levels of accuracy
compared to today’s laser tracker and total stations.
So far, the introduced optical simulation model has only been
verified qualitatively. Though this is a reasonable base for the
current state of development, a quantitative comparison is
needed for verification. By the means of the nanopositioning
machine NPMM-200 , we will be able to experimentally verify
the accuracy of our model.
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