KIT | KIT-Bibliothek | Impressum | Datenschutz

Passivity preserving model reduction via spectral factorization

Breiten, Tobias; Unger, Benjamin ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We present a novel model-order reduction (MOR) method for linear time-invariant systems that preserves passivity and is thus suited for structure-preserving MOR for port-Hamiltonian (pH) systems. Our algorithm exploits the well-known spectral factorization of the Popov function by a solution of the Kalman–Yakubovich–Popov (KYP) inequality. It performs MOR directly on the spectral factor inheriting the original system’s sparsity enabling MOR in a large-scale context. Our analysis reveals that the spectral factorization corresponding to the minimal solution of an associated algebraic Riccati equation is preferable from a model reduction perspective and benefits pH-preserving MOR methods such as a modified version of the iterative rational Krylov algorithm (IRKA). Numerical examples demonstrate that our approach can produce high-fidelity reduced-order models close to (unstructured) H2-optimal reduced-order models.


Originalveröffentlichung
DOI: 10.1016/j.automatica.2022.110368
Scopus
Zitationen: 24
Web of Science
Zitationen: 22
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2022
Sprache Englisch
Identifikator ISSN: 0005-1098
KITopen-ID: 1000190668
Erschienen in Automatica
Verlag Elsevier
Band 142
Seiten Article no: 110368
Schlagwörter Port-Hamiltonian systems, Structure-preserving model-order, reduction, Passivity, Spectral factorization, H2 -optimal
Nachgewiesen in OpenAlex
Scopus
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page