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Major reason for material damage in  Annual economic damage: 2.5 Data-driven simulation enables
industries ---- Corrosion trillion euros (Fontes and Nistad, prediction and protective measures
2020)
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Background
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Pitting Corrosion in Metals

Localized, aggressive form of corrosion causing small,
deep pits

Initiated by breakdown of protective oxide layers (e.g.,
by chlorides)

Common in stainless steel, aluminum, and copper
alloys

Difficult to detect; pits can lead to crack initiation and
rapid failure of the material

PITTING CORROSION IN METALS
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Schematic showing the pit formation and further crack growth zone
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Numerical Modeling Methodology
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Phase-field Method - Concept

Ymax ]

height

Ymin N
Xmin width Xrriaz

[}-() = fSrfse(X,...)dA,+ fvrfbmk(X,...)dV,]

AT



Phase-field Method - Concept
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Phase-field Method - Concept
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Phase-field Method - Concept
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Phase-field Method - Overview
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® Diffuse interface approach
® Tracking evolution of a phase within a system is much easier
® Avoids remeshing during evolution

® Evolution is governed by differential equation based on minimization of free energy
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Grand-chem approach for Modeling Corrosion

= Grand potential functional of the system,
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= Evolution of concentration of the system is governed using,
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Simulation Analysis using PACE3D
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Validation - Pseudo-1D Simulation

Schematic illustration 1D simulation-setup
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Validation of 1D-simulation
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Validation - Pseudo-1D Simulation

t=25s t=75s t=125s t=1/5s

Concentration evolution at different time-stamp
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Validation - 2D Simulation
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Validation of 2D-simulation

Schematic illustration 2D simulation
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Validation - 2D Simulation

t=200s

t=500s
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t=1000 s

Concentration evolution at different time-stamp
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Results - Pitting corrosion in Polycrystalline materials
(Fe-Mn-Al alloys)

Corrosion pit growth in

‘!‘
{ { A ,' ‘polycrystalline metal
‘u

Passive layer Broken

part
- Fe
Mn = Corrosion occurs preferentially in the ferrite phase of Fe-Mn-Al alloys.
- Al mi « ml - Kinetic parameter of Fe
Here, m2 3 «  m2 — Kinetic parameter of Mn and Al
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Pressure-induced cracks in corrosion pits

KIT



Pressure-induced cracks in corrosion pits

Fluid pressure

Fluid pressure
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Pressure-induced cracks in corrosion pits

Diffuse stress boundary condition

Fluid pressure

N
Momentum Y
balance V- (h(cbc)Zéb ) péaﬂi
Pressure Surface

normal vector

Surface Dirac _
Distribution 04 = 605(1 — &5)||Vos| Fluid pressure
approximation rE _
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N,
Solid phase-field G5 = Z Pa
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Pressure-induced cracks in corrosion pits

Pressure ramping Fluid pressure
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Steps

Fluid pressure
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Pressure-induced cracks in corrosion pits

Pressure ramping

Driving force Crack phase field Sharp interface
n - ; - Visualization

low high 0.0 1.0
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Pressure-induced cracks in corrosion pits

Pressure ramping

b /

Driving force Crack phase field Sharp interface
m - n B Visualization

low high 0.0 1.0
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Data-driven Modeling and Simulation
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Motivation

® Explosion in data from simulations & experiments

® Traditional analysis methods can’t keep up

® Need structured, scalable research data systems

® Foundation for Al, visualization & decision support
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Research Data Infrastructure

.;l ’ Kad|4I\Aat &Geo

Karlsruhe Data Infrastructure
for Materials Science
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Sensor Integration

® Store sensor metadata (e.g., position,
depth)
® Collect time-series data continuously

B Stream data to Kadi4Geo In real time

® Enable fast querying & visualization

-
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Metadata
position
depth
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Active learning workflow for parameter identification
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® Simulation parameters are costly to determine
® Active learning reduces experiments & runs

B |t identifies simulation parameters systematically and efficiently
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Active Learning with KadiStudio and KadiAl

= Oracle workflow node Execution Validation
. of simulation/ and score
B Perform BayeS|an experiment of the result
optimization in KadiStudio A 1 . 2 o
and link with Kadi4Mat B —F
Bayesian Oracle = -5 Ul et [ ) m,_dm. .
designing new results into Kadi i seach-space-nesmne..
parameters settings =
@
0o AN e
.. ®
o .9
Oracle node for BO Visualization of BO records
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Outlook: active learning agent for corrosion cracks

Active learning agent
= Design-of-simulations
= Parameter optimization

Interactive dashboards

v Send workflow request
= Automatically execute trial

PACE 3D
AT



Conclusion
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Conclusion

® PACE3D enables high-fidelity corrosion

simulations

® Kadi ecosystem supports structured, scalable

workflows

® Active learning reduces cost and boosts efficiency

® Al agents are the future of autonomous simulation

design

-‘ I ! 14Ma eo 4""
'4.’ Kadi '4.’ Kadivetec PACE 3D

KIT
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What are research data?

® No fixed definition of research data o Spreadsheets
meta data Q_ -
mscrlpts audiotapes 5 electrlonlc Iabtnotebooks
" . e dOCU ments sampiles questionnaires __
®‘Research data are [...] digital and 2 ® i,] models S
electronically storable data which 3 researc photographs 2 g
. . . .o =
arise in the course of a scientific ” measurement data £ 2 igorithm
project, he.g. through tsourc:e SCh%Eif xst;;ﬂrzjslip[g?:g E at aw
research, experiments, = 8 Bimages
measurements, surveys or = 9

guestionnaires”

Translated from: https://www.dfg.de/download/pdf/foerderung/programme/lis/ausschreibung_forschungsdaten_1001.pdf,
accessed 07.02.2020
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Motivation

® \Without appropriate data science methods, it will no longer be possible
to manage the ever-growing volumes of heterogeneous data from
simulations and experiments

® An important aspect to be able to perform corresponding data analysis
smoothly is the structured storage of research (meta)data with the help
of a suitable research data infrastructure
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Sensor Integration

B Store metadata of sensors like
geographic position / depth

B Collect time series data
continuously via sensors and send
it to KadidGeo

® Kadi4Geo allows storing large
amounts of real-time data and
efficiently querying it for
analyses or visualization

16/02/2026
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Sensor Monitoring (WIP)

® Monitor sensor data live with customizable dashboards inside of

Kadi4Geo

-~
# / Records / Sample record 10

Overview B Files

Example CSV-Viewer

@ Links

U Permissions

O Revisions

| Dashboard
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Workflow with Kadi4Geo

® Automated workflows can be executed using different tools for data
nandling and data transport, the latter using the API of Kadi4Geo

(" Electronic Lab Notebook D Repository
g =

[ Data Handling Tools ]
Technical Infrastructure

Conceptual overview of the data infrastructure
https://kadi.iam-cms.kit.edu/

Figure source:
Ephraim Schoof and Nico Brandt, IAM-CMS, KIT
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