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Abstract
The West Delta Deep Marine region has substantial prospects for extracting oil and gas. The area is also known for its dis-
tributed and disconnected channel systems and gas chimneys. The Simian field is particularly intriguing within this region. 
Gas chimneys and pockmarks are frequently observed on the seafloor. Pockmarks are formed when gas or fluid is released, 
causing depressions. These characteristics have the potential to influence the stability of the seabed and present hazards to oil 
rigs in proximity. To reduce the risks associated with these hazards, it is essential to have a thorough comprehension of the 
geological characteristics involved. The primary objective of our study is to identify and delineate gas channels and chimneys 
and the associated geologic features through the analysis of seismic attributes and the construction of three-dimensional 
models. By applying multiple seismic attribute classes such as the cosine of the phase, variance, and envelope, the detec-
tion of these hazards and associated features can be improved. We were able to identify and isolate areas of high-intensity 
brightness in the vicinity of the Simian gas channel. These high-intensity brightness zones serve as clear indicators of gas 
seepage and the movement of gas. In addition, there is substantial evidence of gas being discharged from a high-pressure 
zone upwards to the seafloor through the gas chimney and eventually creating pockmarks that pose a serious hazard area to 
the hydrocarbon production process. Upon completion of this study, after linking the presence of the subsurface marine geo-
logical features and the hazardous risk these features might propose. The optimal site within the study area for the placement 
of an oil rig with the aim of mitigating the impacts of capillary action is recommended. The results enhance risk avoidance 
and regulatory measures in this highly significant field.
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1  Introduction

The WDDM is in the Mediterranean Sea, north of Egypt. 
WDDM is situated within the concession of Egypt. It is 
known for its substantial reserves of hydrocarbon resources 
and is located approximately 125 km NE of Alexandria. 
Simian Field is found at the northwest edge of the offshore 

region, around 120 km away from the Alexandria shoreline 
in the WDDM concession, at coordinates of latitudes 31° 
42′ 12’’ and 32° 19′ 58’’ N and longitudes 30° 7′ 12’’ and 
31° 4′ 48″ E (Fig. 1). The Simian channel is positioned at 
the late Pliocene [13].

Gas chimneys and gas channels are significant geologi-
cal features linked to the movement of fluids in the Earth’s 
underground. Gas chimneys, notable as vertical disruptions 
in seismic data, signify the upward flow of fluids, such as 
hydrocarbons, they can occur due to the discharge of high-
pressure gas or cracks in the sedimentary column. These 
occurrences are particularly important in locations such 
as WDDM since they have an impact on the production of 
gas hydrates and seafloor seepage. Gas channels serve as 
pathways for the movement of gases from source rocks to 
reservoirs, and they play a crucial role in the discovery of 
energy resources and the evaluation of geohazards. In addi-
tion, associated features like bright spots. The presence of 
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bright spots in seismic data indicates the likely existence of 
hydrocarbon deposits in close proximity and also supports 
the idea of gas seepage.

In seismic data, Gas chimneys and gas channels and their 
associated geological features are interpreted by the high 
amplitude or the high energy regions, since each geological 
feature has its characteristics and properties, Geophysicists 
can spot the geological features from the seismic sections, 
by applying advanced geophysical techniques like seismic 
attributes, Geophysicists extract and interpret these features 
from the seismic sections.

Seismic attributes are crucial for differentiating 
between hydrocarbon-bearing areas and non-productive 
areas. Accurate identification of reservoir boundaries in 
the Nile Delta is especially important due to the restricted 
connectivity of hydrocarbon reservoirs at the WDDM, 
which hampers conventional seismic data interpreta-
tion. The discharge of fluids under high-pressure results 
in the creation of significant geological formations, such 

as seabed Pockmarks. The WDDM often exhibits these 
characteristics, Pockmarks are typically situated above gas 
chimneys, resulting in a gradual release of gas. Assessing 
the potential hazards associated with pockmark activi-
ties is essential for offshore installations, operations, and 
drilling to prevent catastrophic incidents in the future. 
Moreover, the existence of gas channels has the potential 
to improve the refilling of nearby gas chimneys, highlight-
ing the significance of understanding these subterranean 
dynamics. Four seismic attributes have been implemented 
in this study, the phase attribute, when used in conjunction 
with the cosine function, is valuable for representing and 
understanding intricate structural patterns. The variance 
attribute is primarily used to detect discontinuities, faults, 
and chaotic regions in the data. The envelope attribute 
is employed to compute the total instantaneous energy, 
encompassing both the real and imaginary constituents, 
of seismic traces. Furthermore, the RMS attribute exhibits 
a strong sensitivity towards hydrocarbon-bearing zones, 

Fig. 1   a The Study area and map of Egypt shows the location of the WDDM concession, modified from Google Earth. b The WDDM conces-
sion was modified after [10]. c Locations of provided wells’ data in this study and A-B, D-E seismic cross-sections
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making it a valuable tool for identifying areas of interest. 
The utilization of seismic attributes and 3D models can 
proficiently illustrate the reservoir properties and struc-
tural characteristics within the designated study area.

Petrel is a robust subsurface modelling software devel-
oped by Schlumberger. It empowers geoscientists and res-
ervoir engineers to seamlessly transition from exploration 
to production. Key features include geological modelling, 
where users can create accurate 3D representations of stra-
tigraphy and structures and petrophysical modelling. Petrel 
can apply Seismic attributes to the provided seismic data to 
obtain better information about subsurface features, allow-
ing for a more thorough understanding of the geological and 
structural properties of the reservoir. As a result, this leads 
to an improved understanding of the reservoir’s properties 
and a more accurate representation of the reservoir in mod-
els. The key part of geophysical exploration involves the 
serious examination of faults and subsurface characteristics 
using 3D model dissection. Using advanced 3D techniques 
in Petrel allows for precise identification and tracking of geo-
logic features in the subsurface. By dissecting the 3D model 
along different planes, one can obtain a precise visualization 
of geologic features like gas channels, gas chimneys, pock-
marks, domes, and fault zones, and their potential for causa-
tion. This level of specificity offers a crucial understanding 
of the structural soundness of the underlying layers.

Seismic attributes and 3D modelling are used together 
to gain insight into the location and creation of pockmarks, 
which are evidence of past or current fluid escape and 
potential instability of the seabed. The comprehensive 3D 
visualization enables a meticulous evaluation of subsurface 
conditions, facilitating the positioning of drilling infrastruc-
ture in stable regions. This integrated methodology not only 
mitigates operational hazards such as seabed sinking but also 
guarantees the structural soundness of wells. Geophysicists 
can utilize these advanced techniques to make well-informed 
decisions that improve safety, safeguard the reservoir, and 
ensure the long-term success of production activities.

In July 2021, a subaquatic gas pipeline experienced a 
rupture in the Gulf of Mexico, resulting in the release of 
natural gas into the adjacent water. The gas bubbles that 
managed to escape rose to the surface of the sea and ignited 
without any external ignition source, causing visible flames. 
On a natural phenomenon scale, the gas leak gathers at the 
domes located on the subsea surface and subsequently leads 
to their collapse due to the high pressure, resulting in the 
formation of pockmarks afterwards (Fig. 2). Hypothetically, 
the ignition of the gas can occur due to the friction between 
the discharged gas and the surface of the sea. Conversely, 
the depressions formed at the seafloor have a direct impact 
on the stability and operational safety of the surrounding 
offshore oil rigs. These incidents can have environmental 
consequences because they may cause damage to marine 

ecosystems and pose safety hazards to nearby vessels and 
workers.

The main theme of this study is to delineate the hazard-
ous geological features to improve both the safety and effi-
ciency of oil and gas exploration and production. The study 
utilizes the integration of seismic attributes and 3D model-
ling to gain a comprehensive comprehension of subsurface 
characteristics, including gas chimneys and pockmarks. By 
employing this comprehensive approach, geophysicists can 
effectively and precisely identify and steer clear of danger-
ous areas, thus mitigating the risk of accidents and mini-
mizing any potential negative effects on the environment. 
Furthermore, the study aids in maximizing the position-
ing and structure of wells, resulting in enhanced resource 
extraction efficiency and decreased operational expenses. In 
conclusion, the research results enhance the dependability, 
security, and efficiency of oil and gas activities, guaranteeing 
improved resource management and reduced risks.

2 � Geological background

2.1 � The WDDM concession

The WDDM concession in Egypt is an area of great potential 
for gas and oil exploration approximately 30 to 40 trillion 
cubic feet of natural gas and significant oil reserves accord-
ing to the Egyptian General Petroleum Corporation (EGPC). 
Covering approximately 1366 square km with water depths 
ranging from 150 to 1200 m, the hydrocarbons in the Nile 
Delta are primarily found in the Neogene-Quaternary 
sequence [22, 34], which consists of the Miocene, Pliocene, 
and Holocene sedimentary successions (Fig. 3) [2].

2.2 � Structural settings

The structural pattern of the study area is influenced by three 
major trends:

•	 The NW-oriented Temsah trend.
•	 The NE-oriented Rosetta trend. [35]
•	 The E-trending faults identify the boundaries of the 

Messinian salt basins.

Faults are primarily responsible for controlling the south-
ern margin of the Upper Miocene salt basin. This is evident 
from the abrupt change in structural styles across an E-W 
lineament, where the stable southern platform transitions 
into a rotated northern fault block zone.

The Simian exhibits a blend of stratigraphic and structural 
attributes. The reservoir demonstrates stratigraphic closure 
along its entire length and a combination of dip and reservoir 
pinch-out at its southern boundaries. The claystone of the El 
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Wastani Formation serves as both the upper and main lateral 
barriers [13]. The Simian gas field is located in the east-
ern section of the WDDM concession and contains gas that 
dates back to the Pliocene era. It is situated at depths that 
vary between 500 and 1500 m. The current alignment of the 
Nile Delta offshore anticline (NDOA), which extends in an 
east-northeast to west-northwest direction, and the Rosetta 
fault, which extends in a northeast-to-southwest direction 
[12], have been influenced by important tectonic events. The 
rotational movement of the African plate towards the Eura-
sian plate has resulted in the formation of these structural 
features through wrench tectonics [11].

The North of Egypt region occupies a crucial role in the 
plate tectonic evolution of the eastern Mediterranean basin. 
Positioned on the northern margin of the African plate, this 
region stretches from the subduction zone neighbouring the 
Cretan and Cyprus arcs to the Red Sea rift basin, which 
diverged from the Arabian plate [8]. Deep-water reserves 
in the area have primarily been discovered in Cenozoic and 
Mesozoic sandstone reservoirs, accounting for approxi-
mately 90% of the reserves. In deep marine environments, 
shale is the predominant form of top seal, although its pres-
ence alone is not sufficient as seal integrity poses a sig-
nificant risk. Source rock potentiality is significant in deep 

Fig. 2   Schematic depiction of the development and the movement of a gas diapir towards the seafloor [6]
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marine environments, with most source rocks ranging from 
the Mesozoic to the Cenozoic ages. These rocks can come 
from the continents or the oceans. They include lacustrine, 
terrigenous deltaic, and deep marine deposits linked to major 
transgressions or relative increases. As a result, hydrocarbon 
compositions vary and can include biogenic gas, waxy oil, 
Sulphur-rich oil, and asphaltenes.

The WDDM has a slope channel complex system that 
was deposited during the early Pliocene (Fig. 3) [42]. The 
stratigraphic succession of the Simian Field consists of the 

Bilqas Mit Ghamr, El-Wastani, and Kafr El-Sheikh forma-
tions (Figs. 4 and 5), with the El-Wastani formation serving 
as the primary producing reservoir in the field.

Presently, the Upper Miocene and Pliocene sections are 
considered to be the main reservoir targets in the Mediter-
ranean Block [1, 33]. Throughout the Oligocene to Pliocene-
Pleistocene periods, gas is generated and accumulated at 
various levels within the stratigraphy. The primary reservoir 
of the Upper Miocene, equivalent to the Upper Messinian, 
is found in the Abu Madi Formation. On the other hand, 

Fig. 3   The Nile Delta stratigraphic column and the hydrocarbon system in the region [35]
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Fig. 4   The litho-stratigraphic column of the WDDM concession, which includes the Simain field [45, 46] [50]
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reservoirs of the Pliocene are primarily represented by the 
Kafr El Sheik and El Wastani Formations [1]. These find-
ings provide essential insights into the hydrocarbon system 
within the Nile Delta region.

2.3 � Gas chimneys and pockmarks

Identifying near-surface gas accumulations is essential for 
offshore activities, such as drilling and installing equip-
ment. The presence of pockmark activities near existing 
platforms can result in highly dangerous events with the 
potential for catastrophic consequences. The occurrence of 

pockmark activities is determined by the continuous pres-
ence of gas and the durability of the pathway through which 
it is released. Engaging in these activities can result in the 
discharge of a substantial volume of fluid, leading to a cata-
strophic occurrence (Fig. 2) [44].

The escape of high-pressure fluids is the cause of sig-
nificant geological features, including seabed pockmarks. 
They serve as preliminary indicators of explosive gas erup-
tions [28]. The presence of gas hydrates has been revealed 
by the seismic reflection profiles of ocean floor sediments 
[30]. Pockmarks are identified by a gas plume situated in 
their centre [31, 32]. Near-surface gas is the most prevalent 

Fig. 5   a DE seismic section showing the main gas channel and well data, (b, c, and d) show the surface maps of the picked horizons Mit Ghamr, 
El-Wastani, and Kafr ElSheikh respectively
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cause of blowouts, as indicated by a study conducted by 
the Norwegian research organization SINTEF (22% of 172).

Gas chimneys are an inadequate data zone because seis-
mic energy is dispersed by the scattered gas in the cap rocks 
above the leaking reservoir. There are several locations in 
the Pliocene that contain thermogenic gas, which is defi-
nitely produced by units that existed before the Messinian 
period. This has been confirmed by a geochemical study 
conducted by [55]. The chimneys found in the Nile Delta 
exhibit structural and morphological characteristics that 
are often seen in volcanic eruptions [5]. Fluids ascending 
through a sedimentary sequence can cause rocks to fracture 
or undergo chemical changes, resulting in the formation 
of gas chimneys due to the presence of connate gas. When 
the fluid reaches the surface, it creates pockmarks (Fig. 6), 
the presence of gas induces variations in the compressional 
velocity field, leading to the dispersion and degradation of 
a seismic wave as it passes through. Gas builds up until its 
pressure is high enough to penetrate the seal. The seal sub-
sequently malfunctions entirely, resulting in the discharge of 

a significant portion of the collected gas into an ascending 
gas chimney [17].

Pockmarks are geological formations resulting from the 
release of fluids through the seafloor, which leaves sunken 
depressions on the seabed and serves as evidence of seep-
ages in different sediment layers (Fig. 6). In addition, the 
significant magnitude of the gas release incidents can have 
a physical impact on the sinking of ships due to the loss of 
buoyancy caused by rising bubbles underneath them. It can 
also lead to the collapse of rigs and platforms, where the 
gas might disrupt the structures or activities even before it 
reaches the bottom. Seafloor seepages can be found in sev-
eral geological settings, including the continental shelf, the 
deep ocean, and the slope in between [19].

In 2010, Cathles, Su, and Chen presented an illustration 
of how gas release leads to the expansion of microscopic 
fissures, intensifies seabed erosion, and increases venting 
velocity. This ultimately results in a forceful release of gas, 
forming a single pockmark [6]. (Fig. 2) Demonstrates the 
gradual development of the pockmarks; (A) illustrates the 

Fig. 6   Gas chimneys often have 
pockmarks on their surface. The 
persistent and gradual release 
of gas through the chimneys 
supports the growth of vent 
communities, which in turn gen-
erate carbonate mounds inside 
the pockmarks [6] [18]
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confined gas under high pressure that results in the seal 
rock (dark grey) bending. (B) The seal fails when the gas is 
sufficiently dense and under enough pressure to penetrate 
the seal rock. Gas is then transported to the upper layers 
via a chimney, and ater (represented by arrows) is charged 
as the chimney travels through the sediments to the sea-
floor. Areas that are saturated with water are characterized 
by a translucent color. (C) The seafloor begins to deform, 
and minor faults and fractures begin to form. The buried 
pockmark or chimney reaches approximately halfway to 
the seafloor. (D) Subsequently, the deformation of sedi-
ment above the chimney increases, fluids begin to escape 
through the seafloor, the seafloor assumes a dome shape, 
and pockmark formation becomes more frequent. (E) The 
associated fractures and collapses, as well as the minor 
pockmarks, merge into a “full-grown” (F) pockmark.

The interpretation and study of fluid flow in sedimen-
tary basins are crucial for many environmental, ecologi-
cal, and safety purposes [7, 14, 57]. The movement of 
fluids that have migrated through chimneys and shallower 
faults around chimneys can have an impact on the poten-
tial instabilities of slopes [52]. This can pose a hazard to 
human operations and significantly affect offshore drilling 
operations in terms of safety, environment, and cost [29].

3 � Methodology

The digital datasets acquired from Rashpetco Oil Company 
encompassed data from four wells and 20 2D seismic lines. 
In addition, checkshots were used to establish a correla-
tion between seismic data and well data in order to improve 
the accuracy of the final interpretations. The methodology 
employed in this study can be visualized in (Fig. 7).

3.1 � Conventional interpretation

After importing the data, the well logs were matched to the 
seismic data. This process involves connecting the differ-
ent layers identified in the well logs and then establishing 
a relationship between these layers and the seismic data by 
utilizing the checkshot information. Ensuring the accurate 
correlation between the well and seismic data was a crucial 
step in this process (Fig. 8). By accurately correlating the 
well logs and seismic data, the seismic lines were used to 
identify and outline the structural and tied stratigraphic fea-
tures. Once the well logs and seismic data have been accu-
rately correlated through Synthetic seismogram showing 
the expected seismic response based on the checkshot data. 
These help in understanding how accurate the seismic data 
should look if the checkshot model aligned with the seismic 
section. (As shown in Fig. 8).

Fig. 7   Flowchart of the main 
steps performed in the present 
work
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Traditional horizon interpretation entails the selection 
of horizons and structural characteristics, such as geo-
logical faults. In order to accomplish this, an interpreter 
initiates the process by identifying noteworthy reflections 
and subsequently generates colour maps using two-way 
time (TWT) as a basis. These color maps facilitate the 
extraction of valuable information regarding subterranean 
geological characteristics. However, what if we require a 
more sophisticated approach to visually augment or quan-
tify noteworthy characteristics? Now, we will discuss the 
non-traditional analysis of seismic data using seismic 
attributes.

3.2 � Seismic components

Seismic data contains amplitude, frequency, geometry, 
and texture data [8, 23]. Seismic attributes play a crucial 
role in interpreting seismic reflections by amplitude values 
and all geological features observed in the data [8]. Seis-
mic attributes have been widely used to characterize faults 
and identify hydrocarbon reservoirs [8, 24, 37–39, 55, 56]. 
Amplitude attributes, such as Root Mean Square (RMS) 
and average energy, are particularly useful for stratigraphy 
and reservoir properties [8]. Bright anomalies in amplitude 
attributes often indicate the presence of hydrocarbons [26]. 

Fig. 8   a Analytic wavelet with time response on top, respective power spectrum at mid, and unwrapped phase at the bottom, b the well-tie by 
petrel software using simian-1 well and the extracted analytic wavelet
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Seismic attributes like trace-to-trace similarity and ampli-
tude (or energy) are key in identifying chimneys and other 
geological features [16]. These attributes can help identify 
irregular sedimentary bodies, faults, bright spots, and other 
features that may not be easily detected through conventional 
interpretation.

3.3 � Seismic attributes

Seismic attributes are quantitative measures of specific 
seismic characteristics and play a vital role in interpreting 
seismic reflections by quantifying the amplitude and shape 
features observed in the seismic data [8]. Seismic attributes 
have found widespread application in characterizing faults 
and identifying hydrocarbon reservoirs [11, 27, 56]. In par-
ticular, amplitude attributes are very useful and reliable for 
solving problems related to stratigraphy and reservoir prop-
erties, especially in thin-bed reservoir settings [15]. Root 
Mean Square (RMS) in this study discriminates between 
high and low energy levels which is effective for identify-
ing hydrocarbon prospects, as they indicate the presence of 
bright anomalies.

In chimney identification, the initial step involves lev-
eraging seismic attributes that markedly improve detection 
methods. Extracting various seismic attributes such as RMS, 
envelope, chaos, variance, and cosine of the instantaneous 
phase is particularly effective for identifying irregular sedi-
mentary bodies, gas chimneys, faults, bright spots, pock-
marks, and other associated features. These attributes are 
essential as they facilitate the detection of features that may 
not be readily identifiable through conventional interpreta-
tion and horizon picking alone.

3.3.1 � Cosine of the phase attribute

Is considered a geometric attribute that offers the advan-
tage of smoothing oscillations between peaks and troughs 
(Fig. 11b). It is particularly useful in improving the continu-
ity of reflectors and enhancing the visualization of faults and 
stratigraphic boundaries [9]. It also aids in imaging struc-
tural complexities. In this study, there are various complexi-
ties, such as shallow fault zones, gas chimneys, domes, pock-
marks, and their associated features in the original seismic 
dataset (Figs. 10 and 11). These complexities can have an 
impact on the lateral continuity of reflectors. By utilizing the 
cosine of the phase attribute, you can better understand and 
visualize these complex geological features.

3.3.2 � Variance attribute

Is a geometric attribute that is utilized to calculate the 
local variance of the seismic signal. It is primarily used for 
detecting faults, and chaotic zones in the data. The variance 

attribute plays a significant role in enhancing the visuali-
zation of shallow faults near gas chimneys and pockmarks 
(Fig. 11a) compared to the Cosine of the phase attribute 
(Fig. 11b). It is particularly valuable in improving the imag-
ing of fault zones and major sequence boundaries [43]. 
Additionally, the variance attribute is crucial in measuring 
the dispersion of waveforms around the mean value, making 
it one of the key factors in waveform analysis.

3.3.3 � Envelope attribute

The envelope attribute is recognized as the most reliable 
and stable (Fig. 13a) [8]. It calculates the total instantaneous 
energy (including both real and imaginary components) of 
a complex seismic trace, with the imaginary part derived 
from the Hilbert transform [54]. Studies have demonstrated 
the envelope attribute’s effectiveness in analyzing seismic 
signals in shallow offshore regions, regardless of their 
amplitude levels. It proves especially valuable in identify-
ing and studying bright spots, which denote areas of distinct 
reflectivity. Unlike other attributes, the envelope attribute is 
phase-independent, offering detailed insights into reflectivity 
contrasts. Elevated envelope values typically indicate poten-
tial gas accumulation, changes in lithological and deposi-
tional environments, and the presence of bright spots [4, 25].

3.3.4 � RMS attribute

The RMS attribute plays a crucial role in extracting infor-
mation about the energy content of seismic data. It is par-
ticularly sensitive to hydrocarbon-saturated zones and can 
be utilized to identify prospective areas (Fig. 13b) [24, 41]. 
Typically, the RMS attribute is obtained by calculating the 
root mean square of the original seismic trace amplitude. It 
serves as a valuable gas indicator, enabling discrimination 
between high-amplitude zones (bright spots), low-amplitude 
regions, and chaotic areas (such as gas chimneys) on the 
seismic profile [25].

4 � Results and discussion

The research study in the Simian field aims to identify the 
precise positions of deep seafloor pockmarks, gas chimneys, 
faults, and other structures associated with these phenomena 
(Figs. 9, 10, 11, 12 and 13). Different seismic attributes were 
employed to process and extract information, leading to the 
creation of improved 2D seismic sections. These sections 
were subsequently analyzed to identify both direct and indi-
rect indications of near-surface gas presence by examining 
various seismic attributes.

Figures 12 and 13 Present seismic data that shows bright 
spots, intensified reflectors, gas chimneys (also known as 
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Fig. 9   DE seismic cross-section a original seismic amplitude and b after extracting the variance attribute

Fig. 10   Interpretation of AB seismic cross-section spotting a gas chimney and its associated features
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“poor data zones”), characteristics of the seabed, seepages, 
and factors that influence the creation and expansion of 
pockmarks due to gas venting. The analysis of detailed 2D 
seismic sections has played a crucial role in identifying fea-
tures within sedimentary layers. These findings align with 
prior research on the investigation of gas chimneys, pock-
marks, and associated geological characteristics [25, 36, 48].

The gas relocates from source rocks to shallower res-
ervoirs and eventually reaches the seafloor through deep-
seated gas chimneys (Fig. 10). This migration process entails 
the movement of high-pressure fluids through fractured 
sedimentary layers along gas plumes until they reach the 
seafloor. This results in the formation of domes accompanied 
by cracks and faults. These structural characteristics enable 
the release of fluid, which eventually results in the forma-
tion of well-defined pockmarks (Fig. 10). Pockmarks exhibit 
a range of sizes, encompassing structures such as domes, 
gas chimneys, and mega pockmarks that extend over several 
kilometres. The release of gas at the bottom of the sea cre-
ates a visible and separate bright reflection.

In summary, the study offers extensive knowledge about 
the development of gas chimneys, pockmarks and other 
characteristics found on the deep-seafloor in the WDDM 
concession area [21, 24–26]. The study indicates that fault 
zones surrounding these seafloor features have a significant 
impact on enabling the flow of fluids through fault planes 
to the seafloor.

4.1 � Seismic attributes classes

The seismic attributes are categorized into two main catego-
ries. The first category includes amplitude-based attributes, 
which distinguish features based on their energy content, 

ranging from highest to lowest amplitude. Bright anomalies, 
enhanced reflectors, and Bottom Simulation Reflector (BSR) 
are associated with the highest amplitude content, while the 
columnar disturbance corresponds to the lowest amplitude.

The second category focuses on geometric attributes like 
variance and the cosine of the instantaneous phase. These 
attributes are utilized to enhance the detection of buried 
pockmarks (BPm) and fault zones associated with them. 
Gas seepage through gas chimneys (Fig. 10) is visible as 
macro-seepage and can be identified using seismic data. Fig-
ure 12 depicts the presence of vertical and inclined plumes, 
indicating the migration and accumulation of fluids under 
high pressure in reservoirs of upper layers (Miocene and 
Pliocene). Ultimately, the gas ascends towards the seafloor 
through gas chimneys and along faulted zones.

4.2 � Chimneys, associated features, and fluid flow

In the Simian gas field, a 3D seismic model was employed 
to identify and map the seabed layers such as the Bilqas/
Mit Ghamr Formation, El Wastani Formation, and the gas 
channel reflector (Fig. 11). These findings provide a visual 
representation of the geological structures and processes 
associated with gas migration in the area.

The application of seismic attributes has demonstrated 
its efficacy in identifying and describing the subsurface 
geological and structural characteristics in the WDDM 
region, particularly in the Simian field. Through the analy-
sis of multiple seismic attributes and 3D models, we have 
identified bright spots scattered in the vicinity of the Sim-
ian gas channel, alongside the pre-existing gas chimney. 
These bright spots are indicative of unsystematic gas seep-
age and migration. Moreover, the existence of a fault zone 

Fig. 11   AB seismic section after the extraction of a variance and b cosine of the instantaneous phase
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that has been sheared and cracked in an upward direction, 
as shown in Fig. 11, near the gas chimney, provides sig-
nificant evidence of the release of gas from a high-pressure 
zone to a lower one, specifically the seafloor. This dis-
charge activity is associated with the formation of pock-
marks, which are caused by the accumulation and release 
of gas at the seafloor, which, as discussed, is a huge life 

risk that should be assessed before and while conducting 
gas and oil production.

Figure  5 depicts the graphical representation of the 
three primary formations found in the Mit Ghamir, El 
Wastani, and Kafr El-Sheikh areas. The Simian gas chan-
nel is located between the El Wastani and Kafr El-Sheikh 
areas. Southward, there is a distinct area where gas is being 

Fig. 12   a & c 3D Visualization for the three picked horizons Mit Ghamr, El-Wastani, and Kafr El-Sheikh, b show the major fault combined with 
AB seismic section
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released, which is indicated by the variance seismic attribute 
(Fig. 11a). The objective of the study was to delineate the 
gas chimneys and gas channels in the Simian field. By using 
advanced geophysical methods, we were able to enhance 
subsurface imaging for the identification of pockmarks, 
related characteristics, and faults. The gas chimneys serve as 
the main routes for fluids to migrate from deep underground 
sources, known as the “kitchen”, through the Miocene-Plio-
cene sequences and up to the seafloor. They serve as prefer-
ential paths for hydrocarbon migration from pre-Messinian 
to Plio-Pleistocene reservoirs. In areas where these reser-
voirs intersect with gas chimneys, the seafloor above exhibits 
a bright reflector indicating gas seepage. Pockmarks, on the 
other hand, are typically formed by the escape of both liq-
uid and gaseous phases, including pore water, hydrocarbon 
fluid, and hydrothermal solution [40, 48]. The identifica-
tion of gas chimneys, which are characterized by chaotic 
seismic signals due to energy absorption and scattering, 
shows extensive areas of reduced amplitude throughout the 
pre-Messinian to Pleistocene slope succession. This reduc-
tion is due to the diffusion of gas through cap rocks above 
breached reservoirs (Fig. 10) [53]. It appears that gas chim-
neys mainly form from hydraulic fracturing caused by the 
upward movement of gas from deeply accumulated sources 
under high pressure, due to rapid burial during the Plio-
Pleistocene mega sequence deposition. According to [19], 
Thermogenic gas is generated at considerable depths and 
then moves into younger sediments, where it gets trapped in 
smaller reservoirs. Gas can escape through fine-grained sur-
face sediments, with initial fluid escape occurring through 
small cracks. These early-formed cracks serve as pathways 
for fluid escape, expanding over time during vertical gas 
migration and eventually leading to pockmark formation. 

Pockmarks are commonly linked to bedrock structures [51] 
and can be found along faults and faulted anticlines [10].

Figures 10 and 12 show gas escaping through faults 
from shallow depths to the seabed, causing discontinuities 
in the shallower parts of seismic profiles. Gas chimneys, 
domes, and buried chimneys act as the main pathways for 
vertical and lateral fluid migration, appearing as bright 
spots in the interpreted profiles. The WDDM area shows 
significant seepage activity, characterized by numerous 
venting features associated with domes (Fig. 10), pock-
marks, and gas chimneys. In Fig. 13, the bright anomalies 
appear with the highest envelope and root mean square 
(RMS) values. Enhanced reflections with higher ampli-
tudes in certain regions may result from increased gas 
saturation within a porous layer surrounded by mainly 
impermeable layers.

Accordingly, to reduce the risks associated with explor-
ing and interpreting gas detection, it is essential to extract 
a variety of seismic attributes that are customized to the 
specific objectives of the study. Different seismic attributes 
are employed to accurately identify gas zones and important 
characteristics like gas chimneys, bright spots, and enhanced 
reflections. The attributes include RMS (Root Mean Square), 
energy, envelope, chaos, variance, and the cosine of the 
instantaneous phase. The presence of sediment-saturated 
gas, even in small amounts, can significantly decrease the 
acoustic impedance of the surrounding sediment. This leads 
to the formation of bright spots, also known as enhanced 
reflectors, on seismic profiles [3, 49]. The presence of large 
and noticeable anomalies, which suggest possible locations 
where oil may be leaking, have been identified at fault loca-
tions that extend to the seafloor. This highlights the impor-
tance of these faults as pathways for oil leakage [47].

Fig. 13   Bright anomalies and pockmark appear with the highest values of the extracted a envelope and b root mean square (RMS) attributes
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Domes are characterized by minor faults and fractures, 
which are connected to the seeping of gas. This observa-
tion aligns well with the findings shown in (Fig. 13). In this 
figure, a bright, high-amplitude reflection is visible at the 
top of the dome, exhibiting maximum Root Mean Square 
(RMS) values that are higher than the surrounding seabed. 
These geological features are hazardous features and affect 
the stability of the seabed and indicate the presence of gas 
chimneys beneath the seabed. Associated with the gas chim-
neys are fault zones, Fault zones are implemented due to the 
gas escaping mechanism, When the gas pushes its way up 
through the sub-surface it creates faults and cracks thus in 
summary, this creates an interconnected ecosystem where 
each feature is linked to one another (Fig. 14).

To minimize risks associated with near-surface gas 
migration affecting offshore installations and seabed struc-
tures in the WDDM concession, it’s crucial to integrate 
drainage piles around platform locations. These piles func-
tion as vertical pathways through which gas can safely 
disperse away from the structures. Incorporating modern 
techniques such as seismic attributes can further enhance 
the effectiveness of this approach. The pockmark in our 
study has a large hazardous zone, so building oil rigs near 
these formations is dangerous. We advise positioning the 
rig at a minimum distance of 10 km (Fig. 15). Oil rigs 
require secure and steady foundations, and the presence of 
gas chimneys and pockmarks suggests a lack of stability. 
Seabed collapse or subsidence can occur as a consequence 
of gas release during drilling or construction activities. 
This would compromise the integrity of the rig’s structure, 
posing a risk to the crew and the environment.

Fig. 14   Illustrates the ecosystem of the associated features of the 
pockmarks and how each feature is dependent on one another

Fig. 15   Combined/Stacked RMS and variance seismic attributes clearly show the hazardous area and the possible safe distance to install the rig



525Journal of Umm Al-Qura University for Applied Sciences (2025) 11:509–527	

5 � Conclusion

The study implemented advanced geophysical techniques to 
detect gas chimneys and gas channels and their associated 
geological characteristics, highlighting the vital importance 
of these sophisticated methods in saving lives. The Sim-
ian Field exhibits various seafloor geological formations 
such as pockmarks, gas chimneys, gas channels, faults, and 
related seafloor seepage features. A key goal of this article 
is to highlight the risk of seafloor seepage and illustrate the 
potential dangers that arise during offshore installations. 
Pockmarks that develop in close proximity to current plat-
forms have the potential to present a highly dangerous and 
potentially disastrous threat to offshore installations in the 
future.

The physics of fluid movement often relies on strati-
graphic characterizations, as evidenced by seafloor domes. 
Pockmark formation is linked to underlying tectonic struc-
tures, such as high fault zones. Further exploration may 
uncover additional details.

The typical dimensions of a normal pockmark range from 
1 to 10 m in width and less than 0.6 m in depth. On the other 
hand, larger pockmarks can be as wide as 10 to 700 m and 
have a maximum depth of 45 m [20]. Therefore, it is impera-
tive to underscore the critical importance of safeguarding 
the oil platforms, as this can avert a significant loss of life.

In conclusion, the arrangement of small and large pock-
marks is an important indicator of underlying gas chimneys 
and potential fault zones. Constructing oil rigs near these 
formations poses significant risks to structural integrity, 
operational safety, and the environment. To reduce these 
risks, it is crucial to maintain a safe distance from pock-
marks and gas chimneys. Thorough geophysical surveys in 
site selection are essential to ensure the safe and sustainable 
development of offshore oil rigs. By prioritizing safety and 
environmental protection, we can balance energy develop-
ment and the preservation of our marine ecosystems.
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