KIT | KIT-Bibliothek | Impressum | Datenschutz

Simulation of NMC cathode particle fracture based on the multiphase-field method

Kuhn, Philipp Benjamin 1; Daubner, Simon ORCID iD icon; Weichel, Marcel 1,2; Prajapati, Nishant ORCID iD icon 2; SCHNEIDER, Daniel ORCID iD icon 1,2; Nestler, Britta 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Intergranular cracking is considered a major cause of capacity fading in layered battery cathodes [2]. During intercalation and deintercalation of Li-ions, the highly anisotropic chemo-mechanical expansion of LiNi$_{0.1}$Mn$_{0.1}$Co$_{0.8}$O$_{2}$ (NMC811) primary grains within the agglomerate causes complex mechanical stress fields, triggering crack formation particularly during the initial cell charge cycle (cathode discharge) [2] [3, p.14] [4] [5, p.9]. A promising approach in grain engineering is correlated primary grain structures called rod-shaped morphologies, to which researchers [5, p.17] [6] allocate reduced anisotropic stress and cracking compared to common gravel-shaped morphologies. Building on previous work by Daubner et al. [1], this study examines spherical agglomerates in a 2D framework with a diameter of 10 μm. Using the multiphase-field method, it simulates chemo-mechanical lattice expansion and resulting cracking, beginning with an idealized, spatially homogeneous lithiation. This enables to analyze the effects of primary grain orientation and grain boundaries. Subsequently, Li-ion diffusion is modeled through a Potentiostatic Intermittent Titration Technique (PITT), with mechanical simulations conducted at times of interest. ... mehr


Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000190685
Erschienen in 21st Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies (ModVal 2025)
Veranstaltung 21st Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies (ModVal 2025), Karlsruhe, Deutschland, 11.03.2025 – 12.03.2025
Bemerkung zur Veröffentlichung in press
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page