KIT | KIT-Bibliothek | Impressum | Datenschutz

Temperature-Annealed Boltzmann Generators

Schopmans, Henrik 1; Friederich, Pascal ORCID iD icon 1,2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Efficient sampling of unnormalized probability densities such as the Boltzmann distribution of molecular systems is a longstanding challenge. Next to conventional approaches like molecular dynamics or Markov chain Monte Carlo, variational approaches, such as training normalizing flows with the reverse Kullback-Leibler divergence, have been introduced. However, such methods are prone to mode collapse and often do not learn to sample the full configurational space. Here, we present temperature-annealed Boltzmann generators (TA-BG) to address this challenge. First, we demonstrate that training a normalizing flow with the reverse Kullback-Leibler divergence at high temperatures is possible without mode collapse. Furthermore, we introduce a reweighting-based training objective to anneal the distribution to lower target temperatures. We apply this methodology to three molecular systems of increasing complexity and, compared to the baseline, achieve better results in almost all metrics while requiring up to three times fewer target energy evaluations. For the largest system, our approach is the only method that accurately resolves the metastable states of the system.


Verlagsausgabe §
DOI: 10.5445/IR/1000190694
Veröffentlicht am 17.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 01.05.2025
Sprache Englisch
Identifikator ISSN: 2640-3498
KITopen-ID: 1000190694
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. Ed.: A. Singh
Veranstaltung 42nd International Conference on Machine Learning (ICML 2025), Vancouver, Kanada, 13.07.2025 – 19.07.2025
Seiten 53467 - 53500
Serie Proceedings of machine learning research : PMLR ; 267
Externe Relationen Siehe auch
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page