KIT | KIT-Bibliothek | Impressum | Datenschutz

On a T$_3$-structure in geometrically linearized elasticity: Qualitative and quantitative analysis and numerical simulations

Indergand, Roman; Kochmann, Dennis; Rüland, Angkana; Tribuzio, Antonio; Zillinger, Christian ORCID iD icon 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the rigidity properties of the T$_3$-structure for the symmetrized gradient from the work of Bhattacharya, Firoozye, James and Kohn [Restrictions on microstructure, Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 843–878; BFJK] qualitatively, quantitatively and numerically. More precisely, we complement the flexibility result for approximate solutions of the associated differential inclusion which was deduced in BFJK by a rigidity result on the level of exact solutions and by a quantitative rigidity estimate and scaling result. The T3-structure for the symmetrized gradient can hence be regarded as a symmetrized gradient analogue of the Tartar square for the gradient. As such a structure cannot exist in R$^{2×2}_{sym}$ the example from BFJK is in this sense minimal. We complement our theoretical findings with numerical simulations of the resulting microstructure.


Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 0218-2025, 1793-4060, 1793-6314
KITopen-ID: 1000190712
Erschienen in Mathematical Models and Methods in Applied Sciences
Verlag World Scientific Publishing
Seiten 1–54
Vorab online veröffentlicht am 06.02.2026
Schlagwörter Martensitic phase transformation, rigidity, flexibility
Nachgewiesen in Scopus
OpenAlex
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page