KIT | KIT-Bibliothek | Impressum | Datenschutz

Extendability of functions with partially vanishing trace

Bechtel, Sebastian; Brown, Russell M.; Haller, Robert; Tolksdorf, Patrick 1
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

Let Ω ⊆ $R$$^d$ be open and D ⊆ ∂Ω be a closed part of its boundary. Under very mild assumptions on Ω, we construct a bounded Sobolev extension operator for the Sobolev space W$^{k,p}_D$ (Ω), 1 $\leq$ p $\leq$ ∞, which consists of all functions in W$^{k,p}$(Ω) that vanish in a suitable sense on D. In contrast to earlier work, this construction is global and does not use a localization argument, which allows to work with a boundary regularity that is sharp at the interface dividing D and ∂Ω \ D. Moreover, we provide homogeneous and local estimates for the extension operator. Also, we treat the case of Lipschitz function spaces with a vanishing trace condition on D.


Verlagsausgabe §
DOI: 10.5445/IR/1000190713
Veröffentlicht am 18.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 0373-0956, 1777-5310
KITopen-ID: 1000190713
Erschienen in Annales de l'Institut Fourier
Verlag Association des Annales de l'Institut Fourier
Band 76
Heft 1
Seiten 291 - 339
Vorab online veröffentlicht am 26.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page