KIT | KIT-Bibliothek | Impressum | Datenschutz

Spoofer detection framework for V2X systems via tensor-based DoA estimation and Yolo-based object detection

Da Silva, Daniel A.; Da Silva, Antonio S. 1; De Lima, Daniel V.; Da Costa, João Paulo J.; De Melo, Luis O.; Miranda, Christian; Santos, Giovanni A.; Vinel, Alexey 1; Mendes, Paulo; Verhoeven, Sebastian; Voigt-Antons, Jan-Niklas; De Freitas, Edison P.
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Autonomous vehicles (AVs) represent a technology with significant social and environmental benefits. By reducing dependence on the human factor, which is responsible for 94% of the 1.35 million annual traffic deaths globally, AVs have the potential to increase road safety and save lives. Complementary technologies, such as Vehicle-to-Everything (V2X) communication, further enhance traffic management, reducing congestion by up to 40% and improving energy efficiency with fuel savings of up to 15%. However, V2X systems are particularly vulnerable to cyber attacks, such as spoofing, which injects false information, disrupting the flow of traffic and compromising the safety of AVs. This paper proposes an innovative framework for detecting and mitigating spoofing attacks in V2X communications. The solution combines Direction of Arrival (DoA) estimation with advanced object detection algorithms, such as YOLOv8, to identify anomalous signals and locate malicious transmitters. By integrating Artificial Intelligence (AI) techniques, the framework makes it possible to accurately classify attackers and select customized countermeasures, ensuring greater network reliability and security. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190741
Veröffentlicht am 17.02.2026
Originalveröffentlichung
DOI: 10.1109/ACCESS.2026.3660577
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Karlsruher Institut für Technologie (KIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000190741
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1
Vorab online veröffentlicht am 03.02.2026
Schlagwörter Cybersecurity, DoA estimation, object detection, spoofing, V2X, VANET
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page