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Abstract: We discuss nonlinear model predictive control (MPC) for multi-body dynamics via
physics-informed machine learning methods. In more detail, we use a physics-informed neural
networks (PINNs)-based MPC to solve a tracking problem for a complex mechanical system, a
multi-link manipulator. PINNs are a promising tool to approximate (partial) differential equations
but are not suited for control tasks in their original form since they are not designed to handle
variable control actions or variable initial values. We thus follow the strategy of Antonelo et al.
(arXiv:2104.02556, 2021) by enhancing PINNs with adding control actions and initial conditions
as additional network inputs. Subsequently, the high-dimensional input space is reduced via a
sampling strategy and a zero-hold assumption. This strategy enables the controller design based
on a PINN as an approximation of the underlying system dynamics. The additional benefit is
that the sensitivities are easily computed via automatic differentiation, thus leading to efficient
gradient-based algorithms for the underlying optimal control problem.
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1. INTRODUCTION

Model predictive control (MPC) is a flexible and intuitive
control scheme that lets us impose constraints and helps to
operate complex systems optimally. The major challenge
for MPC is the repetitive solution of an optimal control
problem. Even with today’s computing power, efficient
model representation to be real-time capable remains the
bottleneck. This issue is especially prominent in systems
with a fast dynamic, like robotic manipulators, where
operation speed relates to increased productivity.

In this work, we study a tracking problem for a multi-
link manipulator, see section 2 for further details, with
an a-priori unknown tracking trajectory. In this scenario,
standard linearization strategies for the nonlinear dynamics,
which are used to speed up the computation, cannot
be implemented without further challenges. Instead, a
repetitive numerical evaluation of the underlying nonlinear
dynamics is required. Since the time required by standard
time integration schemes may pose a critical constraint
during the solution of the optimal control problem, we
propose replacing the time-integration with a machine
learning (ML) approach. Since standard ML techniques
typically require an extensive training data set and cannot
⋆ The authors acknowledge funding from the DFG under Germany’s
Excellence Strategy – EXC 2075 – 390740016 and are thankful for
support by the Stuttgart Center for Simulation Science (SimTech).

compete with state-of-the-art time-integrators (Otness
et al., 2021), we propose a physics-informed approach,
see Karniadakis et al. (2021) for a recent overview, thus
exploiting the underlying known physical law during the
training process. More precisely, we approximate the
solution of the nonlinear dynamics with a physics-informed
neural network (PINN), initially introduced by Raissi
et al. (2019). Other approaches to tackle this issue are
Deep Lagrangian Networks or Hamiltonian Neural Network
(cf. Lutter and Peters (2021)), which are based on Neural
Ordinary Differential Equations; see Chen et al. (2019).
In contrast to our approach, these approaches incorporate
Lagrangian or Hamiltonian mechanics into model learning
rather than using the explicit differential equation, and
thus rely on data.

Our main results are the following:

(1) Following ideas presented by Antonelo et al. (2021),
we detail in section 3.3 how to replace the nonlinear
dynamics with a PINN approximation in the context
of nonlinear model predictive control (NMPC). Due
to the efficient computation of the partial derivative
of the PINN with respect to the controller, the opti-
mal control problem can be solved efficiently with a
gradient-based method, without any adjoint compu-
tations (for gradient-based methods) or acceleration
strategies (for nonlinear programming methods).
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Stuttgart, Universitätsstr. 32, 70569 Stuttgart, Germany (e-mail:
{jonas.nicodemus,benjamin.unger}@simtech.uni-stuttgart.de)

∗∗ Institute of Engineering and Computational Mechanics, University of
Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany (e-mail:

{joerg.fehr,jonas.kneifl}@itm.uni-stuttgart.de).

Abstract: We discuss nonlinear model predictive control (MPC) for multi-body dynamics via
physics-informed machine learning methods. In more detail, we use a physics-informed neural
networks (PINNs)-based MPC to solve a tracking problem for a complex mechanical system, a
multi-link manipulator. PINNs are a promising tool to approximate (partial) differential equations
but are not suited for control tasks in their original form since they are not designed to handle
variable control actions or variable initial values. We thus follow the strategy of Antonelo et al.
(arXiv:2104.02556, 2021) by enhancing PINNs with adding control actions and initial conditions
as additional network inputs. Subsequently, the high-dimensional input space is reduced via a
sampling strategy and a zero-hold assumption. This strategy enables the controller design based
on a PINN as an approximation of the underlying system dynamics. The additional benefit is
that the sensitivities are easily computed via automatic differentiation, thus leading to efficient
gradient-based algorithms for the underlying optimal control problem.

Keywords: Physics-informed Machine Learning, Model Predictive Control, Surrogate Model,
Mechanical System, Real-time Control

1. INTRODUCTION

Model predictive control (MPC) is a flexible and intuitive
control scheme that lets us impose constraints and helps to
operate complex systems optimally. The major challenge
for MPC is the repetitive solution of an optimal control
problem. Even with today’s computing power, efficient
model representation to be real-time capable remains the
bottleneck. This issue is especially prominent in systems
with a fast dynamic, like robotic manipulators, where
operation speed relates to increased productivity.

In this work, we study a tracking problem for a multi-
link manipulator, see section 2 for further details, with
an a-priori unknown tracking trajectory. In this scenario,
standard linearization strategies for the nonlinear dynamics,
which are used to speed up the computation, cannot
be implemented without further challenges. Instead, a
repetitive numerical evaluation of the underlying nonlinear
dynamics is required. Since the time required by standard
time integration schemes may pose a critical constraint
during the solution of the optimal control problem, we
propose replacing the time-integration with a machine
learning (ML) approach. Since standard ML techniques
typically require an extensive training data set and cannot
⋆ The authors acknowledge funding from the DFG under Germany’s
Excellence Strategy – EXC 2075 – 390740016 and are thankful for
support by the Stuttgart Center for Simulation Science (SimTech).

compete with state-of-the-art time-integrators (Otness
et al., 2021), we propose a physics-informed approach,
see Karniadakis et al. (2021) for a recent overview, thus
exploiting the underlying known physical law during the
training process. More precisely, we approximate the
solution of the nonlinear dynamics with a physics-informed
neural network (PINN), initially introduced by Raissi
et al. (2019). Other approaches to tackle this issue are
Deep Lagrangian Networks or Hamiltonian Neural Network
(cf. Lutter and Peters (2021)), which are based on Neural
Ordinary Differential Equations; see Chen et al. (2019).
In contrast to our approach, these approaches incorporate
Lagrangian or Hamiltonian mechanics into model learning
rather than using the explicit differential equation, and
thus rely on data.

Our main results are the following:

(1) Following ideas presented by Antonelo et al. (2021),
we detail in section 3.3 how to replace the nonlinear
dynamics with a PINN approximation in the context
of nonlinear model predictive control (NMPC). Due
to the efficient computation of the partial derivative
of the PINN with respect to the controller, the opti-
mal control problem can be solved efficiently with a
gradient-based method, without any adjoint compu-
tations (for gradient-based methods) or acceleration
strategies (for nonlinear programming methods).

Physics-informed Neural Networks-based
Model Predictive Control for Multi-link

Manipulators ⋆

Jonas Nicodemus ∗ Jonas Kneifl ∗∗ Jörg Fehr ∗∗

Benjamin Unger ∗

∗ Stuttgart Center for Simulation Science (SC SimTech), University of
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(2) In section 4 we apply the strategy to a PowerCube
serial robot (cf. Fehr et al. (2020)) and demonstrate
that replacing the numerical time-integration of the
nonlinear dynamics with a PINN speeds up the
computation time while retaining a sufficient accuracy
within the NMPC framework.

The use of ML techniques in MPC is not new. For instance,
in Åkesson and Toivonen (2006) and Hertneck et al. (2018)
the controller itself is replaced by a neural network. In the
context of a-priori unknown tracking trajectories, such an
approach is either not feasible or requires learning in a
high-dimensional space. Instead, similarly as in this work,
the nonlinear dynamics are replaced by a recurrent neural
network in Wu et al. (2021) or a PINN in Arnold and King
(2021); Antonelo et al. (2021). However, Arnold and King
(2021) use a different strategy for dealing with variable
control inputs, and compared to Antonelo et al. (2021), we
test our PINN-based MPC on a mechanical system that
features faster dynamics than their examples.

Let us briefly outline the structure of the paper. First,
we postulate the precise problem setting, including the
PowerCube serial robot as sample application in section 2.
A short review of NMPC and PINNs in sections 3.1
and 3.2, respectively, is followed by the PINN-based NMPC
framework in section 3.3. We demonstrate the efficiency
of the framework with a numerical example of multi-link
manipulator in section 4.

Notation For a positive semidefinite matrix Q ∈ Rn×n,
we define the weighted (euclidean) seminorm

∥ · ∥Q : Rn → R≥0, x →
√
x⊤Qx.

2. PROBLEM FORMULATION

On the time-interval T ⊆ R we study control systems of
the form

ẋ(t) = f(x(t),u(t)), (1a)

x(t0) = x0, (1b)

for some initial time t0 ∈ T and x : T → X ⊆ Rn, x0 ∈ Rn,
u : T → U ⊆ Rm the state, initial value and control,
respectively. We assume that f is continuous and (locally)
Lipschitz-continuous with respect to the state, such that
the initial value problem (1) has a unique (weak) solution
for each u ∈ L∞(T,U), cf. Sonntag (1989, Thm. 54). The
corresponding solution operator (also called flow) that
maps the control and initial value to the solution at time
t ≥ t0, is denoted with

φ(t,u,x0) = x(t). (2)

For our further presentation it will be beneficial to view the
control system (1a) as the under-determined differential-
algebraic equation (DAE)

0 = F (x(t), ẋ(t),u(t)) := ẋ(t)− f(x(t),u(t)). (3)

Let us emphasize that, in principle, we could start with
a descriptor system instead of the control system (1).
However, for the sake of simplicity, we restrict ourselves to
control systems of the form (1).

As an exemplary real-world application, we study a multi-
link manipulator consisting of Schunk PowerCubes modules,
as described in Fehr et al. (2020). Multi-link manipulators
play an important role in the automation process of the
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g
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Fig. 1. Sketch of the PowerCube serial robot.

manufacturing industry and are a heavily studied research
topic in fields like control theory. The control problem of
a multi-link manipulator is simple but still challenging.
Thanks to previous works (Fehr et al., 2022), the dynam-
ical model of the manipulator is already identified and
simulation data is available for comparison. The schematic
sketch of the here studied manipulator is shown in Fig. 1.

The resulting equations of motion can be read as

M(q)q̈ + k(q, q̇) = h(q, q̇) +Bu,

with the generalized coordinates q = [α, β]⊤ ∈ R2, the
nonsingular mass matrix M(q) ∈ R2×2, the vector of
centrifugal, coriolis and gyroscopic forces k(q, q̇) ∈ R2,
the vector of applied forces h(q, q̇) ∈ R2, the input matrix
B ∈ R2×2 and the input vector u ∈ R2, which consists
of the motor currents of the A and B revolute joint.
Introducing x := [q, q̇]⊤ yields the first-order reformulation

0 =

[
I 0
0 M(q)

] [
q̇
q̈

]
−
[

q̇
h(q, q̇)− k(q, q̇)

]
−
[

0
Bu

]
,

which is in the form of (3), with x ∈ R4.

3. METHODS

The practical implementation of a controller on a digital
control unit typically requires a temporal discretization of
the continuous-time control system (1). We follow Grüne
and Pannek (2011) and introduce the time-grid

t0 < t1 < . . . < tN .

For simplicity we choose an equidistant time grid, i.e., tk =
kτ + t0 with constant sampling period τ > 0. Introducing
the shifted input uk := u(· + kτ) for k = 0, 1, . . . , N − 1
we thus obtain

xk+1 = φ(τ,uk,xk) (4)

with xk = x(tk) for k = 0, 1, . . . , N . If we make an
additional zero-hold assumption for the control input, i.e.,
d
dtuk|(0,τ) ≡ 0, then (4) resembles a discrete-time control
system. In this case, by abuse of the notation, we use the
symbol uk both to denote the control function and its
constant value on the interval (0, τ).

3.1 Nonlinear Model Predictive Control

Suppose we have a control system in the form of (4), with
the state measured at discrete time instants tk as described
above, then the tracking problem is to find suitable control
inputs uk such that xk follows a given reference xref

k as
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(2) In section 4 we apply the strategy to a PowerCube
serial robot (cf. Fehr et al. (2020)) and demonstrate
that replacing the numerical time-integration of the
nonlinear dynamics with a PINN speeds up the
computation time while retaining a sufficient accuracy
within the NMPC framework.

The use of ML techniques in MPC is not new. For instance,
in Åkesson and Toivonen (2006) and Hertneck et al. (2018)
the controller itself is replaced by a neural network. In the
context of a-priori unknown tracking trajectories, such an
approach is either not feasible or requires learning in a
high-dimensional space. Instead, similarly as in this work,
the nonlinear dynamics are replaced by a recurrent neural
network in Wu et al. (2021) or a PINN in Arnold and King
(2021); Antonelo et al. (2021). However, Arnold and King
(2021) use a different strategy for dealing with variable
control inputs, and compared to Antonelo et al. (2021), we
test our PINN-based MPC on a mechanical system that
features faster dynamics than their examples.

Let us briefly outline the structure of the paper. First,
we postulate the precise problem setting, including the
PowerCube serial robot as sample application in section 2.
A short review of NMPC and PINNs in sections 3.1
and 3.2, respectively, is followed by the PINN-based NMPC
framework in section 3.3. We demonstrate the efficiency
of the framework with a numerical example of multi-link
manipulator in section 4.

Notation For a positive semidefinite matrix Q ∈ Rn×n,
we define the weighted (euclidean) seminorm

∥ · ∥Q : Rn → R≥0, x →
√
x⊤Qx.

2. PROBLEM FORMULATION

On the time-interval T ⊆ R we study control systems of
the form

ẋ(t) = f(x(t),u(t)), (1a)

x(t0) = x0, (1b)

for some initial time t0 ∈ T and x : T → X ⊆ Rn, x0 ∈ Rn,
u : T → U ⊆ Rm the state, initial value and control,
respectively. We assume that f is continuous and (locally)
Lipschitz-continuous with respect to the state, such that
the initial value problem (1) has a unique (weak) solution
for each u ∈ L∞(T,U), cf. Sonntag (1989, Thm. 54). The
corresponding solution operator (also called flow) that
maps the control and initial value to the solution at time
t ≥ t0, is denoted with

φ(t,u,x0) = x(t). (2)

For our further presentation it will be beneficial to view the
control system (1a) as the under-determined differential-
algebraic equation (DAE)

0 = F (x(t), ẋ(t),u(t)) := ẋ(t)− f(x(t),u(t)). (3)

Let us emphasize that, in principle, we could start with
a descriptor system instead of the control system (1).
However, for the sake of simplicity, we restrict ourselves to
control systems of the form (1).

As an exemplary real-world application, we study a multi-
link manipulator consisting of Schunk PowerCubes modules,
as described in Fehr et al. (2020). Multi-link manipulators
play an important role in the automation process of the
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Fig. 1. Sketch of the PowerCube serial robot.

manufacturing industry and are a heavily studied research
topic in fields like control theory. The control problem of
a multi-link manipulator is simple but still challenging.
Thanks to previous works (Fehr et al., 2022), the dynam-
ical model of the manipulator is already identified and
simulation data is available for comparison. The schematic
sketch of the here studied manipulator is shown in Fig. 1.

The resulting equations of motion can be read as

M(q)q̈ + k(q, q̇) = h(q, q̇) +Bu,

with the generalized coordinates q = [α, β]⊤ ∈ R2, the
nonsingular mass matrix M(q) ∈ R2×2, the vector of
centrifugal, coriolis and gyroscopic forces k(q, q̇) ∈ R2,
the vector of applied forces h(q, q̇) ∈ R2, the input matrix
B ∈ R2×2 and the input vector u ∈ R2, which consists
of the motor currents of the A and B revolute joint.
Introducing x := [q, q̇]⊤ yields the first-order reformulation

0 =

[
I 0
0 M(q)

] [
q̇
q̈

]
−
[

q̇
h(q, q̇)− k(q, q̇)

]
−
[

0
Bu

]
,

which is in the form of (3), with x ∈ R4.

3. METHODS

The practical implementation of a controller on a digital
control unit typically requires a temporal discretization of
the continuous-time control system (1). We follow Grüne
and Pannek (2011) and introduce the time-grid

t0 < t1 < . . . < tN .

For simplicity we choose an equidistant time grid, i.e., tk =
kτ + t0 with constant sampling period τ > 0. Introducing
the shifted input uk := u(· + kτ) for k = 0, 1, . . . , N − 1
we thus obtain

xk+1 = φ(τ,uk,xk) (4)

with xk = x(tk) for k = 0, 1, . . . , N . If we make an
additional zero-hold assumption for the control input, i.e.,
d
dtuk|(0,τ) ≡ 0, then (4) resembles a discrete-time control
system. In this case, by abuse of the notation, we use the
symbol uk both to denote the control function and its
constant value on the interval (0, τ).

3.1 Nonlinear Model Predictive Control

Suppose we have a control system in the form of (4), with
the state measured at discrete time instants tk as described
above, then the tracking problem is to find suitable control
inputs uk such that xk follows a given reference xref

k as

ρ ρ+ 1 ρ+ 2 . . . ρ+H

τ

H

FuturePast

xref

xMPC

x̂
u
u∗

Fig. 2. Basic MPC scheme for the horizon width H = 4.

good as possible. This problem can be solved by applying
NMPC.

For this purpose, we introduce a cost function ℓ : X ×X ×
U → R≥0. In the quadratic case, this function may be
chosen as

ℓ(xref
k ,xk,uk) = ∥xref

k − xk∥2Q + ∥uk∥2R. (5)

Following the NMPC scheme, visualized in Fig. 2, at
each time instant k = ρ the discrete-time optimal control
problem for the moving horizon with horizon width H for
the current time instant ρ is given by

min
uρ,...,uρ+H−1

ρ+H−1∑

k=ρ

ℓ(xref
k ,xk,uk) (6a)

s. t. xk+1 = φ(τ,uk,xk), (6b)

uk ∈ U ,xk ∈ X . (6c)

Then, the optimal control input sequence u∗
k for k =

ρ, . . . , ρ+H−1 for the current time instant ρ is obtained, by
solving (6). From this sequence the first control input u∗

ρ is
applied to the system until tρ+1, then the procedure repeats.
The optimal control problem (6) is solved numerically
either: (i) directly, via the Hamiltonian-Jacobi-Bellmann
equation, (ii) via gradient-based methods, where the
gradients are computed via the adjoint method, or as a
(iii) nonlinear programming problem with methods such
as sequential quadratic programming or the interior-point
method, see for instance Nocedal and Wright (2006).

In many applications, φ is not available and a numerical
approximation φ̂ is used, for instance obtained via numeri-
cal time-integration. In the case of the tracking problem
with a-priori known tracking trajectory, one can linearize
the nonlinear system in an offline-step to speed up the
computation in the online stage. This strategy is used for
instance in Fehr et al. (2020) for the optimal control of
the present robot manipulator. We emphasize that the
reference trajectory needs to be known a-priori and the
linearization introduces an additional source of error. We
thus cannot apply this strategy and restrict ourselves to
the fully nonlinear case.

3.2 Physics-Informed Neural Networks

If various solution trajectories of (1) are available, then
DNNs can be used to approximate the solution map (2) via
a supervised learning task. In more detail, a (data-based)

t
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ϕ̂(t,x0,u,ω) PINN

F̂ (x̂, ∂
∂t x̂,u)

L(ω)

Optimizer

Fig. 3. PINN architecture.

loss-function based on the available solution trajectories is
minimized with respect to so-called weights ω ∈ Rp such
that the DNN φ̂ approximates φ, i.e.,

x̂(t) := φ̂(t,x0,u,ω) ≈ φ(t,x0,u),

for all admissible (t,x0,u). One strategy to achieve this,
is to use existing data

xi := φ(ti,x0,i,ui), i = 1, . . . , Ndata

and minimize the mean-squared error loss-function

Ldata(ω) :=
1

Ndata

Ndata∑

i=1

∥φ̂(ti,x0,i,ui,ω)− xi∥2.

The idea of PINNs, introduced in Raissi et al. (2019), is to
add the differential equation to the loss function, as shown
in Fig. 3, to robustify the network further and allow for a
good approximation even in a data-poor regime. The actual
PINN results from inserting the approximated flow φ̂ and
its derivative ∂

∂t φ̂, which can be computed via automatic
differentiation, into the differential equation (3), yielding
the residual

F̂ (t,x0,u,ω) := F (φ̂(t,x0,u,ω), ∂
∂t φ̂(t,x0,u,ω),u).

Note that this approach requires sufficiently smooth acti-
vation functions in the DNN, for instance the hyperbolic
tangent. The loss function corresponding to the differential
equation is then given by

Lphys(ω) :=
1

Nphys

Nphys∑

i=1

∥F̂ (ti,x0,i,ui,ω)∥2,

where the residual is evaluated on a finite set of so-called
collocation points (ti,x0,i,ui). Let us emphasize that the
collocation points can be chosen arbitrarily without the
need to solve the control system (1).

To ensure that both the data and the differential equation
are approximated sufficiently well, we minimize the DNN
with respect to the combined loss function.

L(ω) = Ldata(ω) + Lphys(ω).

In practical applications, it may be important to introduce
a weighting of the two components of the loss function. For
notational convenience, we assume that such a scaling is

already implicitly encoded in F̂ .

3.3 PINN-based MPC

In principle, we could implement the PINN approach as
presented in the previous section. Nevertheless, the specific
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Fig. 4. On the left PINN in self-loop prediction and on the right PINN-based MPC connected to a system.

control application results in two major challenges: First,
to obtain accurate approximations, we have to sample the
infinite-dimensional input space L∞(T,U). Second, while
the PINN approximation is inherently smooth, the solution
of the control problem (1) is typically not differentiable
with respect to time. Although the universal approximation
theorem guarantees arbitrarily accurate approximations of
continuous functions, this normally comes with the cost of
a large number of neurons.

To remedy these issues within the NMPC framework,
we make the following observation: If f is sufficiently
smooth and the zero-hold assumption is applied, then
also x|(kτ,(k+1)τ) is smooth. Moreover, within the interval
(kτ, (k+1)τ), the zero-hold assumption reduces the infinite-
dimensional input space to the finite-dimension set U ⊆ Rm.
We immediately arrive at the following strategy. Given an
initial value xk and values uk for the control, train a
PINN that is able to predict xk+1. Note that in order to
exploit the underlying dynamics in the training process,
we additionally need an explicit dependency on the time
variable. We conclude that the zero-hold assumption allows
us to reduce the sampling space from T × X × L∞(T,U)
to [0, τ ]×X × U , thus rendering the learning task feasible.

Two remarks are in order: First, the initial value is included
in the sampling space, thus deviating from the original
PINN approach presented by Raissi et al. (2019), where
the networks are trained for a fixed initial value. We
emphasize that this is not due to our particular approach
but inherent to the MPC framework. Second, the PINN
is not restricted to predictions over the interval [0, τ ].
To compute predictions for t > τ , we simply take the
PINN approximation φ̂(τ,x0,u0) at time t = τ as new
initial value for the time interval [τ, 2τ ] and repeat this
process iteratively. This approach, which is referred to
as self-loop prediction (cf. Antonelo et al. (2021)), is
illustrated in Fig. 4a. The corresponding MPC scheme
where the nonlinear dynamics are replaced with the PINN
approximation is presented in Fig. 4b.

4. RESULTS

We test our methodology introduced in section 3 with the
multi-link manipulator robot model discussed in section 2.
Since our main focus is to show that the evaluation of
the PINN is faster than solving the dynamics, we do not
use MPC frameworks like CasADi 1 , instead everything
is implemented in TensorFlow 2 . The network topology,

1 https://web.casadi.org
2 https://www.tensorflow.org

including all relevant hyperparameters, is discussed in
section 4.1. To ensure that the PINN approximation
is sufficiently accurate, we first present in section 4.2
the prediction for a given input sequence. There the
PINN operates in self-loop prediction mode as described
in section 3.3. The tracking problem for the multi-link
manipulator is then solved via the PINN-based MPC
in closed-loop (cf. section 4.3). In the following, we use

the symbols α̂, β̂, αMPC, and βMPC to denote the PINN
predictions for the angles α and β from Fig. 1, and the
resulting angles from the MPC scheme, respectively.

The code and data used to generate the subsequent
results are accessible under MIT Common License via

doi:10.5281/zenodo.5520661.

All simulations are performed on an Apple M1 chip.

4.1 Network topology and training

Our network consists of 4 layers, each hidden layer is
activated by the hyperbolic tangent and contains 64
neurons. For the data-based loss function Ldata, we use
Ndata = 100 data points, which only contain a subset
of possible initial values, thus not a single solution of the
nonlinear system (1) is required, see also Raissi et al. (2019).

Our numerical experiments have shown that it is reasonable
to train the network for a slightly larger sampling period
than it will be evaluated later on, i.e., we train the network
for the time interval [0, τ̃ ] with τ̃ := 0.25 s > 0.2 s =: τ ,
and use

X = [−π, π]2 × [−2.5, 2.5]2, U = [−0.5, 0.5]2.

For the physics-informed loss function Lphys, we sample
[0, τ̃ ]×X ×U ⊆ R7 with Mphys = 20000 collocation points,
generated via Latin Hypercube sampling (McKay et al.,
1979). All hyper parameter are chosen as a result of a
grid search. Let us emphasize that despite the small state
dimension (n = 4), we have to sample a 7-dimensional
space, rendering this a challenging problem from an
approximation perspective.

The network training, i.e., the minimization of the loss
function, is performed via L-BFGS, a quasi-Newton, full-
batch gradient-based optimization algorithm (Liu and
Nocedal, 1989) with 800000 iterations (referred to as epochs
in the literature). To accelerate the training, we choose to
replace the data and collocation points with new generated
ones, after the first 400000 epochs.
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control application results in two major challenges: First,
to obtain accurate approximations, we have to sample the
infinite-dimensional input space L∞(T,U). Second, while
the PINN approximation is inherently smooth, the solution
of the control problem (1) is typically not differentiable
with respect to time. Although the universal approximation
theorem guarantees arbitrarily accurate approximations of
continuous functions, this normally comes with the cost of
a large number of neurons.

To remedy these issues within the NMPC framework,
we make the following observation: If f is sufficiently
smooth and the zero-hold assumption is applied, then
also x|(kτ,(k+1)τ) is smooth. Moreover, within the interval
(kτ, (k+1)τ), the zero-hold assumption reduces the infinite-
dimensional input space to the finite-dimension set U ⊆ Rm.
We immediately arrive at the following strategy. Given an
initial value xk and values uk for the control, train a
PINN that is able to predict xk+1. Note that in order to
exploit the underlying dynamics in the training process,
we additionally need an explicit dependency on the time
variable. We conclude that the zero-hold assumption allows
us to reduce the sampling space from T × X × L∞(T,U)
to [0, τ ]×X × U , thus rendering the learning task feasible.

Two remarks are in order: First, the initial value is included
in the sampling space, thus deviating from the original
PINN approach presented by Raissi et al. (2019), where
the networks are trained for a fixed initial value. We
emphasize that this is not due to our particular approach
but inherent to the MPC framework. Second, the PINN
is not restricted to predictions over the interval [0, τ ].
To compute predictions for t > τ , we simply take the
PINN approximation φ̂(τ,x0,u0) at time t = τ as new
initial value for the time interval [τ, 2τ ] and repeat this
process iteratively. This approach, which is referred to
as self-loop prediction (cf. Antonelo et al. (2021)), is
illustrated in Fig. 4a. The corresponding MPC scheme
where the nonlinear dynamics are replaced with the PINN
approximation is presented in Fig. 4b.

4. RESULTS

We test our methodology introduced in section 3 with the
multi-link manipulator robot model discussed in section 2.
Since our main focus is to show that the evaluation of
the PINN is faster than solving the dynamics, we do not
use MPC frameworks like CasADi 1 , instead everything
is implemented in TensorFlow 2 . The network topology,

1 https://web.casadi.org
2 https://www.tensorflow.org

including all relevant hyperparameters, is discussed in
section 4.1. To ensure that the PINN approximation
is sufficiently accurate, we first present in section 4.2
the prediction for a given input sequence. There the
PINN operates in self-loop prediction mode as described
in section 3.3. The tracking problem for the multi-link
manipulator is then solved via the PINN-based MPC
in closed-loop (cf. section 4.3). In the following, we use

the symbols α̂, β̂, αMPC, and βMPC to denote the PINN
predictions for the angles α and β from Fig. 1, and the
resulting angles from the MPC scheme, respectively.

The code and data used to generate the subsequent
results are accessible under MIT Common License via

doi:10.5281/zenodo.5520661.

All simulations are performed on an Apple M1 chip.

4.1 Network topology and training

Our network consists of 4 layers, each hidden layer is
activated by the hyperbolic tangent and contains 64
neurons. For the data-based loss function Ldata, we use
Ndata = 100 data points, which only contain a subset
of possible initial values, thus not a single solution of the
nonlinear system (1) is required, see also Raissi et al. (2019).

Our numerical experiments have shown that it is reasonable
to train the network for a slightly larger sampling period
than it will be evaluated later on, i.e., we train the network
for the time interval [0, τ̃ ] with τ̃ := 0.25 s > 0.2 s =: τ ,
and use

X = [−π, π]2 × [−2.5, 2.5]2, U = [−0.5, 0.5]2.

For the physics-informed loss function Lphys, we sample
[0, τ̃ ]×X ×U ⊆ R7 with Mphys = 20000 collocation points,
generated via Latin Hypercube sampling (McKay et al.,
1979). All hyper parameter are chosen as a result of a
grid search. Let us emphasize that despite the small state
dimension (n = 4), we have to sample a 7-dimensional
space, rendering this a challenging problem from an
approximation perspective.

The network training, i.e., the minimization of the loss
function, is performed via L-BFGS, a quasi-Newton, full-
batch gradient-based optimization algorithm (Liu and
Nocedal, 1989) with 800000 iterations (referred to as epochs
in the literature). To accelerate the training, we choose to
replace the data and collocation points with new generated
ones, after the first 400000 epochs.
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Fig. 6. Open-loop simulation result from PINN operated
in self-loop prediction mode.

4.2 PINN in self-loop prediction

To ensure a sufficiently good prediction capability of the
PINN approximation, we first run the PINN in self-loop
mode (cf. Fig. 4a) with the testing input sequence presented
in Fig. 5. The sampling period is set to τ = 0.2 s, thus this
experiment results in 20 loop iterations. The corresponding
open-loop prediction is presented in Fig. 6. We observe
that the discrepancy between the PINN prediction and the
nominal dynamics is relatively small for t ≤ 2 s. For t ≥ 2 s,
the accumulation of the approximation errors due to the
self-loop mode is noticeable and increases further over time.
In the MPC context, the solution of the optimal control
problem is robust regarding to this error accumulation for
larger time horizons (cf. Schaller (2021)), such that we
expect the PINN approximation quality for the dynamics
is sufficient within the MPC framework.

4.3 PINN in closed-loop

We now apply the PINN-based MPC discussed in section 3.3
to a tracking problem for the multi-link manipulator
(cf. section 2). For this purpose, we use the testing
trajectory shown in Fig. 7 and its corresponding reference
states xref , taken from Fehr et al. (2020). The specifics
of the trajectory are (i) inclusion of obstacle avoidance
and (ii) motion reversal to investigate the strong friction
phenomena –caused by the harmonic drive gears –on the
control performance.

The plant system is simulated by the Runge–Kutta–Fehlberg
method (RK45), the MPC sampling period is set to
τ = 0.2 s and a horizon width of H = 5 is used. These
parameters are taken from Fehr et al. (2020). The MPC

Ref
MPC

Fig. 7. Reference trajectory and resulting PINN-based MPC
trajectory for the tracking problem of the mulit-link
manipulator displayed at time t = 8 s.
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Fig. 8. Solution of the PINN-based MPC for the tracking
problem of the multi-link manipulator.
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Fig. 9. Absolute error over time of the solution of PINN-
based MPC for the tracking problem of the multi-link
manipulator.

cost function (5) is parameterized by the diagonal matrices
Q and R. We chose the matrices as

Q :=

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
, R :=

[
1·10−6 0

0 1·10−6

]
,

which means we only control the positions of the angles.

Figs. 8 and 9 illustrate that the NMPC scheme with
PINN approximation for the nonlinear dynamics follows the
reference trajectory closely with a mean absolute error of
7.53 · 10−3 rad and 2.56 · 10−2 rad for α and β, respectively.
The computed control input is presented in Fig. 10. The
solution of the NMPC problem is computed in average in
3.65 · 10−2 s, which is clearly below the sampling period.
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Fig. 10. PINN-based MPC optimal u.

Let us emphasize that already the computation of xk+1

from xk is more expensive with a classical time-integration
scheme such as RK45 or the explicit Euler method, than
with the PINN approximation, see Table 1.

Table 1. Execution times for different Runge-
Kutta methods compared with the PINN, with
τ = 0.2 s and h = 0.02 s for Euler and RK4.

PINN Euler RK4 RK45

Mean (s) 4.14e-04 5.93e-04 2.35e-03 8.62e-03
Median (s) 4.12e-04 5.90e-04 2.34e-03 1.77e-03

The main reason for the numerical integrators’ performance
is that these methods cannot use the sampling period as
time-step, but need a smaller step-size h. For instance, the
explicit Euler method is unstable for this system with step-
size h = τ . Instead, we use h = 0.02 s for the explicit Euler
method, which in turn results in a slower execution time.
Two additional remarks are in order: First, the evaluation
of the PINN is implemented in TensorFlow. If the network
with final weights is directly implemented using state-of-the-
art BLAS libraries, one can observe an additional speedup
of at least one order of magnitude. Second, the computation
of the gradient of the nonlinear dynamics concerning the
control can be performed in parallel to the evaluation of
the PINN (in contrast to adjoint-based methods), giving
an additional speedup within the NMPC framework.

5. CONCLUSION

We studied the applicability of a physics-informed ma-
chine learning approach, namely physics-informed neural
networks (PINNs) (Raissi et al., 2019), in the context of
nonlinear model predictive control (NMPC) for a multi-link
robot manipulator. Following ideas presented by Antonelo
et al. (2021), we discussed how PINNs could be used to
replace the nonlinear dynamics with an efficient-to-evaluate
surrogate model. Due to automatic differentiation, the
PINN approximation offers, in addition, a cheap and easy-
to-implement computation of the partial derivative of the
state with respect to the control input, thus paving the way
for gradient-descent methods to solve the NMPC problem
without the need of further acceleration strategies. In our
numerical example for a tracking problem for a multi-
link manipulator, we have shown that the PINN-based
approximation of the nonlinear dynamics outperforms
classical time-integrators in terms of computational time
while at the same time being accurate enough to solve the
tracking problem.

REFERENCES

Antonelo, E.A., Camponogara, E., Seman, L.O., de Souza,
E.R., Jordanou, J.P., and Hubner, J.F. (2021). Physics-
informed neural nets-based control. arXiv preprint
arXiv:2104.02556.

Arnold, F. and King, R. (2021). State–space modeling
for control based on physics-informed neural networks.
Engineering Applications of Artificial Intelligence, 101,
104195. doi:10.1016/j.engappai.2021.104195.

Chen, R.T.Q., Rubanova, Y., Bettencourt, J., and Duve-
naud, D. (2019). Neural ordinary differential equations.
arXiv preprint arXiv:1806.07366.

Fehr, J., Kargl, A., and Eschmann, H. (2022). Identification
of friction models for mpc-based control of a powercube
serial robot. arXiv preprint arXiv:2203.10896.

Fehr, J., Schmid, P., Schneider, G., and Eberhard, P. (2020).
Modeling, simulation, and vision-/MPC-based control
of a PowerCube serial robot. Applied Sciences, 10(20),
7270. doi:10.3390/app10207270.
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