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A B S T R A C T

Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active
research fields. In this paper, we provide a novel differential geometric framework for model reduction on
smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is
the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for
which we discuss several options. Our general framework allows capturing and generalizing several existing
MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear
projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be
used to derive shared theoretical properties for different methods, such as an exact reproduction result. To
connect our framework to existing work in the field, we demonstrate that various techniques for data-driven
construction of nonlinear projections can be included in our framework.

1. Introduction

To remedy the computational cost associated with repeated solutions of high-dimensional differential equations, model order reduction (𝖬𝖮𝖱)
has become an established tool over the last three decades. For an overview of 𝖬𝖮𝖱 we refer to [1–5]. The essential idea of 𝖬𝖮𝖱 approaches can
be summarized as follows: Given a high-dimensional initial value problem, which we refer to as the full-order model (𝖥𝖮𝖬), find a low-dimensional
surrogate system, referred to as the reduced-order model (𝖱𝖮𝖬), which is computationally efficient to evaluate. A computationally efficient surrogate
model can be interesting in various contexts; for instance (i) if the 𝖥𝖮𝖬 has to be evaluated for many different parameters (e.g., for parameter
studies, sampling-based uncertainty quantification, optimization, or inverse problems), (ii) if the 𝖥𝖮𝖬 has to be evaluated in realtime (e.g., for
model-based control), or (iii) if the computational resources are too little to run the 𝖥𝖮𝖬 (e.g., on embedded devices). To achieve this goal,
classical linear-subspace 𝖬𝖮𝖱 strives to identify a problem-specific low-dimensional linear subspace such that the state of the initial value problem
approximately evolves within this subspace. While this is possible in many applications, the existence of a low-dimensional subspace with good
approximation properties cannot always be guaranteed. Mathematically, this can be analyzed by studying the Kolmogorov 𝑛-widths [6,7] (or
equivalently, as shown in [8], the Hankel singular values), associated with the set of all solutions (see the forthcoming Section 3 for the precise
definition). For wave-like phenomena in solutions as observed in transport-problems (e.g., the wave-equation or advection-equation) it is now
well-understood that the 𝑛-widths decay slowly for certain initial conditions [9,10], thus requiring a large dimension of the 𝖱𝖮𝖬 for a good
approximation. To resolve this problem, different paths are pursued in the literature, most of which try to replace the linear-subspace assumption
with a nonlinear ansatz. We refer to [11, Cha. 1.3.1] for an overview. In more detail, we assume to be given an initial value problem (the 𝖥𝖮𝖬) of
the form

d
d𝑡𝒙(𝑡;𝜇) = 𝒇 (𝑡,𝒙(𝑡;𝜇);𝜇), 𝒙(𝑡0;𝜇) = 𝒙0(𝜇) ∈ R𝑁 , (1.1)
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with time interval  ∶= (𝑡0, 𝑡f), 𝑡0 < 𝑡f < ∞ parameter set  ⊆ R𝑝, corresponding parameter 𝜇 ∈  , and right-hand side 𝒇 ∶ ×R𝑁 × → R𝑁 , which
e want to solve for the unknown state 𝒙∶ ×  → R𝑁 . Roughly speaking, the idea of 𝖬𝖮𝖱 is to construct a projection 𝝋◦𝝔 using two mappings

𝝔∶R𝑁 → R𝑛 and 𝝋∶R𝑛 → R𝑁 with 𝑛 ≪ 𝑁 and to then derive a low-dimensional surrogate model of the 𝖥𝖮𝖬 with these mappings. In classical
linear-subspace 𝖬𝖮𝖱, the mappings 𝝔 and 𝝋 are linear, i.e., 𝝔(𝒙) = 𝑾 ⊤𝒙 and 𝝋(𝒙̌) = 𝑽 𝒙̌ with matrices 𝑾 ,𝑽 ∈ R𝑁×𝑛 satisfying 𝑾 ⊤𝑽 = 𝑰𝑛. The
ssociated 𝖱𝖮𝖬 is given by

d
d𝑡 𝒙̌(𝑡;𝜇) = 𝑾 ⊤𝒇 (𝑡,𝑽 𝒙̌(𝑡;𝜇);𝜇), 𝒙̌(𝑡0;𝜇) = 𝑾 ⊤𝒙0(𝜇) ∈ R𝑛, (1.2)

hich we solve for the reduced state 𝒙̌∶ × → R𝑛. In contrast, we allow for nonlinear mappings in this manuscript, which motivates us to study
the 𝖥𝖮𝖬 (1.1) as a differential equation on a manifold.

1.1. Main contributions

In the present paper, we introduce a differential geometric framework for 𝖬𝖮𝖱 as a unifying framework that contains classical linear-subspace
approaches, nonlinear projection frameworks (including machine learning approaches such as autoencoders), and structure-preserving 𝖬𝖮𝖱. Our
main contributions are:

(i) We provide a general differential geometric framework for 𝖬𝖮𝖱 on manifolds in Section 3.1. Although the geometric elements we introduce
in Section 2 are, of course, not novel, to the best of our knowledge, there is no framework unifying this for 𝖬𝖮𝖱. Moreover, we inspect
recent approaches of 𝖬𝖮𝖱 on manifolds and show that these fit into this framework (⊳Table 3).

(ii) On top of the general framework for 𝖬𝖮𝖱 on manifolds, we introduce the manifold Petrov–Galerkin (𝖬𝖯𝖦, ⊳ Section 3.3) and generalized
manifold Galerkin (𝖦𝖬𝖦, ⊳ Section 5.1) reduction, which generalize the 𝖬𝖮𝖱 techniques from [12–14]. Moreover, the 𝖦𝖬𝖦 reduction forms
the basis for novel structure-preserving variants on manifolds for

(a) Lagrangian systems (⊳ Section 5.2), which we denote by Lagrangian manifold Galerkin (𝖫𝖬𝖦), thus extending the linear-subspace model
reduction methods in [15,16], and

(b) Hamiltonian systems (⊳ Section 5.3), which we denote by symplectic manifold Galerkin (𝖲𝖬𝖦), extending the 𝖬𝖮𝖱 method in [17].

(iii) For the respective 𝖬𝖮𝖱 methods, we give an overview of techniques existing in the literature to construct the nonlinear mappings 𝝔 and 𝝋
in a data-driven fashion in Section 6.

Moreover, we provide an exact reproduction result for 𝖬𝖮𝖱 on manifolds (⊳Theorem 3.5) and discuss a relaxation of the point projection
property (3.4a) for autoencoders in Theorem 6.4.

We emphasize that we start with the differential geometric perspective already at the level of the 𝖥𝖮𝖬. The main reasons for this choice are
that starting directly with a differential equation on a manifold (i) highlights the different geometric objects that appear, (ii) sets a clear path
for structure preservation for MOR on manifolds, and (iii) has applications in systems involving rigid body motions and multibody systems (see,
e.g., [18, Sec. 1]), flexible multibody systems based on Lie groups (see, e.g., [19]), and, in general, index-0 differential–algebraic equations can be
recast as differential equations on manifolds, where the manifold is defined via the algebraic equation (see, e.g., [20, Sec. 4.5]). Moreover, note
that we focus on a general framework and not on an efficient-to-evaluate surrogate model, which calls upon efficient numerical implementations
or additional approximation steps commonly referred to as hyper-reduction.

1.2. State-of-the-art

In the following we provide an overview of the various aspects of 𝖬𝖮𝖱 that fit into this geometric framework.

1.2.1. MOR and manifolds
Using (smooth) manifolds in the 𝖬𝖮𝖱 community is a concept that has been introduced previously. For parametric linear models, interpolation

of the linear subspaces or the reduced system matrices on certain manifolds is discussed, for instance, in [21–24] and has recently been extended to
a non-intrusive setting in [25]. To reduce a high-dimensional parameter space during the training phase, the concept of active manifolds [26] was
developed as a generalization of the so-called active subspace [27], which can be interpreted as the dual concept of the Kolmogorov 𝑛-widths [8].
A reduction formulation especially popular in quantum mechanics is the Dirac–Frenkel formalism [28, Sec. 2] based on [29,30]. Moreover, lifting
techniques may be used to obtain a nonlinear projection of the original system, e.g., [31,32] or for a non-intrusive setting [33].

1.2.2. Nonlinear mappings and transport MOR
If a (localized) quantity is transported through the spatial domain of a 𝖯𝖣𝖤 over time, such as a shock wave, then it is often not possible

to construct a low-dimensional linear subspace that well-approximates the solution since the Kolmogorov 𝑛-widths do not decay exponentially.
Examples studied in the literature are, for instance, the advection equation [34,35], the wave equation [10], Burgers’ equation [9], a pulsed
detonation combustor [36], a wildland fire model [37], and a rotating detonation engine [38].

Several nonlinear approaches have been presented to overcome the slowly decaying Kolmogorov 𝑛-widths, many revolving around the symmetry
reduction framework [39–42]. We mention here exemplarily the shifted proper orthogonal decomposition [43–45], the Lagrangian reference frame
method [46,47], a registration method [48,49], and front transport reduction [50]. The central idea underlying these methods is to either first
transform the state with a suitable transformation such that the resulting transformed 𝖥𝖮𝖬 is easy to approximate or to encode this transformation
directly in the 𝖬𝖮𝖱 ansatz space.

While the previous approaches are all inspired by the underlying physics of the problem at hand by exploiting the symmetries inherent to
the initial value problem, the approaches can be generalized by considering arbitrary nonlinear mappings, for instance, obtained via machine
learning paradigms. The natural method for dimensionality reduction is a (shallow) autoencoder [12,13,51–53]. In particular, the work [13] uses
terminology from differential geometry and has inspired our work to a large extent. Another parameterization of the nonlinear mappings that are
currently investigated is given by polynomials; see, for instance, [54–58].
2
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Table 1
Formulation of a dynamical system in the time interval on a vector space (left) in comparison to a differential geometric formulation
(right).

Dynamical system on a vector space Dynamical system on a manifold

R𝑁 𝑁-dim. vector space  𝑁-dim. smooth manifold
𝑇𝑚, 𝑇 Tangent space, tangent bundle

𝒇 ∶R𝑁 → R𝑁 Right-hand side 𝑋 ∶ → 𝑇 Vector field
𝒙∶ → R𝑁 Solution curve 𝛾 ∶ →  Solution curve
d
d𝑡
𝒙(𝑡) ∈ R𝑁 Time-derivative d

d𝑡
𝛾||
|𝑡
∈ 𝑇𝛾(𝑡) Velocity

{ d
d𝑡
𝒙(𝑡) = 𝒇 (𝒙(𝑡)) ∈ R𝑁

𝒙(𝑡0) = 𝒙0 ∈ R𝑁

⎧

⎪

⎨

⎪

⎩

d
d𝑡
𝛾||
|𝑡
= 𝑋|𝛾(𝑡) ∈ 𝑇𝛾(𝑡)

𝛾
(

𝑡0
)

= 𝛾0 ∈ 

1.2.3. Structure-preserving MOR for Lagrangian and Hamiltonian systems
Classical linear-subspace 𝖬𝖮𝖱 for Lagrangian systems is discussed in [15,16]. Notably, the authors of [15] already mention that the same

ethods can be used with nonlinear embeddings 𝝋, albeit without explicitly formulating the required differential geometric objects. Moreover,
e show how a reduced Lagrangian system can be interpreted as a projection of the Euler–Lagrangian vector field using the 𝖦𝖬𝖦 reduction
⊳Theorem 5.7).

Structure-preserving 𝖬𝖮𝖱 for Hamiltonian systems is discussed in [59–62] using linear subspaces and in [17,58] for manifolds (in coordinates)
nd in [63, Sec. VII.2.3]. A Hamiltonian-preserving Neural Galerkin scheme is presented in [64]. Moreover, some of the ideas for structure-
reserving 𝖬𝖮𝖱 for port-Hamiltonian systems [65], a generalization of Hamiltonian systems to open systems, can be used for structure-preserving
𝖮𝖱 for Hamiltonian systems. We refer to [66, Rem. 8.2] for an overview.

Besides classical 𝖬𝖮𝖱 schemes that rely on a given large-scale dynamical system, non-intrusive methods aim to learn a potentially low-
imensional representation from system measurements directly. In the context of learning Hamiltonian systems, we exemplarily mention [67–70].
earning Lagrangian systems has been addressed, e.g., in [71–74].

.3. Structure of the paper

To render the manuscript self-contained, we start our exposition by reviewing all necessary concepts from differential geometry (⊳ Section 2).
eaders familiar with these concepts might skip this section and directly start with Section 3, where we introduce our general 𝖬𝖮𝖱 framework for

initial value problems on manifolds. Additional structure preservation is detailed in Section 5, which is based on additional geometrical structures
(⊳ Section 4). A discussion on specific data-driven construction approaches for the required nonlinear mappings is presented in Section 6 and
followed by conclusions (⊳ Section 7).

1.4. Notation

We use the index notation, which differentiates between upper indices 𝑣𝑖 and lower indices 𝜆𝑖. Let us emphasize that indices that concern the
index notation are underlined. The position of the index indicates the type of the geometric object. Moreover, we utilize the Einstein summation
convention, which implies the summation over an index if the index appears twice (once as a lower index and once as an upper index). For an
𝑁-dimensional vector space  , this notation is used to abbreviate (i) the linear combination of a basis {𝐸𝑖}𝑁𝑖=1 ⊆  with coefficients {𝑣𝑖}𝑁𝑖=1 ⊆ R,
ii) the linear combination of a dual basis {𝐹 𝑖}𝑁𝑖=1 ⊆ ∗ with coefficients {𝜆𝑖}𝑁𝑖=1 ⊆ R, or (iii) the dual product of the respective coefficients,

(i) 𝑣𝑖𝐸𝑖 ∶=
𝑁
∑

𝑖=1
𝑣𝑖𝐸𝑖 ∈  , (ii) 𝜆𝑖𝐹

𝑖 ∶=
𝑁
∑

𝑖=1
𝜆𝑖𝐹

𝑖 ∈ ∗, (iii) 𝑣𝑖 𝜆𝑖 ∶=
𝑁
∑

𝑖=1
𝑣𝑖 𝜆𝑖 ∈ R. (1.3)

Moreover, we use
[

𝑣𝑖
]

1≤𝑖≤𝑁 ∈ R𝑁 to stack scalars 𝑣𝑖 ∈ R as a vector in R𝑁 . Further notation is introduced in Section 2.7.

2. A primer on differential geometry

We start this work by recalling several important definitions and results from the theory of smooth manifolds to render this manuscript self-
contained. Our presentation is largely based on the monograph [75]. In particular, all material within this section that is not explicitly referenced
is adopted from [75].

To motivate the forthcoming definitions, we briefly discuss the tools required

(i) to formulate a differential equation on a manifold and
(ii) to define the submanifold and mappings needed

to perform model reduction on manifolds. For the differential geometric formulation of the 𝖥𝖮𝖬, we introduce the structure of a smooth manifold
(⊳ Section 2.1). Then, having the needed structure at hand, we continue to define continuously differentiable functions on smooth manifolds
⊳ Section 2.2). Subsequently, we introduce the tangent space at a point on the manifold (⊳ Section 2.3) to be able to formulate the differential
f a function (⊳ Section 2.4), which is used to generalize the time-derivative of the state to the manifold setting. In order to describe the evolution
f an initial value problem, we set the right-hand side to be a vector field (⊳ Section 2.5). With these preparations, a differential equation on a

manifold can be formulated (⊳ Section 2.6). We refer to Table 1 for a comparison of a dynamical system on a vector space and on a smooth
manifold. Furthermore, for the model reduction framework, we discuss embedded submanifolds (⊳ Section 2.8).
3
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2.1. Chart and smooth manifold

Let  be a topological manifold of dimension 𝑁 (⊳Appendix A.1). A chart is a tuple (𝑈, 𝑥) where the chart domain 𝑈 ⊆  is an open set and
he chart mapping 𝑥∶𝑈 → 𝑥 (𝑈 ) ⊆ R𝑁 is a homeomorphism (i.e., it is bijective (and thus its inverse 𝑥−1 ∶ 𝑥 (𝑈 ) → 𝑈 exists), and both 𝑥 and 𝑥−1 are
ontinuous). For two charts (𝑈, 𝑥) and (𝑉 , 𝑦) with 𝑈 ∩ 𝑉 ≠ ∅, we can define the transition mappings

𝑥◦𝑦−1 ∶ 𝑦 (𝑈 ∩ 𝑉 ) → 𝑥 (𝑈 ∩ 𝑉 ) and 𝑦◦𝑥−1 ∶ 𝑥 (𝑈 ∩ 𝑉 ) → 𝑦 (𝑈 ∩ 𝑉 ) ,

which are homeomorphisms as composition of homeomorphisms (⊳ Fig. 3). The charts (𝑈, 𝑥) and (𝑉 , 𝑦) are called 𝑘-compatible for 𝑘 ∈ N or 𝑘 = ∞
f either 𝑈 ∩ 𝑉 = ∅ or

𝑥◦𝑦−1 ∈ 𝑘(𝑦 (𝑈 ∩ 𝑉 ) , 𝑥 (𝑈 ∩ 𝑉 )) and 𝑦◦𝑥−1 ∈ 𝑘(𝑥 (𝑈 ∩ 𝑉 ) , 𝑦 (𝑈 ∩ 𝑉 )),

where differentiability is defined in the classical sense since 𝑥 (𝑈 ∩ 𝑉 ) , 𝑦 (𝑈 ∩ 𝑉 ) ⊆ R𝑁 . A collection of charts  = {(𝑈𝑖, 𝑥𝑖) ∣ 𝑖 ∈ 𝐼} with some index
set 𝐼 is called an atlas for  if  =

⋃

𝑖∈𝐼 𝑈𝑖. The atlas is called of class 𝑘 (or a 𝑘-atlas) if all charts in  are mutually 𝑘-compatible. We call a
𝑘-atlas  maximal if all charts that are 𝑘-compatible with any chart in  are already elements of . If  is a maximal 𝑘-atlas for , then the
tuple (,) is called a 𝑘-manifold and, in particular, a smooth manifold if 𝑘 = ∞. As common in the literature, we omit the explicit mentioning
of the maximal atlas whenever possible and say that  is a 𝑘-manifold, implicitly assuming a maximal 𝑘-atlas to be available.

.2. Diffeomorphism and partial derivative

Assume now that we have smooth manifolds  and  of dimension 𝑁 and 𝑄. A mapping 𝐹 ∶ →  is called of class 𝑘, or in short notation
∈ 𝑘(,), if for every 𝑚 ∈ , there exist charts (𝑈, 𝑥) containing 𝑚 and (𝑉 , 𝑦) containing 𝐹 (𝑚) such that 𝑦◦𝐹◦𝑥−1 ∈ 𝑘(𝑥 (𝑈 ) , 𝑦 (𝑉 )) in the

classical sense since 𝑥 (𝑈 ) ⊆ R𝑁 and 𝑦 (𝑉 ) ⊆ R𝑄. Note that due to the 𝑘-compatibility of the charts, this definition of differentiability does not
depend on the choice of the chart. Throughout the document, a smooth mapping is synonymous with mappings of the class ∞. We restrict ourselves
in this work to smooth manifolds and smooth mappings to simplify the presentation. A smooth bijective map 𝐹 ∈ ∞(,) which has a smooth
inverse is called a smooth diffeomorphism (from  to ).

For calculations, we formulate the derivative in the index notation (⊳ Section 1.4). In more detail, we denote for 1 ≤ 𝑖 ≤ 𝑄 the 𝑖th component
function of the chart mapping as 𝑥𝑖 ∶𝑈 → R and the 𝑖th component function (of 𝐹 ) with 𝐹 𝑖 ∶= 𝑦𝑖◦𝐹 ∶𝑈 → R. Then, the 𝑖th partial derivative of the 𝑗th
omponent of 𝐹 ∈ 1(,) at 𝑚 ∈  (in (𝑈, 𝑥) and (𝑉 , 𝑦)) is defined by

𝜕𝐹 𝑗

𝜕𝑥𝑖
|

|

|

|𝑚
∶=

(

𝜕𝑖(𝐹
𝑗◦𝑥−1)

)

(𝑥 (𝑚)) for 1 ≤ 𝑖 ≤ 𝑁, (2.1)

where 𝜕𝑖(⋅) describes the 𝑖th partial derivative of functions mapping between Euclidean vector spaces. For scalar-valued functions 𝑓 ∈ 1(,R),
we omit the index, i.e., 𝑓 1 ≡ 𝑓 and thus 𝜕𝑓1

𝜕𝑥𝑖
|

|

|

|𝑚
= 𝜕𝑓

𝜕𝑥𝑖
|

|

|𝑚
. For the derivative of the chart mapping, we obtain

𝑥 ∈ ∞(,R𝑁 ) with 𝜕𝑥𝑗

𝜕𝑥𝑖
|

|

|

|𝑚
= 𝜕𝑖(𝑥

𝑗◦𝑥−1) (𝑥 (𝑚)) = 𝛿
𝑗
𝑖 ∶=

{

1, 𝑖 = 𝑗,
0, 𝑖 ≠ 𝑗,

(2.2)

ue to (𝑥𝑗◦𝑥−1) = (𝑥◦𝑥−1)𝑗 = (idR𝑁 )𝑗 . The function 𝛿
𝑗
𝑖 is known as the Kronecker delta.

2.3. Tangent and tangent space

Consider a smooth manifold  of dimension 𝑁 . The tangent space of  can be defined in multiple alternative ways (see, e.g., [76, Sec. 1.6]
for an overview). In the present work, we present the derivation approach and closely follow [77, Sec. 1.7]. For an arbitrary but fixed point 𝑚 ∈ ,
we consider the set

𝐹∞
𝑚 ∶= {𝑓 ∈ ∞(𝑈,R) ∣ 𝑈 ⊆  open with 𝑚 ∈ 𝑈}.

Then, a tangent at 𝑚 ∈  is a function on this set 𝑣∶ 𝐹∞
𝑚 → R which is (i) linear and (ii) fulfills the product rule, i.e., for every 𝑓, 𝑔 ∈ 𝐹∞

𝑚 and
𝑎, 𝑏 ∈ R, it holds1

(i) 𝑣 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝑣 (𝑓 ) + 𝑏𝑣 (𝑔) ∈ R, (ii) 𝑣 (𝑓 ⋅ 𝑔) = 𝑣 (𝑓 ) ⋅ 𝑔 (𝑚) + 𝑓 (𝑚) ⋅ 𝑣 (𝑔) ∈ R.

n a broader context, the properties (i) and (ii) define a derivation. The set of all tangents at 𝑚 ∈ 

𝑇𝑚 ∶= {𝑣∶𝐹∞
𝑚 → R ∣ 𝑣 is a tangent at 𝑚} (2.3)

efines the tangent space at 𝑚, which can be shown to be an 𝑁-dimensional vector space. Thus, we also refer to elements 𝑣 ∈ 𝑇𝑚 as tangent vectors
at 𝑚. The 𝑖th partial derivative (2.1) of a scalar-valued function 𝑓 ∈ 𝐹∞

𝑚 can be used to define elements in 𝑇𝑚,
𝜕
𝜕𝑥𝑖

|

|

|𝑚
∈ 𝑇𝑚 with 𝜕

𝜕𝑥𝑖
|

|

|𝑚
∶𝐹∞

𝑚 → R, 𝑓 ↦ 𝜕𝑓
𝜕𝑥𝑖

|

|

|𝑚
.

Moreover,
(

𝜕
𝜕𝑥1

|

|

|𝑚
,… , 𝜕

𝜕𝑥𝑁
|

|

|𝑚

)

is an ordered basis of 𝑇𝑚, and, thus, we can represent each tangent vector

𝑣 ∈ 𝑇𝑚 with 𝑣 = 𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑚
,

where we refer to 𝑣𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑁 , as the components (of 𝑣) and where we implicitly sum over 1 ≤ 𝑖 ≤ 𝑁 by the Einstein summation convention
1.3). Note that for this formalism to work, the index 𝑖 in the denominator of 𝜕

𝜕𝑥𝑖
|

|

|𝑚
counts as a lower index. In the case of a vector space  , the

tangent space 𝑇𝑚 can be identified with the vector space 𝑇𝑚 ≅  for all 𝑚 ∈  [75, p. 59], in particular 𝑇𝑚R𝑘 ≅ R𝑘 for 𝑘 ∈ N.

1 Note that for the sum/product of functions 𝑓 ∶ 𝑈𝑓 → R and 𝑔 ∶ 𝑈𝑔 → 𝑅 from 𝐹∞
𝑚 , the domain of the products/sums is shrinked to the intersection 𝑈𝑓 ∩ 𝑈𝑔 ,

which is still open and 𝑚 ∈ 𝑈 ∩ 𝑈 and thus (𝑓 + 𝑔), (𝑓 ⋅ 𝑔) ∈ 𝐹∞.
4
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2.4. Differential and chain rule

Consider smooth manifolds , , and  of dimension 𝑁 , 𝑄, and 𝐿 with charts (𝑈, 𝑥), (𝑉 , 𝑦), and (𝑊 , 𝑧) and a point 𝑚 ∈ 𝑈 . The differential of
a smooth map 𝐹 ∈ ∞(,) at 𝑚 is a linear map

d𝐹 |𝑚 ∶ 𝑇𝑚 → 𝑇𝐹 (𝑚), 𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑚
↦ 𝑣𝑖 𝜕𝐹 𝑗

𝜕𝑥𝑖
|

|

|

|𝑚

𝜕
𝜕𝑦𝑗

|

|

|

|𝐹 (𝑚)
, (2.4)

which maps between the respective tangent spaces using the 𝑖th partial derivative (2.1) of the 𝑗th component function 𝐹 𝑗 of 𝐹 , where we sum over
1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑄 by the Einstein summation convention (1.3). The chain rule is an important property of the differential: For two smooth
mappings 𝐹 ∈ ∞(,), 𝐺 ∈ ∞(,), it holds

d(𝐺◦𝐹 )|𝑚 = d𝐺|𝐹 (𝑚)◦d𝐹 |𝑚 ∶ 𝑇𝑚 → 𝑇(𝐺◦𝐹 )(𝑚). (2.5)

In respective charts (𝑈, 𝑥), (𝑉 , 𝑦), (𝑊 , 𝑧) with 𝑚 ∈ 𝑈 , 𝐹 (𝑚) ∈ 𝑉 and (𝐺◦𝐹 ) (𝑚) ∈ 𝑊 , the chain rule reads

𝜕(𝐺◦𝐹 )𝑖

𝜕𝑥𝑗
|

|

|𝑚
= 𝜕𝐺𝑖

𝜕𝑦𝑘
|

|

|

|𝐹 (𝑚)

𝜕𝐹 𝑘

𝜕𝑥𝑗
|

|

|

|𝑚
for all

{

1 ≤ 𝑗 ≤ 𝑁,
1 ≤ 𝑖 ≤ 𝐿,

where the right-hand side sums over 1 ≤ 𝑘 ≤ 𝑄 by the Einstein summation convention (1.3).

2.5. Tangent bundle and vector field

The tangent bundle is the disjoint union of all tangent spaces

𝑇 ∶= ̇⋃
𝑚∈

𝑇𝑚 ∶= {(𝑚, 𝑣) ||
|

𝑚 ∈ , 𝑣 ∈ 𝑇𝑚}, (2.6)

which bundles all points 𝑚 ∈  and corresponding tangent vectors 𝑣 ∈ 𝑇𝑚 in one set. The tangent bundle itself is a smooth manifold of dimension
2𝑁 . In the scope of the present work, we typically use (𝑚, 𝑣) ∈ 𝑇 to denote elements in 𝑇. Whenever we have a mapping into a tangent bundle,
then we use the notation (⋅)||

|𝑚
to denote the second part of the mapping. For a given smooth mapping 𝐹 ∈ ∞(,), the differential (on the tangent

bundle)

d𝐹 ∈ ∞(𝑇, 𝑇), (𝑚, 𝑣) ↦ (𝐹 (𝑚) , d𝐹 |𝑚(𝑣)) (2.7)

collects the differentials d𝐹 |𝑚 ∈ ∞(𝑇𝑚, 𝑇𝐹 (𝑚)) at 𝑚 for all points 𝑚 ∈ . For a given chart (𝑈, 𝑥) of , the differential of the chart mapping
d𝑥 ∈ ∞(𝑇𝑈, 𝑇R𝑁 ) defines a natural chart of 𝑇𝑈 by identifying 𝑇R𝑁 with R2𝑁 . It maps

d𝑥
((

𝑚, 𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑚

))

=
(

𝑥 (𝑚) ,
[

𝑣𝑖
]

1≤𝑖≤𝑁

)

∈ R2𝑁 (2.8)

since for a chart mapping2 𝑦 ∈ ∞(R𝑁 ,R𝑁 ) of R𝑁 , it holds with (2.2) and (2.4) that

d𝑥|𝑚
(

𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑚

)

= 𝑣𝑖 𝜕𝑥𝑗

𝜕𝑥𝑖
|

|

|

|𝑚

𝜕
𝜕𝑦𝑗

|

|

|

|𝑥(𝑚)
= 𝑣𝑖 𝛿

𝑗
𝑖

𝜕
𝜕𝑦𝑗

|

|

|

|𝑥(𝑚)
= 𝑣𝑖 𝜕

𝜕𝑦𝑖
|

|

|

|𝑥(𝑚)
∈ 𝑇𝑥(𝑚)R𝑁 ,

hich we identify with
[

𝑣𝑖
]

1≤𝑖≤𝑁 ∈ R𝑁 .
Since  and 𝑇 are both smooth manifolds, we are able to define smooth mappings from  to 𝑇 based on Section 2.2. A smooth vector field

is a mapping 𝑋 ∈ ∞(, 𝑇) with 𝜋◦𝑋 = id with 𝜋 ∶ 𝑇 → , (𝑚, 𝑣) ↦ 𝑚. It assigns each point 𝑚 ∈  an element 𝑋 (𝑚) ∶= (𝑚,𝑋|𝑚) ∈ 𝑇
n the tangent bundle, where we denote the vector field at 𝑚 ∈  with 𝑋|𝑚 ∈ 𝑇𝑚. The set of all smooth vector fields on  is denoted with X.

.6. Curve and initial value problem

For a given smooth manifold  and an interval  ∶= (𝑡0, 𝑡f) with 𝑡0 < 𝑡f < ∞, we call the mapping 𝛾 ∈ ∞(,) a smooth curve. We refer to
lements 𝑡 ∈  as time points. By custom, we use for the derivative w.r.t. time the notation d

d𝑡 (⋅). The velocity of a curve 𝛾 at 𝑡 ∈  is

d
d𝑡 𝛾

|

|

|𝑡
∶=

(

d
d𝑡 𝛾

𝑖|
|

|𝑡

)

𝜕
𝜕𝑥𝑖

|

|

|𝛾(𝑡)
∈ 𝑇𝛾(𝑡),

.e., an element in the tangent space based on the (classical) derivative of the component functions 𝛾 𝑖 ∶R ⊇  → R of the curve.3
For a smooth vector field 𝑋 ∈ X, we call 𝛾 ∈ ∞(,) an integral curve of 𝑋 with initial value 𝛾0 ∈ , if

{ d
d𝑡 𝛾

|

|

|𝑡
= 𝑋|𝛾(𝑡) ∈ 𝑇𝛾(𝑡), 𝑡 ∈ 

𝛾
(

𝑡0
)

= 𝛾0 ∈ .
(2.9)

We refer to (2.9) as an initial value problem (on ). For a given chart (𝑈, 𝑥), the system (2.9) can be solved via an 𝑁-dimensional initial value
problem on R𝑁

d
d𝑡 𝛾

𝑖|
|

|𝑡
=
(

𝑋|𝛾(𝑡)
)𝑖 ∈ R for 1 ≤ 𝑖 ≤ 𝑁, 𝛾 𝑖

(

𝑡0
)

= 𝑥𝑖
(

𝛾0
)

∈ R. (2.10)

2 This chart mapping may seem redundant as 𝑦 ≡ idR𝑁 . However, we use it to illustrate how 𝑇𝑥(𝑚)R𝑁 is identified with R𝑁 by using 𝑦 to denote the basis
vectors 𝜕

𝜕𝑦𝑗
|

|

|𝑥(𝑚)
∈ 𝑇𝑥(𝑚)R𝑁 .

3 Alternatively, the velocity of a curve can be understood in terms of the derivative introduced in Section 2.4 with d
d𝑡
𝛾||
|𝑡
= d𝛾|𝑡. In the presented notation, this

would require to understand  as a smooth manifold with the chart (, 𝑥 ), chart mapping 𝑥 ≡ id ∶ → R and the derivative d 𝛾 𝑖| = 𝜕𝛾 𝑖 | .
5
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Table 2
Bold notation for two smooth manifolds ,with charts (𝑈, 𝑥), (𝑉 , 𝑦), respectively.

Type Element Bold notation

Point 𝑚 ∈ 𝑈 ⊆  𝒎 ∶= 𝑥 (𝑚) ∈ R𝑁

Mapping 𝐹 ∈ ∞(𝑈, 𝑉 ) 𝑭 ∶= 𝑦 ◦ 𝐹 ◦ 𝑥−1 ∶ R𝑁 ⊇ 𝑥(𝑈 ) → 𝑦(𝑉 ) ⊆ R𝑄

Tangent vector 𝑣 = 𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑚
∈ 𝑇𝑚𝑈 𝒗 ∶=

[

𝑣𝑖
]

1≤𝑖≤𝑁 ∈ R𝑁

Jacobian matrixa d𝐹 |𝑚 ∈ ∞(𝑇𝑚𝑈, 𝑇𝐹 (𝑚)𝑉 ) 𝑫𝑭 |𝒎 ∶=
[

𝜕𝐹 𝑖

𝜕𝑥𝑗
|

|

|𝑚

]

1≤𝑖≤𝑄,
1≤𝑗≤𝑁

∈ R𝑄×𝑁

Dynamical system
⎧

⎪

⎨

⎪

⎩

d
d𝑡
𝛾||
|𝑡
= 𝑋|𝛾(𝑡) ∈ 𝑇𝛾(𝑡)𝑈,

𝛾(𝑡0) = 𝛾0 ∈ 

⎧

⎪

⎨

⎪

⎩

d
d𝑡
𝜸||
|𝑡
= 𝑿|𝜸(𝑡) ∈ R𝑁 ,

𝜸(𝑡0) = 𝜸0 ∈ R𝑁

a To be more precise, the Jacobian matrix is the coordinate matrix of the linear mapping described by the differential in coordinates
d𝑦|𝐹 (𝑚)◦d𝐹 |𝑚◦d𝑥|

−1
𝑚 ∶ R𝑁 → R𝑄. Moreover, we use in the last column of this row a notation for stacking scalars as matrices similarly to

stacking scalars as vectors from Section 1.4.

ue to the assumption of a smooth vector field, we know that there exists a unique integral curve by the fundamental theorem on flows [75,
hm. 9.12], if the final time 𝑡f is small enough. If we assume that there exists a time interval such that all integral curves exist for a set 𝑀0 ⊆ 

with the starting points 𝛾0 ∈ 𝑀0, the flow of 𝑋 can be defined as

𝜃𝑡 ∶𝑀0 → , 𝛾0 ↦ 𝛾
(

𝑡; 𝛾0
)

.

2.7. Bold notation

We introduce a notation that collects all previously introduced types of differential geometric objects (like points, functions, tangent vectors) in
a fixed chart and thereby reduces to computations in R-vector spaces. We refer to this notation as the bold notation.4 For a given smooth manifold
 with a chart (𝑈, 𝑥), we use

𝑥 ∈ ∞(𝑈,R𝑁 ), d𝑥|𝑚 ∈ ∞(𝑇𝑚𝑈,R𝑁 ) with 𝑚 ∈ 𝑈, d𝑥 ∈ ∞(𝑇𝑈,R2𝑁 )

to map the different types of objects accordingly, where we identify 𝑇𝑥(𝑚)R𝑁 with R𝑁 for d𝑥|𝑚 and 𝑇R𝑁 with R2𝑁 for d𝑥. Let us state clearly that
(i) this formulation loses geometrical information (as it treats different types of objects as a vector in R𝑁 ) and (ii) it only works for one fixed
chart (since the explicit dependence on the chart is neglected). However, this formulation can be helpful for readers new to the field of differential
geometry with more background in classical numerical analysis and engineering. The notation for the different types of differential geometric
objects for two smooth manifolds , with charts (𝑈, 𝑥), (𝑉 , 𝑦), respectively, are summarized in Table 2.

2.8. Embedding and embedded submanifold

Consider two smooth manifolds ̌ and  of dimension 𝑛 and 𝑁 , respectively. A smooth mapping 𝐹 ∈ ∞(̌,) is called an immersion
if the respective differential d𝐹 |𝑚̌ ∶ 𝑇𝑚̌̌ → 𝑇𝐹 (𝑚̌) is injective at each point 𝑚̌ ∈ ̌. Moreover, 𝐹 is called a smooth embedding if it is a
smooth immersion and a homeomorphism onto its image 𝐹 (̌) ⊆ . For a given smooth embedding 𝜑 ∈ ∞(̌,), the image 𝜑(̌) is an
𝑛-dimensional smooth manifold, which is called an embedded (or regular) submanifold of . We denote the tangent space of 𝜑(̌) at 𝜑 (𝑚̌) with
𝑇𝜑(𝑚̌)

(

𝜑(̌)
)

∶= d𝜑|𝑚̌ (𝑇𝑚̌̌). From the assumptions, it follows automatically that the embedding 𝜑 is a smooth diffeomorphism onto its image [75,
Prop. 5.2].

Lemma 2.1. Consider smooth manifolds ̌, and smooth mappings 𝜑 ∈ ∞(̌,) and 𝜚 ∈ ∞(,̌) with 𝜚◦𝜑 ≡ id̌. Then, 𝜑 is a smooth
embedding and 𝜑(̌) ⊆  is an embedded submanifold.

Proof. (⊳Appendix A.2). □

3. Model order reduction on manifolds

With the geometric sundries at hand, we can now introduce model order reduction on manifolds. We start with the general framework for model
order reduction (⊳ Section 3.1). Then, we detail conditions such that exact reproduction can be achieved (⊳ Section 3.2). Finally, we present an
example fitting this framework, the so-called manifold Petrov–Galerkin (⊳ Section 3.3).

3.1. General framework

This section sits at the heart of this paper and introduces the general framework upon which the remainder is built. We start this section by
defining the 𝖥𝖮𝖬 on manifolds (⊳ Section 3.1.1). We then focus on the goal that 𝖬𝖮𝖱 strives to achieve and what assumptions are required to
reach this goal (⊳ Section 3.1.2). Subsequently, we define the reduction map, which is needed to define the reduced-order model (⊳ Section 3.1.3).
We conclude the general framework with a workflow for 𝖬𝖮𝖱 on manifolds (⊳ Section 3.1.4).

4 Be aware that bold symbols may be used for other purposes in other scripts on differential geometry.
6
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Fig. 1. Schematic illustration of the full manifold  (dark blue), the set of all solutions 𝑆 (yellow), and the approximating embedded submanifold 𝜑(̌) (red). The set of solutions
is schematically depicted as three separate trajectories that may occur due to a possible discontinuous behavior in the parameter 𝜇.

3.1.1. Full-order model
In the scope of the present work, we consider high-dimensional parametric initial value problems. More precisely, assume that we are given a

time interval  ∶= (𝑡0, 𝑡f) with initial time 𝑡0 and final time 𝑡f > 𝑡0, a parameter set  ⊆ R𝑝, an 𝑁-dimensional smooth manifold  with large 𝑁 ,
a (possibly parametric) smooth vector field 𝑋 ∶ → X, and a (possibly parametric) initial value 𝛾0 ∶ → . We consider for 𝜇 ∈  the initial
value problem

⎧

⎪

⎨

⎪

⎩

d
d𝑡 𝛾

|

|

|𝑡;𝜇
= 𝑋(𝜇)|𝛾(𝑡;𝜇) ∈ 𝑇𝛾(𝑡;𝜇), 𝑡 ∈ 

𝛾
(

𝑡0;𝜇
)

= 𝛾0(𝜇) ∈ ,
(3.1)

which we want to solve for the integral curve 𝛾 (⋅;𝜇) ∈ ∞(,). We refer to (3.1) as the 𝖥𝖮𝖬 and to 𝑋 (𝜇) as the 𝖥𝖮𝖬 vector field.

Remark 3.1 (Parameter Dependency). In the following, we may suppress the explicit notation of the parameter dependence for the sake of brevity.
This is possible since the parameter is fixed for each 𝖥𝖮𝖬 evaluation. We indicate the parameter dependence only if it is relevant in a specific
context.

3.1.2. Goal of model order reduction
The goal of 𝖬𝖮𝖱 can be formulated as to be able to well-approximate the set of all solutions

𝑆 ∶= {𝛾 (𝑡;𝜇) ∈  ∣ (𝑡, 𝜇) ∈  × } ⊆  (3.2)

computationally efficiently. Sometimes, the set of all solutions is referred to as the solution manifold. However, this set does not necessarily have
the structure of a manifold. For example, [78, Ex. 2.9] describes a case where the solution might be arbitrarily complex in the parameter (including
discontinuous behavior).

The idea of (projection-based) 𝖬𝖮𝖱 is to reduce the dimension on the 𝖥𝖮𝖬 by approximating the set of all solutions by a low-dimensional
embedded submanifold 𝜑(̌) ⊆  defined by an 𝑛-dimensional manifold ̌ and a smooth embedding 𝜑 ∈ ∞(̌,) with dim(̌) = 𝑛 ≪ 𝑁 =
dim(). We refer to  as the full(-order) manifold and to ̌ as the reduced(-order) manifold. Let us emphasize that the goal is to approximate
the set 𝑆 ⊆ , not the full manifold . We refer to Fig. 1 for a schematic illustration of the relation between the full manifold , the set of all
solutions 𝑆, and the approximating embedded submanifold 𝜑(̌).

3.1.3. Reduction map and reduced-order model
Assume that we have identified an 𝑛-dimensional embedded submanifold 𝜑(̌) ⊆  with smooth embedding 𝜑 ∈ ∞(̌,). To find a 𝖱𝖮𝖬,

we proceed in two steps: First, we replace 𝛾 (𝑡) in (3.1) with the approximation 𝜑 (𝛾̌ (𝑡)) based on a reduced curve 𝛾̌ ∈ ∞(,̌). Second, a reduction
map 𝑅 ∶ 𝑇 → 𝑇̌ on the tangent bundles is introduced, which is used to define the 𝖱𝖮𝖬 as a reduced initial value problem on ̌.

Definition 3.2 (Reduction Map). A map 𝑅 ∈ ∞(𝑇, 𝑇̌) is called reduction map for a smooth embedding 𝜑 ∈ ∞(̌,) if it satisfies the
projection property

𝑅◦d𝜑 = id𝑇̌ . (3.3)

As in Section 2.5, we split the reduction map

𝑅 ∈ ∞(𝑇, 𝑇̌), (𝑚, 𝑣) ↦
(

𝜚 (𝑚) , 𝑅|𝑚 (𝑣)
)

with 𝜚 ∈ ∞(,̌) and 𝑅|𝑚 ∈ ∞(𝑇𝑚, 𝑇𝜚(𝑚)̌) for 𝑚 ∈ . We refer to 𝜚 as a point reduction for 𝜑 and to 𝑅|𝑚 as a tangent reduction for 𝜑.

Note that (3.3) immediately implies that d𝜑◦𝑅 ∈ ∞(𝑇, 𝑇 𝜑(̌)) is idempotent and thus a projection. Moreover, (3.3) implies that a point
reduction and a tangent reduction for 𝜑 satisfy

𝜚◦𝜑 = id̌, (3.4a)

𝑅|𝜑(𝑚̌)◦d𝜑|𝑚̌ = id𝑇𝑚̌̌ for all 𝑚̌ ∈ ̌, (3.4b)

which we refer to as the point projection property and the tangent projection property, respectively. The relation between the embedding 𝜑 and the
reduction map 𝑅 is illustrated in Fig. 2.

Example 3.3 (Linear-Subspace MOR). Projection-based linear-subspace 𝖬𝖮𝖱 with a reduced-basis matrix 𝑽 ∈ R𝑁×𝑛 and a projection matrix
𝑾 ∈ R𝑁×𝑛 is contained as a special case of the presented formulation with  = 𝑈 = R𝑁 , ̌ = 𝑈̌ = R𝑛, 𝑥 = idR𝑁 , 𝑥̌ = idR𝑛 and

𝝔 (𝒎) ∶= 𝑾 ⊤𝒎, 𝑹|𝒎(𝒗) ∶= 𝑾 ⊤𝒗, 𝝋 (𝒎̌) ∶= 𝑽 𝒎̌.
7
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Fig. 2. Schematic illustration of the relation between the embedding 𝜑 and the reduction map 𝑅 (𝑚, 𝑣) =
(

𝜚 (𝑚) , 𝑅|𝑚 (𝑣)
)

with 𝑚 ∈ .

Fig. 3. Two intersecting chart domains 𝑈, 𝑉 ⊆  with respective chart mappings 𝑥, 𝑦 and transition mappings 𝑥◦𝑦−1 , 𝑦◦𝑥−1 on 𝑥 (𝑈 ∩ 𝑉 ) ⊆ R𝑁 and 𝑦 (𝑈 ∩ 𝑉 ) ⊆ R𝑁 .

This exactly covers the case where 𝝋 and 𝝔 are linear. The projection property (3.3) then relates to the biorthogonality of 𝑾 and 𝑽

𝝔◦𝝋 ≡ idR𝑛 ⟺ 𝑾 ⊤𝑽 = 𝑰𝑛 ∈ R𝑛×𝑛,

𝑹|𝝋(𝒎̌)◦d𝝋|𝒎̌ ≡ idR𝑛 ⟺ 𝑾 ⊤𝑽 = 𝑰𝑛 ∈ R𝑛×𝑛,

which is often assumed in linear-subspace 𝖬𝖮𝖱.

Definition 3.4 (Reduced-Order Model). Consider the 𝖥𝖮𝖬 (3.1), a smooth embedding 𝜑 ∈ ∞(̌,), and a reduction map 𝑅 ∈ ∞(𝑇, 𝑇̌) for
𝜑 with point and tangent reduction for 𝜑 given by 𝑅 (𝑚, 𝑣) =

(

𝜚 (𝑚) , 𝑅|𝑚 (𝑣)
)

. We define the 𝖱𝖮𝖬 vector field as 𝑋̌ ∶ → X̌ via

𝑋̌(𝜇)||
|𝑚̌

∶= 𝑅|𝜑(𝑚̌)
(

𝑋(𝜇)|𝜑(𝑚̌)
)

∈ 𝑇𝑚̌̌.

Then, for 𝜇 ∈  , we call the initial value problem on ̌

⎧

⎪

⎨

⎪

⎩

d
d𝑡 𝛾̌

|

|

|𝑡;𝜇
= 𝑋̌(𝜇)||

|𝛾̌(𝑡;𝜇)
∈ 𝑇𝛾̌(𝑡;𝜇)̌

𝛾̌
(

𝑡0;𝜇
)

= 𝛾̌0(𝜇) ∶= 𝜚
(

𝛾0 (𝜇)
)

∈ ̌
(3.5)

the 𝖱𝖮𝖬 for (3.1) under the reduction map 𝑅 with solution 𝛾̌(⋅;𝜇) ∈ ∞(,̌).

We emphasize that both, the point and the tangent reduction, are relevant for the 𝖱𝖮𝖬, since the point reduction is used to map the initial
value 𝛾0, while the tangent reduction maps the 𝖥𝖮𝖬 vector field to the tangent space of the reduced manifold ̌. Moreover, we see that it is not
sufficient to define 𝜚 and 𝑅|𝜑(𝑚̌) only in the image of 𝜑 and d𝜑|𝑚̌, respectively, since the initial value and the evaluated 𝖥𝖮𝖬 vector field may be
elements of  ⧵ 𝜑 ̌ and 𝑇  ⧵ 𝑇

(

𝜑(̌)
)

, respectively. Especially the discrepancy in the tangent vectors (affected by the choice of the
8
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tangent space 𝑇𝜑(𝑚̌)
(

𝜑(̌)
)

of the submanifold and the tangent reduction map 𝑅|𝜑(𝑚̌)) has been shown to impact the quality of the approximation,
which can, e.g., be seen in the error bounds derived in [12, Sec. IV.A] or [28, Sec. 2.2].

3.1.4. MOR workflow
𝖬𝖮𝖱 (in the scope of this work) can be summarized in three steps:

(i) Approximation: Given the 𝖥𝖮𝖬 (3.1), find a reduced manifold ̌ and a smooth embedding 𝜑 ∈ ∞(̌,) such that the embedded
submanifold 𝜑(̌) ⊆  approximates the set of all solutions 𝑆 ⊆ .

(ii) Reduction: Identify a reduction map 𝑅 ∈ ∞(𝑇, 𝑇̌) for 𝜑 and construct the 𝖱𝖮𝖬 (3.5).
(iii) Reconstruction: Solve the 𝖱𝖮𝖬 (3.5) for 𝛾̌ and approximate the 𝖥𝖮𝖬 solution curve 𝛾 with

𝛾 (𝑡;𝜇) ≈ 𝜑 (𝛾̌ (𝑡;𝜇)) for (𝑡, 𝜇) ∈  ×  . (3.6)

In the remainder of the manuscript, we discuss all three steps, starting with the Reconstruction step in the subsequent subsection. Possible
constructions of the reduction map in the Reduction step are discussed in Sections 3.3 and 5. The construction of the embedding 𝜑 in the
Approximation step is analyzed in a data-driven framework in Section 6.

3.2. Exact reproduction

A desirable property in the Reconstruction step is to answer the question when the approximation in (3.6) is exact, which we refer to as exact
reproduction. Clearly, if for a given parameter 𝜇 ∈  , the 𝖥𝖮𝖬 solution 𝛾 evolves on 𝜑(̌), i.e., 𝛾 (𝑡;𝜇) ∈ 𝜑(̌) for all 𝑡 ∈ , then we can define the
smooth curve

𝛽 ∶= 𝜑−1(𝛾 (⋅;𝜇)) ∈ ∞(,̌), (3.7)

since, by assumption, 𝜑 is a diffeomorphism onto its image. With this choice, we immediately obtain

𝑋(𝜇)|𝜑(𝛽(𝑡;𝜇)) = 𝑋(𝜇)|𝛾(𝑡;𝜇) =
d
d𝑡 𝛾

|

|

|𝑡;𝜇
= d

d𝑡 (𝜑◦𝛽)
|

|

|𝑡;𝜇
= d𝜑|𝛽(𝑡;𝜇)

(

d
d𝑡 𝛽

|

|

|𝑡;𝜇

)

, (3.8)

here the last equality follows from the chain rule (2.5). It remains to prove that the 𝖱𝖮𝖬 (3.5) is able to recover the reduced curve 𝛽, which we
show in the following.

Theorem 3.5 (Exact Reproduction of a Solution). Assume that the 𝖥𝖮𝖬 (3.1) is uniquely solvable and consider a reduction map 𝑅 ∈ ∞(𝑇, 𝑇̌) for
the smooth embedding 𝜑 ∈ ∞(̌,) and a parameter 𝜇 ∈  . Assume that the 𝖱𝖮𝖬 (3.5) is uniquely solvable and 𝛾 (𝑡;𝜇) ∈ 𝜑(̌) for all 𝑡 ∈ . Then
the 𝖱𝖮𝖬 solution 𝛾̌ (⋅;𝜇) exactly recovers the solution 𝛾 (⋅;𝜇) of the 𝖥𝖮𝖬 (3.1) for this parameter, i.e.,

𝜑 (𝛾̌ (𝑡;𝜇)) = 𝛾 (𝑡;𝜇) for all 𝑡 ∈ . (3.9)

Proof. Since 𝛾 (𝑡;𝜇) ∈ 𝜑(̌) for all 𝑡 ∈ , we can construct 𝛽 as in (3.7). It remains to show that 𝛽 satisfies the 𝖱𝖮𝖬 (3.5). First, we obtain

𝛾̌0(𝜇) = 𝜚
(

𝛾0(𝜇)
)

= 𝜚
(

𝛾
(

𝑡0;𝜇
))

= (𝜚◦𝜑)
(

𝛽
(

𝑡0;𝜇
))

= 𝛽
(

𝑡0;𝜇
)

,

where the last equality is due to the projection property (3.4) for the point reduction. Second, 𝛽 satisfies the initial value problem of the 𝖱𝖮𝖬 since
the tangent projection property (3.4b) implies with (3.8)

𝑅|𝜑(𝛽(𝑡;𝜇))
(

𝑋(𝜇)|𝜑(𝛽(𝑡;𝜇))
)

=
(

𝑅|𝜑(𝛽(𝑡;𝜇))◦d𝜑|𝛽(𝑡;𝜇)
)(

d
d𝑡 𝛽

|

|

|𝑡;𝜇

)

= d
d𝑡 𝛽

|

|

|𝑡;𝜇
. □

In the following, we give an example for which the exact reproduction can be achieved for a specific choice of ̌ and 𝜑.

Corollary 3.6 (Canonical Form). For a given 𝖥𝖮𝖬 (3.1) on , assume that ̌ =  ×  is an (𝑛𝑝 + 1)-dimensional smooth manifold, that the 𝖥𝖮𝖬 is
uniquely solvable, that the 𝖥𝖮𝖬 solution 𝛾 ∶  ×  =∶ ̌ →  is a smooth embedding, and that there exists a reduction map 𝑅 ∈ ∞(𝑇, 𝑇̌) for the
smooth embedding 𝜑 ≡ 𝛾. Then, the 𝖱𝖮𝖬 (3.5) reproduces the 𝖥𝖮𝖬 solution exactly with the reduced integral curve 𝛾̌ (𝑡;𝜇) = (𝑡, 𝜇) such that the flow of
the 𝖱𝖮𝖬 is 𝜃̌𝑠(𝑡, 𝜇) = (𝑡 + 𝑠, 𝜇). Moreover, the 𝖱𝖮𝖬 in bold notation reads

d
d𝑡 𝜸̌

|

|

|𝑡;𝜇
= 𝒆1 ∈ R𝑛𝑝+1, 𝜸̌0(𝜇) = (𝑡0, 𝜇),

where 𝒆1 ∈ R𝑛𝑝+1 denotes the first unit vector.

Proof. With the assumptions of Corollary 3.6, the choice 𝜑 ≡ 𝛾 guarantees that the assumptions of Theorem 3.5 are fulfilled and 𝛽 (𝑡;𝜇) = (𝑡, 𝜇) is
valid choice for the curve in (3.7), which was used in the proof of Theorem 3.5 as the 𝖱𝖮𝖬 solution candidate. For the remaining statement, we
bserve

d
d𝑡 𝛽

1|
|

|𝑡;𝜇
= 1, d

d𝑡 𝛽
𝑖|
|

|𝑡;𝜇
= 0 for 1 < 𝑖 ≤ 𝑛𝑝 + 1,

and 𝛾̌0(𝜇) = 𝛽
(

𝑡0;𝜇
)

= (𝑡0, 𝜇), which completes the proof. □

Example 3.7. A particular example describing the situation from Corollary 3.6 is given by the linear advection equation with constant coefficients
9

and periodic boundary conditions, see for instance [44, Ex. 5.12].
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3.3. Manifold Petrov–Galerkin (MPG)

Now we want to address one example of how to construct a reduction map (⊳Definition 3.2), i.e., how to do the Reduction step from the
general 𝖬𝖮𝖱 workflow described in Section 3.1.4. Note that this specific choice of reduction map has been independently developed in [12].
Moreover, we emphasize that the specific choice of the reduction map is crucial for the approximation quality of the 𝖱𝖮𝖬; see, for instance, [79]
(linear-subspace MOR) or [12] and references therein (MOR on manifolds), where the latter reference uses that, based on [80, Thm. 1.15], the
projection 𝜑◦𝜚 ∶  → 𝜑(̌) induces fibers in the tangent bundle transversal to 𝑇𝜑(𝑚̌)

(

𝜑(̌)
)

and characterizes the reduction map by condensing
the states and tangent vectors along these fibers. Nevertheless, our goal here is not to present an optimal choice but rather an example of leveraging
the smooth embedding 𝜑 to construct a reduction map using the previously introduced framework in Section 3.1.

Assume that we have completed the Approximation step from the general 𝖬𝖮𝖱 workflow, i.e., we have already identified a reduced manifold
̌ together with a smooth embedding 𝜑. Since 𝜑 is a homeomorphism onto its image, we know that 𝜑−1 ∶𝜑(̌) → ̌ exists. Additionally, we

assume that we can find a smooth extension 𝜚∶ → ̌ of 𝜑−1 ∶𝜑(̌) → ̌ (for instance (a) if ̌ is diffeomorphic to R𝑛 by the smooth extension
lemma [75, Lem. 2.26] or (b) if  is a tubular neighborhood of 𝜑(̌) (by [75, Prop. 6.25]), where a tubular neighborhood exists, e.g., if 𝜑(̌) ⊆ R𝑁

by the tubular neighborhood theorem [75, Thm. 6.24]). By construction such a reduction map satisfies the point projection property (3.4a). We
refer to Fig. 2(a) for an illustration of the relation between 𝜑−1 and 𝜚. Differentiating the point projection property (3.4a) with the chain rule (2.5)
implies

d𝜚|𝜑(𝑚̌)◦d𝜑|𝑚̌ = d(id̌)||
|𝑚̌

= id𝑇𝑚̌̌ ∶ 𝑇𝑚̌̌ → 𝑇𝑚̌̌, (3.10)

i.e., d𝜚|𝜑(𝑚̌) is a left-inverse to d𝜑|𝑚̌. In particular, we have proven the following duality result.

Theorem 3.8 (MPG Reduction Map). Consider a smooth embedding 𝜑 and a point reduction 𝜚 for 𝜑. Then, the differential of the point reduction 𝜚 is a
left inverse to the differential of the embedding 𝜑. Consequently,

𝑅𝖬𝖯𝖦 ∶ 𝑇 → 𝑇̌ (𝑚, 𝑣) ↦
(

𝜚 (𝑚) , d𝜚|𝑚 (𝑣)
)

(3.11)

is a smooth reduction map for 𝜑, which we call the 𝖬𝖯𝖦 reduction map for (𝜚, 𝜑).

We refer to the 𝖱𝖮𝖬 (3.5) obtained with the 𝖬𝖯𝖦 reduction map from Theorem 3.8 as the 𝖬𝖯𝖦-𝖱𝖮𝖬 for (𝜚, 𝜑). In index and bold notation, the
tangent projection property (3.10) reads

𝜕𝜚𝑖

𝜕𝑥𝑘
|

|

|

|𝜑(𝑚̌)

𝜕𝜑𝑘

𝜕𝑥̌𝑗
|

|

|

|𝑚̌
= 𝛿𝑖𝑗 , 𝑫𝝔|𝝋(𝒎̌)𝑫𝝋|𝒎̌ = 𝑰𝑛 ∈ R𝑛×𝑛. (3.12)

t can be interpreted as that the columns of 𝑫𝝋|𝒎̌ span an 𝑛-dimensional reduced vector space that changes with the reduced coordinates 𝒎̌ ∈ R𝑛,
hereas the rows of 𝑫𝝔|𝝋(𝒎̌) span an 𝑛-dimensional vector space dual to the reduced vector space.

xample 3.9 (Linear-Subspace MOR). If 𝜑 and 𝜚 are linear as in Example 3.3, then the 𝖬𝖯𝖦-𝖱𝖮𝖬 (3.5) with the 𝖬𝖯𝖦 reduction map from
heorem 3.8 is the 𝖱𝖮𝖬 obtained in classical linear-subspace 𝖬𝖮𝖱 via Petrov–Galerkin projection

𝑹𝖬𝖯𝖦
|

|𝝋(𝒎̌) = 𝑫𝝔|𝝋(𝒎̌) = 𝑾 ⊤, d
d𝑡 𝜸̌

|

|

|𝑡
= 𝑾 ⊤𝑿|𝜸̌(𝑡),

which is the motivation for the terminology 𝖬𝖯𝖦.

4. Manifolds with structure

As a next step, we want to discuss structure-preserving 𝖬𝖮𝖱 on manifolds (⊳ Section 5). Beforehand, we specify the relevant structures on
the 𝖥𝖮𝖬 level in the present section. The idea is to equip the underlying full manifold  with additional structure to formulate a 𝖥𝖮𝖬 vector
field 𝑋, which guarantees physical properties, e.g., that the 𝖥𝖮𝖬 solutions preserve energy over time. We introduce additional structure on 
(⊳ Section 4.1), which allows us to formulate Lagrangian systems (⊳ Section 4.2) and Hamiltonian systems (⊳ Section 4.3) on manifolds. Both
systems admit a 𝖥𝖮𝖬 vector field, which guarantees that the 𝖥𝖮𝖬 solutions preserve the corresponding energy over time.

4.1. Additional structure on 

To keep this work self-contained, we proceed by detailing more concepts of differential geometry. We discuss the cotangent space and covectors
(⊳ Section 4.1.1), tensors (⊳ Section 4.1.2), tensor fields (⊳ Section 4.1.3), structured tensor fields (⊳ Section 4.1.4), and pullbacks of covectors,
tensor fields, and functions (⊳ Section 4.1.5).

4.1.1. Cotangent space, covectors, and cotangent bundle
The dual of the tangent space at 𝑚 ∈  (2.3) is the cotangent space at 𝑚 ∈ 

𝑇 ∗
𝑚 ∶= {𝜆 ∣ 𝜆∶ 𝑇𝑚 → R linear},

which is again an 𝑁-dimensional vector space. Elements in the cotangent space are called cotangent vectors or simply covectors. Covectors can be
constructed from scalar-valued functions: For each scalar-valued function 𝑓 ∈ ∞(,R), its differential at 𝑚, d𝑓 |𝑚 ∈ ∞(𝑇𝑚, 𝑇𝑓 (𝑚)R), defines a
inear functional on 𝑇𝑚 if we identify 𝑇𝑓 (𝑚)R with R. Thus, the differential at 𝑚 of a scalar-valued function is a covector d𝑓 |𝑚 ∈ 𝑇 ∗

𝑚. For a
iven chart (𝑈, 𝑥) of , this construction can be used to define a basis of 𝑇 ∗

𝑚: For each 𝑖 ∈ {1,… , 𝑁}, the 𝑖th component function of the chart
mapping 𝑥𝑖 ∈ ∞(𝑈,R) is a scalar-valued function and thus d𝑥𝑖|

|𝑚 ∈ 𝑇 ∗
𝑚. Moreover, with (2.2), (2.4), and identifying 𝑇𝑥(𝑚)R ≅ R, it holds for all

basis vectors of the tangent space 𝜕
𝜕𝑥𝑗

|

|

|𝑚
∈ 𝑇𝑚, 1 ≤ 𝑗 ≤ 𝑁 the dual relationship

d𝑥𝑖|
(

𝜕 |

|

)

= 𝜕𝑥𝑖 |
| = 𝛿𝑖 ∈ R ≅ 𝑇 R.
10
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Physica D: Nonlinear Phenomena 468 (2024) 134299P. Buchfink et al.

b

4

I
a

w
E
i

f

4

f

The differentials {d𝑥𝑖|
|𝑚}1≤𝑖≤𝑁 define a basis of 𝑇 ∗

𝑚 and we can represent each covector 𝜆 ∈ 𝑇 ∗
𝑚 as

𝜆 = 𝜆𝑖 d𝑥𝑖||𝑚 ∈ 𝑇 ∗
𝑚,

with (covector) components 𝜆𝑖 ∈ R, where the right-hand side sums over 1 ≤ 𝑖 ≤ 𝑁 by Einstein summation convention (1.3). By the duality of the
ases of 𝑇𝑚 and 𝑇 ∗

𝑚, it holds for each covector 𝜆 ∈ 𝑇 ∗
𝑚 and vector 𝑣 ∈ 𝑇𝑚 that

𝜆 (𝑣) =
(

𝜆𝑗 d𝑥
𝑗
)(

𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑚

)

= 𝜆𝑗 𝑣
𝑖 d𝑥𝑗 ||

|𝑚

(

𝜕
𝜕𝑥𝑖

|

|

|𝑚

)

= 𝜆𝑖 𝑣
𝑖 ∈ R.

Analogously to the tangent bundle (2.6), a cotangent bundle 𝑇 ∗ can be formulated as the disjoint union of 𝑇 ∗
𝑚, which can be shown to be a

smooth manifold of dimension 2𝑁 .

.1.2. Tensors
A generalization of vectors and covectors are the so-called tensors. For a vector space  and its dual ∗, the space of (𝑟, 𝑠)-tensors given by

𝑇 (𝑟,𝑠)() ∶=  ⊗⋯⊗ 
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑟 times

⊗∗ ⊗⋯⊗ ∗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑠 times

.

n the present work we consider tensors on the tangent and cotangent space, i.e.,  = 𝑇𝑚 and ∗ = 𝑇 ∗
𝑚. Special cases are 𝑇 (1,0)(𝑇𝑚) = 𝑇𝑚

nd 𝑇 (0,1)(𝑇𝑚) = 𝑇 ∗
𝑚. An element 𝜎 ∈ 𝑇 (𝑟,𝑠)(𝑇𝑚) of a general (𝑟, 𝑠)-tensor space is called an 𝑟-times contravariant 𝑠-times covariant tensor. This

element can be represented by

𝜎 = 𝜎
𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

𝜕
𝜕𝑥

𝑖1

|

|

|

|𝑚
⊗⋯⊗ 𝜕

𝜕𝑥𝑖𝑟
|

|

|

|𝑚
⊗ d𝑥𝑗1 ||

|𝑚
⊗⋯⊗ d𝑥𝑗𝑠 ||

|𝑚

ith components 𝜎
𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

∈ R for 1 ≤ 𝑖1,… , 𝑖𝑟, 𝑗1,… , 𝑗𝑠 ≤ 𝑁 , where the right-hand side sums over each index 1 ≤ 𝑖1,… , 𝑖𝑟, 𝑗1,… , 𝑗𝑠 ≤ 𝑁 by the
instein summation convention (1.3). The position of the index (upper or lower index) indicates which type (co- or contravariant) the respective
ndex belongs to. To extend the bold notation from Section 2.7 for tensors, we stack the components with

𝝈 ∶=
[

𝜎
𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

]

1≤𝑖1 ,…,𝑖𝑟 ,𝑗1 ,…,𝑗𝑠≤𝑁
∈ R

𝑁×𝑁×⋯×𝑁
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑟+𝑠 times .

4.1.3. Tensor field and bundle of (𝑟, 𝑠)-tensors
A so-called tensor field is a mapping which assigns each point 𝑚 ∈  a tensor in the corresponding (𝑟, 𝑠)-tensor space 𝑇 (𝑟,𝑠)(𝑇𝑚) analogous to

the smooth vector field introduced in Section 2.5. To this end we define the bundle of (𝑟, 𝑠)-tensors as the disjoint union of all (𝑟, 𝑠)-tensor spaces

𝑇 (𝑟,𝑠)(𝑇) ∶= ̇⋃
𝑚∈

𝑇 (𝑟,𝑠)(𝑇𝑚) = {(𝑚, 𝜎) ||
|

𝑚 ∈ , 𝜎 ∈ 𝑇 (𝑟,𝑠)(𝑇𝑚)}.

Similarly as before, we obtain the special cases 𝑇 (1,0)(𝑇) = 𝑇 and 𝑇 (0,1)(𝑇) = 𝑇 ∗. An (𝑟, 𝑠)-tensor field is defined as a map

𝜏 ∶ → 𝑇 (𝑟,𝑠)(𝑇), 𝑚 ↦ (𝑚, 𝜏|𝑚) such that 𝜏|𝑚 ∈ 𝑇 (𝑟,𝑠)(𝑇𝑚).

For a given chart (𝑈, 𝑥) of , we denote the ((𝑟 + 𝑠) ⋅𝑁) functions 𝜏
𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

∶𝑈 → R, 1 ≤ 𝑖1,… , 𝑖𝑟, 𝑗1,… , 𝑗𝑠 ≤ 𝑁 , with 𝜏
𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

(𝑚) ∶=
(

𝜏|𝑚
)𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

as the

component functions to stress the dependence on the point 𝑚. To extend the bold notation from Section 2.7 for tensor fields, we stack the component
functions with

𝝉 ∶=
[

𝜏
𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

◦𝑥−1
]

1≤𝑖1 ,…,𝑖𝑟 ,𝑗1 ,…,𝑗𝑠≤𝑁
∶ R𝑁 ⊇ 𝑥 (𝑈 ) → R

𝑁×𝑁×⋯×𝑁
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑟+𝑠 times .

An (𝑟, 𝑠)-tensor field 𝜏 is called smooth if all of its component functions are smooth, i.e., 𝜏
𝑖1…𝑖𝑟
𝑗1…𝑗𝑠

∈ ∞(𝑈,R). The set of all smooth (𝑟, 𝑠)-tensor

ields is the so-called smooth section of the (𝑟, 𝑠)-tensor bundle 𝛤 (𝑇 (𝑟,𝑠)(𝑇)). A special case are the smooth vector fields X = 𝛤 (𝑇 (1,0)(𝑇)).

.1.4. Structured tensor fields and musical isomorphisms
Tensor fields may possess additional properties, which we refer to as structure. In the following, we introduce two important examples of tensor

ields with special structures, namely Riemannian metrics and symplectic forms.
For a smooth (0, 2)-tensor field 𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇)) with its component functions 𝜏𝑖𝑗 ∈ ∞(𝑈,R) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 in a given chart (𝑈, 𝑥), the tensor

field 𝜏 is called

• symmetric, if (𝜏|𝑚)𝑖𝑗 = (𝜏|𝑚)𝑗𝑖 for each 𝑚 ∈ 𝑈 and for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ;

• skew-symmetric or 2-form, if (𝜏|𝑚)𝑖𝑗 = −(𝜏|𝑚)𝑗𝑖 for each 𝑚 ∈ 𝑈 and for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ;

• nondegenerate, if [(𝜏|𝑚)𝑖𝑗 ]1≤𝑖,𝑗≤𝑁 ∈ R𝑁×𝑁 is invertible for each 𝑚 ∈ 𝑈 ;
• positive definite, if [(𝜏|𝑚)𝑖𝑗 ]1≤𝑖,𝑗≤𝑁 ∈ R𝑁×𝑁 is positive definite for all 𝑚 ∈ 𝑈 ;
• a closed 2-form, if 𝜏 is a 2-form and for each 𝑚 ∈ 𝑈

𝜕𝜏𝑗𝑘
𝜕𝑥𝑖

|

|

|

|𝑚
+

𝜕𝜏𝑘𝑖
𝜕𝑥𝑗

|

|

|

|𝑚
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑘
|

|

|

|𝑚
= 0 for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁. (4.1)

(0,2)
11

Combining some of the previous properties, we obtain the following concepts. A smooth (0, 2)-tensor field 𝜏 ∈ 𝛤 (𝑇 (𝑇)) on  is called
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• a Riemannian metric on  if 𝜏 is symmetric and positive definite;
• a symplectic form on  if 𝜏 is skew-symmetric, nondegenerate, and closed.

If 𝜏, 𝜔 ∈ 𝛤 (𝑇 (0,2)(𝑇)) are a Riemannian metric and a symplectic form on , respectively, then we call (, 𝜏) and (, 𝜔) a Riemannian manifold
nd symplectic manifold, respectively. Note that the nondegeneracy of a symplectic form implies that a symplectic manifold has even dimension.

Both the Riemannian metric and the symplectic form are nondegenerate tensor fields. This allows to formulate the inverse (2, 0)-tensor field
−1 ∈ 𝛤 (𝑇 (2,0)(𝑇)) such that (𝜏|−1𝑚 )𝑖𝑘(𝜏|𝑚)𝑘𝑗 = 𝛿𝑖𝑗 , where the components are typically denoted with (𝜏|𝑚)

𝑖𝑘 ∶= (𝜏|−1𝑚 )𝑖𝑘 for the sake of brevity.
Moreover, the nondegeneracy allows to formulate an isomorphism between the tangent and the cotangent bundle. Loosely speaking, this means
that the indices in the index notation can be switched from covariant (superindices) to contravariant (subindices) and vice versa. This is typically
referred to as musical isomorphisms

♭𝜏 ∈ ∞(𝑇, 𝑇 ∗),
(

𝑚, 𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑚

)

↦
(

𝑚, (𝜏|𝑚)𝑖𝑗 𝑣
𝑗 d𝑥𝑖|

|𝑚

)

, (4.2)

♯𝜏 ∈ ∞(𝑇 ∗, 𝑇),
(

𝑚, 𝜆𝑖 d𝑥𝑖||𝑚
)

↦
(

𝑚, (𝜏|𝑚)
𝑖𝑗 𝜆𝑗

𝜕
𝜕𝑥𝑖

|

|

|𝑚

)

. (4.3)

Due to the nondegeneracy of 𝜏, the two mappings are inverses of each other, i.e.,

♯𝜏◦♭𝜏 ≡ id𝑇 . (4.4)

By a slight abuse of notation, we use the same symbols from (4.2) and (4.3) also to map between (co)tangent spaces ♭𝜏 ∶ 𝑇𝑚 → 𝑇 ∗
𝑚 and

♯𝜏 ∶ 𝑇 ∗
𝑚 → 𝑇𝑚 (instead of the respective bundles).

4.1.5. Pullback of covectors, tensor fields, and functions
Consider two smooth manifolds ,  and a smooth map 𝐹 ∈ ∞(,). Let (𝑈, 𝑥) and (𝑉 , 𝑦) be charts of  and  respectively such that

𝑚 ∈ 𝑈 and 𝐹 (𝑚) ∈ 𝑉 . The differential (2.4) of 𝐹 can be used to define the pointwise pullback (of covectors) by 𝐹 at 𝑚 via

d𝐹 ∗
|

|𝑚 ∈ ∞
(

𝑇 ∗
𝐹 (𝑚), 𝑇

∗
𝑚

)

, 𝜆𝑖 d𝑦𝑖||𝐹 (𝑚) ↦
𝜕𝐹 𝑖

𝜕𝑥𝑗
|

|

|𝑚
𝜆𝑖 d𝑥

𝑗 |
|

|𝑚
. (4.5)

For a smooth (0, 𝑠)-tensor field 𝜏 ∈ 𝛤 (𝑇 (0,𝑠)(𝑇)), the pullback of 𝜏 by 𝐹 , denoted by 𝐹 ∗𝜏 ∈ 𝛤 (𝑇 (0,𝑠)(𝑇)), is a smooth tensor field (see [75,
rop. 11.26]) with component functions 5

(

𝐹 ∗𝜏|
|𝑚
)

𝑗1…𝑗𝑠
∶= (𝜏|𝐹 (𝑚))𝓁1…𝓁𝑠

⋅
𝜕𝐹 𝓁1

𝜕𝑥𝑗1

|

|

|

|

|𝑚
⋯

𝜕𝐹 𝓁𝑠

𝜕𝑥𝑗𝑠

|

|

|

|

|𝑚
. (4.6)

A scalar-valued smooth function ℎ ∈ ∞(,R) can be interpreted as a (0, 0)-tensor field. Then, as a special case of (4.6), the pullback of (a function)
ℎ by 𝐹 is a smooth function 𝐹 ∗ℎ ∈ ∞(,R) with

(𝐹 ∗ℎ) (𝑚) = ℎ (𝐹 (𝑚)) = (ℎ◦𝐹 ) (𝑚) . (4.7)

By Section 4.1.1, the differential of a smooth scalar-valued function 𝐺 ∈ ∞(,R) defines a covector d𝐺|𝐹 (𝑚) ∈ 𝑇 ∗
𝑚. Then an analogue to the

chain rule (2.5) is

d(𝐹 ∗𝐺)|
|𝑚 = d𝐹 ∗

|

|𝑚d𝐺|𝐹 (𝑚) ∈ 𝑇 ∗
𝑚, (4.8)

which uses the pullback of a function (4.7) on the left-hand side and applies the pointwise pullback d𝐹 ∗
|𝑚 ∈ ∞(𝑇 ∗

𝑚, 𝑇
∗
𝑚) to the covector

𝐺|𝐹 (𝑚) ∈ 𝑇 ∗
𝑚 on the right-hand side of the equation.

.2. Lagrangian systems

This subsection defines Lagrangian systems formulated on a manifold and additionally introduces further structure required for the 𝖬𝖮𝖱 part
iscussed in the forthcoming Section 5.2. For more details we refer, e.g., to [81, Cha. 7] or [82, Part II]. Consider a 𝑄-dimensional smooth manifold
with chart (𝑉 , 𝑦). As mentioned in Section 2.5, the tangent bundle 𝑇 is a 2𝑄-dimensional smooth manifold and the differential d𝑦 ∈ ∞(𝑇𝑉 ,R2𝑄)

efines a natural chart (2.8). We abbreviate this chart with 𝜉 ∶= d𝑦 for brevity. By (2.8), it holds

𝜉 ∶ 𝑇𝑉 → R2𝑄,
(

𝑞, 𝑣𝑖 𝜕
𝜕𝑦𝑖

|

|

|

|𝑞

)

↦
(

𝑦 (𝑞) ,
[

𝑣𝑖
]

1≤𝑖≤𝑄

)

.

t will be relevant to differentiate between the first 𝑄 and the latter 𝑄 entries of 𝜉 for a point 𝑌 = (𝑞, 𝑣) ∈ 𝑇, which will be denoted with

𝜉𝑖
(

𝑌
)

= 𝑦𝑖 (𝑞) , 𝜉𝑄+𝑖 (𝑌
)

= 𝑣𝑖, for 1 ≤ 𝑖 ≤ 𝑄.

To lift a smooth curve 𝛾 ∈ ∞(,) to its tangent bundle, we define

𝛤𝛾 ∈ ∞(, 𝑇), 𝑡 ↦
(

𝛾 (𝑡) , d
d𝑡 𝛾

|

|

|𝑡

)

.

We denote a Lagrangian system as the tuple (,L ) of a smooth manifold  and a smooth function L ∈ ∞(𝑇,R), which we refer to as the
agrangian function. The associated second-order differential equation on the manifold is given by the Euler–Lagrange equation

𝜕L
𝜕𝜉𝑖

|

|

|

|𝛤𝛾 (𝑡)
− d

d𝑡

(

𝜕L
𝜕𝜉𝑄+𝑖

|

|

|

|𝛤𝛾 (⋅)

)

|

|

|

|

|

|𝑡

= 0 for 1 ≤ 𝑖 ≤ 𝑄, 𝛤𝛾

(

𝑡0
)

=
(

𝑞0
𝑣0

)

, (4.9)

5 The pullbacks from (4.5) and (4.6) can be related in the case of smooth covector fields 𝛼 ∈ 𝛤 𝑇 (0,1)(𝑇) , i.e., 𝑠 = 1, with 𝐹 ∗𝛼 = d𝐹 ∗ 𝛼 ∗
12

( ) ( )|𝑚 |𝑚 |𝐹 (𝑚) ∈ 𝑇𝑚.
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with initial value (𝑞0, 𝑣0) ∈ 𝑇, which has to be solved for 𝛾 ∈ ∞(,). In bold notation, the equation in coordinates reads for the Lagrangian
∶= L ◦𝜉−1 ∶R2𝑄 ⊇ 𝜉(𝑇𝑉 ) → R, (𝒒, 𝒗) ↦ LLL (𝒒, 𝒗)

𝑫𝒒LLL
|

|

|

(

𝜸(𝑡),
d
d𝑡 𝜸(𝑡)

) − d
d𝑡

⎛

⎜

⎜

⎝

𝑫𝒗LLL |

|

(

𝜸(⋅),
d
d𝑡 𝜸(⋅)

)

⎞

⎟

⎟

⎠

|

|

|

|

|

|

|𝑡

= 𝟎 ∈ R𝑄,

here 𝑫𝒒(⋅) denotes the derivative with respect to the first 𝑄 coordinates (named 𝒒 here) and 𝑫𝒗(⋅) the derivative for the last 𝑄 coordinates (named
𝒗 here).

Since the Euler–Lagrange equations are obtained from a variation of an action functional, it is well-known that the scalar-valued function
(typically referred to as the energy)

 ∶ 𝑇 → R, 𝑌 =
(

𝑞, 𝑣𝑖 𝜕
𝜕𝑦𝑖

|

|

|

|𝑞

)

↦ 𝑣𝑗 𝜕L
𝜕𝜉𝑄+𝑗

|

|

|

|𝑌
− L

(

𝑌
)

,

is conserved along the lift of the solution curve 𝛾 of the Euler–Lagrange equations, i.e.,

d
d𝑡

(

𝛤𝛾 (⋅)
)

|

|

|

|𝑡
= 0 for all 𝑡 ∈ ,

see, e.g., [76, Sec. 3.5] and [81, Prop. 7.3.1]).
The Lagrangian is called regular if the smooth (0, 2)-tensor field defined by the second-order derivative of the Lagrangian w.r.t. the velocity

𝜏𝑣||𝑌 ∶= 𝜕2L
𝜕𝜉𝑄+𝑗 𝜕𝜉𝑄+𝑖

|

|

|

|𝑌
d𝜉𝑄+𝑖|

|

|𝑌
⊗ d𝜉𝑄+𝑗 |

|

|𝑌
(4.10)

at each point 𝑌 ∈ 𝑇 is nondegenerate (⊳ Section 4.1.4). In this case, we can formulate the Euler–Lagrangian vector field 𝑋L ∈ X𝑇 such that at
a point 𝑌 =

(

𝑞, 𝑣𝑖 𝜕
𝜕𝑥𝑖

|

|

|𝑞

)

∈ 𝑇, it holds

𝑋L
|

|𝑌
∶= 𝑣𝑖 𝜕

𝜕𝜉𝑖
|

|

|

|𝑌
+ (𝜏𝑣||𝑌 )

(𝑄+𝑖)(𝑄+𝑗)
(

𝜕L
𝜕𝜉𝑗

|

|

|

|𝑌
− 𝜕2L

𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝑌
𝑣𝑘
)

𝜕
𝜕𝜉𝑄+𝑖

|

|

|

|𝑌
, (4.11)

here we use the convention from Section 4.1.4 to use upper indices to denote the corresponding inverse tensor field. This vector field can be
sed to formulate the Lagrangian system: Let 𝛾 ∈ ∞(, 𝑇) be an integral curve of 𝑋L with starting point (𝑞0, 𝑣0) ∈ 𝑇. Then, solving the
uler–Lagrange Eqs. (4.9) for 𝛾 is equivalent to finding the integral curve 𝛾 of 𝑋L with 𝛾 (𝑡) = 𝛤𝛾 (𝑡). In bold notation, the system for 𝛾 reads

d
d𝑡 𝜸

|

|

|𝑡
=

(

𝜸𝑣 (𝑡)
𝝉𝑣||

−1
𝜸(𝑡)

(

𝑫𝒒LLL
|

|

|𝜸(𝑡)
−𝑫2

𝒗𝒒LLL
|

|

|𝜸(𝑡)
𝜸𝑣 (𝑡)

)

)

∈ 𝜉 (𝑇𝑉 ) ⊆ R2𝑄. (4.12)

Here we denote by 𝑫2
𝒗𝒒LLL

|

|

|𝒀 
∈ R𝑄×𝑄 the mixed derivative w.r.t. 𝒗 and 𝒒 and the solution curve is split 𝜸 (𝑡) = (𝜸𝑞 (𝑡) , 𝜸𝑣 (𝑡)) ∈ 𝜉 (𝑇𝑉 ) ⊆ R2𝑄 in a

part for 𝒒 and a part for 𝒗. The system (4.12) is typically referred to as the first-order formulation for the Lagrangian system.

4.3. Hamiltonian systems

In this subsection, we derive a formulation of Hamiltonian systems on a manifold,6 providing the structure to perform 𝖬𝖮𝖱 in the forthcoming
Section 5.3. For a more detailed introduction we refer, e.g., to [81, Cha. 5], [75, Cha. 22], or [82, Part III]. Let us recall from Section 4.1.1 that
the differential of a smooth function 𝐺 ∈ ∞(,R) at a point 𝑚 ∈  defines a covector d𝐺|𝑚 ∈ 𝑇 ∗

𝑚. Extending this idea, the differential
d𝐺 ∈ ∞(𝑇, 𝑇R) defines a smooth covector field d𝐺 ∈ 𝛤 (𝑇 (0,1)(𝑇)) with component functions (d𝐺|𝑚)𝑖 =

𝜕𝐺
𝜕𝑥𝑖

|

|

|𝑚
.

For a given symplectic manifold (, 𝜔) and a smooth function H ∈ ∞(,R) referred to as the Hamiltonian (function), the Hamiltonian vector
ield

𝑋H ∶= ♯𝜔 (dH ) ∈ 𝛤 (𝑇 (1,0)(𝑇)) , or in index notation: (𝑋H
|

|𝑚)
𝑖 = (𝜔|𝑚)

𝑖𝑗 (dH |𝑚)𝑗

is uniquely defined due to the nondegeneracy of 𝜔. A Hamiltonian system (, 𝜔,H ) is an initial value problem (2.9) with an integral curve
𝛾 ∈ ∞(,) of 𝑋H with starting point 𝛾0 ∈ , i.e.,

d
d𝑡 𝛾

|

|

|𝑡
= 𝑋H

|

|𝛾(𝑡) ∈ 𝑇𝛾(𝑡) and 𝛾
(

𝑡0
)

= 𝛾0 ∈ . (4.13)

We denote a Hamiltonian system in bold notation7 with
d
d𝑡 𝜸

|

|

|𝑡
=
(

𝝎|𝜸(𝑡)
)−1 𝑫HHH |

⊤
𝜸(𝑡) ∈ R𝑁 , 𝜸

(

𝑡0
)

= 𝜸0 ∈ R𝑁 . (4.14)

This special construction of the vector field guarantees that the Hamiltonian is conserved along the solution curve, since

d
d𝑡 (H ◦𝛾)||

|𝑡

(2.5)
=

(

dH |𝛾(𝑡)
)

𝑖

(

d
d𝑡 𝛾

|

|

|𝑡

)𝑖 (4.13)
=

(

dH |𝛾(𝑡)
)

𝑖

(

𝜔|𝛾(𝑡)
)𝑖𝑗(dH |𝛾(𝑡)

)

𝑗 = 0,

where the last step uses that for skew-symmetric tensors 𝜎 ∈ 𝑇 (2,0)(𝑇𝑚), it holds 𝜆𝑖 𝜎
𝑖𝑗 𝜆𝑗 = −𝜆𝑖 𝜎

𝑖𝑗 𝜆𝑗 = 0 for all covectors 𝜆 ∈ 𝑇 ∗
𝑚.

For two given symplectic manifolds (, 𝜔) and (, 𝜂), we call a smooth diffeomorphism 𝐹 ∈ ∞(,) a symplectomorphism if 𝐹 ∗𝜔 = 𝜂. It can
e shown that the flow of a Hamiltonian system 𝜃𝑡 ∶  →  is a symplectomorphism.

6 Hamiltonian systems may result from Lagrangian systems via a Legendre transformation, but this is not the subject of the current work, so we refer to [76,
ec. 3.6].

7 As the Jacobian 𝑫HHH 1×𝑁
13

|𝒎 ∈ R is a row vector, we need to transpose it for the multiplication to match dimensions.
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The theorem of Darboux (see e.g. [76, Thm. 3.2.2]) guarantees that for each point 𝑚 ∈ , there exists a chart (𝑈, 𝑥) with 𝑚 ∈ 𝑈 which is
canonical, i.e., the symplectic form in these coordinates can be represented with 𝝎|𝒎 ≡ J⊤2𝑁 by the canonical Poisson tensor8

J2𝑁 =
(

𝟎𝑁 𝑰𝑁
−𝑰𝑁 𝟎𝑁

)

∈ R2𝑁×2𝑁 for which J⊤2𝑁 = −J2𝑁 = J−12𝑁 , (4.15)

where 𝑰𝑁 , 𝟎𝑁 ∈ R𝑁×𝑁 are the identity matrix and matrix of all zeros, respectively. In the case of  = R2𝑁 with 𝝎|𝒎 = J⊤2𝑁 for all 𝑚 ∈ , we call
(R2𝑁 , J⊤2𝑁 ,HHH ) a canonical Hamiltonian system.

5. Structure-preserving MOR on manifolds

With the general model reduction framework presented in Section 3 at hand, we now discuss how the general framework can be specialized to
preserve important features of the initial value problem on the manifold. In more detail, we first introduce the generalized manifold Galerkin (𝖦𝖬𝖦)
reduction map in Section 5.1 and then use it to discuss the structure-preserving 𝖬𝖮𝖱 of

• Lagrangian systems in Section 5.2, and
• Hamiltonian systems in Section 5.3.

5.1. Generalized manifold Galerkin

Assume that the manifold  of dimension 𝑁 is endowed with a nondegenerate (0, 2)-tensor field 𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇)), as defined in Section 4.1.4.
As in Section 3.3, we assume that we have already constructed an embedded submanifold 𝜑(̌) ⊆  defined by a smooth embedding 𝜑 ∈
∞(̌,), i.e., we have completed the Approximation step from the general 𝖬𝖮𝖱 workflow in Section 3.1.4. The straightforward way to define a
reduced tensor field is to use the pullback from Section 4.1.5. Hence, we make the following assumption.

Assumption 5.1. Given the nondegenerate (0, 2)-tensor field 𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇)), the smooth embedding 𝜑 ∈ ∞(̌,) is such that the reduced
tensor field

𝜏 ∶= 𝜑∗𝜏 ∈ 𝛤 (𝑇 (0,2)(𝑇̌)) ,

is nondegenerate.

Note that the reduced tensor field in bold notation reads

𝝉̌|𝒎̌ = 𝑫𝝋|⊤𝒎̌ 𝝉|𝝋(𝒎̌)𝑫𝝋|𝒎̌ ∈ R𝑛×𝑛, (5.1)

which immediately illustrates that Assumption 5.1 may not be satisfied, in general. For instance, if we take  = R2 and ̌ = R, the tensor field
to be a constant skew-symmetric matrix and a linear embedding, then Assumption 5.1 is violated. See also the forthcoming Example 5.14. On the
other hand, if the tensor field is a Riemannian metric on , i.e., symmetric and positive definite, then the reduced tensor field is also a Riemannian
metric.

We immediately obtain the following relation between the full and reduced musical isomorphisms discussed in Section 4.1.4.

Lemma 5.2. Under Assumption 5.1, it holds

d𝜑∗
|

|𝑚̌◦♭𝜏◦d𝜑|𝑚̌ = ♭𝜏 ∈ ∞(𝑇𝑚̌̌, 𝑇 ∗
𝑚̌̌). (5.2)

Proof. We prove the statement in index notation. Using (4.2), (4.6), (2.4), and (4.5), we obtain for all 𝑚̌ ∈ ̌, all 𝑣̌ ∈ 𝑇𝑚̌̌ and all 1 ≤ 𝑖 ≤ 𝑛

(♭𝜏 (𝑣̌))𝑖 = (𝜏|𝑚̌)𝑖𝑗 𝑣̌
𝑗 = (𝜏|𝜑(𝑚̌))𝓁1𝓁2

𝜕𝜑𝓁1

𝜕𝑥𝑖
|

|

|

|

|𝑚̌

𝜕𝜑𝓁2

𝜕𝑥𝑗
|

|

|

|

|𝑚̌
𝑣̌𝑗

=
𝜕𝜑𝓁1

𝜕𝑥𝑖
|

|

|

|

|𝑚̌
(𝜏|𝜑(𝑚̌))𝓁1𝓁2

𝜕𝜑𝓁2

𝜕𝑥𝑗
|

|

|

|

|𝑚̌
𝑣̌𝑗 =

(

(d𝜑∗
|

|𝑚̌◦♭𝜏◦d𝜑|𝑚̌) (𝑣̌)
)

𝑖. □

The additional structure allows us to construct an alternative reduction mapping to the 𝖬𝖯𝖦 reduction map (3.11), which we refer to as the
generalized manifold Galerkin (𝖦𝖬𝖦)

𝑅𝖦𝖬𝖦 ∶ 𝑇 ⊇ 𝐸𝜑(̌) → 𝑇̌, (𝑚, 𝑣) ↦
(

𝜚(𝑚),
(

♯𝜏◦d𝜑∗
|

|𝜚(𝑚)◦♭𝜏
)

(𝑣)
)

, (5.3)

hich is defined on the vector bundle

𝐸𝜑(̌) ∶=
̇⋃
𝑚∈𝜑(̌)

𝑇𝑚.

he domain 𝐸𝜑(̌) ⊆ 𝑇 of the 𝖦𝖬𝖦 reduction map is in general smaller than in the original definition of a reduction map (⊳Definition 3.2).
Nevertheless, all previous results are valid for reduction maps 𝑅 ∶ 𝐸𝜑(̌) → 𝑇̌ as the reduction map is only used in the 𝖱𝖮𝖬 to project
𝑋|𝜑(𝑚̌) ∈ 𝑇𝜑(𝑚̌) which is part of 𝐸𝜑(̌). We avoided introducing 𝐸𝜑(̌) earlier for a better readability. The restriction of the domain for the
𝖦𝖬𝖦 is necessary as d𝜑∗

|𝑚̌ ∶ 𝑇 ∗
𝜑(𝑚̌) → 𝑇 ∗

𝑚̌̌ is defined on 𝑇 ∗
𝜑(𝑚̌) only.

8 Note that in contrast to existing work in the field of structure-preserving 𝖬𝖮𝖱 of Hamiltonian systems, we speak of the symplectic form 𝝎|𝒎 = J⊤2𝑁 instead
f J2𝑁 . This yields the same Hamiltonian vector field 𝑿H

|

|𝒎 = J2𝑁𝑫HHH |

⊤
𝒎 and does not change the reduction formulas later, but it helps to understand the more

eneral case of noncanonical coordinates 𝝎 ≠ J⊤ .
14

|𝒎 2𝑁



Physica D: Nonlinear Phenomena 468 (2024) 134299P. Buchfink et al.

w

T

f

i
o

D

By construction, (3.4a), Lemma 5.2, and (4.4), we obtain

𝑅𝖦𝖬𝖦
|

|𝜑(𝑚̌)◦d𝜑|𝑚̌ = ♯𝜏◦d𝜑∗
|

|(𝜚◦𝜑)(𝑚̌)◦♭𝜏◦d𝜑|𝑚̌ = ♯𝜏◦♭𝜏 = id𝑇𝑚̌̌,

hich proves the following result.

heorem 5.3. The 𝖦𝖬𝖦 reduction (5.3) is a reduction map for 𝜑.

The corresponding 𝖱𝖮𝖬 (3.5) obtained with the 𝖦𝖬𝖦 reduction map is called 𝖦𝖬𝖦-𝖱𝖮𝖬. In bold notation, the associated reduced vector field
or the 𝖥𝖮𝖬 vector field 𝑋 ∈ X reads with (3.4a)

𝑹𝖦𝖬𝖦
|

|𝝋(𝒎̌)
(

𝑿|𝝋(𝒎̌)
)

=
(

𝑫𝝋|⊤(𝝔◦𝝋)(𝒎̌) 𝝉|𝝋(𝒎̌)𝑫𝝋|(𝝔◦𝝋)(𝒎̌)

)−1
𝑫𝝋|⊤(𝝔◦𝝋)(𝒎̌) 𝝉|𝝋(𝒎̌)𝑿|𝝋(𝒎̌)

=
(

𝑫𝝋|⊤𝒎̌ 𝝉|𝝋(𝒎̌)𝑫𝝋|𝒎̌
)−1 𝑫𝝋|⊤𝒎̌ 𝝉|𝝋(𝒎̌)𝑿|𝝋(𝒎̌) ∈ R𝑛. (5.4)

To motivate the name 𝖦𝖬𝖦, we consider the special case that  = R𝑁 , ̌ = R𝑛 are vector spaces over R (with identity charts 𝑥 ≡ idR𝑁 ,
𝑥̌ ≡ idR𝑛 ) and the nondegenerate tensor field 𝜏 is a Riemannian metric that is constant in coordinates, i.e., 𝝉|𝒎 = 𝝉 = const. We then obtain with
(5.4)

𝑹𝖦𝖬𝖦
|

|𝝋(𝒎̌)
(

𝑿|𝝋(𝒎̌)
)

=
((

𝑫𝝋|⊤𝒎̌𝝉
1∕2) (𝝉1∕2𝑫𝝋|𝒎̌

))−1 (𝑫𝝋|⊤𝒎̌𝝉
1∕2) 𝝉1∕2𝑿|𝝋(𝒎̌)

=
(

𝝉1∕2𝑫𝝋|𝒎̌
)† 𝝉1∕2𝑿|𝝋(𝒎̌),

where (⋅)† denotes the Moore–Penrose pseudoinverse. In particular, we recover the manifold Galerkin projection introduced in [13, Rem 3.4] and [14,
Thm 3.5], which allows interpreting the reduced vector field as the optimal projection w.r.t. the Riemannian metric 𝜏; see [13, Sec. 3.2] or [14,
Eq. 6] based on the Dirac–Frenkel formalism [28–30].

Example 5.4 (Special Case: Linear-Subspace MOR). In the case of 𝜚, 𝜑 being linear as in Example 3.3 with 𝝉 ≡ const and 𝑽 ⊤𝝉𝑽 = 𝑰𝑛, the 𝖦𝖬𝖦

reduction is exactly the 𝖱𝖮𝖬 obtained via standard Galerkin projection

𝑹𝖦𝖬𝖦
|

|𝝋(𝒎̌)(𝒗) =
(

𝑽 ⊤𝝉𝑽
)−1 𝑽 ⊤𝝉𝒗 = 𝑽 ⊤𝝉𝒗, d

d𝑡 𝜸̌
|

|

|𝑡
= 𝑽 ⊤𝝉𝑿|𝜸̌(𝑡).

As discussed in Section 4, the 𝖥𝖮𝖬 vector field may possess additional structure in specific applications, such as Lagrangian or Hamiltonian
dynamics. In the following, we show that the 𝖦𝖬𝖦 reduction can be used to formulate structure-preserving 𝖬𝖮𝖱 (on manifolds) for Lagrangian
and Hamiltonian systems by choosing a specific nondegenerate tensor field.

5.2. MOR on manifolds for Lagrangian systems

As in Section 4.2, consider a 𝑄-dimensional smooth manifold  with a chart (𝑉 , 𝑦) and the corresponding chart (𝑇𝑉 , 𝜉) of the tangent bundle
𝑇 (⊳ Section 4.2). The manifold to be reduced in the context of Lagrangian systems is the tangent bundle 𝑇. To be consistent with the notation
ntroduced before, we thus set  ∶= 𝑇 with even dimension 𝑁 ∶= dim() ∶= 2𝑄. Instead of working directly on , we still aim for a construction
n  by employing that the differential of a smooth map (⊳ Section 2.5) is a mapping between the associated tangent spaces.

efinition 5.5 (Lifted Embedding and Lifted Point Reduction). Consider an embedded submanifold 𝜑(̌) ⊆  defined by a 𝑄̌-dimensional manifold
̌ and a smooth embedding 𝜑 ∶ ̌ → 𝜑(̌). Then, we call

𝜑 ∶= d𝜑 ∶ 𝑇 ̌ → 𝑇
(

𝜑(̌)
)

, (𝑞, 𝑣̌) ↦
(

𝜑 (𝑞) , d𝜑||𝑞 (𝑣̌)
)

the lifted embedding for 𝜑. Analogously, for a point reduction 𝜚 ∶ → ̌, we define the lifted point reduction

𝜚 ∶= d𝜚 ∶ 𝑇 → 𝑇 ̌, (𝑞, 𝑣) ↦
(

𝜚 (𝑞) , d𝜚||𝑞(𝑣)
)

.

Let us emphasize that 𝜚 is indeed a point reduction on  = 𝑇 for the lifted embedding 𝜑, which is a straightforward consequence of
Theorem 3.8. For

(

𝑞, 𝑣̌𝑘 𝜕
𝜕𝑦̌𝑘

|

|

|

|𝑞

)

∈ 𝑇 ̌ with a chart (𝑉 , 𝑦̌) for ̌ and (𝑇𝑉 , 𝜉) for 𝑇 ̌, we immediately obtain

𝜕𝜑𝑖

𝜕𝜉𝑗
|

|

|

|

(

𝑞,𝑣̌𝑘 𝜕
𝜕𝑦̌𝑘

|

|

|

|𝑞

) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝜑
𝑖

𝜕𝑦̌𝑗
|

|

|

|𝑞
, 1 ≤ 𝑖 ≤ 𝑄, 1 ≤ 𝑗 ≤ 𝑄̌,

0, 1 ≤ 𝑖 ≤ 𝑄, 1 ≤ 𝑗 − 𝑄̌ ≤ 𝑄̌,

𝜕2𝜑
𝑖−𝑄

𝜕𝑦̌𝑗 𝜕𝑦̌𝑘
|

|

|

|𝑞
𝑣̌𝑘, 1 ≤ 𝑖 −𝑄 ≤ 𝑄, 1 ≤ 𝑗 ≤ 𝑄̌,

𝜕𝜑
𝑖−𝑄

𝜕𝑦̌𝑗−𝑄̌

|

|

|

|𝑞
, 1 ≤ 𝑖 −𝑄 ≤ 𝑄, 1 ≤ 𝑗 − 𝑄̌ ≤ 𝑄̌,

which reads in bold notation

𝝋 (𝒒̌, 𝒗̌) =

(

𝝋 (𝒒̌)
𝑫𝝋||𝒒̌ 𝒗̌

)

∈ R2𝑄, 𝑫𝝋|(𝒒̌,𝒗̌) =
⎛

⎜

⎜

⎜

𝑫𝝋||𝒒̌ 𝟎

𝑫
(

𝑫𝝋||(⋅)𝒗̌
)

|

|

|

𝑫𝝋||𝒒̌

⎞

⎟

⎟

⎟

∈ R2𝑄×2𝑄̌.
15
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⎠
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Example 5.6. For a linear embedding 𝝋 (𝒒̌) = 𝑽 𝒒̌ as in Example 3.3, the lifted embedding from Definition 5.5 is described by a block-diagonal
asis matrix

𝝋 (𝒒̌, 𝒗̌) =
(

𝑽 𝟎
𝟎 𝑽

)(

𝒒̌
𝒗̌

)

,

hich is frequently used in 𝖬𝖮𝖱 for second-order systems (see, e.g., [83]).

With these preparations, let us now assume that we have a Lagrangian system (,L ) with initial value (𝑞0, 𝑣0) ∈ 𝑇 together with embedded
ubmanifold 𝜑(̌) ⊆  with the embedding 𝜑 and a point reduction 𝜚 available. Let 𝜑 and 𝜚 denote the corresponding lifted embedding
nd lifted point reduction as in Definition 5.5. To preserve the Lagrangian system structure in the 𝖱𝖮𝖬, we do not aim for a projection of the
uler–Lagrange Eqs. (4.9) but rather start by constructing a reduced Lagrangian via

Ľ ∶= 𝜑∗L = L ◦𝜑 ∈ ∞(𝑇 ̌) (5.5)

nd immediately obtain the reduced Lagrangian system (̌, Ľ ) with reduced initial value (𝑞0, 𝑣̌0) ∶= 𝜚
(

𝑞0, 𝑣0
)

∈ 𝑇 ̌ =∶ ̌. Note that with
his strategy, we immediately obtain the 𝖱𝖮𝖬 that itself is a Lagrangian system, which is not automatically guaranteed if we reduce the vector
ield (4.11). Straightforward calculations (see Appendix B.1) show that the Euler–Lagrange equations of the reduced Lagrangian system read

0 = 𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝛾̌(𝑡)

(

𝜕L
𝜕𝜉𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

− 𝜕2L
𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝛾̌(𝑡)

d
d𝑡 𝛾̌

𝓁|
|

|𝑡

− 𝜕2L
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕2𝜑
𝑘

𝜕𝑦̌𝓁 𝜕𝑦̌𝑝
|

|

|

|𝛾̌|𝑡

d
d𝑡 𝛾̌

𝑝|
|

|𝑡
d
d𝑡 𝛾̌

𝓁|
|

|𝑡

− 𝜕2L
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝛾̌(𝑡)

d2
d𝑡2 𝛾̌

𝓁|
|

|

|𝑡

)

(5.6)

or 1 ≤ 𝑖 ≤ 𝑛 where the right-hand side sums over 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝓁, 𝑝 ≤ 𝑄̌ by the Einstein summation convention (1.3). In bold notation, the
educed Euler–Lagrange equations read

𝟎 = 𝑫𝝋||
⊤
𝜸̌(𝑡)

(

𝑫𝒒LLL
|

|

|𝝋
(

𝜸̌(𝑡),
d
d𝑡 𝜸̌

|

|

|

|𝑡

) −𝑫2
𝒗𝒒LLL

|

|

|𝝋
(

𝜸̌(𝑡),
d
d𝑡 𝜸̌

|

|

|

|𝑡

)𝑫𝝋||𝜸̌(𝑡)
d
d𝑡 𝜸̌

|

|

|𝑡

−𝑫2
𝒗𝒗LLL

|

|

|𝝋
(

𝜸̌(𝑡),
d
d𝑡 𝜸̌

|

|

|

|𝑡

)𝑫2𝝋
|

|

|𝜸̌(𝑡)

(

d
d𝑡 𝜸̌

|

|

|𝑡
⊗ d

d𝑡 𝜸̌
|

|

|𝑡

)

−𝑫2
𝒗𝒗LLL

|

|

|𝝋
(

𝜸̌(𝑡),
d
d𝑡 𝜸̌

|

|

|

|𝑡

)𝑫𝝋||𝜸̌(𝑡)
d2
d𝑡2 𝜸̌

|

|

|

|𝑡

)

∈ R𝑄̌.

(5.7)

By construction, the reduced Lagrangian system fulfills the Euler–Lagrange equations for the reduced Lagrangian Ľ . Thus, the reduced energy

̌ ∶ 𝑇 ̌ → R, 𝑌 =
(

𝑞, 𝑣̌𝑖 𝜕
𝜕𝑦̌𝑖

|

|

|

|𝑞

)

↦ 𝑣̌𝑗 𝜕Ľ

𝜕𝜉𝑄̌+𝑗

|

|

|

|𝑌
− Ľ

(

𝑌
)

is preserved along the lift of the solution curve 𝛾̌. Moreover, it holds ̌ ≡ ◦𝜑.
Following the construction in Section 4.2 and assuming that the reduced Lagrangian Ľ is regular, we can formulate a reduced vector field

𝑋̌Ľ ∈ 𝛤 (𝑇 (1,0)(𝑇̌)) for the reduced Euler–Lagrange Eqs. (5.7). Indeed, we obtain for a point 𝑌 =
(

𝑞, 𝑣̌𝑖 𝜕
𝜕𝑦̌𝑖

|

|

|

|𝑞

)

∈ 𝑇 ̌ as

𝑋̌Ľ
|

|

|𝑌
=∶ 𝑣̌𝑖 𝜕

𝜕𝜉𝑖
|

|

|

|𝑌
+ (𝜎|𝑌 )

𝑖
𝓁

(

(

𝑋L
|

|𝜑
(

𝑌
)

)𝑄+𝓁
− 𝜕2𝜑

𝓁

𝜕𝑦̌𝑝 𝜕𝑦̌𝑟
|

|

|

|𝑞
𝑣̌𝑝 𝑣̌𝑟

)

𝜕

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌
(5.8)

ith indices 1 ≤ 𝑘,𝓁 ≤ 𝑄 and 1 ≤ 𝑖, 𝑗, 𝑝, 𝑟 ≤ 𝑄̌ and

(𝜎|𝑌 )
𝑖
𝓁 ∶= (𝜏𝑣||𝑌 )

𝑖𝑗 𝜕𝜑
𝑘

𝜕𝑦̌𝑗
|

|

|

|𝑞

(

𝜏𝑣||𝜑(𝑌
)

)

𝑘𝓁
.

In order to relate this reduction to our framework, we show in the following that the reduced Euler–Lagrangian vector field (5.8) can be
nterpreted as a 𝖦𝖬𝖦 reduction (5.3) of the Euler–Lagrangian vector field (4.11) if an appropriate tensor field is selected. We refer to this as the

Lagrangian manifold Galerkin (𝖫𝖬𝖦). With the nondegenerate tensor field 𝜏𝑣 from (4.10), we define a tensor field 𝜏𝖫𝖬𝖦 ∈ 𝛤 (𝑇 (0,2)(𝑇)) on  = 𝑇
with

𝜏𝖫𝖬𝖦
|

|𝑌
∶=

(

𝜏𝑞
|

|

|𝑌

)

𝑖𝑗
d𝜉𝑄+𝑖|

|

|𝑌
⊗ d𝜉𝑗 ||

|𝑌
+
(

𝜏𝑣||𝑌

)

𝑖𝑗
d𝜉𝑖|

|𝑌
⊗ d𝜉𝑄+𝑗 |

|

|𝑌
, (5.9)

here (𝜏𝑞
|

|

|𝑌
)
𝑖𝑗

are additional components. A typical choice could be (𝜏𝑞
|

|

|𝑌
)
𝑖𝑗
= (𝜏𝑣||𝑌 )𝑖𝑗 . In bold notation, the tensor field reads

𝝉𝖫𝖬𝖦
|

|𝒀 
=
⎛

⎜

⎜

⎝

𝟎 𝝉𝑣||𝒀 

𝝉𝑞
|

|

|𝒀 
𝟎

⎞

⎟

⎟

⎠

. (5.10)

The associated reduced tensor field is denoted with 𝜏𝖫𝖬𝖦 (as in Section 5.1). Assuming that 𝜏𝖫𝖬𝖦 is nondegenerate, we define the 𝖫𝖬𝖦 reduction
ap

𝑅 ∶ 𝑇 ⊇ 𝐸 → 𝑇̌, (𝑚, 𝑣) ↦
(

𝜚(𝑚),
(

♯ ◦d𝜑∗
| ◦♭

)

(𝑣)
)

. (5.11)
16

𝖫𝖬𝖦 𝜑(̌) 𝜏𝖫𝖬𝖦 |𝜚(𝑚) 𝜏𝖫𝖬𝖦
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The 𝖫𝖬𝖦 reduction map (5.11) is a particular case of a 𝖦𝖬𝖦 reduction map, and thus, we immediately obtain from Theorem 5.3 that 𝑅𝖫𝖬𝖦 is
a reduction map for the lifted embedding 𝜑.

Theorem 5.7. Consider the 𝖱𝖮𝖬 obtained by reducing the Euler–Lagrange vector field with 𝑅𝖫𝖬𝖦. Then solving this 𝖱𝖮𝖬 for 𝛾̌ is equivalent to solving
the reduced Euler–Lagrange Eqs. (5.6) for 𝛾̌ with 𝛾̌ (𝑡) = 𝛤𝛾̌ (𝑡).

Proof. (⊳Appendix B.2). □

We conclude this section with three remarks.

Remark 5.8. In the special case of classical 𝖬𝖮𝖱  = R𝑄, ̌ = R𝑄̌ with a linear embedding 𝝋(𝒒̌) = 𝑽 𝒒̌ as in Example 5.6, a linear point reduction
𝝔(𝒒) = 𝑽 ⊤𝒒, and a quadratic Lagrangian LLL , the reduced Euler–Lagrange Eqs. (5.7) recover the 𝖱𝖮𝖬 from [15]. In our framework that relates to
the choice  = R2𝑄, ̌ = R2𝑄̌, 𝜑 as in Example 5.6, and 𝑹𝖫𝖬𝖦(𝒗𝒒 , 𝒗𝒗) =

(

𝒗⊤𝒒 𝑽
⊤, 𝒗⊤𝒗𝑽

⊤)⊤.

emark 5.9. In [15], the authors argue that the reduced Euler–Lagrange equations cannot be obtained from a projection with the embedding 𝜑
f the first-order system (which is formulated with the Euler–Lagrange vector field (4.11) in the scope of our work). This is no contradiction to
ur work since we suggest a projection based on the lifted embedding 𝜑 from Definition 5.5 to obtain the reduced Euler–Lagrange equations via
reduction of the Euler–Lagrange vector field.

emark 5.10 (Second-Order Derivatives of 𝜑). The reduced Euler–Lagrange equations require the computation of second-order derivatives of 𝜑,
hich might be computationally intensive. Notably, the formulation of the 𝖱𝖮𝖬 in structure-preserving 𝖬𝖮𝖱 for Hamiltonian systems presented

n the following subsection is independent of second-order derivatives of the embedding 𝜑.

5.3. MOR on manifolds for hamiltonian systems

Lastly, we assume to be given a Hamiltonian system (, 𝜔,H ) as 𝖥𝖮𝖬 and demonstrate how structure-preserving 𝖬𝖮𝖱 on manifolds can
be formulated. The procedure works analogously to the 𝖦𝖬𝖦 from Section 5.1, while choosing the symplectic form 𝜔 as the nondegenerate
tensor field 𝜏 = 𝜔. First, we assume that the Approximation step is completed and we are given a reduced manifold ̌ and a smooth embedding
𝜑 ∈ ∞(̌,) fulfilling Assumption 5.1, i.e., 𝜑∗𝜔 is nondegenerate. We show at the end of this section (⊳ Lemma 5.13) that this assumption is
sufficient for 𝜔̌ ∶= 𝜑∗𝜔 being a symplectic form and (̌, 𝜔̌) being a symplectic manifold. In this case, the embedding 𝜑∶ (̌, 𝜔̌) → (𝜑(̌), 𝜔|𝜑(̌))
is a symplectomorphism. Second, we use the reduction map

𝑅𝖲𝖬𝖦 ∶ 𝑇 ⊇ 𝐸𝜑(̌) → 𝑇̌, (𝑚, 𝑣) ↦
(

𝜚(𝑚),
(

♯𝜔̌◦d𝜑∗
|

|𝜚(𝑚)◦♭𝜔
)

(𝑣)
)

, (5.12)

which we refer to as the symplectic manifold Galerkin (𝖲𝖬𝖦) reduction map. The 𝖲𝖬𝖦 reduction map is a special case of the 𝖦𝖬𝖦 reduction map
(5.3) with 𝜏 = 𝜔 and 𝜏 = 𝜔̌, and, thus, we obtain from Theorem 5.3 that 𝑅𝖲𝖬𝖦 is a reduction map for 𝜑. Hence, the 𝖲𝖬𝖦 reduction fits in our 𝖬𝖮𝖱

framework from Section 3.1 and it defines a 𝖱𝖮𝖬 by (3.5), which we refer to as the 𝖲𝖬𝖦-𝖱𝖮𝖬. It remains to show that the 𝖲𝖬𝖦-𝖱𝖮𝖬 indeed is a
Hamiltonian system, which was the motivation for preserving the underlying structure.

Theorem 5.11. The 𝖲𝖬𝖦-𝖱𝖮𝖬 is a Hamiltonian system (̌, 𝜔̌, Ȟ ) with the reduced Hamiltonian Ȟ ∶= 𝜑∗H = H ◦𝜑.

Proof. The 𝖱𝖮𝖬 vector field with the 𝖲𝖬𝖦 reduction (5.12) reads with (a) Eqs. (4.4) and (3.4a), and (b) equation (4.8)

𝑅𝖲𝖬𝖦
|

|𝜑(𝑚̌)(𝑋H
|

|𝜑(𝑚̌)) =
(

♯𝜔̌◦d𝜑∗
|

|(𝜚◦𝜑)(𝑚̌)◦♭𝜔
)

(

♯𝜔
(

dH |𝜑(𝑚̌)
))

(a)
= ♯𝜔̌

(

d𝜑∗
|

|𝑚̌
(

dH |𝜑(𝑚̌)
)) (b)

= ♯𝜔̌
(

dȞ |

|

|𝑚̌

)

,
(5.13)

which is exactly the Hamiltonian vector field of the Hamiltonian system (̌, 𝜔̌, Ȟ ). □

Using (5.4), the reduced vector field in the 𝖲𝖬𝖦-𝖱𝖮𝖬 in bold notation reads

𝑹𝖲𝖬𝖦
|

|𝝋(𝒎̌)

(

𝑿H
|

|𝝋(𝒎̌)

)

=
(

𝑫𝝋|⊤𝒎̌𝝎|𝝋(𝒎̌)𝑫𝝋|𝒎̌
)−1 𝑫𝝋|⊤𝒎̌𝝎|𝝋(𝒎̌)𝑿H

|

|𝝋(𝒎̌)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑫𝝋|⊤𝒎̌𝑫HHH |

⊤
𝝋(𝒎̌)=𝑫ȞHH

|

|

|

⊤

𝒎̌

∈ R𝑛. (5.14)

For a canonical Hamiltonian system, our generalization of the 𝖲𝖬𝖦-𝖱𝖮𝖬 is consistent with the definitions existing in the literature, which is
shown by the following lemma.

Lemma 5.12. For a canonical Hamiltonian system (R2𝑁 , J⊤2𝑁 ,HHH ) and reduced symplectic manifold (̌, 𝜔̌) = (R2𝑛, J⊤2𝑛), it holds that

(i) the 𝖲𝖬𝖦 reduction evaluated at the base point 𝝋 (𝒎̌) equals the symplectic inverse

𝑹𝖲𝖬𝖦
|

|𝝋(𝒎̌) (𝒗) = 𝑫𝝋|+𝒎̌𝒗 ∶= J2𝑛 𝑫𝝋|⊤𝒎̌ J⊤2𝑁𝒗 for all 𝒗 ∈ R2𝑁 ,

(ii) the 𝖲𝖬𝖦-𝖱𝖮𝖬 is consistent with [17], and
17

(iii) if, moreover, the embedding 𝝋 is linear, the 𝖲𝖬𝖦-𝖱𝖮𝖬 equals the symplectic Galerkin 𝖱𝖮𝖬 introduced in [59,60].
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Table 3
𝖬𝖮𝖱 techniques from different references that are covered by 𝖬𝖯𝖦 (3.11), 𝖦𝖬𝖦 (5.3), 𝖫𝖬𝖦 (5.11), and 𝖲𝖬𝖦 (5.12) introduced in our work.

Name Ref. Details

QPROM [54,55,57] 𝖬𝖯𝖦 𝝔 linear, 𝝋 quadratic
EncROM [12] 𝖬𝖯𝖦 𝝔,𝝋 autoencoders

qmf [56] 𝖦𝖬𝖦 𝝉 ≡ 𝑰𝑁 , 𝝔 linear, 𝝋 quadratic
Manifold Galerkin [13,14] 𝖦𝖬𝖦 𝝉 independent of 𝒎, symmetric, pos. def.

[15,16] 𝖫𝖬𝖦 𝝉 as in (5.10), 𝝔,𝝋 linear

Symplectic Galerkin [59,60] 𝖲𝖬𝖦 𝝉 ≡ J⊤2𝑁 , 𝝔, 𝝋 linear

SMG [17] 𝖲𝖬𝖦 𝝉 ≡ J⊤2𝑁 , 𝝔,𝝋 autoencoders

SMG-QMCL [58] 𝖲𝖬𝖦 𝝉 ≡ J⊤2𝑁 , 𝝔 linear, 𝝋 from manifold cotangent lift

Proof. By assumption, it holds  = R2𝑁 , 𝝎 = J⊤2𝑁 , ̌ = R2𝑛, 𝝎̌ = J⊤2𝑛. (i) Inserting the quantities in (5.14) yields the statement. (ii) For 𝝋 to be a
symplectomorphism, i.e., (𝜑∗𝜔)|𝑚̌ = 𝜔̌|𝑚̌ for all 𝑚̌ ∈ ̌, is with (5.1) equivalent to

𝑫𝝋|⊤𝒎̌ J⊤2𝑁𝑫𝝋|𝒎̌ = J⊤2𝑛 for all 𝒎̌ ∈ R2𝑛. (5.15)

Considering J⊤2𝑁 = −J2𝑁 and J⊤2𝑛 = −J2𝑛 and multiplying the previous equation on both sides with (−1), gives exactly the definition of a
symplectic embedding from [17, Def. 2]. Thus, the assumptions on the embedding are equivalent (up to smoothness requirements). Moreover, the
𝖲𝖬𝖦-𝖱𝖮𝖬 in [17] is projected with the symplectic inverse which (by point (i)) is equivalent to the 𝖲𝖬𝖦 reduction map for the case assumed in
the present lemma ( = R2𝑁 , 𝝎 = J⊤2𝑁 , ̌ = R2𝑛, 𝝎̌ = J⊤2𝑛).

(iii) If the embedding is linear, then there exists 𝑽 ∈ R2𝑁×2𝑛 such that 𝝋 (𝒎̌) = 𝑽 𝒎̌. Then, the requirement of 𝜑 to be a symplectomorphism is
equivalent to 𝑽 ⊤J2𝑁𝑽 = J2𝑛, which is in [59, Equation 3.2] formulated as the condition that 𝑽 is a symplectic matrix. Moreover, the symplectic
inverse of 𝑽 is used to obtain the 𝖱𝖮𝖬, which is, again, by point (i), equivalent to our approach in this particular case. □

However, our approach extends the existing methods, as it also works (i) on general smooth manifolds (not just  = R2𝑁 ) and (ii) even in the
case  = R2𝑁 for noncanonical symplectic forms 𝝎 ≠ J⊤2𝑁 . Structure-preserving 𝖬𝖮𝖱 for noncanonical Hamiltonian systems (for the particular
case of a linear embedding) is discussed in [84]. Compared to that approach, however, we use the noncanonical symplectic form prescribed by the
𝖥𝖮𝖬, which generalizes the symplectic inverse straightforwardly.

It remains to show that assuming nondegeneracy of 𝜑∗𝜔 is sufficient for 𝜑∗𝜔 being a symplectic form, which we show in the following.

Lemma 5.13. Consider a symplectic manifold (, 𝜔), a smooth manifold ̌, and a smooth embedding 𝜑 ∈ ∞(̌,) such that 𝜔̌ ∶= 𝜑∗𝜔 is
nondegenerate. Then 𝜔̌ is a symplectic form, (̌, 𝜔̌) is a symplectic manifold, and 𝜑 is a symplectomorphism.

Proof. It is sufficient to show that 𝜔̌ = 𝜑∗𝜔 is a symplectic form, which in this case results in showing that 𝜔̌ is skew-symmetric and closed. The
skew-symmetry is inherited for all points 𝑚̌ ∈ ̌ since with (4.6)

(𝜔̌|𝑚̌)𝑗1𝑗2 = (𝜔|𝜑(𝑚̌))𝓁1𝓁2
𝜕𝜑𝓁1

𝜕𝑥̌𝑗1

|

|

|

|

|𝑚̌

𝜕𝜑𝓁2

𝜕𝑥̌𝑗2

|

|

|

|

|𝑚̌
= −(𝜔|𝜑(𝑚̌))𝓁2𝓁1

𝜕𝜑𝓁2

𝜕𝑥̌𝑗2

|

|

|

|

|𝑚̌

𝜕𝜑𝓁1

𝜕𝑥̌𝑗1

|

|

|

|

|𝑚̌
= −(𝜔̌|𝑚̌)𝑗2𝑗1 .

Closedness is inherited since the pullback of a closed form is closed again [75, proof of Prop. 17.2]. □

Note that this is a central difference to reduced Riemannian metrics, which are automatically nondegenerate due to positive definiteness.
he following example shows that the reduced tensor field can degenerate if arbitrary embeddings 𝜑 in combination with a symplectic form are

considered.

Example 5.14 (Example for Degenerate 𝜑∗𝜔). For an arbitrary 𝑛 with 2𝑛 ≤ 𝑁 , consider  = R2𝑁 , 𝝎 = J⊤2𝑁 , ̌ = R2𝑛, and the embedding

𝝋 (𝒎̌) = 𝑬𝒎̌ with 𝑬 ∶=
(

𝑰2𝑛
𝟎2𝑁−2𝑛

)

∈ R2𝑁×2𝑛.

In this case, it holds 𝑫𝝋|𝒎̌ = 𝑬 and the reduced tensor field is

𝝎̌|𝒎̌ = 𝑫𝝋|⊤𝒎̌ 𝝎|𝝋(𝒎̌)𝑫𝝋|𝒎̌ =
(

𝑰2𝑛 𝟎2𝑁−2𝑛
)

(

𝟎𝑁 𝑰𝑁
−𝑰𝑁 𝟎𝑁

)(

𝑰2𝑛
𝟎2𝑁−2𝑛

)

= 𝟎 ∈ R2𝑛×2𝑛,

which is clearly not invertible.

6. Snapshot-based generation of embedding and point reduction

Another key task in 𝖬𝖮𝖱 is the choice of a particular embedding 𝜑 (the Approximation step in Section 3.1.4). In this section, we thus consider the
construction of the embedding in a data-driven setting, which is directly combined with the construction of a point reduction 𝜚. We first introduce
the data-driven setting (⊳ Section 6.1) and then detail four techniques to generate an embedding and a corresponding point reduction. In Table 3,
we present an overview of selected methods discussed in the literature and how they fit into our general framework. Throughout the section, we
18

assume to be given the 𝑁-dimensional smooth manifold  and a metric 𝑑 ∶ × → R≥0.
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6.1. Snapshot-based generation

In the scope of the present work, we focus on snapshot-based generation of an embedding and a point reduction. Consider a finite subset 𝑆train ⊆ 𝑆 of
the set of all solutions 𝑆 ⊆  from (3.2), which is referred to as the (training-)set of snapshots and its elements 𝑚train ∈ 𝑆train as snapshots. Typically,
the embedding and the point reduction are determined by searching in a given family of functions

𝜑,𝜚 ∶=
{

(𝜑, 𝜚) ∈ ∞(̌,) × ∞(,̌) ||
|

𝜚 is a point reduction for 𝜑 (3.4a)
}

by optimizing over a functional 𝐿∶𝜑,𝜚 → R≥0 that measures the quality of approximation based on the snapshots 𝑚train ∈ 𝑆train, i.e.,

(𝜑⋆, 𝜚⋆) ∶= arg min
(𝜑,𝜚)∈𝜑,𝜚

𝐿 (𝜑, 𝜚) . (6.1)

We emphasize that Lemma 2.1 guarantees that searching within 𝜑,𝜚 automatically yields that 𝜑 is a smooth embedding and 𝜑(̌) is an embedded
submanifold. Note that for practical purposes, which we do not further consider, one might want to relax the smoothness assumptions in 𝜑,𝜚.

One well-established functional is the mean squared error (𝖬𝖲𝖤)

𝐿𝖬𝖲𝖤 (𝜑, 𝜚) ∶=
1

|

|

𝑆train
|

|

∑

𝑚train∈𝑆train

(

𝑑
(

𝑚train, (𝜑◦𝜚)
(

𝑚train
)))2 ∈ R≥0. (6.2)

The motivation of minimizing the 𝖬𝖲𝖤 is that if 𝐿𝖬𝖲𝖤 (𝜑, 𝜚) = 0, it is guaranteed that all snapshots 𝑚train ∈ 𝑆train are in the image of the embedding
𝜑 and thus directly lay on the embedded submanifold, i.e., 𝑆train ⊆ 𝜑(̌). In general, however, the 𝖬𝖲𝖤 is not equal to zero. Nevertheless, then we
now that for each addend of (6.2) it holds that

(

𝑑
(

𝑚train, (𝜑◦𝜚)
(

𝑚train
)))2 ≤ |

|

𝑆train
|

|

⋅ 𝐿𝖬𝖲𝖤 (𝜑, 𝜚) (6.3)

for all snapshots 𝑚train ∈ 𝑆train due to non-negativity of the respective addends.
In the following we present four examples for snapshot-based generation for the case where  = R𝑁 , ̌ = R𝑛, 𝑇𝑚 = R𝑁 , 𝑇𝑚̌̌ = R𝑛 are

Euclidean vector spaces with chart mappings 𝑥 ≡ idR𝑁 , 𝑥̌ ≡ idR𝑛 and the metric 𝑑 is defined by a symmetric, positive-definite matrix 𝒈 ∈ R𝑁×𝑁

with

‖𝒎‖𝒈 ∶=
√

𝒎⊤𝒈𝒎, 𝒅 (𝒎, 𝒘) = ‖𝒎 −𝒘‖𝒈 , for 𝒎,𝒘 ∈ R𝑁 .

With this choice, the 𝖬𝖲𝖤 (6.2) in coordinates reads

𝑳𝖬𝖲𝖤 (𝝋,𝝔) =
1

|

|

𝑆train
|

|

∑

𝒎train∈𝑆train

‖

‖

‖

𝒎train − (𝝋◦𝝔)
(

𝒎train
)

‖

‖

‖

2

𝒈
. (6.4)

For each of the four presented approaches, we

(i) formulate the respective family of functions as a subset of 𝜑,𝜚,
(ii) describe how the 𝖬𝖲𝖤 functional (6.2) is optimized,

(iii) refer to existing work that uses the respective technique.

6.2. Linear subspaces

As discussed in Example 3.3, linear-subspace 𝖬𝖮𝖱 is included in our framework if the embedding 𝝋 and the point reduction 𝝔 are linear maps

𝝋lin (𝒎̌) ∶= 𝑽 𝒎̌, 𝝔lin (𝒎) ∶= 𝑾 ⊤𝒎, (6.5)

based on the matrices 𝑽 ,𝑾 ∈ R𝑁×𝑛 with 𝑛 ≪ 𝑁 . Due to the linearity of the mapping 𝝋lin, we get that 𝝋lin (R𝑛) is a linear subspace of  = R𝑁 ,
which is why we refer to this technique as linear-subspace 𝖬𝖮𝖱. We formulate the respective family of functions by

𝜑,𝜚,lin ∶=
{

(𝝋lin,𝝔lin) from (6.5) ||
|

𝑽 ,𝑾 ∈ R𝑁×𝑛 such that 𝑾 ⊤𝑽 = 𝑰𝑛

}

.

Proposition 6.1. The family of functions 𝜑,𝜚,lin is a subset of 𝜑,𝜚.

Proof. The assumption 𝑾 ⊤𝑽 = 𝑰𝑛 implies the point projection property (3.4a) with

(𝝔lin◦𝝋lin) (𝒎̌) = 𝑾 ⊤𝑽 𝒎̌ = 𝒎̌. □

Minimizing the 𝖬𝖲𝖤 (6.4) over 𝜑,𝜚,lin is equivalent to finding matrices 𝑽 ⋆,𝑾 ⋆ ∈ R𝑁×𝑛 with

(𝑽 ⋆,𝑾 ⋆) = arg min
(𝑽 ,𝑾 )∈R𝑁×𝑛×R𝑁×𝑛

𝑾 ⊤𝑽 =𝑰𝑛

∑

𝒎train∈𝑆train

‖

‖

‖

(𝑰𝑁 − 𝑽 𝑾 ⊤)𝒎train
‖

‖

‖

2

𝒈
.

This is, in turn, equivalent to the proper orthogonal decomposition (𝖯𝖮𝖣)

𝑽 ⋆ = arg min
𝑽 ∈R𝑁×𝑛
𝑽 ⊤𝒈𝑽 =𝑰𝑛

∑

𝒎train∈𝑆train

‖

‖

‖

(𝑰𝑁 − 𝑽 𝑽 ⊤𝒈)𝒎train
‖

‖

‖

2

𝒈
, (6.6)

since (i) ‖

‖

‖

(𝑰𝑁 − 𝑽 𝑾 ⊤)𝒎‖

‖

‖𝒈
≥ ‖

‖

‖

(𝑰𝑁 − 𝑽 𝑽 ⊤𝒈)𝒎‖

‖

‖𝒈
for all 𝑾 ∈ R𝑁×𝑛, and all 𝒎 ∈ R𝑁 , due to the projection theorem (see, e.g., [85, Sec. 4.3]), and

since (ii) the matrix 𝑽 can always be chosen to have orthonormal columns 𝑽 ⊤𝒈𝑽 = 𝑰𝑛. An optimal solution of (6.6) can be computed with the
19

truncated singular value decomposition (see, e.g., [86]).



Physica D: Nonlinear Phenomena 468 (2024) 134299P. Buchfink et al.

e

w

For structure-preserving linear-subspace 𝖬𝖮𝖱 techniques, 𝜑,𝜚,lin may have to be restricted to a class that preserves the respective structure.
For example, for the structure-preserving 𝖬𝖮𝖱 for Hamiltonian systems, the 𝖲𝖬𝖦 is used, which assumes 𝝋 to be a symplectomorphism and
𝑾 = J2𝑁𝑽 J⊤2𝑛 is the so-called symplectic inverse. Such 𝖬𝖮𝖱 techniques are used, e.g., in [59,60,87].

In more general cases, an explicit solution procedure for the corresponding optimization problem (6.1) may not be available. This includes,
.g., cases where the loss function 𝐿 is not the 𝖬𝖲𝖤 or cases where the loss function is optimized over a set of embeddings 𝝋 and point reduction

maps 𝝔 which have to fulfill additional constrains (e.g., the embedding being a symplectic map for structure-preserving MOR of Hamiltonian
systems). In such cases, iterative, gradient-based optimization schemes are typically used. Formulating the set of the considered embeddings and
point reduction maps itself as a manifold (e.g., as the (symplectic) Grassmann or Stiefel manifold), enables the usage of techniques from optimization
on manifolds. Examples for such techniques include optimizing on the Grassmann manifold [12], on the product of two Grassmann manifolds [79],
on the symplectic Stiefel manifold [88–90], or on the symplectic Grassmann manifold [91].

6.3. Quadratic manifolds

Recently, so-called 𝖬𝖮𝖱 on quadratic manifolds has become an active field of research [54–58]. In our terms, the embedding and point reduction
are set to

𝝋quad (𝒎̌) ∶= 𝑨2𝒎̌
⊗s2 +𝑨1𝒎̌ +𝑨0, 𝝔quad(𝒎) ∶= 𝑨⊤

1
(

𝒎 −𝑨0
)

, (6.7)

ith 𝑨2 ∈ R𝑁×𝑛(𝑛+1)∕2, 𝑨1 ∈ R𝑁×𝑛, 𝑨0 ∈ R𝑁 . By (⋅)⊗
s2 ∶R𝑛 → R𝑛(𝑛+1)∕2, 𝒎̌ ↦ 𝒎̌⊗s2, we denote the symmetric Kronecker product, which produces all

pairwise products of components
[

𝒎̌
]𝑖 ∈ R of 𝒎̌ for 1 ≤ 𝑖 ≤ 𝑛 while neglecting redundant entries, i.e.,

𝒎̌⊗s2 =
[

[

𝒎̌
]1

⋅
[

𝒎̌
]1 ,

[

𝒎̌
]1

⋅
[

𝒎̌
]2 ,

[

𝒎̌
]2

⋅
[

𝒎̌
]2 , … ,

[

𝒎̌
]𝑛

⋅
[

𝒎̌
]𝑛
]⊤

∈ R𝑛(𝑛+1)∕2.

The respective family of functions is

𝜑,𝜚,quad ∶=
{

(𝝋quad,𝝔quad) from (6.7) ||
|

𝑨⊤
1𝑨1 = 𝑰𝑛 and 𝑨⊤

1𝑨2 = 𝟎𝑛×𝑛(𝑛+1)∕2
}

. (6.8)

Proposition 6.2. The family 𝜑,𝜚,quad is a subset of 𝜑,𝜚.

Proof. The assumptions (6.8) on 𝑨2 and 𝑨1 imply the point projection property (3.4a),

(𝝔quad◦𝝋quad) (𝒎̌) = 𝑨⊤
1

(

𝑨2𝒎̌
⊗s2 +𝑨1𝒎̌ +𝑨0 −𝑨0

) (6.8)
= 𝒎̌. □

The matrices 𝑨1 and 𝑨2 are obtained in [54–58] from the 𝖬𝖲𝖤 functional (6.4). In this setting, the assumptions in (6.8) allow to determine the
matrices 𝑨0, 𝑨1 and 𝑨2 sequentially: First, 𝑨0 is chosen, e.g., as the mean of 𝑆train. Then, (6.4) is optimized for 𝑨1 (similarly to (6.6)). Finally, (6.4)
is optimized for 𝑨2, which results in a (regularized) linear least squares problem. The preceding papers use different tangent reductions to derive
the 𝖱𝖮𝖬, which can be classified with the framework introduced in the present paper: [54,55,57] use the 𝖬𝖯𝖦 reduction map (3.11), while [56]
relies on the 𝖦𝖬𝖦 reduction map (5.3) (but neglects a few higher order terms). The major difference between using 𝖬𝖯𝖦 or 𝖦𝖬𝖦 in that context
is that the 𝖬𝖯𝖦 projects the 𝖥𝖮𝖬 vector field with the tangent reduction

𝑹𝖬𝖯𝖦
|

|𝝋quad(𝒎̌) = 𝑫𝝔quad
|

|

|𝝋quad(𝒎̌)
= 𝑨⊤

1

which is constant, while the 𝖦𝖬𝖦 uses the tangent reduction from (5.4) with 𝝉|𝒎 = 𝑰𝑁 for all 𝒎 ∈ R𝑁 and 𝑫𝝋|𝒎̌ = 𝑨2𝑩2(𝒎̌) + 𝑨1 with a linear
function 𝑩2 ∶R𝑛 → R𝑛(𝑛+1)∕2×𝑛 describing the derivative of (⋅)⊗s2, resulting in

𝑹𝖦𝖬𝖦
|

|𝝋quad(𝒎̌) =
(

𝑫𝝋|⊤𝒎̌ 𝝉|𝝋quad(𝒎̌)𝑫𝝋|𝒎̌
)−1

𝑫𝝋|⊤𝒎̌ 𝝉|𝝋quad(𝒎̌)

=
(

𝑰𝑛 +
(

𝑩2(𝒎̌)
)⊤ 𝑨⊤

2𝑨2𝑩2(𝒎̌)
)−1

(

𝑨2𝑩2(𝒎̌) +𝑨1
)⊤ ,

which is typically nonlinear in 𝒎̌, and, thus, so is the reduced vector field in general.
In [58], structure-preserving 𝖬𝖮𝖱 of Hamiltonian systems on quadratic manifolds is investigated. Two approaches are presented and compared:

(i) The blockwise quadratic approach uses an embedding of a comparable structure as (6.7) in combination with the 𝖬𝖯𝖦 tangent reduction. In
contrast, (ii) the quadratic manifold cotangent lift uses the 𝖲𝖬𝖦-ROM. In order to construct a symplectomorphism from a quadratic embedding, the
so-called proper symplectic decomposition cotangent lift from [59] (which generates a linear embedding 𝝋) is generalized to the case of nonlinear
embeddings 𝝋 by introducing the so-called manifold cotangent lift. Based on this idea, the authors construct an embedding 𝝋 ∶ R2𝑛 → R2𝑁 , where
the first 𝑁 component functions are of the structure (6.7) and the last 𝑁 component functions are rational functions. The 𝖲𝖬𝖦 (as a special case
of the 𝖦𝖬𝖦) is then used for a structure-preserving tangent reduction of the Hamiltonian vector field.

6.4. Nonlinear compressive approximation

Following the idea of the previous subsection, the embedding and the point reduction can be defined more generally with

𝝋𝖭𝖢𝖠 (𝒎̌) ∶= 𝑨2𝒇 (𝒎̌) +𝑨1𝒎̌ +𝑨0, 𝝔𝖭𝖢𝖠 (𝒎) ∶= 𝑩⊤ (

𝒎 −𝑨0
)

, (6.9)

where 𝑨2 ∈ R𝑁×𝑛, 𝑨1 ∈ R𝑁×𝑛, 𝑨0 ∈ R𝑁 , 𝑩 ∈ R𝑁×𝑛 are matrices, and 𝒇 ∈ ∞(R𝑛,R𝑛) is a smooth nonlinear mapping for a given 𝑛 ∈ N.
Following [92], we refer to this approach as nonlinear compressive approximation (𝖭𝖢𝖠). The respective family of functions is

𝜑,𝜚,𝖭𝖢𝖠 ∶=
{

(𝝋𝖭𝖢𝖠,𝝔𝖭𝖢𝖠) from (6.9) ||
|

𝑩⊤𝑨1 = 𝑰𝑛, 𝑩⊤𝑨2 = 𝟎𝑛×𝑛
}

. (6.10)
20

Proposition 6.3. The family 𝜑,𝜚,𝖭𝖢𝖠 is a subset of 𝜑,𝜚.



Physica D: Nonlinear Phenomena 468 (2024) 134299P. Buchfink et al.

T

c
𝒇
T
t
s
s

6

𝖬

w
𝝋

i

P
𝒘

L

𝒘

Proof. The assumptions on 𝑨1, 𝑨2, and 𝑩 in (6.10) imply the point projection property (3.4a) with

(𝝔𝖭𝖢𝖠◦𝝋𝖭𝖢𝖠) (𝒎̌) = 𝑩⊤ (

𝑨2𝒇 (𝒎̌) +𝑨1𝒎̌ +𝑨0 −𝑨0
)

= 𝒎̌. □

The 𝖬𝖲𝖤 for this approach may be optimized sequentially as in the 𝖬𝖮𝖱 on quadratic manifolds discussed in the previous section using 𝑩 = 𝑨1.
his method is, e.g., used in [93], where 𝒇 is a neural network.

Multiple works investigate 𝖭𝖢𝖠: First, the quadratic embedding (6.7) discussed in the previous subsection is a special case of the 𝖭𝖢𝖠 when
hoosing 𝒇 (𝒎̌) = 𝒎̌⊗s2. Similarly, 𝒇 can be chosen as a higher-order polynomial in 𝒎̌ to obtain a more general approximation. Second, in [93],
is learned with an artificial neural network, while a time-discrete setting is considered for the reduction, which is not covered by our methods.

hird, [92] analyzes the approximation of a set of traveling wave solutions with (and without) varying support on the 𝖯𝖣𝖤 level using decision
rees and random forests in their numerical experiments. Interestingly, the authors show that a linear point reduction is enough to reproduce the
et of traveling wave solutions. Fourth, in [94], it is shown that the 𝖭𝖢𝖠 has its limitations in terms of the Kolmogorov (𝑛 + 𝑛)-width since the
olution is contained in an (𝑛 + 𝑛)-dimensional linear subspace of R𝑁 .

.5. Autoencoders

Autoencoders are a well-known technique in nonlinear dimension reduction (see, e.g., [95, Cha. 14]). In the understanding of the present work,
𝖮𝖱 with autoencoders chooses

𝝋𝖠𝖤 ∈ ∞(R𝑛,R𝑁 ), 𝝔𝖠𝖤 ∈ ∞(R𝑁 ,R𝑛), (6.11)

here both functions are artificial neural networks (𝖠𝖭𝖭𝗌) with network parameters 𝜽 ∈ R𝑛𝜽 (like weights and biases). Since 𝝔𝖠𝖤 ∶R𝑁 → R𝑛 and
𝖠𝖤 ∶R𝑛 → R𝑁 , the concatenation 𝝋𝖠𝖤◦𝝔𝖠𝖤 maps from R𝑁 over R𝑛 back to R𝑁 . The in-between compression to R𝑛 is typically referred to as the

bottleneck, 𝝔𝖠𝖤 as the encoder, 𝝋𝖠𝖤 as the decoder, and the concatenation 𝝋𝖠𝖤◦𝝔𝖠𝖤 as an autoencoder. The respective family is

𝜑,𝜚,𝖠𝖤 ∶=
{

(𝝋𝖠𝖤,𝝔𝖠𝖤) from (6.11) ∣ 𝜽 ∈ R𝑛𝜽 network parameters
}

.

Without special assumptions about the architecture of the 𝖠𝖭𝖭𝗌, it is generally impossible to show the point projection property (3.4a). However,
whenever the minimum of the cost functional (6.1) is small, then we show in the following that the point projection property (3.4a) holds
approximately. We assume to be given a norm ‖⋅‖𝒈̌ ∶R𝑛 → R≥0 such that 𝝋𝖠𝖤 and 𝝔𝖠𝖤 are Lipschitz continuous, i.e., there exists a constant 𝐶𝜑 ≥ 0
such that for all points 𝒎̌, 𝒘̌ ∈ R𝑛

‖

‖

𝝋𝖠𝖤 (𝒎̌) − 𝝋𝖠𝖤 (𝒘̌)‖
‖𝒈 ≤ 𝐶𝜑 ‖𝒎̌ − 𝒘̌‖𝒈̌ (6.12)

and a constant 𝐶𝜚 ≥ 0 such that for all points 𝒎,𝒘 ∈ R𝑁

‖

‖

𝝔𝖠𝖤 (𝒎) − 𝝔𝖠𝖤 (𝒘)‖
‖𝒈̌ ≤ 𝐶𝜚 ‖𝒎 −𝒘‖𝒈 . (6.13)

Theorem 6.4. For a given tuple (𝝋𝖠𝖤,𝝔𝖠𝖤) ∈ 𝜑,𝜚,𝖠𝖤 from the family of functions for 𝖬𝖮𝖱 with autoencoders with an 𝖬𝖲𝖤 value of 𝐿𝖬𝖲𝖤

(

𝝋𝖠𝖤,𝝔𝖠𝖤
)

≥ 0,
the point projection property (3.4a) is fulfilled approximately in the sense that for each 𝒎̌ ∈ R𝑛

‖

‖

(𝝔𝖠𝖤◦𝝋𝖠𝖤) (𝒎̌) − 𝒎̌‖

‖𝒈̌ ≤ 𝐶𝜚

√

|

|

𝑆train
|

|

𝐿𝖬𝖲𝖤

(

𝝋𝖠𝖤,𝝔𝖠𝖤
)

+ (𝐶𝜚𝐶𝜑 + 1) min
𝒘train∈𝑆train

‖

‖

‖

𝒎̌ − 𝝔𝖠𝖤
(

𝒘train
)

‖

‖

‖𝒈̌

Thus, for a bounded set 𝑀̌ ⊊ R𝑛, a fine sampling in 𝑆train of 𝑀̌ and small values of the 𝖬𝖲𝖤 functional such that the term |

|

𝑆train
|

|

𝐿𝖬𝖲𝖤

(

𝝋𝖠𝖤,𝝔𝖠𝖤
)

s small, the point projection property (3.4a) holds approximately on 𝑀̌ , i.e., 𝝔𝖠𝖤◦𝝋𝖠𝖤
|

|𝑀̌ ≈ id𝑀̌ .

roof. The proof is split in two parts. In the first part, we show that the inequality holds in the encoded training points 𝒘̌train ∶= 𝝔𝖠𝖤
(

𝒘train
)

with
train ∈ 𝑆train. Then, we show that the inequality holds for general 𝒎̌ ∈ R𝑛 by applying Lipschitz continuity.

Consider a fixed but arbitrary training point 𝒘train ∈ 𝑆train. Using (6.3) and (6.13), it holds
‖

‖

‖

(𝝔𝖠𝖤◦𝝋𝖠𝖤)
(

𝒘̌train
)

− 𝒘̌train
‖

‖

‖𝒈̌
= ‖

‖

‖

(𝝔𝖠𝖤◦𝝋𝖠𝖤◦𝝔𝖠𝖤)
(

𝒘train
)

− 𝝔𝖠𝖤
(

𝒘train
)

‖

‖

‖𝒈̌

≤ 𝐶𝜚
‖

‖

‖

(𝝋𝖠𝖤◦𝝔𝖠𝖤)
(

𝒘train
)

−𝒘train
‖

‖

‖𝒈

≤ 𝐶𝜚

√

|

|

𝑆train
|

|

𝐿𝖬𝖲𝖤

(

𝝋𝖠𝖤,𝝔𝖠𝖤
)

.

This property can be generalized to points 𝒎̌ ∈ R𝑛 ⧵ 𝝔𝖠𝖤
(

𝑆train
)

. The idea is that for a general Lipschitz continuous function 𝒇 ∶ R𝑛 → R𝑛 with
ipschitz constant 𝐶 ≥ 0 and ‖

‖

‖

𝒇
(

𝒘̌train
)

‖

‖

‖𝒈̌
≤ 𝐶𝐵 for some 𝐶𝐵 ≥ 0, it holds for all 𝒎̌ ∈ R𝑛 by adding a zero, triangle inequality, and Lipschitz

continuity

‖𝒇 (𝒎̌)‖𝒈̌ ≤ ‖

‖

‖

𝒇
(

𝒘̌train
)

‖

‖

‖𝒈̌
+ ‖

‖

‖

𝒇 (𝒎̌) − 𝒇
(

𝒘̌train
)

‖

‖

‖𝒈̌
≤ 𝐶𝐵 + 𝐶 ‖

‖

𝒎̌ − 𝒘̌train
‖

‖𝒈̌ .

For our case, we use 𝒇 (𝒎̌) = (𝝔𝖠𝖤◦𝝋𝖠𝖤) (𝒎̌) − 𝒎̌ with Lipschitz constant 𝐶 = 𝐶𝜚𝐶𝜑 + 1, bound 𝐶𝐵 = 𝐶𝜚

√

|

|

𝑆train
|

|

𝐿𝖬𝖲𝖤

(

𝝋𝖠𝖤,𝝔𝖠𝖤
)

, and points
̌ train = 𝝔𝖠𝖤

(

𝒘train
)

. Thus, it holds

‖

‖

(𝝔𝖠𝖤◦𝝋𝖠𝖤) (𝒎̌) − 𝒎̌‖

‖𝒈̌ ≤ 𝐶𝜚

√

|

|

𝑆train
|

|

𝐿𝖬𝖲𝖤

(

𝝋𝖠𝖤,𝝔𝖠𝖤
)

+ (𝐶𝜚𝐶𝜑 + 1) ‖‖
‖

𝒎̌ − 𝝔𝖠𝖤
(

𝒘train
)

‖

‖

‖𝒈̌
21

Taking the minimum over all 𝒘train ∈ 𝑆train on the right-hand side yields the result. □
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Remark 6.5 (Constrained Autoencoders). In [12], the authors introduce a novel autoencoder architecture, which aims at fulfilling the point projection
property (3.4a) exactly. The architecture of the encoder is chosen to invert the decoder layer-wise based on the assumption that the linear layers
of the decoder and encoder are pairwise biorthogonal. This biorthogonality is guaranteed by projecting iterates onto the so-called biorthogonal
manifold during the iterative optimization of the autoencoder.

One of the first works to combine autoencoders with projection-based 𝖬𝖮𝖱 is [13]. As discussed in Section 5.1, the time-continuous formulation
in that work considers the 𝖦𝖬𝖦 reduction for a state-independent Riemannian metric. A structure-preserving formulation for Hamiltonian systems
n combination with autoencoders is discussed in [17]. As shown in Lemma 5.12, this work is based on the 𝖲𝖬𝖦 reduction.

7. Conclusions

This work proposed a differential geometric framework for 𝖬𝖮𝖱 on manifolds in order to analyze two important efforts in 𝖬𝖮𝖱 jointly: (i)
The use of nonlinear projections and (ii) structure preservation. The key ingredient for our framework is an embedding for a low-dimensional
submanifold and a compatible reduction map. The joint abstraction allowed us to derive shared theoretical properties, such as the exact reproduction
result. As two possible reduction mappings, we discussed (a) the manifold Petrov–Galerkin (𝖬𝖯𝖦) using the differential of the point reduction and
b) the generalized manifold Galerkin (𝖦𝖬𝖦), which is based on a nondegenerate tensor field. Moreover, we showed that structure-preserving 𝖬𝖮𝖱

n manifolds for Lagrangian and Hamiltonian systems can be accomplished by choosing specific nondegenerate tensor fields in the 𝖦𝖬𝖦 reduction
ap, which we refer to as the Lagrangian manifold Galerkin (𝖫𝖬𝖦) and symplectic manifold Galerkin (𝖲𝖬𝖦). In order to connect our framework to

xisting work in the field, we demonstrated how different techniques for data-driven construction of the embedding and point reduction map are
eflected in our approach. We discussed four approximation types (linear, quadratic, nonlinear compressive, and autoencoders) and linked each of
hese types to multiple existing works in the field.

We believe that our framework can be extended in several regards: First, other structure-preserving 𝖬𝖮𝖱 techniques might be formulated in
he framework, such as Poisson systems [96], port-Hamiltonian (descriptor) systems [65,66], or (port-)metriplectic systems [97–99]. Thereby,
ll the described nonlinear projections (quadratic, nonlinear compressive, autoencoders) become available for such structured systems. Second,
he framework should be extended to other established 𝖬𝖮𝖱 approaches like lifting [32,33], symmetry reduction [100] and shifting-based
echanisms [35,42–44,48,57]. Third, as the high-dimensional differential equations we consider as 𝖥𝖮𝖬 are often obtained from the semi-
iscretization of systems of partial differential equations (𝖯𝖣𝖤𝗌), the framework should be extended to the 𝖯𝖣𝖤 level. Such a formulation would
orward the structures formulated on the 𝖯𝖣𝖤 level to the 𝖮𝖣𝖤 level.
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Appendix A. Topological spaces and topological manifolds

A.1. Fundamentals

Consider a set . A topology on  is a collection  of subsets of  (which are called open subsets of ) that satisfy that (i) both the empty
set ∅ and the set itself  are open, (ii) each union of open subsets is open, (iii) each intersection of finitely many open subsets is open. The pair
(,  ) is called a topological space. If the specific topology is clear from the context or not particularly relevant for the discussion, then we simply
write  instead of (,  ).

For two topological spaces  and , a map 𝐹 ∶ →  is called continuous, if for every open subset 𝑉 ⊆ , the preimage {𝑚 ∈  ∣ 𝐹 (𝑚) ∈ 𝑉 }
s open in . We call 𝐹 a homeomorphism, if (i) it is bijective (and thus the inverse 𝐹−1 ∶ →  exists) and (ii) both 𝐹 and 𝐹−1 are continuous.
orrespondingly, two topological spaces  and  are called homeomorphic if there exists a homeomorphism from  to . Moreover,  is called

ocally homeomorphic to R𝑁 for 𝑁 ∈ N if for every point 𝑚 ∈  there exists an open set 𝑈 ⊆  with 𝑚 ∈ 𝑈 , which is homeomorphic to an open
ubset of R𝑁 .

A topological space  is called a topological manifold of dimension 𝑁 if it is locally homeomorphic to R𝑁 (and additionally Hausdorff and
econd-countable, see e.g. [75, Cha. 1 and App. A]). We denote the dimension with dim() = 𝑁 .

.2. Proof of Lemma 2.1

By assumption, 𝜑 ∈ ∞(̌,) and 𝜚 ∈ ∞(,̌) are smooth maps. Then, the restrictions to 𝜑(̌) ⊆  are smooth maps in the subspace
opology, i.e., 𝜑 ∈ ∞(, 𝜑(̌)) and 𝜚|𝜑(̌) ∈ ∞(𝜑(̌),̌). Thus, 𝜑 is a smooth diffeomorphism onto its image in the subspace topology. By [75,

Prop. 4.8. (a)], 𝜑 is a smooth immersion and thus a smooth embedding.

Appendix B. Proofs for Lagrangian systems

B.1. Derivation of the reduced Euler–Lagrange equations

The derivatives of Ľ can be computed for 𝑌 =
(

𝑞, 𝑣̌𝑖 𝜕
𝜕𝑦̌𝑖

|

|

|

|𝑞

)

∈ 𝑇 ̌ with 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝑖 ≤ 𝑄̌ as

𝜕Ľ
𝜕𝜉𝑖

|

|

|

|𝑌
= 𝜕L

𝜕𝜉𝑗
|

|

|

|𝜑
(

𝑌
)

𝜕𝜑𝑗

𝜕𝜉𝑖
|

|

|

|𝑌
+ 𝜕L

𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝑌
)

𝜕𝜑𝑄+𝑗

𝜕𝜉𝑖
|

|

|

|𝑌

= 𝜕L
𝜕𝜉𝑗

|

|

|

|𝜑
(

𝑌
)

𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝑞
+ 𝜕L

𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝑌
)

𝜕2𝜑
𝑗

𝜕𝑦̌𝑖 𝜕𝑦̌𝑘
|

|

|

|𝑞
𝑣̌𝑘

𝜕Ľ

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌
= 𝜕L

𝜕𝜉𝑗
|

|

|

|𝜑
(

𝑌
)

𝜕𝜑𝑗

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌
+ 𝜕L

𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝑌
)

𝜕𝜑𝑄+𝑗

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌

= 𝜕L
𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝑌
)

𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝑞
.

valuation for the lifted curve 𝛤𝛾̌ ∈ ∞(, 𝑇 ̌) and derivation with respect to the time, yields for 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝑖,𝓁, 𝑝 ≤ 𝑄̌

d
d𝑡

(

𝜕Ľ

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝛤𝛾̌ (⋅)

)

|

|

|

|

|

|𝑡

= d
d𝑡

(

𝜕L
𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (⋅)
)

𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝛾̌(⋅)

)

|

|

|

|

|

|𝑡

= 𝜕2L
𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝛾̌(𝑡)

𝜕𝜑𝑘

𝜕𝜉𝓁
|

|

|

|𝛤𝛾̌ (𝑡)

d
d𝑡

(

𝛤𝛾̌(⋅)
𝓁
)

|

|

|

|𝑡

+ 𝜕2L
𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝛾̌(𝑡)

𝜕𝜑𝑘

𝜕𝜉𝑄̌+𝓁

|

|

|

|𝛤𝛾̌ (𝑡)

d
d𝑡

(

𝛤𝛾̌(⋅)
𝑄̌+𝓁

)

|

|

|

|𝑡

+ 𝜕2L
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝛾̌(𝑡)

𝜕𝜑𝑄+𝑘

𝜕𝜉𝓁
|

|

|

|𝛤𝛾̌ (𝑡)

d
d𝑡

(

𝛤𝛾̌(⋅)
𝓁
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|

|

|

|𝑡

+ 𝜕2L
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗
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|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
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𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝛾̌(𝑡)

𝜕𝜑𝑄+𝑘
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|

|

|

|𝛤𝛾̌ (𝑡)

d
d𝑡
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𝛤𝛾̌(⋅)
𝑄̌+𝓁

)
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|
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+ 𝜕L
𝜕𝜉𝑄+𝑗
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|𝜑
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𝑘
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𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗
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|𝜑 𝛤𝛾̌ (𝑡) |𝛾̌(𝑡) |𝑞
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|

|

|

|𝛾̌(𝑡)

d2
d𝑡2 𝛾̌

𝓁|
|

|

|𝑡

+ 𝜕L
𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕2𝜑
𝑗

𝜕𝑦̌𝓁 𝜕𝑦̌𝑖
|

|

|

|𝛾̌(𝑡)

d
d𝑡 𝛾̌

𝓁|
|

|𝑡

n total, it holds for 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝑖,𝓁, 𝑝 ≤ 𝑄̌ in

0 = 𝜕Ľ
𝜕𝜉𝑖

|

|

|

|𝛤𝛾̌ (𝑡)

− d
d𝑡

(

𝜕Ľ

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝛤𝛾̌ (⋅)

)

|

|

|

|

|

|𝑡

= 𝜕𝜑
𝑗

𝜕𝑦̌𝑖
|

|

|

|𝛾̌(𝑡)

(

𝜕L
𝜕𝜉𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)
− 𝜕2L

𝜕𝜉𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝛾̌(𝑡)

d
d𝑡 𝛾̌

𝓁|
|

|𝑡

− 𝜕2L
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕2𝜑
𝑘

𝜕𝑦̌𝓁 𝜕𝑦̌𝑝
|

|

|

|𝛾̌|𝑡

d
d𝑡 𝛾̌

𝑝|
|

|𝑡
d
d𝑡 𝛾̌

𝓁|
|

|𝑡

− 𝜕2L
𝜕𝜉𝑄+𝑘 𝜕𝜉𝑄+𝑗

|

|

|

|𝜑
(

𝛤𝛾̌ (𝑡)
)

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝛾̌(𝑡)

d2
d𝑡2 𝛾̌

𝓁|
|

|

|𝑡

)

.

B.2. Proof of Theorem 5.7

In order to show that the systems are equivalent, we show that the underlying vector fields are identical, i.e., we show that the 𝖫𝖬𝖦

reduction (5.11) of the Euler–Lagrange vector field (4.11) results in the reduced Euler–Lagrangian vector field (5.8). To simplify the notation,
we use 𝜏 = 𝜏𝖫𝖬𝖦 and 𝜏 = 𝜏𝖫𝖬𝖦 in the following, with 𝜏𝖫𝖬𝖦 as in (5.9). Let 𝑌 = (𝑞, 𝑣̌) =

(

𝑞, 𝑣̌𝑖 𝜕
𝜕𝑦̌𝑖

|

|

|

|𝑞

)

∈ 𝑇 ̌. The reduced tensor field 𝜏 = d𝜑∗𝜏 reads
for 1 ≤ 𝛼, 𝛽 ≤ 2𝑄

𝜏|𝑌 = 𝜕𝜑𝛾

𝜕𝜉𝛼
|

|

|

|𝑌

(

𝜏|𝜑(𝑌
)

)

𝛾𝛿
𝜕𝜑𝛿

𝜕𝜉𝛽
|

|

|

|𝑌
d𝜉𝛼|𝑌 ⊗ d𝜉𝛽 ||

|𝑌

=
(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑘𝓁

(

𝜕2𝜑
𝑘

𝜕𝑦̌𝑝 𝜕𝑦̌𝑖
|

|

|

|𝑌
𝑣̌𝑝 d𝜉𝑖||

|𝑌
+ 𝜕𝜑

𝑘

𝜕𝑦̌𝑖
|

|

|

|𝑌
d𝜉𝑄̌+𝑖|

|

|𝑌

)

⊗

(

𝜕𝜑
𝓁

𝜕𝑦̌𝑗
|

|

|

|𝑌
d𝜉𝑗 ||

|𝑌

)

+
(

𝜏𝑣||𝜑(𝑌
)

)

𝑘𝓁

(

𝜕𝜑
𝑘

𝜕𝑦̌𝑖
|

|

|

|𝑌
d𝜉𝑖||

|𝑌

)

⊗

(

𝜕2𝜑
𝓁

𝜕𝑦̌𝑝 𝜕𝑦̌𝑗
|

|

|

|𝑌
𝑣̌𝑝 d𝜉𝑗 ||

|𝑌
+ 𝜕𝜑

𝓁

𝜕𝑦̌𝑗
|

|

|

|𝑌
d𝜉𝑄̌+𝑗 |

|

|

|𝑌

)

=
(

𝜏𝑞
|

|

|𝑌

)

𝑖𝑗
d𝜉𝑄̌+𝑖|

|

|𝑌
⊗ d𝜉𝑗 ||

|𝑌
+
(

𝜏𝑞𝑣
|

|

|𝑌

)

𝑖𝑗
d𝜉𝑖||

|𝑌
⊗ d𝜉𝑗 ||

|𝑌

+
(

𝜏𝑣||𝑌

)

𝑖𝑗
d𝜉𝑖||

|𝑌
⊗ d𝜉𝑄̌+𝑗 |

|

|

|𝑌

ith the abbreviations
(

𝜏𝑞
|

|

|𝑌

)

𝑖𝑗
∶= 𝜕𝜑

𝑘

𝜕𝑦̌𝑖
|

|

|

|𝑌

(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑘𝓁

𝜕𝜑
𝓁

𝜕𝑦̌𝑗
|

|

|

|𝑌
,

(

𝜏𝑣||𝑌

)

𝑖𝑗
∶= 𝜕𝜑

𝑘

𝜕𝑦̌𝑖
|

|

|

|𝑌

(

𝜏𝑣||𝜑(𝑌
)

)

𝑘𝓁

𝜕𝜑
𝓁

𝜕𝑦̌𝑗
|

|

|

|𝑌
,

(

𝜏𝑞𝑣
|

|

|𝑌

)

𝑖𝑗
∶= 𝜕2𝜑

𝑘

𝜕𝑦̌𝑝 𝜕𝑦̌𝑖
|

|

|

|𝑌
𝑣̌𝑝

(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑘𝓁

𝜕𝜑
𝓁

𝜕𝑦̌𝑗
|

|

|

|𝑌
+ 𝜕𝜑

𝑘

𝜕𝑦̌𝑖
|

|

|

|𝑌

(

𝜏𝑣||𝜑(𝑌
)

)

𝑘𝓁

𝜕2𝜑
𝓁

𝜕𝑦̌𝑝 𝜕𝑦̌𝑗
|

|

|

|𝑌
𝑣̌𝑝

for 1 ≤ 𝑘,𝓁 ≤ 𝑄 and 1 ≤ 𝑖, 𝑗, 𝑝 ≤ 𝑄̌. It is easy to verify that the inverse of 𝜏 is given by

𝜏|−1
𝑌

= (𝜏𝑞
|

|

|𝑌
)
𝑖𝑗 𝜕

𝜕𝜉𝑖
|

|

|

|𝑌
⊗ 𝜕

𝜕𝜉𝑄̌+𝑗

|

|

|

|𝑌

− (𝜏𝑣||𝑌 )
𝑖𝑘 (𝜏𝑞𝑣

|

|

|𝑌
)
𝑘𝓁

(𝜏𝑞
|

|

|𝑌
)
𝓁𝑗 𝜕

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌
⊗ 𝜕

𝜕𝜉𝑄̌+𝑗

|

|

|

|𝑌

+ (𝜏𝑣||𝑌 )
𝑖𝑗 𝜕

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌
⊗ 𝜕

𝜕𝜉𝑗
|

|

|

|𝑌

(B.1)

with 1 ≤ 𝑖, 𝑗, 𝑘,𝓁 ≤ 𝑄̌, which in bold notation reads

𝝉̌|𝒀̌ 
=
⎛

⎜

⎜

⎝

𝝉̌𝑞𝑣
|

|

|𝒀̌ 
𝝉̌𝑣||𝒀̌ 

𝝉̌𝑞
|

|

|𝒀̌ 
𝟎

⎞

⎟

⎟

⎠

and 𝝉̌|−1
𝒀̌ 

=

⎛

⎜

⎜

⎜

⎝

𝟎 𝝉̌𝑞
|

|

|

−1

𝒀̌ 

𝝉̌𝑣||
−1
𝒀̌ 

−𝝉̌𝑣||
−1
𝒀̌ 

𝝉̌𝑞𝑣
|

|

|𝒀̌ 
𝝉̌𝑞
|

|

|

−1

𝒀̌ 

⎞

⎟

⎟

⎟

⎠

.
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c

T

Moreover, we obtain for the indices 1 ≤ 𝛽, 𝛾 ≤ 2𝑄 and 1 ≤ 𝛼 ≤ 2𝑄̌ and 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝓁, 𝑝, 𝑟 ≤ 𝑄̌

♭𝜏
(

𝑅𝖫𝖬𝖦(𝑋L )
)

|

|

|𝑌
=
(

d𝜑∗
|

|𝑌

(

♭𝜏
(

𝑋L
|

|𝜑
(

𝑌
)

)))

𝛼
d𝜉𝛼||

|𝑌

= 𝜕𝜑𝛽

𝜕𝜉𝛼
|

|

|

|𝑌

(

𝜏|𝜑(𝑌
)

)

𝛽𝛾

(

𝑋L
|

|𝜑
(

𝑌
)

)𝛾
d𝜉𝛼||

|𝑌

=
(

𝜕𝜑𝑗

𝜕𝜉𝛼
|

|

|

|𝑌

(

𝜏𝑣||𝜑(𝑌
)

)

𝑗𝑘

(

𝑋L
|

|𝜑
(

𝑌
)

)𝑄+𝑘

+ 𝜕𝜑𝑄̌+𝑗

𝜕𝜉𝛼
|

|

|

|𝑌

(

𝜏|𝜑(𝑌
)

)

𝑗𝑘

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝑞
𝑣̌𝓁

)

d𝜉𝛼||
|𝑌

=
(

𝜕𝜑
𝑗

𝜕𝑦̌𝑟
|

|

|

|𝑞

(

𝜏𝑣||𝜑(𝑌
)

)

𝑗𝑘

(

𝑋L
|

|𝜑
(

𝑌
)

)𝑄+𝑘

+ 𝜕2𝜑
𝑗

𝜕𝑦̌𝑟 𝜕𝑦̌𝑝
|

|

|

|𝑞
𝑣̌𝑝

(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑗𝑘

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝑞
𝑣̌𝓁

)

d𝜉𝑟||
|𝑌

+ 𝜕𝜑
𝑗

𝜕𝑦̌𝑟
|

|

|

|𝑞

(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑗𝑘

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝑞
𝑣̌𝓁 d𝜉𝑄̌+𝑟|

|

|𝑌

(B.2)

and observe that the last term equals
(

𝜏𝑞
|

|

|𝑌

)

𝑟𝓁
. Combining (B.2) with (B.1), the 𝖫𝖬𝖦 reduction (5.11) of the Euler–Lagrange vector field (4.11)

an be written (with the indices 1 ≤ 𝛽, 𝛾 ≤ 2𝑄 and 1 ≤ 𝛼 ≤ 2𝑄̌ and 1 ≤ 𝑗, 𝑘 ≤ 𝑄 and 1 ≤ 𝑖,𝓁, 𝑝, 𝑟 ≤ 𝑄̌) as

𝑅𝖫𝖬𝖦(𝑋L )|
|𝑌

=
((

♯𝜏◦d𝜑∗
|

|𝑌
◦♭𝜏

)(

𝑋L
|

|𝜑
(

𝑌
)

))𝛼 𝜕
𝜕𝜉𝛼

|

|

|

|𝑌

=
(

𝜏𝑞
|

|

|𝑌

)𝑖𝑟(

𝜏𝑞
|

|

|𝑌

)

𝑟𝓁
𝑣̌𝓁 𝜕

𝜕𝜉𝑖
|

|

|

|𝑌

+
(

𝜏𝑣||𝑌

)𝑖𝑟
(

𝜕𝜑
𝑗

𝜕𝑦̌𝑟
|

|

|

|𝑞

(

𝜏𝑣||𝜑(𝑌
)

)

𝑗𝑘

(

𝑋L
|

|𝜑
(

𝑌
)

)𝑄+𝑘

+ 𝜕2𝜑
𝑗

𝜕𝑦̌𝑟 𝜕𝑦̌𝑝
|

|

|

|𝑞
𝑣̌𝑝

(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑗𝑘

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝑞
𝑣̌𝓁

−
(

𝜏𝑞𝑣
|

|

|𝑌

)

𝑟𝓁

(

𝜏𝑞
|

|

|𝑌

)𝓁𝑝(

𝜏𝑞
|

|

|𝑌

)

𝑝𝑠
𝑣̌𝑠

)

𝜕

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌

= 𝑣̌𝑖 𝜕
𝜕𝜉𝑖

|

|

|

|𝑌
+
(

𝜏𝑣||𝑌

)𝑖𝑟
(

𝜕𝜑
𝑗

𝜕𝑦̌𝑟
|

|

|

|𝑞

(

𝜏𝑣||𝜑(𝑌
)

)

𝑗𝑘

(

𝑋L
|

|𝜑
(

𝑌
)

)𝑄+𝑘

+ 𝜕2𝜑
𝑗

𝜕𝑦̌𝑟 𝜕𝑦̌𝑝
|

|

|

|𝑞
𝑣̌𝑝

(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑗𝑘

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝑞
𝑣̌𝓁

− 𝜕2𝜑
𝑗

𝜕𝑦̌𝑝 𝜕𝑦̌𝑟
|

|

|

|𝑞
𝑣̌𝑝

(

𝜏𝑞
|

|

|𝜑
(

𝑌
)

)

𝑗𝑘

𝜕𝜑
𝑘

𝜕𝑦̌𝓁
|

|

|

|𝑞
𝑣̌𝓁

− 𝜕𝜑
𝑗

𝜕𝑦̌𝑟
|

|

|

|𝑞

(

𝜏𝑣||𝜑(𝑌
)

)

𝑗𝑘

𝜕2𝜑
𝑘

𝜕𝑥̌𝓁 𝜕𝑦̌𝑝
|

|

|

|𝑞
𝑣̌𝓁 𝑣̌𝑝

)

𝜕

𝜕𝜉𝑄̌+𝑖

|

|

|

|𝑌

= 𝑋̌Ľ
|

|

|𝑌

hus, the vector field obtained with the 𝖫𝖬𝖦 reduction (5.11) with the 𝖫𝖬𝖦 tensor field 𝜏𝖫𝖬𝖦 from (5.9) results in the reduced Euler–Lagrange
vector field (5.8), which is equivalent to solving the reduced Euler–Lagrange Eqs. (5.6) by construction.
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