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Abstract: Shared control research offers promising opportunities and improvements for people
with limited mobility through robotic assistance, for example in wheelchair applications or
rehabilitation systems. Such systems also offer a wide range of possibilities for assisting people
with limited mobility out of bed. In contrast to existing works in the field of shared control, in
which the reference trajectory is assumed to be known to both partners or is specified by one
of them in a leader-follower approach, this work aims to enable both partners to influence the
reference trajectory. To this end, two existing approaches from the literature are implemented.
The first one is a trajectory deformation approach and the other an existing work on cooperative
agreement through trajectory negotiation. Both are investigated in simulations and the results
show that the cooperative agreement process requires less control effort on the part of the
humans to communicate their trajectory request than in trajectory negotiation. The results
thus promise an advantage through cooperation already at the trajectory level of a shared

control system.
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1. INTRODUCTION

Interactive human—machine systems aim to fuse human
strengths with automation in a way that measurably im-
proves task performance while easing cognitive and phys-
ical load. This approach aims to create a symbiotic re-
lationship in which human input is seamlessly integrated
with automation (Inga et al., 2022). Such systems have
been extensively studied and developed under the concept
of shared control, in domains such as driver assistance
systems (Marcano et al., 2020), robot-assisted minimally
invasive surgery (Varga and Poncelet, 2025) and teleoper-
ation technologies (Li et al., 2023; Grobbel et al., 2023).
Intelligent wheelchairs represent another prominent appli-
cation area (Carlson and Demiris, 2012).

Beyond these domains, everyday motions — such as getting
elderly and ill people out of bed — pose stringent demands
where users face movement restrictions and safety risks,
making shared control attractive. In this context, we
consider a stand up aid, i.e., a powered assistive device
that supports the sit-to-stand transition from bed by
providing guided motion and partial weight support for
people with limited mobility. Statistics from the German
Ministry of Health show just how great the demand is
for technical aids, which also include standing aids. In
2023 alone, 11.17 billion Euro was spent on these aids
(BMG, 2024). However, many existing systems provide
only static, one-size-fits-all support and cannot adapt
when a person’s preferred movement path differs from
the device’s default trajectory. A shared control approach
would enable individualized support that respects user
preferences.

Many shared control methods assume that the cooperative
system follows a predefined reference trajectory known
to both agents - e.g., the lane center in assisted driving
(Claussmann et al., 2020). However, as noted by (Schnei-
der et al., 2024b), this assumption does not universally
apply—particularly in contexts such as stand-up assis-
tance systems, where a shared reference trajectory may
not exist. Humans and automation each pursue different
movement desires. However, different reference trajectories
lead to control conflicts (Abbink et al., 2012). Effectively
resolving these control conflicts is crucial, as it directly
determines whether a stand up aid can provide seamless,
individualized support that adapts in real time to the
individual preferences and needs of each user.

Two resolving strategies are apparent: (i) a leader—follower
scheme in which either the human or the robot prescribes
the reference, or (ii) a cooperative scheme in which both
agents converge on a common trajectory through negotia-
tion. Since a stand up aid must balance user abilities and
needs with device requirements (e.g., ergonomic and safe
motion), we pursue the cooperative option.

Such a trajectory cooperation process for finding a com-
mon reference trajectory is proposed in (Schneider et al.,
2022). It is an emancipated agreement process, i.e., one in
which humans and automation are treated equally, with
the aim of reaching a consensus on a common trajectory.
The application considered in that work is the haptically
coupled accompaniment of people with limited mobility by
a robot in a hospital.
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In this paper, we adapt the same cooperation mechanism
to a stand up aid and analyze it in simulation. Using
a simulative model, a simulation will show that such
a cooperation process with an automation adaptation
strategy leads to a lower overall control effort on the part
of humans to communicate their trajectory request than
an approach from the literature that was examined in
comparison. Section 2 presents the related works. Section 3
presents the developed cooperative negotiation algorithm
in more detail, as well as the approach from the literature
that was considered for comparison. Section 4 shows the
simulated comparison of both methods. Section 5 discusses
the results.

2. RELATED WORK ON COOPERATIVE
TRAJECTORY FINDING

We use the term cooperation on the trajectory layer to
denote the process by which human and automation jointly
determine the reference trajectory in a cooperative system
in contrast to adaptive control methods on the action
layer, e.g. in (Varga, 2024). Although the term is used
heterogeneously and, to the authors’ knowledge, lacks a
formal definition in the literature, we adopt the perspec-
tive of horizontal cooperation within the layer models of
human-machine cooperation (HMC) (for HMC-layer mod-
els see for example (Abbink et al., 2018; Flemisch et al.,
2019; Rothfuf} et al., 2019)). The goal of the cooperation
on the trajectory layer is to establish a common trajectory
when none is implied by the environment or by other
contextual information, thereby preventing conflicts that
would otherwise surface at the action or execution level.
A good summary of this is provided in the paper (Schnei-
der et al., 2024b). It synthesizes cooperative trajectory-
planning approaches for shared control and clarifies how
human and automation trajectory requests are represented
and reconciled. We briefly outline these categories below
following (Schneider et al., 2024b).

In human-dominated methods, the system explicitly es-
timates the human’s trajectory request (e.g., from con-
trol inputs or haptic interaction) and then commands
the automation to follow that estimate independently. In
some cases, haptic shared control may apply corrective
torques/forces to stabilize tracking, but the human retains
full control of the reference trajectory (e.g., (Gnatzig et al.,
2012; Boink et al., 2014)).

In automation-dominated methods, the automation com-
putes a safe or task-optimal trajectory and enforces it,
intervening whenever the human deviates beyond admissi-
ble limits. Such corrective interventions (e.g., path projec-
tion, constraint enforcement) are common in safety-critical
driving assistance (Huang et al., 2022; Jiang et al., 2021),
where the human’s request is secondary or filtered through
safety constraints.

There are also strategies where both the human’s and
the automation’s trajectory requests are combined using
weighted fusion approaches. In these systems, the influence
of each agent on the final trajectory is determined by
factors such as the human’s attention level (Benloucif
et al., 2019) or a fixed gain to give the human the
opportunity to influence the trajectory of the automation
(Losey and O’Malley, 2018). These factors are used to

weight the human’s trajectory request relative to the
automation’s. However, challenges with these systems is
that either the automation decides the amount of the
human’s influence (Benloucif et al., 2019) or the human
has to continuously communicate his trajectory change
request (Losey and O’Malley, 2018).

A more novel and flexible approach is discussed in (Schnei-
der et al., 2022), which introduces a negotiation-based
model for trajectory planning that allows for equal or
emancipated influence on the common reference trajectory
with an automation that can adapt to the reference of
the human. Here, both the human and the automation
continuously contribute to the trajectory planning pro-
cess through ongoing negotiation. This approach stands
in contrast to the traditional leader-follower models, as it
allows for an emancipated cooperation, where both agents
actively participate in determining the trajectory. This
is particularly beneficial in less time- or safety-critical
applications, where cooperation and mutual adaptation
are more important than rigid control.

While existing methods either prioritize the automation
for safety or the human’s desires with varying degrees
of automation assistance, the negotiation-based approach
presents a promising emancipated alternative in which
neither humans nor automation are deliberately given
ultimate authority. To compare this alternative with an
existing approach, the negotiation-based approach from
(Schneider et al., 2022) is implemented together with
the trajectory deformation approach from (Losey and
O’Malley, 2018) and presented in the following section.

3. METHODS FOR COOPERATIVE TRAJECTORY
FINDING

3.1 Trajectory deformation

The trajectory deformation approach of (Losey and
O’Malley, 2018) is an extension of a classic impedance
control approach, in which the robot reacts to a force
exerted by a human with a deviation from its original tra-
jectory. With the classic impedance control approach, only
the robot’s current trajectory can be influenced, but not
its future trajectory. The trajectory deformation approach
makes it possible to change the future trajectory of the
robot within the time interval 7 = 7y — 7; by applying the
force Fy(7;). The idea is that this force causes a defor-
mation of the robot’s original trajectory v4(t) by a vector
field V' (t). This vector field is described on the one hand by
the change in energy caused by the human force Fy(r;).
On the other hand, the trajectory should be as similar
as possible to a human trajectory by choosing a minimum
jerk model. This results in the deformed trajectory 74 from
the original trajectory ~4 via the following relationship:

Ya = va + noH Fy(1;). (1)

The scalar force component Fy(7) corresponds to the
force input of the human in the corresponding spatial
direction, the parameter p is a gain factor, § is the sample
time between two waypoints, and H results from energy
optimization.
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3.2 Trajectory negotiation

The structure of trajectory negotiation follows the system
structure proposed in (Schneider et al., 2024a), consisting
of a trajectory planning module for the automation, an
estimation of the human’s desired trajectory from the
force Fy, a parameter estimation for the human’s stub-
bornness Tstubb,u, and an arbitration module, which is
implemented as a negotiation module in this work. The
trajectory planning of the automation is optimization-
based and minimizes both the distance to the origin path
d(va) and the required velocity vs. The parameters wq
and w, weight the two components. The solution to the
optimization v} denotes the optimal desired velocity of
the automation on its original trajectory.

JA(vA):wd~d(vA)+wv~'v£vA (2)
vy = argq;)inin{JA(vA)} (3)

The estimation of the desired trajectory of the automa-
tion is based on the estimation of the desired current
speed of the human and follows the estimation model
from (Schneider et al., 2024a). The components of the
estimated desired velocity 9y, 9y and ¥, of the human
(the roof denotes an estimated variable) are derived from
an estimated desired acceleration Av;,7 € x,y, z from the
measured force Fy ;,¢ € {z,y, 2z} of the human:
)mln(\F;‘{,zLFH,max,z)vub . (@)

H,max,?
The parameter Fy max,; normalizes the human input to
a maximum reference value and vy, represent the upper
limit for the allowed velocities. The velocity desired by
the human is then determined by the velocity currently
being executed by the automation and the velocity change
desired by the human:

vy = va + Avy. (5)

The main element of the present negotiation approach is
the determination of the stubbornness with which a person
clings to their desire to move toward their desired original
trajectory. The stubbornness model is also taken from
(Schneider et al., 2024a) and is supplemented in this work
with an additional time-integrating component Xstubb,m,1-
It reads as follows:

AD; = sgn(Fy

Fy
FH,max,i
max(|0m,i k-1 — Yubl, |[08,i,6—1 — Vib]) — |0H,ik—1 — VA ik

max(|0m,i k-1 — Vubl, [O8,ik—1 — Vib|)
(6)

The additional time-integrationg component Tgstubb,H,1 is
calculated via:

t
Tstubb,H,1,i =pH,1/ |FH71-\ dt. (7)
0

The second term of Equation (6) comprises two compo-
nents. The first component accounts for the amplitude
of the interaction force and reflects the assumption that
a higher amplitude corresponds to greater stubbornness,
indicating a stronger adherence to one’s own intended
motion. The second component represents the extent to
which the human’s prior motion intention is taken into
account. This is achieved by incorporating feedback from
the currently executed trajectory - i.e., the unified trajec-
tory at the current time step k - and comparing it with

Tstubb,H,i = Lstubb,H,I T

the estimated human motion intention from the previous
time step k — 1. This comparison is expressed through the
difference between the human intention vy ; x—1 (reference
value) and the actual executed trajectory va ; r (measured
value). From the human perspective, this mismatch results
in a control deviation caused by the influence of the au-
tomation’s motion intention, which manifests as stubborn-
ness. The first summand in (6) implements the idea that
if a person holds on to a force value for a longer period of
time, this means greater stubbornness. This corresponds
to the temporal integration of the human force scaled with
the parameter py 1, see (7).

Based on the norm of the determined human stubbornness,
|Zstubb, || an interaction value I, is computed at each
time step. This value reflects not only the degree of human
stubbornness but also its relationship to the behavior of
the automation. In the case where the automation behaves
fully compliantly (Ujess = 1) while the human exhibits
maximum stubbornness (||Zstubb, || = 1)) the interaction
value reaches its maximum possible value of I, = 2. This
represents the extreme case in which the human remains
fully unyielding despite fully accommodating behavior
from the automation:

Ik' =-2+3 ||mstubb,H|| + Uloss~ (8)

An average value is formed over | time steps for smoothing
the interaction values:
l
Do (9)
j=1

The value of Ulyss is subsequently derived using config-
urable parameters I, and Inax, which allow for the
sensitivity of the calculation to be adjusted:
T—1I.
Uloss = —

Imax - Irnin

The relationship between the utility loss and the remaining

utility for the automation, the target utility Ugarget, can be
expressed as following:

(11)

Utarget =1- Uloss~

To achieve the final result, that determines the negotiated

result for the automation velocity, an optimisation prob-
lem is formulated:

(12)

VA neg = arg min{ (U (v) — Utarget)Q},
v

I_:

~| =

(10)

4. SIMULATION
4.1 Simulation setup

Figure 1 shows a simulated image of the cooperative stand-
up aid, which is considered as an example system in this
work. A person lying in bed can hold on with his hands
to a handle (black) attached to the KUKA end effector,
which assists him in getting up by exerting a force. ROS2
is used as the software framework to control the KUKA
robot via an Ubuntu PC. The ROS2 framework Moveit2
(Sucan and Chitta, 2025) is used for the inverse kinematics
and iiwa_ros2 (ICube-Robotics, 2025) for controlling the
KUKA robot via the FRI interface using joint angles 0(t).
Since the IK-Planner Moveit2-Servo requires Cartesian
velocities v(t) as input variables, the reference trajectories
from the two approaches to be compared are transferred
to Moveit2 as Cartesian velocities.
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Figure 1. Visualisation of the stand up aid system with
the automation reference trajectory (green) in ROS2-
Ryviz
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Figure 2. Plot of the reference trajectories for the simu-
lation setup in the z-dimension for the automation
(index A) and the human (index H).

Figure 2 shows the reference trajectories in the x-
dimension for both the automation and the human. The
automation’s reference trajectory is constant in the value
Zref,a(t) = 0.52m from the initial position at ¢ = 0 to the
final position at ¢ = 80s. The human’s reference increases
linearly from Zyern(t = 0s) = 0.52m to Zyeru(t ~ 33s) =
0.65m. The human’s reference trajectory is thus an offset
from the automation’s reference trajectory, which leads
to a control conflict that must be resolved by the two
approaches. The force Fy i exerted by the human being
serves as the communication variable or input for both
methods. It is modeled as a simple P-control law and
results from the difference e, = %yt — ZTcurrent, Which
is amplified by a constant parameter Py:

FH,X = PH * Ex. (13)

The human is modeled very stubborn during the first 40s
after the start of the movement, meaning that he wants
to follow strictly its reference trajectory. Afterwards the
human becomes totally compliant, i.e., from this point on,
it no longer exerts any force and Fyx = 0 applies. This
behavior shall compare the two methods in a phase with
a very stubborn human and a compliant human.

The time integral over Fyx should be considered as a
measure of human effort Effy in this simulation:

Effy = / ’ Frrx(t) dt. (14)
0
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Figure 3. Plot of simulation results for the trajectory
deformation approach with u = 0.05.
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Figure 4. Plot of simulation results for the trajectory
deformation approach with u = 0.06.

4.2 Simulation results

Figures 3 and 4 show the simulation results for trajectory
deformation. In Figure 3, the parameter p was set to 0.05,
and in Figure 4 to 0.06. According to (13), a force Fy
is exerted by the human when e and Zcurrent differ.
After the force is applied, the trajectory in both cases
exhibits oscillations. In Figure 3 b), the oscillations are
stable, while in Figure 4 c), the oscillation amplitudes
increase before the human force drops to ON after 40s.
In both simulations, the human force exceeds 1N, with
a peak of nearly 1.5N in Figure 4. The human effort is
Effy = 28.85Ns for 4 = 0.05 and Effy = 27.18 Ns for
1 = 0.06. On average, the deformed trajectory approaches
only about half the distance to the original reference before
the human force drops to ON.
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Figure 5. Plot of simulation results for the trajectory
negotiation approach.

The results of the trajectory negotiation can be seen in
Figure 5. After applying a human force at ¢ ~ 10s, the
human force rises to a peak of approx. Fiyx = 0.6N
before subsequently decreasing again. The stubbornness
graph shows that it rises approximately constantly to
approx. 0.7 (Figure 5b). The target utility value of the
automation decreases as the human’s stiffness increases
(Figure 5¢), causing the automation to deviate further
from its desired trajectory (Figure 5d) until the human’s
desired position is almost reached at ¢ = 50s. After
the human releases the force, the stubbornness drops
back to 0, the target utility value of the automation
increases, and the negotiated trajectory returns to the
desired reference of the automation. The effort required
by the human during trajectory negotiation is calculated
as Effy = 15.58 Ns.

5. DISCUSSION

The simulation results show that trajectory negotiation
has advantages over trajectory deformation in three as-
pects: (1) the negotiated trajectory does not exhibit oscil-
lations, (2) the negotiated trajectory converges toward the

Tref, (t) in the case of stubborn humans, (3) the trajectory
negotiation requires significantly less effort on average for
humans to communicate their desired movements.

The results provide promising initial insight and are de-
rived exclusively from simulation and therefore future
work must undertake controlled laboratory experiments
to validate both approaches and assess their robustness
in real use under practical conditions. In particular, the
human control law (13) is a modeling assumption; targeted
experiments are required to identify the control strategy
actually applied by the test subject in this task. Because
the oscillatory response during trajectory deformation
emerges from this control law, its empirical characteri-
zation will be essential for interpreting and refining the
observed dynamics.

Finally, it appears that an emancipated approach, in which
neither of the two agents has final authority, is well suited
for agreeing on a common trajectory. In the case of safety-
critical and time-critical applications, however, this is most
likely to be different, and final authority is required for one
of the two agents.

6. CONCLUSION

In conclusion, the simulation results indicate that the
trajectory negotiation approach outperforms trajectory
deformation in terms of stability, convergence, and com-
munication efficiency. Future work should focus on vali-
dating these findings through real-world experiments and
refining the control laws governing human behavior during
trajectory negotiation and trajectory deformation.

One main challenge across all the methods, however,
remains ensuring that the fusion of the human’s and
automation’s requests does not lead to unsafe outcomes.
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