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Université de Sherbrooke, 3000 Bd de l’Université, Sherbrooke, J1N
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Abstract: Understanding natural human behavior is essential for designing effective and well-
perceived automation in physical human–robot interaction (pHRI). While model-based control
strategies are increasingly applied in assistive systems, most current approaches assume humans
behave deterministically, which is contradicting evidence from neuroscience that highlights the
stochastic nature of human motor control. This paper presents a user study with 21 participants
performing goal-directed locomotion while physically pushing a smart wheelchair. By analyzing
unconstrained human-only trials, we focus on characterizing human inherent variability in
the context of physical coupling. Our results reveal structured patterns of task-relevant and
task-irrelevant variability across repetitions, suggesting that variability is not random but
systematically shaped by the task. These findings offer important insights for future shared
control systems that aim to accommodate, rather than disregard, human movement variability.
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for HMS

1. INTRODUCTION

Understanding natural human locomotion behavior is es-
sential for designing interactive and assistive systems that
respect and adapt to human motor capabilities. While
much research in physical human-robot interaction (pHRI)
has focused on automation strategies and performance
optimization, fewer studies have systematically analyzed
inherent human variability in unconstrained movement
scenarios. Investigating how variability emerges during
goal-directed locomotion can inform the development of
shared control systems that better align with human ten-
dencies and promote user autonomy.

This study focuses on the analysis of natural human move-
ment behavior during a wheelchair navigation task, with-
out the influence of any automation assistance. By quan-
tifying movement patterns and variability across multiple
task repetitions, we aim to characterize task-relevant and
task-irrelevant movement features and explore the impli-
cations for the design of user-centric assistive technologies.

2. MATERIALS AND METHODS

2.1 Related works

Human motor behavior is inherently variable. Repetitive
movements, even under identical task conditions, result in
non-identical trajectories assumed due to internal noise
and sensorimotor uncertainty (Bernstein, 1967). Early
work by Abend et al. (1982) and Harris and Wolpert

(1998) highlighted the stochastic nature of human motion,
showing that motor output is shaped by signal-dependent
noise. This has led to a shift away from deterministic
models toward probabilistic or noise-informed frameworks
for understanding human control.

More recent models, such as the linear-quadratic senso-
rimotor framework proposed by Todorov (Todorov and
Jordan, 2002), formally characterize how humans optimize
movement trajectories in the presence of signal-dependent
noise. Recent works allow the identification of these model
parameters, including multiplicative noise (Karg et al.,
2023, 2024), serving as a foundation for novel shared
control designs (Kille et al., 2024), potentially elevating
human experience (Kille et al., (in press)).

In the context of physical interaction with coupled sys-
tems, human variability becomes particularly relevant.
Studies on physical human-human or human-robot col-
laboration often interpret variability as a source of un-
certainty that should be compensated for (Medina et al.,
2012; Gribovskaya et al., 2011). Even recent cooperative
control approaches (Wu, 2022; Varga, 2024; Varga and
Poncelet, 2025) overlook the potential functional role of
variability as an expression of confidence, flexibility, or
exploration.

A prominent explanation for structured variability in
movement comes from the theory of task-relevant vari-
ability (Todorov and Jordan, 2002), which proposes that
variability is minimized in task-critical dimensions (e.g.,
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3C6, QC, Canada (e-mail: adina.panchea@USherbrooke.ca).

Abstract: Understanding natural human behavior is essential for designing effective and well-
perceived automation in physical human–robot interaction (pHRI). While model-based control
strategies are increasingly applied in assistive systems, most current approaches assume humans
behave deterministically, which is contradicting evidence from neuroscience that highlights the
stochastic nature of human motor control. This paper presents a user study with 21 participants
performing goal-directed locomotion while physically pushing a smart wheelchair. By analyzing
unconstrained human-only trials, we focus on characterizing human inherent variability in
the context of physical coupling. Our results reveal structured patterns of task-relevant and
task-irrelevant variability across repetitions, suggesting that variability is not random but
systematically shaped by the task. These findings offer important insights for future shared
control systems that aim to accommodate, rather than disregard, human movement variability.

Keywords: Design Methodology for HMS, Human Centred Automation, Stochastic System
Identification, Cooperative Control, Modeling of Human Performance, Engineering Methods
for HMS

1. INTRODUCTION

Understanding natural human locomotion behavior is es-
sential for designing interactive and assistive systems that
respect and adapt to human motor capabilities. While
much research in physical human-robot interaction (pHRI)
has focused on automation strategies and performance
optimization, fewer studies have systematically analyzed
inherent human variability in unconstrained movement
scenarios. Investigating how variability emerges during
goal-directed locomotion can inform the development of
shared control systems that better align with human ten-
dencies and promote user autonomy.

This study focuses on the analysis of natural human move-
ment behavior during a wheelchair navigation task, with-
out the influence of any automation assistance. By quan-
tifying movement patterns and variability across multiple
task repetitions, we aim to characterize task-relevant and
task-irrelevant movement features and explore the impli-
cations for the design of user-centric assistive technologies.

2. MATERIALS AND METHODS

2.1 Related works

Human motor behavior is inherently variable. Repetitive
movements, even under identical task conditions, result in
non-identical trajectories assumed due to internal noise
and sensorimotor uncertainty (Bernstein, 1967). Early
work by Abend et al. (1982) and Harris and Wolpert

(1998) highlighted the stochastic nature of human motion,
showing that motor output is shaped by signal-dependent
noise. This has led to a shift away from deterministic
models toward probabilistic or noise-informed frameworks
for understanding human control.

More recent models, such as the linear-quadratic senso-
rimotor framework proposed by Todorov (Todorov and
Jordan, 2002), formally characterize how humans optimize
movement trajectories in the presence of signal-dependent
noise. Recent works allow the identification of these model
parameters, including multiplicative noise (Karg et al.,
2023, 2024), serving as a foundation for novel shared
control designs (Kille et al., 2024), potentially elevating
human experience (Kille et al., (in press)).

In the context of physical interaction with coupled sys-
tems, human variability becomes particularly relevant.
Studies on physical human-human or human-robot col-
laboration often interpret variability as a source of un-
certainty that should be compensated for (Medina et al.,
2012; Gribovskaya et al., 2011). Even recent cooperative
control approaches (Wu, 2022; Varga, 2024; Varga and
Poncelet, 2025) overlook the potential functional role of
variability as an expression of confidence, flexibility, or
exploration.

A prominent explanation for structured variability in
movement comes from the theory of task-relevant vari-
ability (Todorov and Jordan, 2002), which proposes that
variability is minimized in task-critical dimensions (e.g.,

Human Variability in Human-Robot
Locomotion

Sean Kille ∗ Adina M. Panchea ∗∗ Sören Hohmann ∗

∗ Institute of Control Systems, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany (e-mail: sean.kille@kit.edu).

∗∗ Department of Electrical Engineering and Computer Engineering,
Interdisciplinary Institute for Technological Innovation (3IT),
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Fig. 1. Intelligent powered wheelchair being pushed by a
human user, with force sensors mounted on the rear
handles to measure input forces.

endpoint accuracy) while being tolerated or even exploited
in task-irrelevant dimensions. This theory aligns with em-
pirical findings in reaching, locomotion, and object ma-
nipulation, where humans exhibit consistent behavior at
key goal points while allowing for flexibility between them
(e.g., Miossec and Kheddar (2009)).

The study of locomotion in the context of physically cou-
pled assistive systems—such as wheelchairs and walking
aids—provides further evidence of the structured nature
of human movement. While research on joined walking
between human and robot is quite active (e.g. Schneider
et al. (2024)), variability analysis is rare. Research on
manual wheelchair propulsion (Chaikhot et al., 2023) and
gait with rollators or walkers (Mundt et al., 2019) has
shown that users naturally modulate their stride, force
application, and trajectory depending on task demands,
environmental layout, and personal comfort. Variability in
these systems is not random but often reflects adaptive re-
sponses to mechanical constraints or individual strategies
for maintaining balance and control.

In particular, pushing a wheelchair introduces a unique
form of coupled locomotion, where the user’s upper-body
input determines the path and velocity of a larger, external
system. Studies have highlighted that users adopt distinct
movement profiles when maneuvering such devices, espe-
cially in constrained spaces (Jung and Kim, 2023). These
insights support the need for more detailed analysis of how
variability emerges in such interaction settings.

The present study contributes to this body of work by
empirically characterizing natural human variability in
a physical task setting while pushing a wheelchair. By
quantifying variability across task regions and subjects, it
provides a descriptive foundation for understanding how
movement flexibility emerges in natural interaction with
physically coupled systems.

2.2 System design

To investigate natural movement patterns, we employed an
intelligent powered wheelchair (IPW) described in Panchea
et al. (2022) and depicted in Fig. 1. The wheelchair is actu-
ated by two independent electric motors that are driven by
on-board controllers that aim to follow translational and

Fig. 2. Map of the experimental environment generated by
RTAB-Map. The start and end positions are located
in the upper left corner (green circle) and on the right
side (red cross), respectively.

rotational set-velocities: utrans and urot. For the purpose
of this study, the behavior of a conventional, non-powered
wheelchair that is pushed by a human, was to be imitated.
To do so, 1-dimensional force sensors were attached to the
handles of the wheelchair, measuring the push- and pull-
forces exerted by a human on the left and right wheelchair
handles: FL and FR. Based on these forces, IPW set-
velocities are calculated using scaling factors atrans and
arot:

uH,trans = atrans(FL + FR), (1)

uH,rot = arot(FL − FR). (2)

Localization of the IPW’s position and orientation was
achieved using a SLAM approach based on the RTAB-Map
library (Labbé and Michaud, 2019), combining LIDAR and
odometry information for robust state estimation.

3. SUBJECT STUDY

3.1 Study design

Task The task required participants to push the IPW
from a defined start position (inside a doorframe) to
an end position (across an opening into an adjacent
laboratory room). Participants were instructed to perform
the movement smoothly and swiftly. After having reached
the endpoint, they were asked to pull the IPW back to the
start position. The environment layout is shown in Fig. 2.
The overall travel distance per movement is approximately
4.5m.

Ethical approval The study was approved by the Re-
search Ethics Board of the Université de Sherbrooke (CÉR
Lettres et sciences humaines). All participants provided
written consent and were informed about the data privacy
regulations, and their right to withdraw at any time with-
out consequences.

Procedure Initially, participants were introduced to the
system and received information regarding the general
objective, data privacy regulations and an explanation of
the task. Participants then underwent a familiarization
phase with five trial runs, followed by 15 repetitions of the
task. After the successful completion of these repetitions,
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the participants completed a questionnaire which assesses
their interaction experience. The overall procedure time
for these steps was approximately 20mins.

3.2 Data processing

Before analysis, the recorded trajectories were cropped at
spatial boundaries (px > 2.85m or py > 2.35m) to ensure
consistency. Each trajectory was resampled to 300 equally
spaced points using spline interpolation to normalize the
spatial and temporal representation across trials.

A mean trajectory was computed for each participant by
averaging their repetitions of one direction. Variability in
form of variance cov(ek) was quantified by calculating the
Euclidean distance ek between each individual trajectory
(consisting of x- and y-positions px,k and py,k) and the
participant’s mean trajectory p̄□,k, which was computed
as the mean of all repetitions c at each sample index k:

ek =
√
(px,k − p̄x,k)2 + (py,k − p̄y,k)2, (3)

cov(ek) =
1

c− 1

c∑
i=1

|ek|2. (4)

3.3 Subjective measures

Participants’ subjective experiences during the task were
evaluated using three standardized self-report instru-
ments:

• Sense of Agency (SoA): Participants’ perceived
control over their actions and outcomes was assessed
using the 13-item short form of the Sense of Agency
Scale (Tapal et al., 2017).

• Questionnaire for the Evaluation of Physi-
cally Assistive Devices (QUEAD2): User ex-
perience related to physically assistive devices was
captured using the 16-item short version of the
QUEAD (Schmidtler et al., 2017). This instrument
evaluates several subdimensions, including perceived
usefulness (PU), perceived ease of use (PEU), emo-
tional response (E), attitude (A), and physical com-
fort (C).

• User Experience Questionnaire (UEQ): Overall
user impressions, including system usability and satis-
faction, were measured using the 8-item short version
of the UEQ (Laugwitz et al., 2008).

This combination of measures provided a comprehensive
assessment of participants’ perceived control, system ac-
ceptance, emotional engagement, and overall satisfaction
during task execution.

4. RESULTS

In the presented study, 21 participants took part, of which
5 were female. The participants’ age spread from the
20s (17 participants) over 30s (3 participants) to one
participant in their 40s.

4.1 Objective

The observed behavior and position variance for an indi-
vidual participant are shown in the left column of Fig. 4.
The trajectories of this subject demonstrate low variability
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Fig. 3. Left: Position variance at startpoint and endpoint
as well as maximum variance. Right: Participants
grouped by maximum position variance and analyzed
for Sense of Agency (SoA).

at both the starting and ending positions, while increased
deviation is evident in the midsection of the path. This
is particularly visible in the computed position variance
cov(ek), which remains low throughout the first quarter
of the trajectory, rises to a peak around one-third of the
path, and then gradually decreases toward the endpoint.

The participant’s velocity profile follows a consistent ac-
celeration phase, with minor variability in peak velocity. In
contrast, the rotational input displays no clear pattern but
shows a slight positive bias, which corresponds to the slight
leftward curvature observed in the participant’s overall
path from start to end.

Comparable patterns emerge in the aggregated data across
all 21 participants, shown in the right column of Fig. 4.
While both the starting and ending regions consistently
show low positional variance, a clear peak in variability
appears in the center of the trajectory, approximately
at sample index k = 125. A quantitative breakdown of
the variability in different spatial regions is presented in
Fig. 3. On average, the start and endpoint variances were
approximately 0.015m2 and 0.01m2, respectively, while
the midpoint region showed significantly higher variability,
with an average of approximately 0.04m2.

Although the general variability pattern was consistent
across participants, inter-subject differences were observed
in the magnitude and spatial extent of the variability peak.
Notably, the variance at the start and endpoint remained
low across all participants, indicating task-relevant consis-
tency.

Regarding velocity trajectories, a modest increase in vari-
ability was observed around the point of peak velocity
(approximately k = 125) and again shortly before stopping
(around k = 275). For most participants, the variance
in velocity remained low up to approximately one meter
before the endpoint.

The mean rotational input exhibited a moderate peak
early in the trajectory, particularly between k = 50
and k = 150, which may reflect individual differences in
alignment correction or initial trajectory shaping.

4.2 Subjective results

Subjective experience was assessed using standardized
questionnaires covering dimensions of perceived agency,
usability, emotional response, and overall user satisfaction,
as introduced in Sec. 3.3.
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Fig. 5. Subjective evaluation of the interaction by all participants as well as filtered by two subgroups: Participants
were divided based on maximum positional variability into LowVar (lower two quartiles) and HighVar (upper
two quartiles). Depicted is the response regarding Sense of Agency (SoA), overall usability (QUEAD), perceived
usefulness (PU), perceived ease of use (PEU), emotional response (E) as well as user experience (UEQ).

To explore potential relationships between subjective ex-
perience and natural movement variability, participants
were divided into two subgroups based on their individ-
ual maximum positional variability during the task. The
lower-variability subgroup comprised participants whose
peak variability values fell within the lower two quar-
tiles, while the higher-variability subgroup included those
within the upper two quartiles. This stratification en-
abled a comparative analysis of subjective measures across
distinct variability profiles. Figure 5 summarizes the re-
sponses across all participants as well as the two subgroups
stratified by maximum positional variability (LowVar and
HighVar).

Participants in the HighVar group (those who exhibited
greater natural movement variability) tended to report
slightly higher values in the SoA scale.

A similar trend was observed in the QUEAD responses,
where the HighVar group showed marginally higher scores
in perceived usefulness (PU), perceived ease of use (PEU),
and emotional response (E). However, the absolute differ-
ences were small and did not reach statistical significance.

Overall user experience ratings as captured by the UEQ
scale were more mixed. Although all groups reported
moderately positive impressions, the difference between
LowVar and HighVar groups was less pronounced, and no
systematic pattern emerged.

5. DISCUSSION

The observed distribution of movement variability aligns
with the theory of task-relevant variability (Todorov and
Jordan, 2002), which posits that humans reduce variability
at task-critical points and allow for greater flexibility
where precision is less essential. In our study, participants
consistently exhibited low positional variability at the
start and endpoint regions (both clearly defined spatial
goals) while allowing for significantly greater variability
during the midsection of the task. This structured pattern
reinforces the idea that human motor behavior is not
merely stochastic noise, but a goal-oriented optimization
strategy that balances effort and control.

These insights have direct implications for the design of
shared control and assistive systems. Recognizing that
humans naturally tolerate and may benefit from variability

during specific task phases suggests that assistive algo-
rithms should avoid over-constraining user motion in task-
irrelevant areas. Instead, selectively applying support only
in high-precision zones may preserve the user’s natural
movement patterns and improve system transparency.

Interestingly, despite the increased variability observed in
the midpoint region, task performance remained stable,
particularly in terms of endpoint accuracy. This finding
highlights that variability during the task execution does
not necessarily degrade performance - rather, it may reflect
adaptive and energy-efficient motor strategies.

When participants were grouped according to their max-
imum positional variability, those in the HighVar group
reported slightly higher levels of perceived agency and ease
of use. While these trends were not statistically significant,
they suggest that greater variability may reflect a more
self-directed and confident interaction style. Conversely,
participants in the LowVar group - who demonstrated
more constrained movement - may have adopted a more
conservative strategy, potentially indicative of caution,
inexperience, or a different internal model of the task.

Together, these findings support a more nuanced interpre-
tation of variability in human-machine interaction: rather
than being an artifact to disregard, the results suggest that
variability is valuable as serving as a proxy for engagement,
user state, and confidence. Designing interactive systems
that respect and accommodate this natural variability
could lead to improved user experience and more human-
centered assistive technologies.

6. CONCLUSION AND OUTLOOK

This study systematically investigated natural human
movement variability during a physically coupled loco-
motion task using a smart wheelchair. Our results con-
firmed that variability in human motion is not random,
but follows a structured pattern consistent with the the-
ory of task-relevant variability: participants consistently
demonstrated low positional variance at the start and
endpoint regions and higher variability in task-irrelevant
midsections.

This structured variability indicates that human motor
strategies are tuned to balance effort, control, and task
precision. Importantly, this behavior emerged even with-

out automation or external perturbations, highlighting
that stochasticity is a natural and reproducible element
of physical human-machine interaction.

By dividing participants into subgroups based on their in-
dividual variability profiles, we found preliminary evidence
that increased movement variability may be associated
with more confident and autonomous interaction styles -
an observation that warrants further investigation. These
findings challenge the common engineering assumption
that human variability should be minimized and instead
suggest it can serve as a meaningful indicator of user
strategy, engagement, or state.

Looking forward, future research should explore the gen-
eralizability of these findings across different interaction
tasks, device types, and user populations. In addition,
incorporating models of human variability into shared
control algorithms may improve system adaptability and
user experience by aligning robotic behavior with human
tendencies, rather than constraining them. Ultimately, em-
bracing variability in human behavior could lead to more
flexible, intuitive, and user-centered assistive technologies.
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