KIT | KIT-Bibliothek | Impressum | Datenschutz

Rigorous Viability Assessment of Machine Learning Projects – Example from the Domain of Predictive and Condition-Based Maintenance

Zipperling, Domenique ; Ott, Lorenz; Vössing, Michael ORCID iD icon 1; Kühl, Niklas ORCID iD icon
1 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning offers significant potential for organizations, yet transitioning models from development to deployment remains challenging. Frameworks such as CRISP-ML(Q) and MLOps emphasize the need to integrate business, economic, and machine learning perspectives. However, a systematic literature review reveals a lack of methods that link machine learning perspectives with business objectives. To address this gap, the authors introduce a metric – called profit-per-decision (ppd) – for binary classification that incorporates both model performance and economic impacts. Further, the Viability Assessment Framework is proposed, which utilizes the metric and enables organizations to assess viability at different project stages: pre-development, post-development, and post-deployment. The authors evaluate the framework through expert interviews and a scenario-based evaluation with experts from eleven different companies and develop an open-source web application to support interaction during the case studies. Results confirm the framework’s effectiveness in bridging technical and business perspectives, highlighting its industry relevance.


Verlagsausgabe §
DOI: 10.5445/IR/1000190854
Veröffentlicht am 20.02.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Karlsruhe Service Research Institute (KSRI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2026
Sprache Englisch
Identifikator ISSN: 2363-7005, 1867-0202
KITopen-ID: 1000190854
Erschienen in Business & Information Systems Engineering
Verlag Springer
Band 68
Heft 1
Vorab online veröffentlicht am 10.02.2026
Nachgewiesen in Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page