DIANEmu — A Java Based Generic Simulation Environment
for Distributed Protocols?

Michael Klein

kleinm@ipd.uni-karlsruhe.de

Technical Report Nr. 2003-7

University of Karlsruhe

Faculty of Informatics
Institute for Program Structures and Data Organization
D-76128 Karlsruhe, Germany

!The work done for this report is partially sponsored by the German Research Community (DFG) in
the context of the priority program (SPP) no. 1140 [1].

Abstract

DIANEmu is a simulator that has been developed within the DIANE project. It aims at
simulating generic, distributed protocols on application level. Thus, its network model is fairly
simple, concentrating on the higher layer: It provides many functions to facilitate the complex
task of implementing distributed protocols and offers sophisticated tools to simulate the motion
and behavior of users realistically. The simulator has a layered design and is completely written in
Java, so own java-based protocols can be easily integrated. A database based measuring concept
offers further support for protocol evaluation.

Chapter 1

Introduction

The simulation tool DIANEmu was developed within the DIANE project [2]. DIANE is funded
by the priority research program (SPP) no. 1140 of the German Research Community (DFG) [1].
The project aims at developing and evaluating concepts that allow for an integrated, efficient, and
effective use of resources in the form of services in ad hoc networks. In this respect, information
services are especially important since they facilitate the integrated access to information that is
digitally available. In order to attain these goals, DIANE proposes mechanisms for the description,
discovery and execution of services. Furthermore, it takes a closer look at means of stimulating
the provision of services. As scenario, the developed concepts shall be evaluated by computer
science students that prepare their exam in information systems.

As an evaluation with real devices has turned out to be difficult because of lacking existing
ad hoc networks, DIANE decided to evaluate their techniques within a realistic simulation envi-
ronment. However, existing tools like peer-to-peer or agent platforms exposed to be unsuitable
as they are based on a different paradigm. Also, specialized network simulators like GloMoSim,
ns2, QualNet, or OPNet++ were not usable for DIANE’s application level protocols and did not
offer much support for realistic user models, but were limited to simple analytic motion mod-
els and traffic files. Moreover, the model of the lower four layers were far too detailed for the
project leading to a huge amount of parameters that had to be set correctly and that influenced
the results disproportionately. As another drawback, protocols that were developed for these
simulators could not be used on real devices.

As a result, DTANE decided to develop its own simulation environment, DIANEmu, which, on
the one hand, should be adapted to the project’s need, but on the other hand be generic enough
to be useful in other environments, too. In this report, DTANEmu’s goals (Chapter 2), its layered
architecture (Chapter 3), a more detailed and technical view to the main part of the simulator,
the protocol layer (Chapter 4), and its measuring concept (Chapter 5). Finally, in Chapter 6, the
reader gets further information how to obtain and use the environment himself.

Chapter 2

Goals of DIANEmu

When the simulator was designed in summer 2002, four main goals were pursued:

1 GOAL 1: Simulate ad hoc network protocols on a high level

The purpose of DIANEmu is to simulate ad hoc networks on a high level. High level means
that the simulator is able to run application level protocols for ad hoc networks. Protocols for
the lower ISO/OSI levels 1 to 4 (like routing or transport protocols) are not in the focus of the
simulator and cannot be simulated. To support writing of these application level protocols, the
simulator should

1. provide an environment that facilitates the design, implementation, and running of espe-
cially these protocols.

2. simulate users of the protocols by making it easy to code actors with their movement and
their behavior (which protocol functions are called, when is a devices switched on and off
etc.)

3. provide an easy yet powerful interface to the lower four layers by offering all kinds of message
sending functions as well as special inter-layer functionality.

As the simulation lays stress on the application layer, the lower layers are emulated approxi-
mately only, i.e. the lower level protocols are not completely implemented, but abstract models
are used to calculate the characteristics of this rather complex protocol stack. Therefore, the
simulator’s strength lies in proving the correctness of a protocol, not necessarily in measuring a
very accurate performance.

2 GOAL 2: Protocols are easy to implement

As the main purpose of the simulator is to run user defined protocols, the second goal of DIANEmu
was to provide an environment that facilitates their implementation. Therefore, the simulator
should have several characteristics:

Programming Language. The simulation environment as well as the user defined protocols
should use a object-oriented, robust, and common programming language to facilitate pro-
gramming and enable student programmers to use the knowledge learned during their stud-
ies.

Clear interfaces. When implementing protocols, the programmer should have a clear interface
to the simulation environment, which relies on a few classes only. This allows programmers
to abstract from the simulator’s implementation and to concentrate on a few contact points
only.

Good Documentation. To enhance transparency while programming, the environment should
be clearly documented. This should be done with (1) standardized comments in the program
code and (2) and external reference manual.

Specialized Debugging Possibilities. Programming distributed protocols for mobile ad hoc
network is a complex and error-prone activity. Therefore, the simulator should provide pos-
sibilities to step through the single events of the protocol execution. With that, conception
and programming errors can be found more quickly and reliably.

Customizable Visualizer. The environment should offer the possibility to visualize the moving
nodes, the sending of messages and the set up structures graphically. Therefore, on the one
hand, the simulator should have built-in support for displaying standard concepts like nodes,
messages etc. On the other hand, it should be possible to add custom visualizations for
own data structures (like e.g. the data stored on the single nodes, the overlay structures
they build etc.)

Powerful Helping Functions. The different protocols for mobile ad hoc networks often use
common operation sequences like collecting messages or waiting for special messages. These
operations should be offered by the environment to accelerate protocol implementation and
to avoid re-coding of repeating tasks.

Powerful Sending Functions. As sending of messages is a very common activity, the envi-
ronment should not limit its sending functions to simple text messages, but also allow the
sending of more complex and structured messages (e.g. graphs of objects).

Transparent Multiuser Support. As the nodes in ad hoc networks act autonomously, it
rather common that one node is communicating with several other nodes at the same time
(using the same or different protocols). As this would result in multithreaded programming,
the environment should do this task transparently. The programmer should be able to write
the protocol as if only one session were active!.

3 GOAL 3: Protocols can be transferred to real devices without
change
A third and very important goal of DIANEmu was its support for protocol reuse. Protocols that

are runnable in the simulation environment should be runnable on a real device without any pro-
tocol change. Obviously, this is only possible if adapted parts of the environment are transferred

'In some complicated cases, however, the programmer will have to add some synchronization code.

to the real device, too. Here, it simply acts as a gateway to the graphical user interface and
the network access functions. This feature is very important as with it, protocol conception and
implementation can be done completely in the simulation environment. Theoretically, the change
to the real device should be done with one click.

4 GOAL 4: The environment is not specialized on project pro-
tocols

The fourth goal stresses the reusability of the environment itself. It should be implemented in a
way that clearly separated the simulator and the protocols so that it can be used for all kinds
of distributed protocols (not for special DIANE protocols only). Therefore, protocols (and their
necessary data structures) should be implementable in separate packages, which can be loaded
and used from the environment dynamically. Nonetheless, the environment should offer some
specialized support for writing ad hoc protocols, like special helping and sending functions as well
as typical visualization techniques.

Chapter 3

Layered Architecture

In the following, the architecture of the simulator is presented. The simulator has been designed
in five main layers (see Figure 3.1a):

e The connectivity layer calculates if two devices are able to communicate directly. This is
determined by the individual maximum radio range of each device as well as environmental
obstacles.

e The network layer offers different methods to send messages to other nodes in the network:
unicast, i.e. exactly to the node with a given destination address, multicast, i.e. to all
members of a group of nodes, which have registered for that multicast address, anycast, i.e.
to exactly one member of a group of nodes, and broadcast, i.e. to all nodes in the network
that can be reached within a given number of hops. Moreover, the network layer sends
crosslayer events, e.g., when a message has not been deliverable or a foreign message has
been overheard.

e The protocol layer is the most important layer of the simulator. It offers the framework
for hosting own protocols, which have to comply to a set of specifications. Protocols are
realized as finite state machines that offer public functions to users and other protocols (like
login, searchService, announceService an so on). They provide the offered functionality by
sending messages over the message layer. The protocol layer offers a great amount of help
to facilitate the implementation of distributed protocols. Examples for that are methods
to automatically collect messages of a certain type, automatical distribution of incoming
messages to the correct protocol state, transparent parallelization, and automatical multi-
plexing through a session concept. A more detailed and technical view of this layer can be
found in the next chapter.

e The wuser layer models single users by running user scripts. These contain instructions
concerning the user’s life cycle (create, destroy), his device usage (switchOn, switchOff),
his movement (goTo, wait), and his behavior (i.e. the usage of public protocol functions).
To gain a realistic user model, an integrated model was developed to get these instructions
[3]. For our campus scenario, each user is assigned a plan of activities in the real world (like
visiting a lecture, going to the cafeteria, learning, borrowing a book and so on). This is
used to derive movement and behavior in a natural manner. The parameters of the model
have been compiled from surveys among students [4].

a) b)

runTest(Benchmark, Designpoint)

Meta Layer

createUser(param

Behavior Layer GUI
public protocol functions public protocol functions
Protocol Layer IE‘E‘IE‘ — Protocol Layer EEE
sendMessage(Message) send)
Network Layer Transport System

connected(Device d1, d2)

Connectivity Layer

Simulator Real Device

Figure 3.1: Layered architecture of DIANEmu: a) as simulator, b) on a real device.

e Finally, the meta layer is responsible for executing complete test cases (consisting of a
benchmark and a design point, see Chapter 5). Here, the users are created as a set of
scripts.

As respects Goal 3, all protocols that have been developed should be runnable on a real device
without any change. This becomes possible by separating the protocol layer with all necessary
protocols from the simulator and transferring it to the target device (see Figure 3.1b). Here, the
public functions are made accessible by a gui or an application, the possibility to send messages
is provided by an external transport system.

DIANEmu is designed as a event-based simulator, i.e. all events like arrival of a message,
usage of protocol functions etc. are put into an event queue together with their time when they
will occur. The event queue processes them step by step, which commonly leads to further events
being enqueued. As an advantage, the simulation time is strictly separated from the real time,
making measurements independent from the underlying machine. However, when transferring
the protocols to a real device, the running mode must be changed to thread-based execution.
Here, each device has a set of threads performing the different tasks (like handling the incoming
message, the state transition etc.) autonomously.

Chapter 4

Protocol Layer

This chapter gives a detailed and more technical introduction to the main part of the simulator:
the protocol layer. In order to get an overview of the basic functionality of the simulator, it is
possible to skip this chapter.

1 Overview

The protocol layer is a typical component architecture: it offers the possibility to deploy own
protocols as components and let them run. To assure a correct communication between protocol
and protocol layer, all classes of the own protocol have to extend abstract classes and implement
the a set of abstract methods. Protocols that are deployed in a correct way are able to make use
of the benefits which the protocol layer is providing in a transparent manner:

e The functionality of a protocol can be split up in several states and transitions between
these states. The protocol layer automatically assures the correct transition between these
state when messages arrive at the node.

e The protocol layer offers several functions that are needed very often when writing dis-
tributed protocols. One example of this is the collection of messages of a certain type.

e The protocol layer offers a variable manager to organize access to inter-protocol variables.
In this variable manager, each deployed protocol can store and retrieve object values with
the help of a unique name.

e The protocol layer offers a timer which is often needed to detect protocol failures.

e With the help of the SessionID concept, the protocol layer transparently handles concurrent
protocol access. In a nutshell, each new conversation between two or more nodes opens a
new session which is identified by a unique id. Thus, all messages can be automatically
assigned to the correct conversation. If necessary, the user can restrict this parallelism by
explicitly setting and relinquishing locks.

Notice that each node in the network has its own instance of the protocol layer. Thus, each
node also has an own instances of all loaded protocols and all of their states.

Behavior Layer

call public protocol return results from
functions protocol function calls

Protocol Layer

receive Messages
send Messages . :
receive Failure Events

Network Layer

Figure 4.1: Interaction of the protocol layer with other layers.

2 Interaction with other Layers

The protocol layer interacts with two other layers: the behavior layer above it and the network
layer below it (see Figure 4.1).

Generally, the interaction with the behavior layer stems from the set of users, which are
maintained in this layer. Each of these users is performing some action either as simulated user
by running a action script or by following a real user’s inputs from a gui. Typical actions are
movement (which does not directly affect the protocol layer) and calls to public functionality
offered by the protocols that are loaded on the node. In the other direction, results of such
function calls are returned out from the protocol layer to the user.

The network layer offers the possibility to send messages throughout the network. Generally,
protocols will need to send messages to other nodes in order to fulfill their offered functionality.
In the same way, messages from other nodes are received from the network layer. In case of
network errors, the network layer also is able to send failure events.

The general interaction sequence looks like this (compare Figure 4.2):

1. To use a certain functionality, a user invokes a public method of a protocol. This could be
loginIntoNetwork or searchService.

2. The appropriate protocol instance generates a special Call object containing the parameter
information of the method invocation and forwards it to a special handling class: the
ProtocolHandler.

3. The ProtocolHandler delivers the call to the initial state of the protocol.

4. The protocol starts running, i.e. the state of the protocol changes while messages are sent
and received via the network layer.

5. If the protocol runs in a terminal state, a Response object is created containing the results
of the protocol function. Like the call, it is forwarded to the ProtocolHandler.

6. The ProtocolHandler delivers the call to the invoked method, which unpacks it and returns
the result to the waiting user.

Behavior Layer Protocol Layer Network Layer

State
T T 1 |
i [
method invocation : : : :
; 2 [|
H searchCall [|
1 [|
| searchCall [|
| Ll |
1 | | | | seachMessage
| | |
| 1 1 | searchMsg
| [| N
I [|
I 11 1 resultsMsg
1 1 1] <
| resultsMedsage
| 1
I [|
I [|
| resultMessage | | 1
i L
I 11
| I 1
| I 1
I 11
I 11
| I 1
| 11
| searchResonse 11
| | L
] searchResponse 11 |
I [|
| method result 1o 1
—————————— - P

1 [|

1 1
| | [|
i i L [n

Figure 4.2: The general interaction sequence with the protocol layer.

Chapter 5

Measuring Concept

A run in the simulator is started from the meta layer. It is also possible to start a butch run
consisting of several runs. The necessary parameter settings for a single run are separated in two
classes:

o A benchmark captures all parameters concerning the “external world”, for example the num-
ber of users, their motion model, the radio range of the devices, etc. They try to capture a
realistic picture of the world and are used as a basis for comparing the protocols. Therefore,
benchmarks are not altered very often, but should be fixedly given and standardized by the
project manager. Typically, they have no or only a little number of parameters like the
number of users.

e Other parameters are captured in a design point. Therefore, a design point specifies the
protocol settings, i.e. which protocols should be used and how to configure them. Typical
parameters are timeout values, buffer sizes, caching algorithms, and so on. Design points
are not fixed, but should be altered by the developers to improve their protocols.

Application/Protocol Application/Protocol

|) | |
| | |)
I) |)
I | |)
I | |)
n:m relationship of | | |)
T .> Announcements 1 Announcements
announcements and gauges I |)
1 4 | | v)
I | |)
] Gauges |] Gauges]
Leec == e !
- aggregation regarding the
announcements of asinglerun) ¢ ¢ e o > Aggregated Aggregated
Announcements Announcements
- independent of the evaluation goal
Database
- aggregates the results of different runs Stored Stored
00000 > Views Views
- depends on the evaluation goal
Specific Evaluation Specific Evaluation

Figure 5.1: The steps of an evaluation in DIANEmu. Thanks PHILIPP OBREITER for this picture.

10

To perform measurements, the DIANEmu uses the concepts of announcements and gauges. If
certain customizable events occur within the simulator (e.g., a message is sent or a service search
is started), the simulator throws an announcement with details of the event. This announcement
is processed by a set of gauges that have registered for this type of events. The task of gauges
is to collect and aggregate these single events, storing the result in a structured manner into a
relational database (see Figure 5.1). In principle, gauges are independent from the evaluation
goal. Typical gauges are:

o MessageGauge. It protocols each message in the network together with its sender, receiver,
size, hopcount and time delay. This can be used to calculate the number of messages that
were used.

o TimeDiffGauge. It protocols the time difference between a start announcements and a
finish announcement, e.g. for measuring the time delay between the invocation of a service
search and return of the results.

To compare values from different runs, the database stores values from each run tagging them
with a timestamp as well as with a benchmark and designpoint id. Stored views and specialized
postprocessors help to aggregate the values from several runs to interesting tables, which can be
exported and visualized by a chart generation tool like Excel.

11

Chapter 6

Technology and Download

The simulator is implemented in pure Java. Also new protocols have to be implemented in Java.
This is done by extending a set of abstract classes like Protocol, State, Message, and so on.
This allows to easily integrate other java-based modules, like external service matcher, loggers,
libraries, java-based ontologies etc.

To compile the sources as well as to start the simulator or other tools, Apache’s ant [5] was
used. Ant helps to centralized the building and execution settings in one shared file, making it
easier for every participant to use the environment on its own machine.

To get a quick introduction to the simulator, a manual containing a short tutorial is available.
It shows how to install the environment, how to use it from the most common programming
environments and gives step-by-step guide how to implement your first simple ping-pong protocol.
The manual also serves as reference literature for detail questions.

The simulator as well as the manual can be obtained by sending an email to MICHAEL KLEIN
(kleinm@ipd.uni-karlsruhe.de).

12

Bibliography

1]

DFG (Deutsche Forschungsgemeinschaft): Schwerpunktprogramm 1140: Ba-
sissoftware flir selbstorganisierende Infrastrukturen fiir vernetzte mobile Gerite.
http://www.tm.uka.de/forschung/SPP1140/ (2003)

Institute for Program Structures and Data Organization, Universitdt Karlsruhe: DIANE
Project. http://www.ipd.uni-karlsruhe.de/DIANE /en (2003)

Breyer, T., Klein, M., Obreiter, P., Konig-Ries, B.: Activity-based user modeling in service-
oriented ad-hoc-networks. In: First Working Conference on Wireless On-Demand Network
Systems (WONS 2004)., Trento, Italy (2004)

Breyer, T.: Modellierung der Bewegung und des Verhaltens von Dienstnutzern in mobilen
Ad-hoc-Netzen (2003) Diplomarbeit an der Fakultat fir Informatik, Universitat Karlsruhe.

Apache: The ant project. (http://ant.apache.org/)

13

