
On the E�ciency of Formal Synthesis {
Experimental Results

Christian Blumenr�ohr, Dirk Eisenbiegler, Detlef Schmid

Abstract|Formal synthesis has become an interesting al-
ternative towards post-synthesis veri�cation. Formal syn-
thesis means integrating formal validation within the syn-
thesis process by performing synthesis via rule applications.
The practical applicability of formal synthesis very much
depends on the e�ciency of the underlying rules. This
paper gives a case study about the complexity of formal
synthesis programs. Experiments with two realistic-sized
benchmark circuits were performed using the formal synthe-
sis system HASH (Higher order logic Applied to Synthesis
of Hardware). HASH provides means for representing and
transforming circuits in a secure and logically sound manner.
Furthermore, arbitrary synthesis procedures can be invoked
to achieve high quality of designs. In this paper, the imple-
mentation of a formal scheduling step is used to illustrate
e�ciency considerations related to formal synthesis.

Keywords|Formal methods, formal veri�cation, theorem
prover, high-level synthesis, data
ow synthesis, scheduling

I. Introduction

W
ITH the enormous size of today's digital circuits
and with the increasing complexity of the synthesis

process applied for deriving them, guaranteeing the correct-
ness of hardware synthesis is becoming an important mat-
ter. By correctness we mean that the synthesis result (im-
plementation) satis�es the synthesis input (speci�cation),
in a formal mathematical sense. Due to the fact that most
synthesis steps are nowadays performed automatically, the
correctness of hardware implementations strongly depends
on the correctness of the synthesis tools being involved. In
general, bugs in the programs of those synthesis tools lead
to faulty implementations. The \correctness by construc-
tion" paradigm, that has been propagated in the synthe-
sis domain, is questionable, since an automated synthesis
process is not correct by de�nition. Due to their complex-
ity, the programs can only be tested partially and it is
almost impossible to formally verify them. Actually, the
designers do not trust in the synthesis tools and validate
the synthesis results by simulation. However, with the in-
creasing complexity of circuits, exhaustive simulation of the
implementation is not possible. The solution is that formal
methods have to be applied to ensure that the implemen-
tation satis�es the speci�cation.

A. De�nition and Delimitation of Formal Synthesis

The correctness of the synthesis process can be guar-
anteed at three di�erent phases: before, during or after
the synthesis process. These approaches towards formal

Institute for Circuit Design and Fault Tolerance, University of Karl-
sruhe, Germany. E-mail: fblumen,eisen,schmidg@ira.uka.de

c
 IEEE
This work has been partly �nanced by the Deutsche Forschungsge-

meinschaft, Project SCHM 623/6-1.

correctness of synthesis are called pre-synthesis veri�ca-
tion, formal synthesis and post-synthesis veri�cation, re-
spectively [1]. All approaches use some kind of logic for
proving the correctness of the implementation with respect
to the speci�cation. However, in pre-synthesis veri�cation,
the proof is derived even before synthesis happens, in for-
mal synthesis the proof is formally derived during synthesis,
and in post-synthesis veri�cation, the proof is derived after
each synthesis run.
Pre-synthesis veri�cation would be favorable, since it

means that the correctness is proven once and for all by
means of software veri�cation. Since this is extremely te-
dious especially for large sized programs such as synthesis
tools, only few activities have been started in this area [2],
[3].
At the moment, post-synthesis veri�cation approaches

[4], [5] like model checking and theorem proving are the
most frequently used formal methods. First synthesis is
performed in a conventional, non-formal manner. After-
wards, the correctness of the synthesis output is proven
with respect to the synthesis input. During veri�cation, the
information on how the synthesis process was performed
is no longer available. This is a signi�cant drawback of
this method. Since implementations of real-world speci�-
cations often comprise a large state space, veri�cation for
large sized circuits is tedious or even impossible. When per-
forming model checking [6], increase in design size results
in a combinatorial explosion in the number of global states.
Although research has gone very far in the model checking
area and there exist large circuits that can be veri�ed ef-
�ciently, there are several important classes of circuits for
which no e�cient model checking techniques exist (coun-
ters, data paths with a large bitwidth, complex units like
multipliers). Theorem proving on the other hand is not
limited by the design size, but requires a lot of interaction.
This is unacceptable for circuit designers, since performing
complex correctness proofs by hand requires strong logical
skills and a profound knowledge of the theorem prover.
In formal synthesis the synthesis process and the logical

validation are strongly interwoven. Other than in conven-
tional synthesis, where hardware is represented by arbi-
trary data structures, formal synthesis requires a mathe-
matical hardware representation. In contrast to conven-
tional synthesis, where the speci�cation is re�ned or op-
timized by arbitrary procedures, formal synthesis is re-
stricted to the application of a small core of basic mathe-
matical rules within a theorem prover. The correctness of a
formal synthesis process only depends on the correct imple-
mentation of these basic transformation rules. Therefore,
formal synthesis programs are an extremely safe alternative

to conventional synthesis programs.

B. State of the Art

In the last years, formal synthesis has become a new re-
search topic and several systems have been introduced such
as T-Ruby [7], Lambda/Dialog [8], Veritas [9], DDD [10]
or HASH [11]. [1] gives a survey on di�erent approaches in
the formal synthesis domain.

There is also a broad range of scienti�c work for deriving
implementations in a transformational design style. Syn-
thesis is performed by applying a �xed set of basic circuit
transformations, that are described in a more or less math-
ematical manner. Paper & pencil proofs are performed to
prove the correctness of the circuit transformations [12].
However, the correctness of the implementation of the cir-
cuit transformations is not considered. In the CAMAD sys-
tem [13] the algorithmic description is given in a Pascal-like
notation. For transforming the program, it is �rst trans-
lated to a timed Petri-net representation. Both the trans-
formations from Pascal to Petri-nets and the transforma-
tions within the Petri-nets are pieces of software that are
both complex and crucial to soundness and correctness.
However, there is no explicit proof for the correctness of
the implementation of these critical parts. The TRADES
system [14], [15] uses an approach, where the elementary
transformations are performed by graph-rewriting. This
representation style is based on a formal semantics, but
there is no explicit proof for the correctness of their imple-
mentation.

In formal synthesis, the implementation of the theorem
provers core is not formally veri�ed either. However, this
implementation only consists of few hundred lines of code.
This core, which is the only crucial part for correctness, is
�xed. No matter, how big and complex the formal synthesis
program may become, the size of the core remains �xed.

C. Objective of the Paper

In the following section we brie
y introduce our formal
synthesis system HASH. In the rest of the paper, we il-
lustrate e�ciency considerations at some speci�c synthesis
step during high-level synthesis: scheduling.

The e�ciency of formal synthesis approaches depends on
how e�cient hardware can be represented and on how fast
circuit transformations can be realized based on the given
set of logical transformations. In general, there are var-
ious ways to realize such transformations. However, the
complexity very much depends on the basic set of logi-
cal transformations being used and on the order in which
the logical transformations are applied. This paper inves-
tigates e�ciency aspects of implementations of formal syn-
thesis transformations. Although there is a broad range
of formal synthesis implementations, there are some very
general e�ciency considerations. The paper discusses the
implementation of the scheduling step in the HOL theorem
proving environment [16]. This leads to a general discus-
sion about the e�ciency of the implementation of formal
synthesis transformations (section III).

Besides optimizing the circuit representation style and
the order of the rule applications, it is also possible to mod-
ify the implementation of the underlying calculus (section
IV). We will introduce a modi�cation of the HOL theorem
prover and discuss the impact towards soundness and ef-
�ciency. In section V, we will discuss the extra costs for
formal synthesis as compared to conventional synthesis.

II. The Formal Synthesis Approach HASH

In order to get along with the complexity of large formal
synthesis programs, we believe that it is absolutely neces-
sary to make a split between basic circuit transformation
steps and the design space exploration steps. Due to this
split, the heuristics for exploring the design space can be
performed outside the logic and the results imported into
the design transformation. Therefore standard synthesis
algorithms that abound in literature [17], [18] can be ex-
ploited. It shows, that this split can be successfully applied
to many synthesis steps and that for each synthesis step,
e.g. scheduling, state minimization, retiming, etc., there
must exist a unique transformation which performs this
synthesis step. It is to be noted here, that these transfor-
mations are speci�c to a synthesis step but independent of
the design space exploration technique. The logical trans-
formations are implemented as a sequence of basic logical
rule applications. Given an input circuit description (spec-
i�cation), some synthesis heuristic is started calculating
the control information. Then the output circuit descrip-
tion (implementation) is generated according to the control
information and a theorem is derived that the implementa-
tion implies or is equivalent to the speci�cation. This basic
concept is shown in �gure 1.

// Insert �gure 1 here //

Two important points are met independently with this
strategy: quality and correctness of the implementation.
The quality only depends on the algorithm that calculates
the control information, whereas the correctness aspect is
guaranteed due to the transformation being based on the
HOL system.
The HOL system [16] is a higher order logic theorem

prover environment. The core of HOL consists of �ve ax-
ioms and eight primitive inference rules. The only way to
derive new theorems from existing ones is via these rules.
False theorems cannot be proven. Since the entire formal
synthesis process is nothing but a conversion in HOL, cor-
rectness is guaranteed implicitly. Faulty implementations
cannot be achieved no matter how the design space ex-
ploration step was implemented. If the control information
produced by the heuristic is
awed, HOL will at some point
produce an exception, but it will never derive a false result.
Our formal synthesis program either leads to correct imple-
mentations or to no implementation but an exception. In
case of an exception, an information is produced telling the
user in which synthesis step the error occurred. In conven-
tional synthesis programs, however, such bugs might lead
to faulty implementations.

In our approach, circuit transformations guarantee that
the functional behavior is preserved. Besides functional
correctness, there may be further requirements for the im-
plementation such as timing and area constraints. How-
ever, checking, whether such constraints are ful�lled, can
easily be done by non-formal methods. Therefore, it is not
necessary to formally represent and verify such constraints
in logic.

III. Scheduling Transformation

As mentioned before, our formal synthesis methodology
can be applied to many synthesis steps. In this paper we
want to restrict ourselves to the scheduling task within
high-level synthesis to demonstrate the applicability of our
approach.

High-level synthesis converts an algorithmic circuit de-
scription into a structure at the Register-Transfer (RT)
level. The major steps in high-level synthesis are schedul-
ing, allocation of storage, functional and interconnection
units, binding the allocated hardware onto some library
components and interface synthesis.

For a better understanding, the starting point for
scheduling in this paper is a basic block of some algorithmic
description. It represents a pure data
ow graph. How-
ever, this is no restriction of our approach. The handling
of mixed control/data
ow graphs is described in [19].

The scheduling task assigns a control step (c-step) to
each operation in the algorithmic speci�cation. There are
various heuristic scheduling algorithms trying to minimize
the number of control steps and the hardware requirements
[18], [20]. Figure 2 gives an example of some scheduling
step. The input data
ow graph represented by the func-
tion g is split into a sequence of functions g4 � g3 � g2 � g1,
where gi corresponds to c-step i. During scheduling, the
number of c-steps has to be determined and each basic op-
eration within g has to be assigned to one of the c-steps.

// Insert �gure 2 here //

Our approach allows pipelining and to some extend
chaining. Chaining is not possible, if it leads to combina-
torial cycles, which cannot be expressed by our representa-
tions style (see section III-A). Furthermore, our approach
currently does not support multi-cycle operations. How-
ever, if those operations can be performed by pipelining,
i.e. they can be expressed by a sequence of partial opera-
tions, it is possible to integrate them. On the other hand we
have currently no solution for multi-cycle operations that
are not pipelined and are performed by units with internal
controller and registers.

A. Formalizing Data Flow Graphs

In general, there are various ways to formalize hardware
descriptions in logic. The representation style may have a
signi�cant impact on the e�ciency of the hardware trans-
formations. However, there are common problems. When
describing circuit structures, one needs (local) variables to

indicate interconnections. This paper will discuss e�ciency
aspects when transforming such structures in logic.
In our approach, data
ow graphs are represented by

means of functions that are nothing but simple composi-
tions of basic operations. They are formalized using �-
expressions [21]. The following Backus-Naur form shows
the syntactical structure of data
ow graphs:

vblock := variable j
"("

�
vblock ","

	
vblock ")"

expr := variable j
"("

�
expr ","

	
expr ")" j

operator "(" expr ")"
DFG-term := "�" vblock "."�

"let" vblock "=" expr "in"
	

expr
The two terms illustrated in �gure 3 show, how the orig-

inal and the scheduled data
ow graph in �gure 2 are rep-
resented in HOL.

// Insert �gure 3 here //

The expressions in �gure 3 describe input/output func-
tions in terms of their basic operations. The functions map
some input tuple to an output tuple. Each let-term de-
scribes the connectivity of one operation, i.e. a node of the
data
ow graph. Since these terms represent pure data

ow graphs, i.e. there are no cycles, a partial ordering on
the set of nodes is induced. This partial order corresponds
to the fact, that some operation A must be executed be-
fore B if the output of A happens to be an input to B.
This partially ordered data
ow graph is represented as
an arbitrarily ordered list, whereby the data dependencies
between the nodes are respected.

Let-terms are used for a better readability of �-redices
[21], where let x = y in z is equivalent to the �-redex
(�x:z) y. A �-redex (�x:z) y expresses that the argument
y is applied to the �-abstraction (�x:z) that maps some x
onto some z. One of the basic rules of functional algebra
asserts that a �-expression can be expanded where it is ap-
plied (�-reduction); and conversely, that a term can be ex-
tracted to the application of a �-expression (�-expansion):

(�x:z) y , z[y=x];

where z[y=x] denotes the expression, where every occur-
rence of x in z is replaced by the argument y. If x
and y are tuples, these conversions are called paired �-
reduction/expansion.

B. Transforming the Data Flow Graphs within HOL

During scheduling, the function g is split into a concate-
nation of functions g1; g2; : : : ; gk with g = gk � : : : � g2 � g1,
and each function again represents a data
ow graph (see
�gure 3).
This section describes, how the scheduling process de-

scribed in �gure 2 is implemented as a conversion in HOL.
Our conversion is steered by an external control informa-
tion, the schedule table. The schedule table indicates,
which operation has to be performed in which control step.

The conversion derives a theorem stating that the origi-
nal and the scheduled data
ow graph are equivalent. In
this section we will only describe the logical aspects of for-
mally deriving the synthesis result from the input data
ow
graph. The computation of the control information and in-
vocation of the external heuristics will be demonstrated in
section V.
The approach is based on a conversion for normalizing

functions. We will �rst describe this conversion and then
describe, how scheduling can be realized based on this con-
version.

C. Function Normalization

Both the input and the output of the scheduling process
are nothing but simple compositions of the same basic op-
erations (see �gure 3). Normalizing such representations is
pretty simple. The general algorithm looks as follows:
1. the original term g is converted to �(x1; x2; : : : ; xm):
g(x1; x2; : : : ; xm) by applying a paired �-reduction in the
inverse direction
2. the �-operations are expanded by rewriting
3. �-reductions and paired �-reductions are performed
wherever possible
Given some function g and the scheduled function g0 =
gk � : : : � g2 � g1, this algorithm leads to the same normal-
ized representation: �(x1; x2; : : : xm):v[x1; x2; : : : ; xm]. In
v[x1; x2; : : : xm] there are no �-redices left and there are
only pure function applications.

D. A Universal Conversion

We will now introduce a simple conversion which is based
on this normalization scheme. Given some data
ow graph
representation g and some schedule table, the following
steps have to be performed:
1. produce g0 = gk � : : : � g2 � g1 according to the schedule
table
2. derive ` g = ĝ and ` g0 = ĝ via normalization
3. The equations ` g = ĝ and ` g0 = ĝ are combined to
` g = g0

The major drawback of this universal conversion is the
complexity of step 2 when dealing with data
ow graphs
with a big depth, i.e. maximum number of operations on
a path from some input to some output. Data
ow graphs
whose intermediate nodes have larger fanouts, i.e. the out-
put of a node is used by many successor nodes as inputs,
lead to a number of duplications during �-reduction. Due
to the fact that during �-reduction one has to traverse the
entire term and since such �-redices can be nested, the
term size and time consumption in step 2 may grow expo-
nentially with the depth.

E. An Advanced Conversion

The universal conversion does not exploit any knowl-
edge about how the synthesis step was performed. The
advanced conversion exploits this knowledge. In the ad-
vanced scheduling conversion the data
ow graph is split
step by step rather than all at once. Let k be the number of
control steps. The scheduling transformation is performed

by a sequence of k� 1 transformations, each of them split-
ting apart one function gi. Each step transformation is
similar to the universal conversion except that step 2 is
modi�ed. �-reduction is only applied to those variables,
whose corresponding nodes have been assigned to the con-
sidered control step. Although this modi�ed normalization
step does not eliminate all �-redices, the terms achieved
after each step will be equal. Hence, for data
ow graphs
with larger fanouts the exponential complexity associated
with step 2 is avoided and the overall cost is reduced. Since
the advanced conversion performs step 2 several times, it is
to be expected that for small data
ow graphs it is slower,
but faster for larger ones.
In the following section we present some experimental

results that demonstrate the di�erences between the simple
and the advanced conversion.

F. Experimental Results

We consider two scalable data
ow graphs. As a �rst
example, we use a data
ow graph, that realizes the discrete
cosine transform (DCT), which is frequently used for image
compression. The DCT of an image with pixels x(n;m) is
de�ned by:

X(u; v) =
2p

N �M � c(u) � c(v) �
N�1X
n=0

M�1X
m=0

x(n;m) �

cos[
� � u
2N

� (2n+ 1)] � cos[� � v
2M

� (2m+ 1)]

with

c(u); c(v) =

� 1p
2

: u; v = 0

1 : otherwise

In the following, we assume that N = M . In the data

ow graph, there is a total of 2N3�N2�N additions and
2N3 � N + 2 multiplications. The length of the critical
path is 2N + 1. A more detailed description of this data

ow graph can be found in [22].
The second example implements a division of two poly-

nomials (PD) according to the following equation.

p+qP
i=0

�i x
i

pP
i=0

�i xi
=

qX
i=0

i x
i +

p�1P
i=0

�i x
i

pP
i=0

�i xi

�i and �i indicate the coe�cients of dividend and the
divisor, respectively.
i and �i indicate the coe�cients of
the result and the rest. The following equations describe
the data
ow graph for mapping the coe�cients �i and �i
to
i and �i.

i = �i+p �
minfi+p;qgX

k=i+1

�i+p�k �
k i = 0 : : : q

�j = �j �
minfj;qgX
k=0

�j�k �
k j = 0 : : : p� 1

The data
ow graph consists of p+q subtracters, p(q+1)
multipliers and q(p � 1) adders. The critical path has a
length of 3q + 2 nodes.
The structures of the two data
ow graphs di�er both in

the depth and the number of reused intermediate results.
In contrast to the DCT, the PD data
ow graphs comprise
nodes with larger fanouts, which are nested, additionally.
In �gure 4, an example is shown, where these nodes are
marked.

// Insert �gure 4 here //

Figure 5 shows the runtime for transforming the PD data

ow graph with the simple and the advanced conversion.
We set p to 25 and increased q thus varying the size of
the benchmark. For this data
ow graph, the use of the
advanced conversion leads to far better results. Due to the
exponential memory consumption of the simple conversion,
the computer's capacity of 1.2 GB was exceeded at about
600 nodes.

// Insert �gure 5 here //

When applying the same conversions to the DCT exam-
ple, however, it shows, that the simple conversion seems to
be superior (see �gure 6). This is due to the fact, that both
the length of the critical path and the fanouts are smaller
than with the PD example. However, for even larger data

ow graphs, it is to be expected that the simple conver-
sion grows faster and �nally consumes more time than the
advanced conversion.

// Insert �gure 6 here //

IV. Changing the Core of the Theorem Prover

In this section we present an optimized HOL theorem
proving system named HOL'. HOL' di�ers from HOL in
two points: the term representation is changed and two
basic rules are added.

A. Changing the Term Representation

In the HOL theorem prover, terms are implemented in
a so-called deBrujin-style [21], which means that free and
bound variables are represented di�erently. A variable x is
said to be a bound variable, i� it is within the scope of a �-
abstraction whose identi�er is x; otherwise x is called free.
In the deBrujin representation, free variables are stored
with their name and type, whereas bound variables are
only represented by a number, linking to the �-abstraction
they refer to. The number describes the distance between
the bound variable and the �-abstraction in terms of �-
abstractions. Example: Consider the term �x:(�y: x+ y +
z). In the subterm x+y+z, the two bound variables x and
y are internally represented by 1 and 0, respectively. One
advantage of the deBrujin representation is, that checking
the �-equivalence of two terms (only the names of bound
variable are changed) can be performed in linear time.

However, the deBrujin term representation has a ma-
jor drawback. During the construction and destruction of
terms, one has to switch between bound and free variables.
In the deBrujin-style term representation, this means tra-
versing the entire term. For big terms with local variables
having a large range | such as circuit structures | this
leads to a quadratic complexity when building, destructing
and transforming such terms.
Therefore, in HOL' a so-called name-carrying term rep-

resentation was implemented. Here, also the bound vari-
ables are stored with their name and type. It has the ad-
vantage that many terms, such as circuit descriptions, can
be handled in a far more e�cient manner. However, there
are also some basic logical operations such as �-equivalence
check that became less e�cient. Furthermore, this ap-
proach also increases memory consumption due to the fact
that bound variables are not any more represented by a
single number but are represented by their name and type.

B. Introduction of More E�cient Functions

The original HOL system only allows one single �-
reduction at a time. One can increase the e�ciency of
the scheduling transformation by performing several �-
reductions in a single term traversal step. By adding this
conversion to the core, we improved the e�ciency of the
theorem prover. This advanced �-conversion is equipped
with a �lter, i.e. a characteristic function, for selecting the
bound variables that are to be expanded. This is useful for
our advanced conversion expanding only those variables,
that occur within the considered control step (see section
III-E).
In the original HOL system, a paired �-reduction with

an n-tuple needs n term traversal steps. However, based
on the advanced �-conversion, paired �-reduction can be
performed within two traversals. For the implementa-
tion of the advanced paired �-conversion we added a sec-
ond conversion, that �rst switches some paired �-redex
into an equivalent unpaired representation. Example:
(�(x; y):t) (a; b) is turned to (�x:(�y:t)) a b. In a second
traversal, the advanced �-conversion is applied at the loca-
tions indicated by the �lter function.
These two extra conversions are not only tailored to our

application, but are of general interest for other users of the
HOL system. However, it has to be noted, that enlarging
the core is crucial to soundness and correctness, since faults
within the implementations of the modi�ed rules may vio-
late the consistency of the calculus. Therefore, one has to
be extra careful with the implementation and one should
be very restrictive with the size of the core.
Figures 7 and 8 compare runtimes for scheduling con-

versions within HOL and HOL'. It shows, that both the
simple and the advanced conversion runs extremely faster
with HOL'. Again, due to nested �-redices in the PD data

ow graphs, the simple conversion ran into memory prob-
lems for larger data
ow graphs.

// Insert �gure 7 here //

// Insert �gure 8 here //

V. The Formal Synthesis Scenario Applied to

Scheduling

Figure 9 demonstrates, how the scheduling step is per-
formed by means of the small example in �gure 2. Given
a data
ow graph, some scheduling heuristic (here: force-
directed [23]) is started. The heuristic returns a schedule
table assigning each operation in the data
ow graph to a
control step. This heuristic step has nothing to do with
logic. The scheduling table is then handled to the logi-
cal transformation, that maps the input data
ow graph to
the output data
ow graph according to the schedule table.
Additionally, a correctness theorem is derived.

// Insert �gure 9 here //

Figure 10 shows a HOL session performing this schedul-
ing step. The HOL conversion SCHEDULING_CONV accom-
plishes the scheduling transformation according to the
schedule which is determined by the scheduling heuristic.
SCHEDULING_CONV gets the scheduling heuristic as a pa-
rameter. In this example, we applied the force-directed
scheduling heuristic. Any other scheduling heuristic can
be embedded as well.

// Insert �gure 10 here //

Our formal synthesis system HASH can be combined
with every synthesis tool, provided that the synthesis tool
can deliver the control information such as the schedule
table to the HASH transformation. The circuit designer
then can select the synthesis heuristic and HASH performs
the transformation according to the result of the heuris-
tic. This can even be done in the background, while the
designer is busy with the next synthesis step.
The overall cost for performing a single formal synthe-

sis step is the sum of performing the synthesis step con-
ventionally by some heuristic and the cost for the logical
transformation. Therefore, the ratio between these parts
is quite interesting.
Figures 11 and 12 show the runtimes for both design

space exploration and transformational part of the formal
synthesis step for the DCT data
ow graph and the PD
data
ow graph, respectively. For determining the sched-
ule table, we applied both the force-directed (FD) and the
ALAP program. The circuit transformation was performed
in HOL' (the modi�ed HOL system) by applying the sim-
ple conversion for the DCT and the advanced conversion
for the PD.

// Insert �gure 11 here //

As can be seen, the runtime for sophisticated design
space exploration techniques such as force-directed schedul-
ing exceeds the runtime for the transformational part by
far. Even for simple design space exploration techniques,
the ratio between design space exploration and circuit

// Insert �gure 12 here //

transformation seems reasonable. Additionally, it shows,
that even large-sized data
ow graphs can be synthesized
with our method and that the runtime for the transforma-
tions depends on the structure of the data
ow graph but
is independent of the design space exploration technique
involved.
Of course, there may be circuits and synthesis steps,

where the extra-cost for formal synthesis is much higher
than the cost for conventional synthesis. However, one has
to be aware of the fact that the alternative to formal syn-
thesis is a conventional synthesis with subsequent exhaus-
tive simulation or post-synthesis veri�cation, which is in
general extremely costly.
In this paper, we have restricted ourselves to the schedul-

ing problem. Nevertheless, also formal synthesis steps for
binding, allocation and interface synthesis have been real-
ized, but are not discussed here. Thus we are able to per-
form a complete formal high-level synthesis for data
ow
graphs.

VI. Conclusions

In this paper we have presented a technique to derive
correct implementations in a secure manner. This tech-
nique is not restricted to a certain abstraction level (see
[11] for performing formal synthesis at the RT-level).

For the scheduling task, we have illustrated the e�ciency
problem when performing the synthesis step by means of a
logical transformation. It shows, that it is very important
to be aware of the complexity of the basic logical transfor-
mation when constructing formal synthesis programs. On
the other hand it may be worthwhile to modify the basic
logical transformations themselves.

Experimental results have demonstrated that formaliz-
ing the synthesis process as a sequence of logical transfor-
mations may not be a signi�cant performance factor. Our
experiences with formal synthesis programs at the algorith-
mic level and the RT-level con�rm us to claim that e�cient
formal synthesis implementations are applicable even for
large sized circuits and that the extra-costs as compared to
conventional synthesis are reasonable or at least less than
the extra-costs for post-synthesis veri�cation.

Acknowledgments

The authors are grateful to the anonymous referees
whose constructive comments have improved the quality
of the paper.

References

[1] R. Kumar , C. Blumenr�ohr, D. Eisenbiegler, and D. Schmid ,
\Formal synthesis in circuit design-A classi�cation and survey,"
in Formal Methods in Computer-Aided Design. First Interna-
tional Conference,FMCAD'96, M. Srivas and A. Camilleri, Eds.,
Palo Alto, CA, USA, Nov. 1996, number 1166 in Lecture Notes
in Computer Science, pp. 294{309, Springer-Verlag.

[2] M. Aagaard and M. Leeser, \Verifying a logic synthesis algo-
rithm and implementation: A case study in software veri�ca-
tion," IEEE Transactions on Software Engineering, Oct. 1995.

[3] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan,
and R. Vemuri, \Theorem proving guided development of formal
assertions in a resource-constrained scheduler for high-level syn-
thesis," in International Conference on Computer Design 1998,
Austin, USA, 1998, IEEE-Press.

[4] A. Gupta, \Formal hardware veri�cation methods: A survey,"
Formal Methods in System Design, vol. 1, no. 2/3, pp. 151{238,
1992.

[5] T. Melham, Higher Order Logic and Hardware Veri�cation,
Cambridge University Press, 1993.

[6] E. M. Clarke, O. Grumberg, and D. E. Long, \Model checking,"
1996, vol. 152 of Nato ASI Series F, Springer-Verlag.

[7] R. Sharp and O. Rasmussen, \The T-Ruby design system," in
IFIP Conference on Hardware Description Languages and their
Applications, 1995, pp. 587{596.

[8] E.M. Mayger and M.P. Fourman, \Integration of formal meth-
ods with system design," in International Conference on Very
Large Scale Integration, A. Halaas and P.B. Denyer, Eds., Ed-
inburgh, Scotland, Aug. 1991, IFIP Transactions, pp. 59{70,
North-Holland.

[9] F.K. Hanna, M. Longley, and N. Daeche, \Formal synthesis of
digital systems," in Applied Formal Methods For Correct VLSI
Design, Luc J. M. Claesen, Ed. IMEC-IFIP, 1989, vol. 2, pp.
532{548, Elsevier Science Publishers.

[10] S.D. Johnson and B. Bose, \DDD: A system for mecha-
nized digital design derivation," in International Workshop on
Formal Methods in VLSI Design, Miami, Florida, Jan. 1991,
ACM/SIGDA, Available as Indiana University Computer Sci-
ence Department Technical Report No. 323 (rev. 1997).

[11] D. Eisenbiegler, R. Kumar, and C. Blumenr�ohr, \A constructive
approach towards correctness of synthesis - application within
retiming," in The European Design & Test Conference, Paris,
France, Mar. 1997, IEEE Computer Society and ACM/SIGDA,
pp. 427{432, IEEE Computer Society Press.

[12] R. Camposano, \Behavior-preserving transformations for high-
level synthesis," in Hardware Speci�cation, Veri�cation and
Synthesis: Mathematical Aspects, M. Leeser and G. Brown,
Eds., Ithaca, New York, July 1989, Mathematical Science Insti-
tute, Cornell University, number 408 in Lecture Notes in Com-
puter Science, pp. 106{128, Springer-Verlag.

[13] Z. Peng and K. Kuchcinski, \Automated transformation of al-
gorithms into register-transfer implementations," IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 2, pp. 150{166, Feb. 1994.

[14] P.F.A. Middelhoek, Transformational Design: An Architecture
Independent Interactive Design Methodology for the Synthesis of
Correct and E�cient Digital Systems, Ph.D. thesis, Universiteit
Twente, NL, 1997.

[15] C.Huijs, \Transformational design of digital systems based on
graph rewriting," in Proceedings of ProRISC/IEEE Workshop,
Mierlo, The Netherlands, Nov. 1996.

[16] M.J.C. Gordon and T.F. Melham, Introduction to HOL: A The-
orem Proving Environment for Higher Order Logic, Cambridge
University Press, 1993.

[17] D.E. Thomas, E.D. Langnese, R.A. Walker, J.A. Nestor, J.V.
Rajan, and R.L. Blackburn, Algorithmic and Register-Transfer
Level Synthesis: The System Architect's Workbench, Kluwer
Academic Publishers, 1990.

[18] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthe-
sis, Introduction to Chip and System Design, Kluwer Academic
Publishers, 1992.

[19] C.Blumenr�ohr and D. Eisenbiegler, \Performing high-level syn-
thesis via program transformations within a theorem prover," in
Digital System Design Workshop at the 24th EUROMICRO 98
Conference, Vaesteraas, Sweden, 1998, pp. 34{37, IEEE-Press.

[20] R. Camposano and W. Wolf, High-Level VLSI Synthesis,
Kluwer, Boston, 1991.

[21] H. P. Barendregt, Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics, chapter 7: Functional
Programming and Lambda Calculus, pp. 321{364, Elsevier,
1992.

[22] C.Blumenr�ohr, D. Eisenbiegler, and R.Kumar, \Applicability
of formal synthesis illustrated via scheduling," in Workshop on
Logic and Architecture Synthesis, Grenoble, France, Dec. 1996,
Institut National Polytechnique de Grenoble.

[23] P. G. Paulin and J. P. Knight, \Force-directed scheduling for the
behavioral synthesis of ASIC's," IEEE Transactions on Com-
puter Aided Design, vol. 8, no. 6, pp. 661{679, June 1989.

Christian Blumenr�ohr studied electrical en-
gineering at the Universit�at Karlsruhe and re-
ceived his diploma in 1995. Since 1995 he is
a research assistant at the Institute for Com-
puter Design and Fault Tolerance at the same
university. There he �rst was a member of the
machine learning group. Since 1996 he is with
the formal synthesis group and now works on
a research project called formal circuit design.
His research interests include formal methods,
high-level synthesis and system level synthe-

sis.

Dirk Eisenbiegler studied computer science
at the Universit�at Karlsruhe and received his
diploma in 1993. From 1993 until 1996 he
was research assistant at the department \au-
tomation of circuit design" (ACID) at the
Forschungszentrum Informatik (FZI) in Karl-
sruhe. Since 1996 he is with the Institute for
Circuit Design and Fault Tolerance at the Uni-
versit�at Karlsruhe. Since 1996 he works on a
research project called formal circuit design.
His research interests include formal methods

and synthesis.

Detlef Schmid is the head of the Institute
for Computer Design and Fault Tolerance at
the Universit�at Karlsruhe. In 1972/73, he was
the �rst head of the department of the new fac-
ulty for computer science in Karlsruhe, which
is now one of the most successful faculties for
computer science in Europe. In 1974, he was
the founder of the \Fakult�atentag Informatik",
a federation of all german universities working
in the �eld of computer science. From 1985 to
1996 he was the head of the ACID-group at the

Forschungszentrum Informatik (FZI) in Karlsruhe. Since 1989 he is
member of the board of curators at the Institute for Microelectronics
in Stuttgart, and since 1992 he is elected reviewer of the Deutsche
Forschungsgemeinschaft for the area technical science.

